JP2013111516A - Method and equipment for extinguishing marine life - Google Patents

Method and equipment for extinguishing marine life Download PDF

Info

Publication number
JP2013111516A
JP2013111516A JP2011259109A JP2011259109A JP2013111516A JP 2013111516 A JP2013111516 A JP 2013111516A JP 2011259109 A JP2011259109 A JP 2011259109A JP 2011259109 A JP2011259109 A JP 2011259109A JP 2013111516 A JP2013111516 A JP 2013111516A
Authority
JP
Japan
Prior art keywords
flow path
seawater
piping system
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011259109A
Other languages
Japanese (ja)
Other versions
JP5806093B2 (en
Inventor
Hitoshi Iwamoto
等 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2011259109A priority Critical patent/JP5806093B2/en
Publication of JP2013111516A publication Critical patent/JP2013111516A/en
Application granted granted Critical
Publication of JP5806093B2 publication Critical patent/JP5806093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and equipment for extinguishing marine life capable of certainly subjecting the marine life to extinction in spite of small-scale equipment.SOLUTION: Seawater is supplied to the first flow channel of a heat exchanger equipped with first and second flow channels for allowing a fluid to flow from the head and the amount of heat capable of raising the temperature of the seawater in the first flow channel to the extinction temperature for extinguishing organisms in the seawater when the seawater flows through the second flow channel is given to the seawater flowing out of the first flow channel and the seawater to which the amount of heat is given is supplied into the second flow channel and the seawater in the first flow channel is heat-exchanged with the seawater in the second flow channel to perform an extinction process.

Description

本発明は、船舶のバラストに用いられる又は用いられた海水を温度上昇させることで、該海水中の生物を死滅させる海中生物の死滅処理方法、及び、海中生物の死滅処理設備に関する。   The present invention relates to a marine organism killing method and a marine organism killing treatment facility that kills organisms in the seawater by raising the temperature of seawater used or used for ship ballast.

船舶のバラストに用いられる又は用いられた海水には、生物(プランクトン等の微生物やヒトデ等の小動物、或いは細菌など)が混入している。斯かる海水は、船舶と共に異なる海域間を移動し、移動した先の海域で船舶から排出される。この際、海水に混入していた生物(以下、海中生物とも記す)も移動先の海域に排出される。このため、海水の排出先である海域に生息していなかった生物(外来種の生物)が他の海域から侵入する虞がある。このような外来種の生物は、侵入した先の海域で繁殖して生態系を乱す虞がある。   The seawater used or used for ship ballast is contaminated with organisms (microorganisms such as plankton, small animals such as starfish, or bacteria). Such seawater moves between different sea areas along with the ship, and is discharged from the ship in the destination sea area. At this time, organisms mixed in the seawater (hereinafter also referred to as marine organisms) are also discharged to the destination sea area. For this reason, there is a possibility that a living organism (an alien species) that did not live in the sea area from which seawater is discharged enters from other sea areas. There is a risk that such alien species will breed in the sea area where they have invaded and disrupt the ecosystem.

このような外来種の生物の問題を解決する方法としては、船舶のバラストとして用いられる又は用いられた海水の温度を上昇させることで、海中生物を死滅させて処理する方法が提案されている。   As a method for solving such problems of alien species, a method for killing and treating marine organisms by increasing the temperature of seawater used or used as a ballast for ships has been proposed.

具体的には、所定温度にまで予備加熱された海水を高温維持タンク内に保持し、該高温維持タンク内で海水を所定の温度にまで加熱して所定時間(海中生物が死滅するまで)維持する方法が提案されている。これにより、海中生物は、高温維持タンク内で所定時間かけて死滅処理される(特許文献1参照)。   Specifically, seawater preheated to a predetermined temperature is held in a high-temperature maintenance tank, and the seawater is heated to a predetermined temperature in the high-temperature maintenance tank and maintained for a predetermined time (until the marine organisms die). A method has been proposed. Thereby, marine organisms are killed over a predetermined time in the high-temperature maintenance tank (see Patent Document 1).

特開2008−110276号公報JP 2008-110276 A

しかしながら、上記のような方法では、高温維持タンクで海中生物が死滅するまで所定温度で海水を保持する必要があるため、容量の大きな高温維持タンク(貯留設備)が必要となる。このため、海中生物の死滅処理を行う設備(以下、死滅処理設備とも記す)が大規模なものとなり、これに伴い、斯かる死滅処理設備を設置するスペースも大規模になってしまう。   However, in the above method, since it is necessary to hold seawater at a predetermined temperature until marine organisms are killed in the high temperature maintenance tank, a high temperature maintenance tank (storage facility) with a large capacity is required. For this reason, facilities for killing marine organisms (hereinafter also referred to as killing treatment facilities) become large-scale, and accordingly, the space for installing such killing treatment facilities also becomes large-scale.

そこで、本発明は、小規模な設備でありながら、海中生物を確実に死滅処理することのできる海中生物の死滅処理方法、及び、海中生物の死滅処理設備を提供することを課題とする。   Therefore, an object of the present invention is to provide a marine organism killing method and a marine organism killing treatment facility that can surely kill marine organisms while being a small-scale facility.

本発明に係る海中生物の死滅処理方法は、船舶のバラストに用いられる又は用いられた海水を温度上昇させることで、該海水中の生物を死滅させて処理する海中生物の死滅処理方法であって、流体を流通させる第一流路と第二流路とを備え、該第一流路内の流体と第二流路内の流体との間で熱交換を行う熱交換器の第一流路に水源から海水を供給すると共に、第一流路から流出した海水に対し、該海水が第二流路を流通する際に第一流路内の海水の温度を海水中の生物が死滅する温度以上に上昇させ得る熱量を与え、該熱量が与えられた海水を第二流路に供給し、第一流路内の海水と第二流路内の海水との間で熱交換させる死滅処理工程を備えることを特徴とする。   The method for killing marine organisms according to the present invention is a method for killing marine organisms in which the temperature of the seawater used in or used for the ballast of the ship is increased to kill the organisms in the seawater for treatment. A first flow path through which the fluid flows and a second flow path, from the water source to the first flow path of the heat exchanger that exchanges heat between the fluid in the first flow path and the fluid in the second flow path While supplying seawater, when the seawater flows through the second flow path, the temperature of the seawater in the first flow path can be raised above the temperature at which organisms in the seawater die. Characterized in that it comprises a killing process step of supplying heat, supplying seawater to which the heat is applied to the second flow path, and exchanging heat between the seawater in the first flow path and the seawater in the second flow path. To do.

熱交換器における第一流路内の流体と第二流路内の流体との間の熱交換率は、100%ではなく、通常、熱損失が生じる。従って、第一流路から流出した流体を第二流路に直接供給すると、熱損失が経時的に累積し、第一流路内の流体を必要温度にまで連続的に加熱できなくなってしまう。しかしながら、上記方法によれば、第一流路から流出した海水に上記の熱量を与えるため、第二流路を流通する海水との熱交換で損失した熱量が第一流路から流出した海水に対して補填される。そして、熱量の補填された海水が第二流路に供給されることで、第一流路に対して水源から連続的に供給される海水を熱交換によって海中生物が死滅する温度(以下、死滅温度とも記す)以上に温度上昇させる。これにより、熱交換器内で海中生物を連続的に死滅させることができるため、従来のように、海中生物が死滅するまで海水を加熱しつつ貯留するような設備(例えば、高温維持タンクや当該タンク内の海水を加熱するヒーター等)を用いる必要がない。このため、海中生物の死滅処理を行う装置の構成を小規模なものにすることができる。   The heat exchange rate between the fluid in the first flow path and the fluid in the second flow path in the heat exchanger is not 100%, and heat loss usually occurs. Therefore, when the fluid flowing out from the first flow path is directly supplied to the second flow path, heat loss accumulates with time, and the fluid in the first flow path cannot be continuously heated to the required temperature. However, according to the above method, the amount of heat lost by heat exchange with the seawater flowing through the second flow path is given to the seawater flowing out from the first flow path in order to give the heat amount to the seawater flowing out from the first flow path. To be compensated. Then, the temperature at which marine organisms are killed by heat exchange of the seawater continuously supplied from the water source to the first channel by supplying the seawater supplemented with the amount of heat to the second channel (hereinafter referred to as the killing temperature). The temperature is raised more than the above. As a result, since marine organisms can be killed continuously in the heat exchanger, as in the past, facilities that store seawater while heating until marine organisms die (for example, high-temperature maintenance tanks and the like There is no need to use a heater that heats the seawater in the tank. For this reason, the structure of the apparatus which performs the killing process of a marine organism can be made small.

また、第一流路内を連続的に流通する流体と第二流路内を連続的に流通する流体との間で熱交換を行う熱交換器を用いることで、海中生物が死滅処理されるまでの海水の流路に海水が滞留することがない。このため、海中生物が死滅処理されるまでの海水の流路に沈殿物が堆積するのを抑制することができる。これにより、海中生物の死滅処理を停止して海水の流路に堆積した沈殿物を除去する作業を行う頻度を減らすことができる。このため、海中生物の死滅処理を効率的に行うことができる。   In addition, by using a heat exchanger that exchanges heat between the fluid that continuously flows in the first flow path and the fluid that flows continuously in the second flow path, the marine organisms are killed. Seawater does not stay in the seawater flow path. For this reason, it can suppress that a sediment accumulates in the flow path of seawater until a marine organism is killed. Thereby, the frequency of performing the operation | work which stops the killing process of a marine organism and removes the deposit accumulated in the flow path of seawater can be reduced. For this reason, the killing process of marine organisms can be performed efficiently.

