JP2013112573A - Method for making porous silica precursor coating solution - Google Patents

Method for making porous silica precursor coating solution Download PDF

Info

Publication number
JP2013112573A
JP2013112573A JP2011261263A JP2011261263A JP2013112573A JP 2013112573 A JP2013112573 A JP 2013112573A JP 2011261263 A JP2011261263 A JP 2011261263A JP 2011261263 A JP2011261263 A JP 2011261263A JP 2013112573 A JP2013112573 A JP 2013112573A
Authority
JP
Japan
Prior art keywords
porous silica
sol
precursor coating
coating solution
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011261263A
Other languages
Japanese (ja)
Inventor
Masaaki Hirakawa
正明 平川
Takahisa Yamazaki
貴久 山崎
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011261263A priority Critical patent/JP2013112573A/en
Publication of JP2013112573A publication Critical patent/JP2013112573A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precursor coating solution which, when applied to a substrate surface and fired, can give a porous silica film excellent in resistance to chemical solutions.SOLUTION: There is provided a method for making a precursor coating solution used in the formation of a porous silica film, which method comprises a first step of dissolving a functional group-containing alkoxysilane together with a surfactant in a solvent and subjecting the dissolved alkoxysilane to hydrolysis and dehydration condensation in the presence of a catalyst to obtain first sol and a second step of adding a tetraalkoxysilane or a polymer thereof to the first sol and subjecting the dehydration condensate contained in the first sol and the tetraalkoxysilane or the polymer thereof to hydrolysis and dehydration condensation to obtain second sol.

Description

本発明は、多孔質シリカ膜の形成に用いられる多孔質シリカ前駆体塗布液の作製方法に関する。   The present invention relates to a method for producing a porous silica precursor coating solution used for forming a porous silica film.

近年、例えば半導体デバイスの層間絶縁膜として、例えば比誘電率が2以下の多孔質シリカ膜が用いられている。多孔質シリカ膜の形成にはCVD法や塗布法が用いられているが、簡単な設備で実施することができる塗布法が有望視されている。例えば、特許文献1には、塗布法を用いた多孔質シリカ膜の形成方法が開示されている。このものでは、界面活性剤を添加したアルコキシシラン溶液を触媒存在下で加水分解及び脱水縮合することで前駆体塗布液を作製し、この作製した前駆体塗布液を基材表面に塗布し、この塗布したものを焼成する。これにより、前駆体塗布液に含まれる界面活性剤が除去され、この除去部分が空孔となり、多孔質シリカ膜が形成される。   In recent years, for example, a porous silica film having a relative dielectric constant of 2 or less is used as an interlayer insulating film of a semiconductor device, for example. A CVD method or a coating method is used to form the porous silica film, but a coating method that can be carried out with simple equipment is promising. For example, Patent Document 1 discloses a method for forming a porous silica film using a coating method. In this, a precursor coating solution is prepared by hydrolyzing and dehydrating and condensing an alkoxysilane solution to which a surfactant is added in the presence of a catalyst, and the prepared precursor coating solution is applied to the surface of a substrate. The applied one is baked. As a result, the surfactant contained in the precursor coating solution is removed, and the removed portion becomes pores, thereby forming a porous silica film.

このように形成された多孔質シリカ膜内にドライエッチングによりトレンチやホール等の凹部が形成される。そして、エッチング残渣を酸(例えばフッ酸)で除去した後、凹部内に配線材料として例えばCuを埋め込み、スラリーを用いたCMPにより平坦化することで配線構造が得られる。ここで、配線構造の形成に用いられる酸やアルカリ(CMP用スラリー)等の薬液に対し多孔質シリカ膜の耐性が低いと、薬液と接触した空孔のサイズが大きくなり、多孔質シリカ膜の強度が低下すると共に比誘電率が高くなるという不具合が生じる。   In the porous silica film thus formed, recesses such as trenches and holes are formed by dry etching. Then, after the etching residue is removed with an acid (for example, hydrofluoric acid), Cu, for example, is embedded as a wiring material in the recess, and the wiring structure is obtained by planarization by CMP using slurry. Here, if the porous silica film has low resistance to chemicals such as acids and alkalis (CMP slurry) used for forming the wiring structure, the size of the pores in contact with the chemicals increases, and the porous silica film There arises a problem that the relative dielectric constant increases as the strength decreases.

多孔質シリカ膜の耐薬液性を高めるために、上記特許文献1記載では、メチル基を有するアルコキシシランを上記アルコキシシランと混合し、混合して得た溶液を加水分解及び脱水縮合することで前駆体塗布液を作製することが提案されている。   In order to improve the chemical resistance of the porous silica membrane, in Patent Document 1, the precursor is obtained by mixing an alkoxysilane having a methyl group with the alkoxysilane and hydrolyzing and dehydrating and condensing the resulting solution. It has been proposed to produce a body coating solution.