水源からの海水を熱交換器に供給して第一流路及び第二流路を海水で満たした状態で、水源からの海水の供給を停止し、第一流路から流出する海水に所定の熱量を与えて第二流路に供給すると共に、第二流路から流出する海水を第一流路に供給し、第一流路及び第二流路内の海水を死滅温度以上にする循環工程を更に備え、前記死滅処理工程は、循環工程後に行われることが好ましい。   With the seawater from the water source supplied to the heat exchanger and the first channel and the second channel filled with seawater, the supply of seawater from the water source is stopped, and a predetermined amount of heat is given to the seawater flowing out from the first channel. Providing and supplying the second flow path with seawater flowing out from the second flow path to the first flow path, further comprising a circulation step of bringing the seawater in the first flow path and the second flow path to a dead temperature or higher, The killing process is preferably performed after the circulation process.

上記方法によれば、第一流路から流出した海水に所定の熱量が与えられて第二流路に供給され、第二流路から流出した海水が再び第一流路に供給される。つまり、熱交換器の第一流路及び第二流路に満たされた海水が一系統内で熱量を与えられつつ循環する。これにより、熱交換器内の海水の温度差が経時的に小さくなる。具体的には、第一流路に供給された海水は、供給された時の温度よりも高い温度で第二流路から流出することになる。このため、循環工程を行って第二流路から流出した海水を第一流路に供給することで、第一流路内の海水と第二流路内の海水との温度差が小さくなる。これにより、第二流路内の海水から第一流路内の海水に移動する熱量が少なくなり、第二流路から流出する海水の温度が経時的に上昇することになる。このため、第一流路内の海水と第二流路内の海水との温度差が経時的に小さくなり、一系統内の海水を上記の熱量を有する温度にまで効率的に上昇させることができる。従って、循環工程後の死滅処理工程において、水源から第一流路に新たに海水が供給された際にも、該海水が死滅温度以上となるように熱交換を行うことができる。   According to the above method, a predetermined amount of heat is given to the seawater flowing out from the first channel and supplied to the second channel, and the seawater flowing out from the second channel is supplied again to the first channel. That is, seawater filled in the first flow path and the second flow path of the heat exchanger circulates while being given heat in one system. Thereby, the temperature difference of the seawater in a heat exchanger becomes small with time. Specifically, the seawater supplied to the first flow channel flows out of the second flow channel at a temperature higher than the temperature at which it was supplied. For this reason, the temperature difference of the seawater in a 1st flow path and the seawater in a 2nd flow path becomes small by performing the circulation process and supplying the seawater which flowed out from the 2nd flow path to the 1st flow path. As a result, the amount of heat transferred from the seawater in the second flow path to the seawater in the first flow path is reduced, and the temperature of the seawater flowing out from the second flow path increases with time. For this reason, the temperature difference between the seawater in the first flow path and the seawater in the second flow path becomes smaller with time, and the seawater in one system can be efficiently raised to the temperature having the above-mentioned heat amount. . Therefore, in the killing treatment step after the circulation step, even when seawater is newly supplied from the water source to the first flow path, heat exchange can be performed so that the seawater becomes equal to or higher than the killing temperature.

前記死滅処理工程を行った後、水源から熱交換器の第一流路への海水の供給を停止し、第二流路から流出する海水を第一流路に供給すると共に、海水の流路を形成する部材を洗浄する洗浄剤を海水の流路内に供給する洗浄工程を更に備えることが好ましい。   After performing the killing process, the supply of seawater from the water source to the first flow path of the heat exchanger is stopped, the seawater flowing out from the second flow path is supplied to the first flow path, and the flow path of seawater is formed. It is preferable to further include a cleaning step of supplying a cleaning agent for cleaning the member to be fed into the seawater flow path.

上記方法によれば、洗浄工程において、洗浄剤が添加された海水が第一流路及び第二流路を含む一系統内で循環する。従って、海水の流路(循環流路)を形成する部材全体(具体的には、配管系や熱交換器内の部材)の洗浄(例えば、付着するスケールなどの除去)が効果的に行われる。   According to the above method, in the cleaning step, the seawater to which the cleaning agent is added circulates in one system including the first channel and the second channel. Therefore, cleaning of the entire members (specifically, members in the piping system and heat exchanger) forming the seawater flow path (circulation flow path) (for example, removal of attached scales) is effectively performed. .

海水が流通する流路内に海水の水質を調整する水質調整剤を供給する水質調整工程を更に備えることが好ましい。   It is preferable to further include a water quality adjusting step of supplying a water quality adjusting agent for adjusting the quality of the seawater into the flow path through which the seawater flows.

上記方法によれば、水質調整工程において、海水に水質調整剤を添加することができるため、所望する水質で死滅処理工程、循環工程、又は、洗浄工程を行うことができる。また、各工程を行うことによって海水の水質が変化(悪化)した場合であっても、水質調整剤を海水に添加することで、海水を元の水質に戻した上で排出先へ排出することができる。   According to the above method, the water quality adjusting agent can be added to the seawater in the water quality adjusting process, so that the killing process process, the circulation process, or the washing process can be performed with the desired water quality. In addition, even if the water quality of the seawater has changed (deteriorated) by performing each process, the water quality modifier is added to the seawater, and the seawater is returned to the original water quality before being discharged to the discharge destination. Can do.

前記熱交換器は、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして前記第一流路と前記第二流路とが交互に複数形成され、各伝熱プレートに形成された貫通穴が連なって流体を第一流路に流出入させる第一流入路及び第一流出路が形成されると共に、第一流路に供給される流体よりも高温の流体を第二流路に流出入させる第二流入路及び第二流出路が形成されたプレート式熱交換器であることが好ましい。   In the heat exchanger, a plurality of the first flow paths and the second flow paths are alternately formed between the plurality of stacked heat transfer plates, with each heat transfer plate serving as a boundary. The first inflow passage and the first outflow passage through which the through holes are connected to allow the fluid to flow into and out of the first flow path are formed, and fluid having a higher temperature than the fluid supplied to the first flow path flows into and out of the second flow path. It is preferable that it is a plate type heat exchanger in which the 2nd inflow path and the 2nd outflow path to be formed were formed.

上記方法によれば、プレート式熱交換器を用いて海水の熱交換を行うため、熱交換率が高く、第一流路内の海水を迅速に死滅温度以上にまで温度上昇させることができ、効率的に海中生物の死滅処理を行うことができる。   According to the above method, since the heat exchange of seawater is performed using a plate heat exchanger, the heat exchange rate is high, and the temperature of the seawater in the first flow path can be quickly increased to the death temperature or higher, efficiency. It is possible to kill marine organisms.

本発明に係る海中生物の死滅処理設備は、船舶のバラストに用いられる又は用いられた海水を温度上昇させることで、該海水中の生物を死滅させる海中生物の死滅処理設備において、それぞれ流通する流体同士の間で熱交換可能に配置された第一流路及び第二流路を備えた熱交換器と、該熱交換器の第一流路の入口と前記海水の水源とを流体的に連結する第一配管系と、熱交換器の第一流路の出口と第二流路の入口とを流体的に連結する第二配管系と、熱交換器の第二流路の出口と海水の排出先とを流体的に連結する第三配管系とを備え、前記第二配管系は、第一流路から流出した海水に対し、該海水が第二流路を流通する際に第一流路内の海水の温度を海水中の生物が死滅する温度以上に上昇させ得る熱量を与える熱量供与部を備えることを特徴とする。   The marine organism killing treatment facility according to the present invention is a fluid that circulates in the marine organism killing treatment facility that kills organisms in the seawater by raising the temperature of the seawater used or used for the ballast of the ship. A heat exchanger having a first flow path and a second flow path arranged so that heat exchange can be performed between them, and a first fluid path for fluidly connecting an inlet of the first flow path of the heat exchanger and the seawater source. A first piping system, a second piping system fluidly connecting the outlet of the first flow path of the heat exchanger and the inlet of the second flow path, an outlet of the second flow path of the heat exchanger, and a discharge destination of seawater A second piping system for fluidly connecting the seawater flowing out of the first flow path to the seawater flowing through the second flow path when the seawater flows through the second flow path. Provide a calorific value donating section that gives heat that can raise the temperature above the temperature at which organisms in seawater die And features.

上記構成によれば、第一配管系を介して水源からの海水が熱交換器の第一流路に供給される。また、第一流路を流通して第一流路の出口から流出する海水が第二配管系を介して第二流路に供給される。この際、第二配管系の熱量供与部において第一流路から流出した海水に上記の熱量が与えられる。   According to the said structure, the seawater from a water source is supplied to the 1st flow path of a heat exchanger via a 1st piping system. Seawater flowing through the first channel and flowing out from the outlet of the first channel is supplied to the second channel via the second piping system. At this time, the amount of heat is given to the seawater that has flowed out of the first flow path in the heat amount donating section of the second piping system.