然しながら、本発明者らが鋭意検討した結果、従来例の如く、アルコキシシランと官能基を有するアルコキシシランとを混合した後に加水分解及び脱水縮合して前駆体塗布液を得ると、焼成後の多孔質シリカ膜が十分な耐薬液性を発現しないことが判明した。これは、アルコキシシランに比べて官能基を有するアルコキシシランは、脱水縮合が進み難く、官能基を有する脱水縮合物の分子量が比較的小さいので、かかる分子量の小さい脱水縮合物が前駆体塗布液を塗布する際に溶媒と共に流れてしまい、結果として、多孔質シリカ膜の表面に官能基が存在し難いためであると考えられる。   However, as a result of intensive studies by the present inventors, as in the conventional example, after mixing the alkoxysilane and the alkoxysilane having a functional group and then hydrolyzing and dehydrating condensation to obtain a precursor coating liquid, It was found that the porous silica film does not exhibit sufficient chemical resistance. This is because the alkoxysilane having a functional group is less likely to proceed with dehydration condensation than the alkoxysilane, and the molecular weight of the dehydration condensate having a functional group is relatively small. It is thought that this is because the functional group does not easily exist on the surface of the porous silica film as a result of flowing together with the solvent during coating.

特開2004−143029号公報JP 2004-143029 A

本発明は、以上の点に鑑み、耐薬液性に優れた多孔質シリカ膜を得ることが可能な多孔質シリカ前駆体塗布液を提供することをその課題とする。   This invention makes it the subject to provide the porous silica precursor coating liquid which can obtain the porous silica membrane excellent in chemical-solution resistance in view of the above point.

上記課題を解決するために、本発明は、多孔質シリカ膜の形成に用いられる前駆体塗布液の作製方法であって、官能基を有するアルコキシシランを界面活性剤と共に溶媒に溶解させ、この溶解させたアルコキシシランを触媒存在下で加水分解及び脱水縮合して第1のゾルを得る第1工程と、第1のゾルにテトラアルコキシシランもしくはその重合体を添加し、第1のゾルに含まれる脱水縮合物とテトラアルコキシシランもしくはその重合体を加水分解及び脱水縮合して第2のゾルを得る第2工程とを含むことを特徴とする。   In order to solve the above problems, the present invention is a method for preparing a precursor coating solution used for forming a porous silica film, in which an alkoxysilane having a functional group is dissolved in a solvent together with a surfactant. A first step of obtaining a first sol by hydrolyzing and dehydrating and condensing the resulting alkoxysilane in the presence of a catalyst; and adding a tetraalkoxysilane or a polymer thereof to the first sol, and being contained in the first sol And a second step of obtaining a second sol by hydrolysis and dehydration condensation of the dehydration condensate and tetraalkoxysilane or a polymer thereof.

本発明によれば、第1工程にて、官能基を有するアルコキシシランの脱水縮合物を含む第1のゾルを得る。即ち、テトラアルコキシシランに比べて脱水縮合し難い、官能基を有するアルコキシシランの脱水縮合物を得る。この脱水縮合物には、焼成時に空孔となる界面活性剤が含まれる。次に、第2工程にて、第1のゾルに含まれる脱水縮合物とテトラアルコキシシランもしくはその重合体との脱水縮合物を含む第2のゾルを得る。このようにして得られた第2のゾルに含まれる脱水縮合物は、従来例の如く官能基を有するアルコキシシランとテトラアルコキシシランとを混合して加水分解及び脱水縮合することで得られた脱水縮合物よりも官能基を多く含むこととなる。そして、本発明の前駆体塗布液を基材表面に塗布すれば、基材表面から溶媒と一緒に脱水縮合物の一部が流れ出たとしても、基材表面に残る脱水縮合物に含まれる官能基が多くなる。これにより、基材表面に前駆体塗布液を塗布したものを焼成することで得られる多孔質シリカ膜は、その表面に官能基が多く存在したものとすることができる。結果として、官能基として耐薬液性の高いものを選択すれば、耐薬液性に優れた多孔質シリカ膜を形成することができる。   According to the present invention, in the first step, a first sol containing a dehydration condensate of an alkoxysilane having a functional group is obtained. That is, a dehydration condensate of an alkoxysilane having a functional group, which is difficult to dehydrate and condense compared to tetraalkoxysilane. This dehydration condensate contains a surfactant that becomes pores during firing. Next, in the second step, a second sol containing a dehydration condensate of the dehydration condensate contained in the first sol and tetraalkoxysilane or a polymer thereof is obtained. The dehydration condensate contained in the second sol thus obtained is obtained by mixing and hydrolyzing and dehydrating and condensing an alkoxysilane having a functional group and a tetraalkoxysilane as in the conventional example. It contains more functional groups than the condensate. And if the precursor coating liquid of this invention is apply | coated to the base-material surface, even if a part of dehydration condensate flows out with the solvent from the base-material surface, the functionality contained in the dehydration-condensation remaining on the base-material surface More groups. Thereby, the porous silica film obtained by baking what apply | coated the precursor coating liquid to the base-material surface shall have many functional groups in the surface. As a result, if a chemical group having high chemical resistance is selected as the functional group, a porous silica film having excellent chemical resistance can be formed.

本発明において、官能基を有するアルコキシシランが、官能基を有するトリアルコキシシランであることが好ましい。トリアルコキシシランは官能基との結合手を1個しか持たないため、官能基との結合手を2個又は3個持つジアルコキシシラン又はモノアルコキシシランに比べて脱水縮合速度が速く、しかも、多孔質シリカ膜の骨格を強くできるという利点が得られる。   In the present invention, the alkoxysilane having a functional group is preferably a trialkoxysilane having a functional group. Since trialkoxysilane has only one bond with a functional group, the dehydration condensation rate is higher than that of dialkoxysilane or monoalkoxysilane having two or three bonds with a functional group, and it is porous. The advantage that the skeleton of the porous silica film can be strengthened is obtained.

本発明の実施例で得られた多孔質シリカ前駆体塗布液を用いて形成した多孔質シリカ膜の耐薬液性を示す図。The figure which shows the chemical resistance of the porous silica film | membrane formed using the porous silica precursor coating liquid obtained in the Example of this invention.

以下、本発明の実施形態の多孔質シリカ前駆体塗布液の作製方法について説明する。本実施形態の多孔質シリカ前駆体塗布液の作製方法は、先ず、槽内にて、官能基を有するアルコキシシランを界面活性剤と共に溶媒に溶解させ、この溶解させて得た溶液に触媒と加水分解用の水とを添加して攪拌する。これにより、官能基を有するアルコキシシランが加水分解及び脱水縮合し第1のゾルが得られる(第1工程)。この第1のゾルに含まれる脱水縮合物には、焼成時に空孔となる界面活性剤が取り込まれている。   Hereinafter, a method for producing a porous silica precursor coating solution according to an embodiment of the present invention will be described. In the method of preparing the porous silica precursor coating liquid of the present embodiment, first, an alkoxysilane having a functional group is dissolved in a solvent together with a surfactant in a tank, and a catalyst and water are added to the solution obtained by the dissolution. Add water for decomposition and stir. Thereby, the alkoxysilane having a functional group is hydrolyzed and dehydrated and condensed to obtain a first sol (first step). The dehydration condensate contained in the first sol incorporates a surfactant that becomes pores during firing.

ここで、官能基を有するアルコキシシランとしては、例えば、メチルトリメトキシシラン(MTMS)やフェニルトリメトキシシラン(PhTMS)等の官能基を有するトリアルコキシシランを単独で又は2種以上を組み合わせて好適に用いることができる。トリアルコキシシランは、官能基との結合手を1個しか持たないため、官能基との結合手を2個又は3個持つジアルコキシシラン又はモノアルコキシシランに比べて脱水縮合速度が速く、しかも、多孔質シリカ膜の骨格を強くできるという利点がある。官能基としては、耐薬液性と共に多孔質シリカ膜に要求される特性に応じて、メチル基、エチル基等のアルキル基;及びフェニル基、トリル基、キシリル基等のアリール基から少なくとも一種を選択することができる。疎水性の高い多孔質シリカ膜を得るためには、アルキル基を選択することが好ましい一方で、耐ドライエッチング性に優れた多孔質シリカ膜を得るためには、アリール基を選択することが好ましい。   Here, as the alkoxysilane having a functional group, for example, trialkoxysilane having a functional group such as methyltrimethoxysilane (MTMS) or phenyltrimethoxysilane (PhTMS) is used alone or in combination of two or more. Can be used. Since the trialkoxysilane has only one bond to the functional group, the dehydration condensation rate is higher than that of dialkoxysilane or monoalkoxysilane having two or three bonds to the functional group, There is an advantage that the skeleton of the porous silica film can be strengthened. As the functional group, at least one kind selected from an alkyl group such as a methyl group or an ethyl group; and an aryl group such as a phenyl group, a tolyl group, or a xylyl group, depending on the properties required for the porous silica membrane as well as the chemical resistance. can do. In order to obtain a highly hydrophobic porous silica film, it is preferable to select an alkyl group, while in order to obtain a porous silica film having excellent dry etching resistance, it is preferable to select an aryl group. .

界面活性剤としては、ポリオキシエチレン−ポリオキシプロピレン縮合物等の非イオン性界面活性剤を好適に用いることができる。溶媒としては、メタノール、エタノール、2−プロパノール等のアルコール類;アセトン等のケトン類;エチルエーテル等のエーテル類;アセトニトリル等のニトリル類から選択された少なくとも1種を単独で又は混合して好適に用いることができる。   As the surfactant, a nonionic surfactant such as a polyoxyethylene-polyoxypropylene condensate can be suitably used. As the solvent, at least one selected from alcohols such as methanol, ethanol and 2-propanol; ketones such as acetone; ethers such as ethyl ether; and nitriles such as acetonitrile is used alone or in combination. Can be used.

触媒としては、酸触媒及びアルカリ触媒から選択される少なくとも一種を用いることができる。酸触媒としては、例えば硝酸、塩酸、硫酸等の無機酸や例えばギ酸、酢酸等の有機酸が挙げられる。アルカリ触媒としては、例えば水酸化テトラメチルアンモニウム等のアンモニウム塩が挙げられる。   As the catalyst, at least one selected from an acid catalyst and an alkali catalyst can be used. Examples of the acid catalyst include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, and organic acids such as formic acid and acetic acid. Examples of the alkali catalyst include ammonium salts such as tetramethylammonium hydroxide.

第1工程の加水分解及び脱水縮合時間は少なくとも30分以上に設定することができる。30分より短いと、脱水縮合が不十分となり、比較的大きい分子量を有する脱水縮合体が得られないという不具合が生じる。この場合、後述の第2工程で得られる脱水縮合体に含まれる官能基が少なくなる。また、第1工程の加水分解及び脱水縮合の温度は、溶媒の気化温度より低い温度に設定すればよく、例えば室温に設定することが好ましい。   The hydrolysis and dehydration condensation time in the first step can be set to at least 30 minutes or more. When the time is shorter than 30 minutes, the dehydration condensation is insufficient, resulting in a problem that a dehydration condensation product having a relatively large molecular weight cannot be obtained. In this case, the functional group contained in the dehydration condensate obtained in the second step described later is reduced. Moreover, what is necessary is just to set the temperature of the hydrolysis of the 1st process and dehydration condensation to the temperature lower than the vaporization temperature of a solvent, for example, setting to room temperature is preferable.