ここで、熱交換器における第一流路内の流体と第二流路内の流体との間の熱交換率は、100%ではなく、通常、熱損失が生じる。従って、第一流路から流出した流体が第二流路に直接供給されると、熱損失が経時的に累積し、第一流路内の流体を必要温度にまで連続的に加熱できなくなってしまう。しかしながら、上記構成によれば、第一流路から流出した海水に上記の熱量が与えられるため、第二流路を流通する海水との熱交換によって損失した熱量が第一流路から流出した海水に対して補填される。そして、熱量の補填された海水が第二流路に供給されることで、第一流路に対して水源から連続的に供給される海水を熱交換によって死滅温度以上に温度上昇させる。これにより、熱交換器内で連続的に海中生物を死滅させることができるため、従来のように、海中生物が死滅するまで海水を加熱しつつ貯留するような設備(例えば、高温維持タンクや当該タンク内の海水を加熱するヒーター等)を用いる必要がない。このため、海中生物の死滅処理を行う設備の構成を小規模なものにすることができる。   Here, the heat exchange rate between the fluid in the first flow path and the fluid in the second flow path in the heat exchanger is not 100%, and heat loss usually occurs. Therefore, when the fluid flowing out from the first flow path is directly supplied to the second flow path, heat loss accumulates with time, and the fluid in the first flow path cannot be continuously heated to the required temperature. However, according to the above configuration, since the amount of heat is given to the seawater flowing out from the first channel, the amount of heat lost by heat exchange with the seawater flowing through the second channel is compared to the seawater flowing out from the first channel. To be compensated. And the seawater supplemented with calorie | heat amount is supplied to a 2nd flow path, and the temperature of the seawater continuously supplied from a water source with respect to a 1st flow path is raised to a death temperature or more by heat exchange. As a result, since marine organisms can be killed continuously in the heat exchanger, as in the past, facilities that store seawater while heating until marine organisms die (for example, high-temperature maintenance tanks and the like There is no need to use a heater that heats the seawater in the tank. For this reason, the structure of the facility which performs the killing process of marine organisms can be made small.

そして、第二流路の出口から流出した海水が第三配管系を介して排出先に排出される。排出される海水は、上記のような熱交換によって生物が死滅した状態となっているため、海水の排出先である海域やバラストタンクに生きた外来種の生物が侵入するのを防止することができる。   And the seawater which flowed out from the exit of a 2nd flow path is discharged | emitted by the discharge destination via a 3rd piping system. Since the discharged seawater is in a state where organisms have been killed by heat exchange as described above, it is possible to prevent foreign species living in the sea area and ballast tank from which seawater is discharged. it can.

第二流路の出口と第一流路の入口とを流体的に連結する第四配管系をさらに備え、第一配管系、第三配管系、及び、第四配管系は、海水の流路を開閉可能に構成されていることが好ましい。   A fourth piping system that fluidly connects the outlet of the second channel and the inlet of the first channel; the first piping system, the third piping system, and the fourth piping system provide a channel for the seawater; It is preferably configured to be openable and closable.

上記構成によれば、第一配管系乃至第四配管系の海水の流路、第一流路、及び、第二流路を水源からの海水で満たした状態で、第一配管系及び第三配管系における海水の流路を閉鎖すると共に、第四配管系における海水の流路を開放することで、第一流路及び第二流路と、第二配管系における海水の流路と、第四配管系における海水の流路とが連なった循環流路が形成される。そして、該循環流路に満たされた海水は、循環流路内で上記の熱量を与えられつつ循環する。これにより、熱交換器内の海水の温度差が経時的に小さくなると共に、斯かる海水の温度を上記の熱量を有する温度にまで効率的に上昇させることができる。具体的には、循環流路を海水が循環することで、第一流路に供給された海水は、第一流路から流出して第二配管系で昇温され、その後、第二流路に流入して第一流路の海水と熱交換を行い、供給されたときの温度よりも高い温度で第二流路から流出して再び第一流路に供給される。これにより、循環流路内の海水の温度が経時的に上昇するため、熱交換器内の海水の温度差が経時的に小さくなると共に、斯かる海水の温度を上記の熱量を有する温度にまで効率的に上昇させることができる。従って、水源から第一流路に新たに海水を供給して上記のように海中生物の死滅処理を開始する際にも、該海水が死滅温度以上となるように熱交換を行うことができる。   According to the above configuration, the first piping system and the third piping in a state where the seawater flow path, the first flow path, and the second flow path of the first piping system to the fourth piping system are filled with seawater from the water source. The seawater channel in the system is closed, and the seawater channel in the fourth piping system is opened, so that the first channel and the second channel, the seawater channel in the second piping system, and the fourth piping A circulation channel is formed which is connected to the channel of seawater in the system. Then, the seawater filled in the circulation channel circulates while being given the amount of heat in the circulation channel. Thereby, while the temperature difference of the seawater in a heat exchanger becomes small with time, the temperature of such seawater can be efficiently raised to the temperature which has said calorie | heat amount. Specifically, seawater circulates in the circulation channel, so that the seawater supplied to the first channel flows out of the first channel and is heated in the second piping system, and then flows into the second channel. Then, heat is exchanged with the seawater in the first flow path, and it flows out of the second flow path at a temperature higher than the temperature at which it was supplied and is supplied to the first flow path again. As a result, the temperature of the seawater in the circulation channel rises with time, so that the temperature difference between the seawater in the heat exchanger decreases with time, and the temperature of the seawater reaches the temperature having the above-mentioned heat quantity. It can be raised efficiently. Accordingly, even when seawater is newly supplied from the water source to the first flow path and the killing process of the marine organisms is started as described above, heat exchange can be performed so that the seawater becomes equal to or higher than the killing temperature.

海水の流路を形成する部材を洗浄する洗浄剤を該流路内に供給する洗浄剤供給手段が第一配管系、第二配管系、又は、第三配管系の少なくとも一つに連結されていることが好ましい。或いは、洗浄剤供給手段が第一配管系、第二配管系、第三配管系、又は、第四配管系の少なくとも一つに連結されていることが好ましい。   A cleaning agent supplying means for supplying a cleaning agent for cleaning the member forming the sea water flow path into the flow path is connected to at least one of the first piping system, the second piping system, or the third piping system. Preferably it is. Alternatively, the cleaning agent supply means is preferably connected to at least one of the first piping system, the second piping system, the third piping system, or the fourth piping system.

上記構成によれば、洗浄剤供給手段から各配管系における海水の流路に洗浄剤を供給することで、海水の流路を形成する部材の洗浄(例えば、付着するスケールの除去)を行うことができる。   According to the above configuration, the cleaning agent is supplied from the cleaning agent supply means to the seawater flow path in each piping system, thereby cleaning the member forming the seawater flow path (for example, removing the attached scale). Can do.

また、海水が流通する流路内に海水の水質を調整する水質調整剤を供給する水質調整剤供給手段が第一配管系、第二配管系、又は、第三配管系の少なくとも一つに連結されていることが好ましい。或いは、水質調整剤供給手段が第一配管系、第二配管系、第三配管系、又は、第四配管系の少なくとも一つに連結されていることが好ましい。   Also, a water quality adjusting agent supply means for supplying a water quality adjusting agent for adjusting the quality of the sea water into the flow path through which the sea water flows is connected to at least one of the first piping system, the second piping system, or the third piping system. It is preferable that Or it is preferable that the water quality regulator supply means is connected to at least one of the first piping system, the second piping system, the third piping system, or the fourth piping system.

上記構成によれば、水質調整剤供給手段から水質調整剤を海水の流路内に供給することで、海水を所望する水質に調整することができる。これにより、所望する水質で、海中生物の死滅処理を行ったり、海水の流路を形成する部材の洗浄処理を行ったりすることができる。また、各処理を行うことによって海水の水質が変化(悪化)した場合であっても、水質調整剤を海水の流路内に供給することで、海水を元の水質に戻した上で排出先へ排出することができる。   According to the said structure, seawater can be adjusted to the desired water quality by supplying a water quality regulator from the water quality regulator supply means in the flow path of seawater. Thereby, the killing process of marine organisms can be performed with the desired water quality, or the cleaning process of the member forming the seawater channel can be performed. Even if the water quality of the seawater has changed (deteriorated) by performing each treatment, the water quality modifier is supplied into the seawater flow path to return the seawater to the original water quality, Can be discharged.

前記熱交換器は、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして前記第一流路と前記第二流路とが交互に複数形成され、各伝熱プレートに形成された貫通穴が連なって流体を第一流路に流出入させる第一流入路及び第一流出路が形成されると共に、第一流路に供給される流体よりも高温の流体を第二流路に流出入させる第二流入路及び第二流出路が形成されたプレート式熱交換器であることが好ましい。   In the heat exchanger, a plurality of the first flow paths and the second flow paths are alternately formed between the plurality of stacked heat transfer plates, with each heat transfer plate serving as a boundary. The first inflow passage and the first outflow passage through which the through holes are connected to allow the fluid to flow into and out of the first flow path are formed, and fluid having a higher temperature than the fluid supplied to the first flow path flows into and out of the second flow path. It is preferable that it is a plate type heat exchanger in which the 2nd inflow path and the 2nd outflow path to be formed were formed.

上記構成によれば、プレート式熱交換器を用いて海水の熱交換を行うため、熱交換効率が高く、第一流路内の海水を迅速に死滅温度以上にまで温度上昇させることができ、効率的に海中生物の死滅処理を行うことができる。   According to the above configuration, since the heat exchange of seawater is performed using a plate heat exchanger, the heat exchange efficiency is high, and the temperature of the seawater in the first flow path can be quickly raised to the death temperature or higher, It is possible to kill marine organisms.

以上のように、本発明によれば、小規模な設備でありながら、海中生物を確実に死滅処理することができる。   As described above, according to the present invention, marine organisms can be surely killed while being a small facility.

本発明の実施形態に係る海中生物の死滅処理方法の流れ、及び、海中生物の死滅処理設備を示すブロック図であって、(a)は、海水導入工程を行う際のブロック図、(b)は、循環工程を行う際のブロック図、(c)は、死滅処理工程を行う際のブロック図。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the flow of the killing processing method of the marine organisms which concerns on embodiment of this invention, and the killing processing equipment of marine organisms, Comprising: (a) is a block diagram at the time of performing a seawater introduction process, (b) Is a block diagram when performing a circulation process, (c) is a block diagram when performing a killing process step. 本発明の他の実施形態に係る海中生物の死滅処理方法の流れ、及び、海中生物の死滅処理設備を示すブロック図であって、(a)は、洗浄工程を行う際のブロック図、(b)は、水質調整工程を行う際のブロック図。It is a block diagram which shows the flow of the killing processing method of the marine organisms which concerns on other embodiment of this invention, and the killing processing facility of marine organisms, Comprising: (a) is a block diagram at the time of performing a washing process, (b) ) Is a block diagram when performing a water quality adjustment process. 本発明の他の実施形態に係る海中生物の死滅処理方法の流れ、及び、海中生物の死滅処理設備を示すブロック図であって、バラストタンク内の海水中の生物の死滅処理を行う際のブロック図。It is a block diagram which shows the flow of the killing method of the marine organisms which concerns on other embodiment of this invention, and the killing processing equipment of marine organisms, Comprising: The block at the time of killing the organism in the seawater in a ballast tank Figure.

以下、本発明の実施形態について、図1を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

本実施形態に係る海中生物の死滅処理方法(以下、死滅処理方法とも記す)、及び、海中生物の死滅処理設備(以下、死滅処理設備とも記す)は、船舶のバラストとして用いられる又は用いられた海水中の生物(以下、海中生物とも記す)を死滅処理する際に用いられるものである。本実施形態の死滅処理方法では、図1に示すように、バラストとして用いられる海水を水源SI(具体的には、海中)から熱交換器Aへ供給して熱交換させることで、海水の温度を上昇させて海中生物を死滅処理させるように構成された死滅処理設備が用いられる。   The marine life killing method according to the present embodiment (hereinafter also referred to as a killing treatment method) and the marine organism killing processing facility (hereinafter also referred to as a killing treatment facility) are used or used as a ballast for a ship. It is used when killing organisms in the sea water (hereinafter also referred to as marine organisms). In the killing method according to the present embodiment, as shown in FIG. 1, the temperature of the seawater is obtained by supplying seawater used as ballast from the water source SI (specifically, in the sea) to the heat exchanger A for heat exchange. A killing treatment facility configured to kill the marine life by raising the water is used.

前記死滅処理設備は、それぞれ流通する流体同士の間で熱交換可能に配置された第一流路A1及び第二流路A2を含む熱交換器Aと、該熱交換器Aの第一流路A1の入口A11と前記海水の水源SI(本実施形態では、海中)とを流体的に連結する第一配管系R1と、熱交換器Aの第一流路A1の出口A12と第二流路A2の入口A21とを流体的に連結する第二配管系R2と、熱交換器Aの第二流路A2の出口A22と海水の排出先(バラストタンクT)とを流体的に連結する第三配管系R3とを備え、更に、第二流路A2の出口A22と第一流路A1の入口A11とを流体的に連結する第四配管系R4を備える。   The extinction treatment facility includes a heat exchanger A including a first flow path A1 and a second flow path A2 that are arranged so as to be able to exchange heat between the circulating fluids, and a first flow path A1 of the heat exchanger A. A first piping system R1 that fluidly connects the inlet A11 and the seawater source SI (in the present embodiment, in the sea), an outlet A12 of the first flow path A1 of the heat exchanger A, and an inlet of the second flow path A2. A second piping system R3 fluidly connecting A21, and a third piping system R3 fluidly connecting the outlet A22 of the second flow path A2 of the heat exchanger A and the seawater discharge destination (ballast tank T). And a fourth piping system R4 that fluidly connects the outlet A22 of the second channel A2 and the inlet A11 of the first channel A1.

熱交換器Aは、第一流路A1内の流体と第二流路A2内の流体との間で、熱交換可能に構成されている。本実施形態では、熱交換器Aとして、第一流路A1及び第二流路A2をそれぞれ複数備えたものが用いられる。具体的には、熱交換器Aとしては、積層された複数枚の伝熱プレートを備え、各伝熱プレート間に各伝熱プレートを境にして第一流路A1と第二流路A2とが交互に複数形成されたプレート式熱交換器を用いることができる。   The heat exchanger A is configured to be able to exchange heat between the fluid in the first flow path A1 and the fluid in the second flow path A2. In the present embodiment, the heat exchanger A having a plurality of first flow paths A1 and second flow paths A2 is used. Specifically, the heat exchanger A includes a plurality of stacked heat transfer plates, and the first flow path A1 and the second flow path A2 are provided between the heat transfer plates with the heat transfer plates as boundaries. A plurality of plate heat exchangers formed alternately can be used.

該プレート式熱交換器は、各伝熱プレート間にガスケットが介装されている。該ガスケットは、伝熱プレートの外周に沿うように環状に形成されており、伝熱プレート間に介装されたガスケットと該ガスケットを挟み込む一対の伝熱プレートの対向面とによって画定される空間に第一流路A1、又は、第二流路A2が形成される。また、斯かるプレート式熱交換器は、ガスケットが介装された複数の伝熱プレートが一対の板状のフレーム部材によって厚み方向から挟み込まれた状態で、一対のフレーム部材が締付手段(具体的には、ボルト部材及びナット部材)によって締付けられることで一体的に形成されている。   In the plate heat exchanger, a gasket is interposed between the heat transfer plates. The gasket is formed in an annular shape along the outer periphery of the heat transfer plate, and is formed in a space defined by the gasket interposed between the heat transfer plates and the opposing surfaces of the pair of heat transfer plates that sandwich the gasket. The first flow path A1 or the second flow path A2 is formed. Further, such a plate type heat exchanger has a plurality of heat transfer plates with gaskets interposed between a pair of plate-like frame members in the thickness direction, and the pair of frame members are tightening means (specifically Specifically, it is integrally formed by being tightened by a bolt member and a nut member.

本実施形態のプレート式熱交換器は、各伝熱プレートに貫通穴が形成されており、該貫通穴が連なって流体を第一流路A1に流出入させる第一流入路及び第一流出路が形成されると共に、第一流路A1に供給される流体よりも高温の流体を第二流路A2に流出入させる第二流入路及び第二流出路が形成されている。   In the plate heat exchanger of the present embodiment, through holes are formed in each heat transfer plate, and the first inflow passage and the first outflow passage for allowing the fluid to flow into and out of the first flow passage A1 are formed by connecting the through holes. In addition, a second inflow path and a second outflow path are formed for allowing a fluid having a temperature higher than that of the fluid supplied to the first flow path A1 to flow into and out of the second flow path A2.

また、前記プレート式熱交換器は、流体の流れ方向が同一である複数の第一流路A1と、流体の流れ方向が第一流路と逆になる複数の第二流路A2とから構成された熱交換領域を複数備えている。つまり、各熱交換領域は、複数の第一流路A1と複数の第二流路A2とから構成されている。   The plate heat exchanger is composed of a plurality of first flow paths A1 having the same fluid flow direction and a plurality of second flow paths A2 in which the fluid flow direction is opposite to the first flow path. A plurality of heat exchange regions are provided. That is, each heat exchange region is composed of a plurality of first flow paths A1 and a plurality of second flow paths A2.

また、前記プレート式熱交換器は、一つの熱交換領域で熱交換された流体が他の熱交換領域で再度熱交換されるよう構成されている。つまり、該プレート式熱交換器は、熱交換を多段的に行うように構成されている。また、該プレート式熱交換器は、隣接する二つの熱交換領域のうち、一方の熱交換領域における流体の流れ方向と、他方の熱交換領域における流体の流れ方向とが逆方向となるように構成されている。つまり、該プレート式熱交換器は、熱交換領域毎に流体が逆方向に向かって流通しつつ熱交換されるように構成されている。   In addition, the plate heat exchanger is configured such that the fluid exchanged in one heat exchange region is again heat exchanged in another heat exchange region. That is, the plate heat exchanger is configured to perform heat exchange in multiple stages. In addition, the plate type heat exchanger is configured so that the flow direction of the fluid in one heat exchange region and the flow direction of the fluid in the other heat exchange region of the two adjacent heat exchange regions are opposite to each other. It is configured. That is, the plate heat exchanger is configured to exchange heat while fluid flows in the opposite direction for each heat exchange region.