上記第1工程で得られた第1のゾルにシリカ骨格形成用のテトラアルコキシシランもしくはその重合体を添加して攪拌する。ここで、第1のゾルは、触媒と加水分解用の水とを含んでいる。このため、第1のゾルに含まれる脱水縮合物とテトラアルコキシシランもしくはその重合体とが加水分解及び脱水縮合し第2のゾルが得られる(第2工程)。   A tetraalkoxysilane for forming a silica skeleton or a polymer thereof is added to the first sol obtained in the first step and stirred. Here, the first sol contains a catalyst and water for hydrolysis. For this reason, the dehydration condensate contained in the first sol and the tetraalkoxysilane or a polymer thereof are hydrolyzed and dehydrated to obtain a second sol (second step).

ここで、テトラアルコキシシランとしては、テトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)から選択される少なくとも1種を用いることができる。テトラアルコキシシランの重合体としては、メチルシリケート(MS)、エチルシリケート(ES)から選択される少なくとも1種を用いることができる。   Here, as the tetraalkoxysilane, at least one selected from tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) can be used. As the polymer of tetraalkoxysilane, at least one selected from methyl silicate (MS) and ethyl silicate (ES) can be used.

第2工程の加水分解及び脱水縮合時間は少なくとも30分以上に設定することができる。30分より短いと、脱水縮合が不十分となるという不具合が生じる。また、第2工程の加水分解及び脱水縮合の温度は、上記第1工程と同様、例えば室温に設定することが好ましい。   The hydrolysis and dehydration condensation time in the second step can be set to at least 30 minutes or more. If it is shorter than 30 minutes, there is a problem that the dehydration condensation becomes insufficient. In addition, the temperature of the hydrolysis and dehydration condensation in the second step is preferably set to room temperature, for example, as in the first step.

以上説明したように、本実施形態によれば、官能基を含むアルコキシシランを脱水縮合して第1のゾルを得た後、この脱水縮合物とテトラアルコキシシランもしくはその重合体とを更に脱水縮合して第2のゾルを得るようにした。このようにして得た第2のゾルに含まれる脱水縮合物は、従来例の如く官能基を含むアルコキシシランとテトラアルコキシシランもしくはその重合体とを脱水縮合して得られる脱水縮合物と比べて、官能基を多く含むようになる。そして、第2のゾルからなる前駆体塗布液を基材たるシリコン基板の表面に塗布すると、シリコン基板表面から溶媒と一緒に脱水縮合物の一部が流れ出たとしても、シリコン基板表面に残る脱水縮合物に含まれる官能基が多くなる。これにより、シリコン基板表面に前駆体塗布液を塗布したものを真空雰囲気下で焼成することで得られる多孔質シリカ膜は、その表面に官能基が多く存在したものとすることができる。結果として、官能基として耐薬品性の高いものを選択すれば、耐薬液性に優れた多孔質シリカ膜を形成することが可能となる。尚、第2のゾルに上記溶媒を溶かして粘度調整することで前駆体塗布液を得てもよい。また、前駆体塗布液の塗布方法や焼成方法については公知のものを用いることができるため、ここでは詳細な説明を省略する。   As described above, according to this embodiment, after the dehydration condensation of the alkoxysilane containing the functional group to obtain the first sol, the dehydration condensation product and the tetraalkoxysilane or the polymer thereof are further dehydration condensation. Thus, a second sol was obtained. The dehydration condensate contained in the second sol thus obtained is compared with the dehydration condensate obtained by dehydration condensation of an alkoxysilane containing a functional group and tetraalkoxysilane or a polymer thereof as in the conventional example. , Comes to contain many functional groups. Then, when the precursor coating liquid composed of the second sol is applied to the surface of the silicon substrate as a base material, even if a part of the dehydration condensate flows out together with the solvent from the silicon substrate surface, the dehydration remaining on the silicon substrate surface The functional group contained in the condensate increases. Thereby, the porous silica film obtained by baking the thing which apply | coated the precursor coating liquid on the silicon substrate surface in a vacuum atmosphere can have many functional groups in the surface. As a result, if a chemical group having high chemical resistance is selected, a porous silica film having excellent chemical resistance can be formed. The precursor coating solution may be obtained by adjusting the viscosity by dissolving the solvent in the second sol. Moreover, since a well-known thing can be used about the coating method and baking method of a precursor coating liquid, detailed description is abbreviate | omitted here.