例えば、隣接する2つの熱交換領域のうち、一方の熱交換領域においては、第一流路A1内を流体が下方から上方に向かって流れると共に、第二流路A2内を流体が上方から下方に向かって流れることで熱交換が行われ、他方の熱交換領域においては、第一流路A1内を流体が上方から下方に向かって流れると共に、第二流路A2内を流体が下方から上方に向かって流れることで熱交換が行われるように構成されている。そして、各熱交換領域における第一流路A1同士は、流体的に連結されており、第二流路A2同士も流体的に連結されている。このように構成されたプレート式熱交換器は、一つの熱交換領域で熱交換された流体が他の熱交換領域に順次流入することで、熱交換領域毎の第一流路A1内の流体の流れ方向がそれぞれ逆方向となると共に、熱交換領域毎の第二流路A2内の流体の流れ方向がそれぞれ逆方向となる。   For example, in one of the two adjacent heat exchange regions, in one heat exchange region, the fluid flows in the first flow path A1 from below to above, and the fluid flows in the second flow path A2 from above to below. In the other heat exchange region, the fluid flows in the first flow path A1 from the top to the bottom, and the fluid flows in the second flow path A2 from the bottom to the top. It is configured so that heat exchange is performed by flowing. The first flow paths A1 in each heat exchange region are fluidly connected, and the second flow paths A2 are also fluidly connected. The plate heat exchanger configured as described above allows the fluid exchanged in one heat exchange region to sequentially flow into the other heat exchange region, so that the fluid in the first flow path A1 for each heat exchange region. The flow directions are opposite to each other, and the flow directions of the fluid in the second flow path A2 for each heat exchange region are opposite to each other.

上記のように構成されたプレート式熱交換器は、一般的に多パス(多段)式熱交換器として知られており、単パス式(熱交換する領域が1つ)の熱交換器よりも小規模でありながら、熱交換を行う流路を長く設定することができ、熱交換率が高いため、効果的に熱交換を行うことが可能となる。   The plate-type heat exchanger configured as described above is generally known as a multi-pass (multi-stage) heat exchanger, and is more than a single-pass heat exchanger (one area for heat exchange). Although it is a small scale, the flow path for heat exchange can be set long, and since the heat exchange rate is high, heat exchange can be performed effectively.

前記第一配管系R1は、熱交換器A(具体的には、第一流路A1の入口A11)に連結されて、水源SIからの海水を第一流路A1に供給可能に構成されている。具体的には、第一配管系R1は、水源SIからの海水を熱交換器Aへ流通させる配管L1と、該配管L1内に水源SIから海水を吸引すると共に熱交換器Aへ圧送する第一ポンプP1と、配管L1内を流通する海水Sを濾過するフィルターFと、配管L1内の海水の流路を開閉する第一バルブV1とを備えている。   Said 1st piping system R1 is connected with the heat exchanger A (specifically inlet A11 of 1st flow path A1), and is comprised so that the seawater from water source SI can be supplied to 1st flow path A1. Specifically, the first piping system R1 is a pipe L1 that circulates seawater from the water source SI to the heat exchanger A, and the first piping system R1 sucks seawater from the water source SI into the pipe L1 and pumps it to the heat exchanger A. One pump P1, a filter F for filtering the seawater S flowing in the pipe L1, and a first valve V1 for opening and closing the seawater flow path in the pipe L1 are provided.

第二配管系R2は、熱交換器A(具体的には、第一流路A1の出口A12と第二流路A2の入口A21)に連結されて、第一流路A1から流出した海水を第二流路A2に供給可能に構成されている。具体的には、第二配管系R2は、第一流路A1から流出した海水を第二流路A2へ流通させる配管L2と、第一流路A1から流出した海水を第二流路A2へ圧送するための第二ポンプP2と、海水の流路内に存在するガス(空気など)を流路外に放出させる第二バルブV2とを備えている。また、本実施形態では、第二ポンプP2は、第一ポンプP1によって圧送されて第一流路A1を流通した海水の圧力損失を補い、海水を第二流路A2及び第三配管系R3に流通させてバラストタンクTへ圧送するように構成されている。   The second piping system R2 is connected to the heat exchanger A (specifically, the outlet A12 of the first flow path A1 and the inlet A21 of the second flow path A2), and the seawater flowing out from the first flow path A1 is second. It is comprised so that supply to flow path A2 is possible. Specifically, the second piping system R2 pumps the seawater flowing out from the first flow path A1 to the second flow path A2 and the seawater flowing out from the first flow path A1 to the second flow path A2. And a second valve V2 that discharges gas (such as air) existing in the seawater flow path to the outside of the flow path. In the present embodiment, the second pump P2 compensates for the pressure loss of the seawater that is pumped by the first pump P1 and flows through the first flow path A1, and distributes the seawater to the second flow path A2 and the third piping system R3. And is configured to be pumped to the ballast tank T.

また、第二配管系R2では、第一流路A1から流出した海水に対して、所定の熱量が与えられる。具体的には、第二配管系R2は、第一流路A1から流出した海水に所定の熱量を与える熱量供与部R21を備えている。該熱量供与部R21で第一流路A1から流出した海水に対して与えられる熱量としては、第一流路A1から流出した海水が第二流路を流通する際に第一流路A1内の海水の温度を海中生物が死滅する温度(以下、死滅温度とも記す)以上に上昇させ得る熱量(以下、交換熱量とも記す)である。熱量供与部R21では、配管L2内の海水が加熱されることによって前記交換熱量を有する。本実施形態では、熱量供与部R21は、高温の水蒸気を配管L2内に供給可能に構成されており、該水蒸気と海水とが接触することで、海水が前記交換熱量を有するように加熱される。   In the second piping system R2, a predetermined amount of heat is given to the seawater flowing out from the first flow path A1. Specifically, the second piping system R2 includes a heat amount providing unit R21 that gives a predetermined amount of heat to the seawater flowing out from the first flow path A1. The amount of heat given to the seawater flowing out from the first flow path A1 in the heat quantity providing unit R21 is the temperature of the seawater in the first flow path A1 when the seawater flowing out from the first flow path A1 flows through the second flow path. Is the amount of heat (hereinafter also referred to as exchange heat) that can be raised above the temperature at which marine organisms are killed (hereinafter also referred to as death temperature). In the calorie | heat amount provision part R21, it has the said exchange calorie | heat amount by heating the seawater in the piping L2. In this embodiment, the calorie | heat amount provision part R21 is comprised so that high temperature water vapor | steam can be supplied in the piping L2, and when this water vapor | steam and seawater contact, seawater is heated so that it may have the said exchange calorie | heat amount. .

前記第三配管系R3は、熱交換器A(具体的には、第二流路A2の出口A22)に連結されると共に、バラストタンクTに連結されている。そして、第三配管系R3は、第二流路A2から流出した海水をバラストタンクTに供給可能に構成されている。具体的には、第三配管系R3は、第二流路A2から流出した海水をバラストタンクTへ流通させる配管L3と、該配管L3内の海水の流路を開閉する第三バルブV3とを備えている。また、本実施形態では、第一ポンプP1及び第二ポンプP2の作用によって第二流路A2から流出した海水が配管L3内をバラストタンクTへ向かって圧送される。   The third piping system R3 is connected to the heat exchanger A (specifically, the outlet A22 of the second flow path A2) and to the ballast tank T. And 3rd piping system R3 is comprised so that the seawater which flowed out out of 2nd flow path A2 can be supplied to the ballast tank T. FIG. Specifically, the third piping system R3 includes a pipe L3 for circulating seawater flowing out from the second flow path A2 to the ballast tank T, and a third valve V3 for opening and closing the seawater flow path in the pipe L3. I have. Moreover, in this embodiment, the seawater which flowed out from 2nd flow path A2 by the effect | action of the 1st pump P1 and the 2nd pump P2 is pumped toward the ballast tank T in the piping L3.

前記第四配管系R4は、第一配管系R1(具体的には、配管L1)と第三配管系R3(具体的には、配管L3)とに連結されて、第二流路A2から流出した海水を第一流路A1へ供給可能に構成されている。具体的には、第四配管系R4は、第二流路A2から流出した海水を第三配管系R3から第一配管系R1へ流通させる配管L4と、配管L4内の海水の流路を開閉する第四バルブV4とを備えている。また、第四配管系R4は、第一配管系R1及び第三配管系R3における配管L1,L3の第一バルブV1及び第三バルブV3よりも熱交換器A側に連結されている。これにより、第一バルブV1及び第三バルブV3を閉じて第一配管系R1及び第三配管系R3の海水の流路を閉鎖した際に、第一流路A1の入口A11から第二流路A2の出口A22までの海水の流路(第一流路A1及び第二流路A2と第二配管系R2の海水の流路)と、第二流路A2の出口A22から第一流路A1の入口A11までの海水の流路(第四配管系R4の海水の流路)とが連なった循環流路が形成される。   The fourth piping system R4 is connected to the first piping system R1 (specifically, the piping L1) and the third piping system R3 (specifically, the piping L3), and flows out from the second flow path A2. The configured seawater is configured to be supplied to the first flow path A1. Specifically, the fourth piping system R4 opens and closes the pipe L4 for circulating the seawater flowing out from the second flow path A2 from the third piping system R3 to the first piping system R1, and the seawater flow path in the pipe L4. And a fourth valve V4. The fourth piping system R4 is connected to the heat exchanger A side of the first valve V1 and the third valve V3 of the piping L1, L3 in the first piping system R1 and the third piping system R3. Thus, when the first valve V1 and the third valve V3 are closed and the seawater flow paths of the first piping system R1 and the third piping system R3 are closed, the second flow path A2 from the inlet A11 of the first flow path A1. Seawater flow path (first flow path A1 and second flow path A2 and seawater flow path of the second piping system R2) to the outlet A22, and the outlet A22 of the second flow path A2 to the inlet A11 of the first flow path A1. A circulation channel is formed in which the seawater channel (seawater channel of the fourth piping system R4) is connected.

本実施形態の死滅処理方法では、上記のような構成の死滅処理設備を用いて、海中生物の死滅処理が行われる。具体的には、該死滅処理方法は、熱交換器A内に水源SIからの海水を導入する海水導入工程と、第一流路A1から流出する海水に所定の熱量を与えて第二流路A2に供給すると共に、第二流路A2から流出する海水を第一流路A1に供給する循環工程と、熱交換器A内での熱交換によって水源SIから供給される海水を温度上昇させて海中生物の死滅処理を行う死滅処理工程とを備えるものである。   In the killing method according to the present embodiment, marine organisms are killed using the killing processing equipment configured as described above. Specifically, the killing method includes a seawater introduction step of introducing seawater from the water source SI into the heat exchanger A, and a predetermined amount of heat to the seawater flowing out of the first flow path A1 to provide the second flow path A2. And the seawater supplied from the water source SI by heat exchange in the heat exchanger A by raising the temperature of the seawater flowing out from the second flow path A2 to the first flow path A1 and marine organisms And a killing process step for performing the killing process.

<海水導入工程>
まず始めに、図1(a)に示すように、第一バルブV1、第二バルブV2、第四バルブV4を開いて第一配管系R1、第二配管系R2、第四配管系R4の海水の流路を開放すると共に、第三バルブV3を閉じて第三配管系R3の海水の流路を閉鎖する。そして、第一配管系R1を通じて熱交換器A側に海水を供給し、第四配管系R4よりも熱交換器A側の海水の流路及び第四配管系R4の海水の流路を海水で満す。この際、第二バルブV2が開放されていることで、各流路内に存在していたガス(空気など)が流路外へ放出される。
<Seawater introduction process>
First, as shown in FIG. 1A, the first valve V1, the second valve V2, and the fourth valve V4 are opened, and the seawater of the first piping system R1, the second piping system R2, and the fourth piping system R4 is opened. And the third valve V3 is closed to close the seawater flow path of the third piping system R3. Then, seawater is supplied to the heat exchanger A side through the first piping system R1, and the seawater flow path on the heat exchanger A side and the seawater flow path of the fourth piping system R4 from the fourth piping system R4 are seawater. Satisfy. At this time, since the second valve V2 is opened, the gas (air or the like) existing in each flow path is released out of the flow path.

そして、図1(b)に示すように、第四配管系R4よりも熱交換器A側の海水の流路及び第四配管系R4の海水の流路が海水で満された状態で、第一バルブV1及び第二バルブV2を閉じる。これにより、第一流路A1の入口A11から第二流路A2の出口A22までの海水の流路(第一流路A1及び第二流路A2と第二配管系R2の海水の流路)と、第二流路A2の出口A22から第一流路A1の入口A11までの海水の流路(第四配管系R4の海水の流路)とが連なった循環流路が形成され、該循環流路が海水で満された状態になる。   Then, as shown in FIG. 1 (b), the seawater flow path on the heat exchanger A side of the fourth piping system R4 and the seawater flow path of the fourth piping system R4 are filled with seawater. The one valve V1 and the second valve V2 are closed. Thereby, the flow path of the seawater from the inlet A11 of the first flow path A1 to the outlet A22 of the second flow path A2 (the flow path of the seawater of the first flow path A1, the second flow path A2, and the second piping system R2), A circulation channel is formed in which a seawater channel (seawater channel of the fourth piping system R4) from the outlet A22 of the second channel A2 to the inlet A11 of the first channel A1 is connected. It will be filled with seawater.

<循環工程>
次に、第二ポンプP2を駆動させて循環流路内で海水を循環させる。この際、第一流路A1から流出した海水が第二配管系R2の熱量供与部R21を通過する(本実施形態では、水蒸気と接触する)ことで、第一流路A1から流出した海水に対して、該海水が第二流路A2を流通した際に、熱交換によって第一流路A1内の海水を死滅温度以上に温度上昇させるような熱量(交換熱量)が与えられる。
<Circulation process>
Next, the second pump P2 is driven to circulate seawater in the circulation channel. At this time, the seawater that has flowed out from the first flow path A1 passes through the calorific value donating part R21 of the second piping system R2 (in this embodiment, contacts with water vapor), so that the seawater that has flowed out from the first flow path A1. When the seawater flows through the second flow path A2, a heat quantity (exchange heat quantity) is given to raise the temperature of the seawater in the first flow path A1 to the death temperature or higher by heat exchange.

上記のように、循環流路に海水を循環させつつ加熱すること(循環工程を行うこと)で、循環流路内における海水の温度差が経時的に小さくなる。具体的には、循環工程を行うことで、循環流路内の全体の海水の温度が所定の温度(上記の熱量を有する温度)にまで効率的に上昇する。循環工程を行うことによる循環流路内の海水の温度としては、熱交換器A内に新たに流入する海水を死滅温度以上に温度上昇させ得る熱量(交換熱量)を有する温度(即ち、死滅温度を超える温度)であり、具体的には、90℃以上であることが好ましく、100℃以上であることがより好ましい。   As described above, by heating while circulating the seawater in the circulation channel (performing the circulation process), the temperature difference of the seawater in the circulation channel is reduced over time. Specifically, by performing the circulation step, the temperature of the entire seawater in the circulation channel efficiently rises to a predetermined temperature (the temperature having the above-mentioned heat amount). The temperature of the seawater in the circulation flow path by performing the circulation process is a temperature having a heat quantity (exchange heat quantity) that can raise the temperature of the seawater newly flowing into the heat exchanger A to the death temperature or higher (that is, the death temperature). More specifically, the temperature is preferably 90 ° C. or higher, and more preferably 100 ° C. or higher.

また、循環工程を行うことで、循環流路内の海水のみが加熱されるため、循環流路全体の海水が前記交換熱量を有する温度(即ち、死滅温度を超える温度)にまで迅速に上昇する。これにより、後の死滅処理工程で新たに第一流路A1に海水が供給された際にも、新たに供給された海水を熱交換によって死滅温度以上に温度上昇させることができる。つまり、循環工程を行うことで、死滅処理工程を行うことが可能な状態に熱交換器A内の海水が予備加熱される。   Moreover, since only the seawater in the circulation flow path is heated by performing the circulation process, the seawater in the entire circulation flow path quickly rises to a temperature having the exchange heat amount (that is, a temperature exceeding the killing temperature). . Thereby, even when seawater is newly supplied to the first flow path A1 in the subsequent killing process, the temperature of the newly supplied seawater can be raised to the death temperature or higher by heat exchange. That is, by performing the circulation process, the seawater in the heat exchanger A is preheated so that the killing process process can be performed.

<死滅処理工程>
上記の循環工程を行った後、図1(c)に示すように、第一バルブV1及び第三バルブV3を開いて第一配管系R1及び第三配管系R3の海水の流路を開放し、第四バルブV4を閉じて第四配管系R4の海水の流路を閉鎖する。そして、水源SIから第一配管系R1を介して新たな海水を熱交換器A内(具体的には、第一流路A1)に供給する。
<Death treatment process>
After performing the above circulation process, as shown in FIG. 1 (c), the first valve V1 and the third valve V3 are opened to open the seawater flow paths of the first piping system R1 and the third piping system R3. The fourth valve V4 is closed to close the seawater flow path of the fourth piping system R4. Then, fresh seawater is supplied from the water source SI into the heat exchanger A (specifically, the first flow path A1) via the first piping system R1.

第一流路A1に供給された新たな海水は、第一流路A1の入口A11から出口A12に向かって第一流路A1を流通する。第一流路A1内の海水は、第二流路A2内の海水との熱交換によって死滅温度以上に温度上昇すると共に、第二流路A2内の海水の温度を低下させる。第一流路A1に供給された新たな海水が第一流路A1内で死滅温度以上に温度上昇することで、第一流路A1の出口A12では、海水に混入していた海中生物が死滅した状態となる。第一流路A1における熱交換後の海水の温度としては、第一流路A1の出口A12において90℃以上であることが好ましく、100℃以上であることがより好ましい。   New seawater supplied to the first channel A1 flows through the first channel A1 from the inlet A11 to the outlet A12 of the first channel A1. The seawater in the first flow path A1 rises in temperature to the death temperature or more by heat exchange with the seawater in the second flow path A2, and lowers the temperature of the seawater in the second flow path A2. When the new seawater supplied to the first flow path A1 rises in temperature in the first flow path A1 to a temperature higher than the killing temperature, the marine organisms mixed in the seawater have been killed at the outlet A12 of the first flow path A1. Become. The temperature of the seawater after heat exchange in the first flow path A1 is preferably 90 ° C. or higher and more preferably 100 ° C. or higher at the outlet A12 of the first flow path A1.