以下、本発明の実施例について説明する。
(実施例1)
本実施例1では、槽内にて、メチルトリメトキシシラン(MTMS)0.1モルと非イオン性界面活性剤(第一工業製薬株式会社製の商品名「P450」、HO(CHCHO)13(CH(CH)CHO)20(CHCHO)13Hで表される。)0.01モルとをエタノール中に溶解させ、この溶解させて得た溶液に硝酸0.01モルと水1モルとを更に添加し、これら硝酸及び水を添加したものを25℃で3時間攪拌して第1のゾルを得た。次いで、この第1のゾルに、メチルシリケート(MS)(扶桑化学工業株式会社製の商品名「メチルシリケート51」)0.0013モルを添加して25℃で2時間更に攪拌して第2のゾルを得た。この第2のゾルにエタノールを加えて塗布に好適な粘度に調整することにより、透明で均一な前駆体塗布液を作製した。
Examples of the present invention will be described below.
Example 1
In Example 1, 0.1 mol of methyltrimethoxysilane (MTMS) and a nonionic surfactant (trade name “P450” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., HO (CH 2 CH 2 O) 13 (CH (CH 3 ) CH 2 O) 20 (CH 2 CH 2 O) 13 H.) 0.01 mol is dissolved in ethanol, and the resulting solution is dissolved in nitric acid. 0.01 mol and 1 mol of water were further added, and these nitric acid and water added were stirred at 25 ° C. for 3 hours to obtain a first sol. Next, 0.0013 mol of methyl silicate (MS) (trade name “Methyl silicate 51” manufactured by Fuso Chemical Industry Co., Ltd.) was added to the first sol, and the mixture was further stirred at 25 ° C. for 2 hours. A sol was obtained. A transparent and uniform precursor coating solution was prepared by adding ethanol to the second sol to adjust the viscosity to be suitable for coating.

本実施例1で得られた前駆体塗布液をシリコン基板表面にスピンコート法により回転数1200rpmで塗布し、この前記体塗布液を塗布したものを真空雰囲気下にて350℃で1時間焼成した。尚、350℃までの昇温時間は15分とした。焼成により得られた多孔質シリカ膜の比誘電率kは2.0であり、屈折率は1.23であり、弾性率は4.0GPaであり、膜厚は約150nmであった。この多孔質シリカ膜が形成されたシリコン基板を30mm角に切断し、この切断したものを50℃加熱の1wt%KOH水溶液に10分間浸漬させた結果、膜厚減少量(ウェットエッチング量)は35nmであり、また、上記切断したものを23℃加熱の0.5wt%HF水溶液に10分間浸漬させた結果、膜厚減少量は23nmであることが確認された。   The precursor coating solution obtained in Example 1 was applied to the silicon substrate surface by a spin coating method at a rotational speed of 1200 rpm, and the body coating solution applied was baked at 350 ° C. for 1 hour in a vacuum atmosphere. . The temperature raising time up to 350 ° C. was 15 minutes. The dielectric constant k of the porous silica film obtained by firing was 2.0, the refractive index was 1.23, the elastic modulus was 4.0 GPa, and the film thickness was about 150 nm. The silicon substrate on which this porous silica film was formed was cut into 30 mm square, and the cut piece was immersed in a 1 wt% KOH aqueous solution heated at 50 ° C. for 10 minutes. As a result, the film thickness reduction amount (wet etching amount) was 35 nm. Moreover, as a result of immersing the cut piece in a 0.5 wt% HF aqueous solution heated at 23 ° C. for 10 minutes, it was confirmed that the film thickness reduction amount was 23 nm.

(実施例2)
本実施例2では、MTMSに代えてフェニルトリメトキシシラン(PhTMS)0.1モルを用い、MSに代えてテトラエトキシシラン(TEOS)0.011モルを添加した以外は、上記実施例1と同様の方法で前駆体塗布液を作製した。上記実施例1と同様に、本実施例2で得られた前駆体塗布液をシリコン基板表面に塗布し焼成することで得られた多孔質シリカ膜の比誘電率kは2.5であり、屈折率は1.29であり、弾性率は4.5GPaであり、膜厚は150nmであった。この多孔質シリカ膜が形成されたシリコン基板を30mm角に切断し、この切断したものを50℃加熱の1wt%KOH水溶液に10分間浸漬させた結果、膜厚減少量は10nmであり、また、上記切断したものを23℃加熱の0.5wt%HF水溶液に10分間浸漬させた結果、膜厚減少量は5nmであることが確認された。
(Example 2)
In Example 2, 0.1 mol of phenyltrimethoxysilane (PhTMS) was used instead of MTMS, and 0.011 mol of tetraethoxysilane (TEOS) was added instead of MS. A precursor coating solution was prepared by the method described above. As in Example 1 above, the relative dielectric constant k of the porous silica film obtained by applying the precursor coating solution obtained in Example 2 to the surface of the silicon substrate and baking it is 2.5, The refractive index was 1.29, the elastic modulus was 4.5 GPa, and the film thickness was 150 nm. The silicon substrate on which the porous silica film was formed was cut into 30 mm squares, and the cut piece was immersed in a 1 wt% KOH aqueous solution heated at 50 ° C. for 10 minutes. As a result, the thickness reduction amount was 10 nm, As a result of immersing the cut piece in a 0.5 wt% HF aqueous solution heated at 23 ° C. for 10 minutes, it was confirmed that the film thickness reduction amount was 5 nm.