そして、第一流路A1から流出した海水が熱量供与部R21を通過することで、斯かる海水に対して上記の熱量(交換熱量)が与えられる。具体的には、第一流路A1から流出した海水が熱量供与部R21を通過することで、前記交換熱量を有する温度(所定の死滅温度を超える温度)にまで加熱される。言い換えれば、熱量供与部R21では、第二流路A2内を流通する海水との熱交換によって損失した熱量が第一流路A1から流出した海水に対して補われる。また、第一流路A1から流出した海水は、第二配管系R2を流通することで前記交換熱量を有するように(死滅温度を超える温度となるように)制御される。例えば、第一流路A1の入口A11又は出口A12での海水の温度を測定し、測定結果に基づいて熱量供与部R21で海水に加える熱量を調整し(具体的には、水蒸気の温度やその供給量を調整し)、第一流路A1から流出した海水が第二流路A2に供給される前に前記交換熱量を有する温度となるように制御されることが好ましい。第二配管系R2を流通した海水の温度としては、90℃を超える温度であることが好ましく、100℃を超える温度であることがより好ましい。   And when the seawater which flowed out from 1st flow path A1 passes calorie | heat amount provision part R21, said calorie | heat amount (exchange heat amount) is given with respect to such seawater. Specifically, the seawater that has flowed out from the first flow path A1 passes through the calorific value donating section R21, and is heated to a temperature having the exchange heat quantity (a temperature exceeding a predetermined killing temperature). In other words, in the calorie | heat amount provision part R21, the calorie | heat amount lost by the heat exchange with the seawater which distribute | circulates the inside of 2nd flow path A2 is supplemented with respect to the seawater which flowed out from 1st flow path A1. Moreover, the seawater which flowed out from 1st flow path A1 is controlled so that it may have the said exchange calorie | heat amount by distribute | circulating 2nd piping system R2, so that it may become the temperature exceeding a death temperature. For example, the temperature of the seawater at the inlet A11 or the outlet A12 of the first flow path A1 is measured, and the amount of heat applied to the seawater is adjusted based on the measurement result (specifically, the temperature of steam and its supply) It is preferable to control the amount of seawater flowing out from the first flow path A1 to a temperature having the exchange heat amount before being supplied to the second flow path A2. As temperature of the seawater which distribute | circulated 2nd piping system R2, it is preferable that it is the temperature exceeding 90 degreeC, and it is more preferable that it is the temperature exceeding 100 degreeC.

そして、第一流路A1から流出して上記の熱量(交換熱量)が与えられた海水は、熱交換器Aの第二流路A2に供給される。そして、前記交換熱量が与えられて第二流路A2に供給された海水は、第二流路A2の入口A21から出口A22に向かって第二流路A2を流通する。第二流路A2内を流通する海水は、第一流路A1内を流通する海水との熱交換によって、第一流路A1内の海水を死滅温度以上(好ましくは、90℃以上、より好ましくは、100℃以上)に温度上昇させると共に、自身の温度が低下する。第二流路A2内を流通する海水は、熱交換によって第二流路A2の出口A22で、40℃以下となることが好ましく、35℃以下となることがより好ましい。   And the seawater which flowed out out of the 1st flow path A1 and was given said calorie | heat amount (exchange heat amount) is supplied to 2nd flow path A2 of the heat exchanger A. FIG. Then, the seawater supplied with the exchange heat quantity and supplied to the second channel A2 flows through the second channel A2 from the inlet A21 to the outlet A22 of the second channel A2. Seawater flowing through the second flow path A2 is heat exchanged with seawater flowing through the first flow path A1, and the seawater in the first flow path A1 is at or above the kill temperature (preferably 90 ° C. or higher, more preferably, The temperature rises to 100 ° C. or higher, and the temperature of itself decreases. The seawater flowing through the second flow path A2 is preferably 40 ° C. or lower, more preferably 35 ° C. or lower, at the outlet A22 of the second flow path A2 by heat exchange.

第二流路A2から流出した海水は、第三配管系R3に供給される。そして、第三配管系R3を流通した海水は、バラストタンクTに排出され、バラストとして利用される。このようにしてバラストタンクTに排出された海水は、上述のように熱交換器A(具体的には、第一流路A1)で死滅温度以上に温度上昇されているため、海中生物が死滅した状態となっており、船舶と共に異なる海域間を移動し、移動先の海域で放流されたとしても、移動先の海域に生きた外来種の生物が排出されることがない。   Seawater flowing out from the second flow path A2 is supplied to the third piping system R3. And the seawater which distribute | circulated 3rd piping system R3 is discharged | emitted by the ballast tank T, and is utilized as a ballast. Since the seawater discharged to the ballast tank T in this way has been raised in temperature by the heat exchanger A (specifically, the first flow path A1) above the killing temperature, the marine organisms have been killed. Even if it moves between different sea areas along with the ship and is released in the destination sea area, the living alien species will not be discharged in the destination sea area.

以上のように、本発明に係る海中生物の死滅処理方法、及び、海中生物の死滅処理設備によれば、小規模な設備でありながら、海中生物を確実に死滅処理することができる。   As described above, according to the method for killing marine organisms and the facility for killing marine organisms according to the present invention, marine organisms can be surely killed while being a small-scale facility.

即ち、熱交換器Aにおける第一流路A1内の流体と第二流路A2内の流体との間の熱交換率は、100%ではなく、通常、熱損失が生じる。従って、第一流路A1から流出した流体を第二流路A2に直接供給すると、熱損失が経時的に累積し、第一流路A1内の流体を必要温度にまで連続的に加熱できなくなってしまう。しかしながら、上記方法によれば、第一流路A1から流出した海水に上記の熱量を与えるため、第二流路A2を流通する海水との熱交換で損失した熱量が第一流路A1から流出した海水に対して補填される。そして、熱量の補填された海水が第二流路A2に供給されることで、第一流路A1に対して水源SIから連続的に供給される海水を熱交換によって死滅温度以上に温度上昇させる。これにより、熱交換器A内で海中生物を連続的に死滅させることができため、従来のように、海中生物が死滅するまで海水を加熱しつつ貯留するような設備(例えば、高温維持タンクや当該タンク内の海水を加熱するヒーター等)を用いる必要がない。このため、海中生物の死滅処理を行う装置の構成を小規模なものにすることができる。また、熱交換による温度上昇によって海中生物を死滅させることができるため、海中生物を死滅させる薬品を用いる必要がない。このため、海中生物の死滅処理を行うことによる水質の変化を抑制することができる。   That is, the heat exchange rate between the fluid in the first flow path A1 and the fluid in the second flow path A2 in the heat exchanger A is not 100%, and heat loss usually occurs. Therefore, if the fluid flowing out from the first flow path A1 is directly supplied to the second flow path A2, heat loss accumulates over time, and the fluid in the first flow path A1 cannot be continuously heated to the required temperature. . However, according to the above method, the amount of heat lost due to heat exchange with the seawater flowing through the second flow path A2 is given to the seawater that flows out from the first flow path A1, and the seawater that flows out from the first flow path A1. Will be compensated for. Then, the seawater supplemented with the amount of heat is supplied to the second flow path A2, so that the temperature of the seawater continuously supplied from the water source SI to the first flow path A1 is raised to the death temperature or higher by heat exchange. As a result, since marine organisms can be killed continuously in the heat exchanger A, as in the prior art, facilities that store seawater while heating until marine organisms die (for example, high-temperature maintenance tanks or There is no need to use a heater that heats the seawater in the tank. For this reason, the structure of the apparatus which performs the killing process of a marine organism can be made small. In addition, since marine organisms can be killed by a temperature increase due to heat exchange, it is not necessary to use chemicals that kill marine organisms. For this reason, the change of the water quality by performing the killing process of a marine organism can be suppressed.

また、第一流路A1内を連続的に流通する流体と第二流路A2内を連続的に流通する流体との間で熱交換を行う熱交換器Aを用いることで、海中生物が死滅処理されるまでの海水の流路に海水が滞留することがない。このため、海中生物が死滅処理されるまでの海水の流路に沈殿物が堆積するのを抑制することができる。これにより、海中生物の死滅処理を停止して海水の流路に堆積した沈殿物を除去する作業を行う頻度を減らすことができる。これにより、海中生物の死滅処理を効率的に行うことができる。   Also, by using the heat exchanger A that exchanges heat between the fluid that continuously flows in the first flow path A1 and the fluid that flows continuously in the second flow path A2, marine organisms are killed. Seawater does not stay in the seawater flow path until it is done. For this reason, it can suppress that a sediment accumulates in the flow path of seawater until a marine organism is killed. Thereby, the frequency of performing the operation | work which stops the killing process of a marine organism and removes the deposit accumulated in the flow path of seawater can be reduced. Thereby, the killing process of a marine organism can be performed efficiently.