(実施例3)
本実施例3では、MTMS0.1モルと共にPhTMS0.01モルを用い、MSの添加量を0.0025モルとした以外は、上記実施例1と同様の方法で前駆体塗布液を作製した。上記実施例1と同様に、本実施例3で得られた前駆体塗布液をシリコン基板表面に塗布し焼成することで得られた多孔質シリカ膜の比誘電率kは2.0であり、屈折率は1.23であり、弾性率は3.8GPaであり、膜厚は150nmであった。この多孔質シリカ膜が形成されたシリコン基板を30mm角に切断し、この切断したものを50℃加熱の1wt%KOH水溶液に10分間浸漬させた結果、膜厚減少量は7nmであり、また、上記切断したものを23℃加熱の0.5wt%HF水溶液に10分間浸漬させた結果、膜厚減少量は3nmであることが確認された。
(Example 3)
In Example 3, a precursor coating solution was prepared in the same manner as in Example 1 except that 0.01 mol of MTMS and 0.01 mol of PhTMS were used, and the addition amount of MS was 0.0025 mol. As in Example 1 above, the relative dielectric constant k of the porous silica film obtained by applying the precursor coating solution obtained in Example 3 to the surface of the silicon substrate and baking it is 2.0. The refractive index was 1.23, the elastic modulus was 3.8 GPa, and the film thickness was 150 nm. The silicon substrate on which the porous silica film was formed was cut into 30 mm squares, and the cut piece was immersed in a 1 wt% KOH aqueous solution heated at 50 ° C. for 10 minutes. As a result, the thickness reduction amount was 7 nm. As a result of immersing the cut piece in a 0.5 wt% HF aqueous solution heated at 23 ° C. for 10 minutes, it was confirmed that the film thickness reduction amount was 3 nm.

以上説明したように、本実施例1〜3の前駆体塗布液を基材表面に塗布して焼成したときに耐薬液性に優れた多孔質シリカ膜が得られることが判った。   As described above, it was found that a porous silica film having excellent chemical resistance was obtained when the precursor coating liquids of Examples 1 to 3 were applied to the substrate surface and baked.

以下、上記実施例に対する比較例について説明する。
(比較例1)
本比較例1では、槽内にて、MTMS0.1モルと、MS0.0013モルと、非イオン性界面活性剤0.01モルとをエタノール中に溶解させ、この溶解させて得た溶液に硝酸0.01モルと水1モルとを更に添加し、これら硝酸及び水を添加したものを25℃で3時間攪拌してゾルを得た。このゾルにエタノールを加えて塗布に好適な粘度に調整することにより、透明で均一な多孔質シリカ前駆体塗布液を得た。上記実施例1と同様に、本比較例1で得られた前駆体塗布液をシリコン基板表面に塗布し焼成することで得られた多孔質シリカ膜の比誘電率kは2.0であり、屈折率は1.23であり、弾性率は4.0GPaであり、膜厚は150nmであった。この多孔質シリカ膜が形成されたシリコン基板を30mm角に切断し、この切断したものを50℃加熱の1wt%KOH水溶液に10分間浸漬させた結果、膜厚減少量は72nmであり、また、上記切断したものを23℃加熱の0.5wt%HF水溶液に10分間浸漬させた結果、膜厚減少量は41nmであることが確認された。これより、上記実施例1よりも耐薬液性が低いことが判った。
Hereinafter, a comparative example with respect to the above embodiment will be described.
(Comparative Example 1)
In this comparative example 1, 0.1 mol of MTMS, 0.0013 mol of MS, and 0.01 mol of nonionic surfactant were dissolved in ethanol in a tank, and nitric acid was added to the solution obtained by this dissolution. 0.01 mol and 1 mol of water were further added, and those added with nitric acid and water were stirred at 25 ° C. for 3 hours to obtain a sol. Ethanol was added to this sol to adjust the viscosity to be suitable for coating to obtain a transparent and uniform porous silica precursor coating solution. As in Example 1 above, the relative dielectric constant k of the porous silica film obtained by applying the precursor coating solution obtained in Comparative Example 1 to the surface of the silicon substrate and baking it is 2.0. The refractive index was 1.23, the elastic modulus was 4.0 GPa, and the film thickness was 150 nm. The silicon substrate on which the porous silica film was formed was cut into 30 mm square, and the cut piece was immersed in a 1 wt% KOH aqueous solution heated at 50 ° C. for 10 minutes. As a result, the film thickness reduction amount was 72 nm, As a result of immersing the cut piece in a 0.5 wt% HF aqueous solution heated at 23 ° C. for 10 minutes, it was confirmed that the film thickness reduction amount was 41 nm. From this, it was found that the chemical resistance was lower than that of Example 1.

(比較例2)
本比較例2では、MTMSに代えてPhTMS0.1モルを用い、MSに代えてTEOS0.011モルを用いる以外は、上記比較例1と同様の方法で前駆体塗布液を作製した。上記実施例1と同様に、本比較例2で得られた前駆体塗布液をシリコン基板表面に塗布し焼成することで得られた多孔質シリカ膜の比誘電率kは2.5であり、屈折率は1.28であり、弾性率は4.5GPaであり、膜厚は150nmであった。この多孔質シリカ膜が形成されたシリコン基板を30mm角に切断し、この切断したものを50℃加熱の1wt%KOH水溶液に10分間浸漬させた結果、膜厚減少量は43nmであり、また、上記切断したものを23℃加熱の0.5wt%HF水溶液に10分間浸漬させた結果、膜厚減少量は25nmであることが確認された。これより、上記実施例2よりも耐薬液性が低いことが判った。
(Comparative Example 2)
In Comparative Example 2, a precursor coating solution was prepared in the same manner as in Comparative Example 1 except that PhTMS 0.1 mol was used instead of MTMS and TEOS 0.011 mol was used instead of MS. As in Example 1 above, the relative dielectric constant k of the porous silica film obtained by applying the precursor coating solution obtained in Comparative Example 2 to the surface of the silicon substrate and baking it is 2.5, The refractive index was 1.28, the elastic modulus was 4.5 GPa, and the film thickness was 150 nm. The silicon substrate on which the porous silica film was formed was cut into 30 mm square, and the cut piece was immersed in a 1 wt% KOH aqueous solution heated at 50 ° C. for 10 minutes. As a result, the film thickness reduction amount was 43 nm. As a result of immersing the cut piece in a 0.5 wt% HF aqueous solution heated at 23 ° C. for 10 minutes, it was confirmed that the film thickness reduction amount was 25 nm. From this, it was found that the chemical resistance was lower than that in Example 2.

(比較例3)
本比較例3では、MTMS0.1モルと共にPhTMS0.01モルを用い、MSの添加量を0.0025モルとした以外は、上記比較例1と同様の方法で前駆体塗布液を作製した。上記実施例1と同様に、本比較例3で得られた前駆体塗布液をシリコン基板表面に塗布し焼成することで得られた多孔質シリカ膜の比誘電率kは2.0であり、屈折率は1.23であり、弾性率は3.6GPaであり、膜厚は150nmであった。この多孔質シリカ膜が形成されたシリコン基板を30mm角に切断し、この切断したものを50℃加熱の1wt%KOH水溶液に10分間浸漬させた結果、膜厚減少量は20nmであり、また、上記切断したものを23℃加熱の0.5wt%HF水溶液に10分間浸漬させた結果、膜厚減少量は11nmであることが確認された。これより、上記実施例3よりも耐薬液性が低いことが判った。
(Comparative Example 3)
In Comparative Example 3, a precursor coating solution was prepared in the same manner as in Comparative Example 1 except that 0.01 mol of MTMS and 0.01 mol of PhTMS were used, and the addition amount of MS was 0.0025 mol. As in Example 1 above, the dielectric constant k of the porous silica film obtained by applying the precursor coating solution obtained in Comparative Example 3 to the surface of the silicon substrate and baking the surface is 2.0. The refractive index was 1.23, the elastic modulus was 3.6 GPa, and the film thickness was 150 nm. The silicon substrate on which the porous silica film was formed was cut into 30 mm squares, and the cut piece was immersed in a 1 wt% KOH aqueous solution heated at 50 ° C. for 10 minutes. As a result, the film thickness reduction amount was 20 nm. As a result of immersing the cut piece in a 0.5 wt% HF aqueous solution heated at 23 ° C. for 10 minutes, it was confirmed that the film thickness reduction amount was 11 nm. From this, it was found that the chemical resistance was lower than that in Example 3.

(比較例4)
本比較例4では、槽内にて、MTMS0.1モルと、非イオン性界面活性剤0.01モルとをエタノール中に溶解させ、この溶解させて得た溶液に硝酸0.01モルと水1モルとを更に添加し、これら硝酸及び水を添加したものを25℃で3時間攪拌してゾルを得た。このゾルにエタノールを加えて塗布に好適な粘度に調整することにより、透明で均一な多孔質シリカ前駆体塗布液を得た。上記実施例1と同様に、本比較例4で得られた前駆体塗布液をシリコン基板表面に塗布し焼成することで得られた多孔質シリカ膜の比誘電率kは2.3であり、屈折率は1.28であり、弾性率は5.0GPaであり、膜厚は150nmであった。この多孔質シリカ膜が形成されたシリコン基板を30mm角に切断し、この切断したものを50℃加熱の1wt%KOH水溶液に10分間浸漬させた結果、膜厚減少量は42nmであり、また、上記切断したものを23℃加熱の0.5wt%HF水溶液に10分間浸漬させた結果、膜厚減少量は17nmであることが確認された。
(Comparative Example 4)
In Comparative Example 4, 0.1 mol of MTMS and 0.01 mol of a nonionic surfactant were dissolved in ethanol in a tank, and 0.01 mol of nitric acid and water were added to the solution obtained by this dissolution. 1 mol was further added, and these nitric acid and water added were stirred at 25 ° C. for 3 hours to obtain a sol. Ethanol was added to this sol to adjust the viscosity to be suitable for coating to obtain a transparent and uniform porous silica precursor coating solution. As in Example 1 above, the relative dielectric constant k of the porous silica film obtained by applying the precursor coating solution obtained in Comparative Example 4 to the surface of the silicon substrate and baking it is 2.3. The refractive index was 1.28, the elastic modulus was 5.0 GPa, and the film thickness was 150 nm. The silicon substrate on which the porous silica film was formed was cut into 30 mm square, and the cut piece was immersed in a 1 wt% KOH aqueous solution heated at 50 ° C. for 10 minutes. As a result, the film thickness reduction amount was 42 nm. As a result of immersing the cut piece in a 0.5 wt% HF aqueous solution heated at 23 ° C. for 10 minutes, it was confirmed that the film thickness reduction amount was 17 nm.

以上説明したように、本比較例1〜3の前駆体塗布液を基材表面に塗布して焼成することで得られる多孔質シリカ膜の耐薬液性が不十分であることが判った。   As described above, it was found that the chemical resistance of the porous silica film obtained by applying the precursor coating liquids of Comparative Examples 1 to 3 on the surface of the base material and baking it was insufficient.

なお、本発明は上記実施形態及び実施例に限定されるものではない。例えば、第2工程においても加水分解用の水と触媒とを更に添加してもよい。また、第2工程においても、空孔形成用の界面活性剤を添加してもよい。
In addition, this invention is not limited to the said embodiment and Example. For example, in the second step, hydrolysis water and a catalyst may be further added. Also in the second step, a pore-forming surfactant may be added.

Claims (2)

多孔質シリカ膜の形成に用いられる前駆体塗布液の作製方法であって、
官能基を有するアルコキシシランを界面活性剤と共に溶媒に溶解させ、この溶解させたアルコキシシランを触媒存在下で加水分解及び脱水縮合して第1のゾルを得る工程と、
第1のゾルにテトラアルコキシシランもしくはその重合体を添加し、第1のゾルに含まれる脱水縮合物とテトラアルコキシシランもしくはその重合体を加水分解及び脱水縮合して第2のゾルを得る工程とを含むことを特徴とする多孔質シリカ前駆体塗布液の作製方法。
A method for producing a precursor coating solution used for forming a porous silica film,
A step of dissolving an alkoxysilane having a functional group in a solvent together with a surfactant, and hydrolyzing and dehydrating the dissolved alkoxysilane in the presence of a catalyst to obtain a first sol;
Adding a tetraalkoxysilane or a polymer thereof to the first sol, hydrolyzing and dehydrating the dehydration condensate contained in the first sol and the tetraalkoxysilane or a polymer thereof to obtain a second sol; A method for producing a porous silica precursor coating liquid, comprising:
官能基を有するアルコキシシランが、官能基を有するトリアルコキシシランであることを特徴とする請求項1記載の多孔質シリカ前駆体塗布液の作製方法。

The method for producing a porous silica precursor coating solution according to claim 1, wherein the alkoxysilane having a functional group is a trialkoxysilane having a functional group.

JP2011261263A 2011-11-30 2011-11-30 Method for making porous silica precursor coating solution Pending JP2013112573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261263A JP2013112573A (en) 2011-11-30 2011-11-30 Method for making porous silica precursor coating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261263A JP2013112573A (en) 2011-11-30 2011-11-30 Method for making porous silica precursor coating solution

Publications (1)

Publication Number Publication Date
JP2013112573A true JP2013112573A (en) 2013-06-10

Family

ID=48708457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261263A Pending JP2013112573A (en) 2011-11-30 2011-11-30 Method for making porous silica precursor coating solution

Country Status (1)

Country Link
JP (1) JP2013112573A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302869A (en) * 1999-04-23 2000-10-31 Jsr Corp Preparation of film-forming composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302869A (en) * 1999-04-23 2000-10-31 Jsr Corp Preparation of film-forming composition

Similar Documents

Publication Publication Date Title
TWI412562B (en) Precursor composition of porous film and method of preparation thereof, porous film and method for producing the same, and semiconductor device
US20030216058A1 (en) Process for preparing insulating material having low dielectric constant
JP4021131B2 (en) Coating liquid for forming low dielectric constant silica-based coating and substrate with low dielectric constant silica-based coating
JP5010098B2 (en) Method for forming semiconductor interlayer insulating film using molecular polyhedral silsesquioxane
TW200526521A (en) Porous-film-forming composition, preparation method of the composition, porous film and semiconductor device
CN108623832B (en) Polysilsesquioxane aerogel and preparation method thereof
CN101651107B (en) Substrate joining method and 3-d semiconductor device
JP2010111842A (en) Polysilazane and synthetic method thereof, composition for semiconductor element production and production method of semiconductor element using the composition for semiconductor element production
US20070087124A1 (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
KR20060090483A (en) Composition for forming low dieletric film comprising fullerenes, low dielectric film using the composition and method for forming the low dielectric film
TW200404838A (en) Organic silicate polymer and insulation film comprising the same
WO2001048806A1 (en) Method of forming low-dielectric-constant film, and semiconductor substrate with low-dielectric-constant film
CN107663275A (en) For filling the gap filled polymer in fine pattern gap and manufacturing the method for semiconductor devices using it
TWI328600B (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film and semiconductor device
TW200417586A (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
CN1535300A (en) Siloxane resins
JP5778563B2 (en) Method for preparing porous silica precursor coating solution
JP2013112573A (en) Method for making porous silica precursor coating solution
JPH03116733A (en) Manufacture of semiconductor device
JPWO2011052657A1 (en) Precursor composition of porous film and method for forming porous film
JP2851871B2 (en) Semiconductor device and manufacturing method thereof
KR100989964B1 (en) Polysilsesquioxane-based organic-inorganic hybrid graft copolymer, organo-silane comprising porogen used for preparation of the same and Method for preparation of insulating film comprising the same
KR101023916B1 (en) Siloxane-based Resin using Molecular Polyhedral Silsesquioxane and Method for forming Dielectric Film using the Same
KR101401419B1 (en) Low dielectric interlayer material and method for preparing the same
JP5730910B2 (en) Method for producing nanoporous ultra-low dielectric thin film including high temperature ozone treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027