また、循環工程を備えることで、第一流路A1から流出した海水に所定の熱量が与えられて第二流路A2に供給され、第二流路A2から流出した海水が再び第一流路A1に供給される。つまり、熱交換器Aの第一流路A1及び第二流路A2に満たされた海水が一系統内で熱量を与えられつつ循環する。これにより、熱交換器A内の海水の温度差が経時的に小さくなる。具体的には、第一流路A1に供給された海水は、供給された時の温度よりも高い温度で第二流路A2から流出することになる。このため、循環工程を行って第二流路A2から流出した海水を第一流路A1に供給することで、第一流路A1内の海水と第二流路A2内の海水との温度差が小さくなる。これにより、第二流路A2内の海水から第一流路A1内の海水に移動する熱量が少なくなり、第二流路A2から流出する海水の温度が経時的に上昇することになる。このため、第一流路A1内の海水と第二流路A2内の海水との温度差が経時的に小さくなり、一系統内の海水の温度を上記の熱量を有する温度にまで効率的に上昇させることができる。従って、循環工程後の死滅処理工程において、水源SIから第一流路A1に新たに海水が供給された際にも、該海水が死滅温度以上となるように熱交換を行うことができる。   In addition, by providing a circulation step, a predetermined amount of heat is supplied to the seawater flowing out from the first flow path A1 and supplied to the second flow path A2, and the seawater flowing out from the second flow path A2 is returned to the first flow path A1 again. Supplied. That is, the seawater filled in the first flow path A1 and the second flow path A2 of the heat exchanger A circulates while being given heat in one system. Thereby, the temperature difference of the seawater in the heat exchanger A becomes small with time. Specifically, the seawater supplied to the first flow path A1 flows out from the second flow path A2 at a temperature higher than the temperature at which it was supplied. For this reason, the temperature difference between the seawater in the first channel A1 and the seawater in the second channel A2 is small by supplying the seawater flowing out from the second channel A2 through the circulation process to the first channel A1. Become. As a result, the amount of heat transferred from the seawater in the second flow path A2 to the seawater in the first flow path A1 decreases, and the temperature of the seawater flowing out from the second flow path A2 rises with time. For this reason, the temperature difference between the seawater in the first flow path A1 and the seawater in the second flow path A2 decreases with time, and the temperature of the seawater in one system is efficiently increased to the temperature having the above-mentioned heat amount. Can be made. Therefore, in the killing treatment step after the circulation step, even when seawater is newly supplied from the water source SI to the first flow path A1, heat exchange can be performed so that the seawater becomes equal to or higher than the killing temperature.

熱交換器Aとしてプレート式熱交換器を用いることで、熱交換率が高く、第一流路A1内の海水を迅速に死滅温度以上にまで温度上昇させることができ、効率的に海中生物の死滅処理を行うことができる。   By using a plate-type heat exchanger as the heat exchanger A, the heat exchange rate is high, and the seawater in the first flow path A1 can be quickly raised to the death temperature or more, effectively killing marine organisms. Processing can be performed.

なお、本発明に係る海中生物の死滅処理方法、及び、海中生物の死滅処理設備は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよく)、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。   The marine organism killing method and marine organism killing processing facility according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. . Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course, it is of course possible to arbitrarily select configurations, methods, and the like according to various modifications described below and employ them in the configurations, methods, and the like according to the above-described embodiments.

例えば、上記実施形態における死滅処理方法において、前記死滅処理工程を行った後、海水の流路を形成する部材を洗浄する洗浄工程を更に備えてもよい。該洗浄工程は、海水の流路を形成する部材を洗浄する洗浄剤を海水に添加することによって行われる。また、海水の水質を調整する水質調整剤を海水に添加する水質調整工程を更に備えてもよい。このような洗浄工程及び水質調整工程を行う場合には、図2(a)に示すように、海水の流路内に洗浄剤を供給する洗浄剤供給手段Bと、海水の流路内に水質調整剤を供給する水質調整剤供給手段Cとを備えた死滅処理設備を用いることができる。   For example, in the killing method according to the above-described embodiment, after the killing process is performed, a cleaning process of cleaning a member that forms a seawater flow path may be further provided. The cleaning step is performed by adding a cleaning agent for cleaning the member forming the seawater flow path to the seawater. Moreover, you may further provide the water quality adjustment process which adds the water quality adjusting agent which adjusts the water quality of seawater to seawater. When performing such a washing | cleaning process and a water quality adjustment process, as shown to Fig.2 (a), the washing | cleaning agent supply means B which supplies a washing | cleaning agent in the flow path of seawater, and water quality in the flow path of seawater A killing treatment facility provided with water quality adjusting agent supply means C for supplying the adjusting agent can be used.

該死滅処理設備は、第一配管系R1と第四配管系R4との連結位置よりも熱交換器A側の位置に洗浄剤供給手段Bを備えている。本実施形態では、洗浄剤供給手段Bは、配管B1を介して第一配管系R1に連結されている。該配管B1は、洗浄剤が流通する流路を第五バルブV5によって開閉可能に構成されている。また、該死滅処理設備は、第三配管系R3と第四配管系R4との連結位置よりも熱交換器A側の位置に水質調整剤供給手段Cを備えている。本実施形態では、水質調整剤供給手段Cは、配管C1を介して第三配管系R3に連結されている。該配管C1は、水質調整剤が流通する流路を第六バルブV6によって開閉可能に構成されている。なお、洗浄剤供給手段B及び水質調整剤供給手段Cは、第一配管系R1、第二配管系R2、第三配管系R3、又は、第四配管系R4の少なくとも一つに連結されるように構成されてもよい。   The extinguishing treatment facility includes a cleaning agent supply means B at a position closer to the heat exchanger A than a connection position between the first piping system R1 and the fourth piping system R4. In the present embodiment, the cleaning agent supply means B is connected to the first piping system R1 via the piping B1. The pipe B1 is configured such that a flow path through which the cleaning agent flows can be opened and closed by a fifth valve V5. In addition, the killing treatment facility includes a water quality adjusting agent supply means C at a position closer to the heat exchanger A than a connection position between the third piping system R3 and the fourth piping system R4. In the present embodiment, the water quality adjusting agent supply means C is connected to the third piping system R3 via the piping C1. The pipe C1 is configured so that a flow path through which the water quality adjusting agent flows can be opened and closed by a sixth valve V6. The cleaning agent supply means B and the water quality adjusting agent supply means C are connected to at least one of the first piping system R1, the second piping system R2, the third piping system R3, or the fourth piping system R4. May be configured.

上記のように洗浄剤供給手段B及び水質調整剤供給手段Cを備えた死滅処理設備を用いることで、以下のようにして洗浄工程及び水質調整工程が行われる。具体的には、死滅処理工程を行った後、まず始めに、図2(a)に示すように、第一バルブV1及び第三V3を閉じて第一配管系R1及び第三配管系R3の海水の流路を閉鎖した状態にすると共に、第四バルブV4を開いて第四配管系R4の海水の流路を開放した状態にする。これにより、循環流路を形成して海水を循環させる。   By using the extinguishing treatment facility provided with the cleaning agent supply means B and the water quality adjustment agent supply means C as described above, the cleaning process and the water quality adjustment process are performed as follows. Specifically, after performing the killing process step, first, as shown in FIG. 2A, the first valve V1 and the third V3 are closed, and the first piping system R1 and the third piping system R3 are closed. The seawater flow path is closed, and the fourth valve V4 is opened to open the seawater flow path of the fourth piping system R4. Thereby, a circulation channel is formed and seawater is circulated.

そして、第五バルブV5を開いて配管B1における洗浄剤の流路を開放し、洗浄剤供給手段Bから循環流路に洗浄剤を供給することで、海水に洗浄剤を添加する。この際、第二バルブV2を一時的に開いて洗浄剤の供給量に相当する量の海水を循環流路から排出する。上記のようにして洗浄剤が供給されることで、洗浄剤が添加された海水が循環流路を循環する。このため、海水の流路(循環流路)を形成する部材全体(具体的には、各配管系や熱交換器内の部材)の洗浄(例えば、付着するスケールなどの除去)を効果的に行うことができる。このような洗浄工程は、CIP洗浄といわれるものである。   Then, the fifth valve V5 is opened to open the flow path of the cleaning agent in the pipe B1, and the cleaning agent is added to the seawater by supplying the cleaning agent from the cleaning agent supply means B to the circulation passage. At this time, the second valve V2 is temporarily opened to discharge an amount of seawater corresponding to the supply amount of the cleaning agent from the circulation channel. By supplying the cleaning agent as described above, the seawater to which the cleaning agent is added circulates in the circulation channel. For this reason, it is effective to clean the entire members (specifically, members in each piping system and heat exchanger) forming the seawater flow path (circulation flow path) (for example, removal of attached scales, etc.). It can be carried out. Such a cleaning process is called CIP cleaning.

次に、上記のように洗浄工程を行った後、図2(b)に示すように、第一バルブV1及び第三バルブV3を開いて第一配管系R1及び第三配管系R3の海水の流路を開放し、第四バルブV4を閉じて第四配管系R4の海水の流路を閉鎖する。そして、水源SIから第一配管系R1を介して新たな海水を熱交換器A内(具体的には、第一流路A1)に供給する。   Next, after performing the washing process as described above, as shown in FIG. 2B, the first valve V1 and the third valve V3 are opened, and the seawater of the first piping system R1 and the third piping system R3 The flow path is opened, the fourth valve V4 is closed, and the seawater flow path of the fourth piping system R4 is closed. Then, fresh seawater is supplied from the water source SI into the heat exchanger A (specifically, the first flow path A1) via the first piping system R1.

加えて、第五バルブV5を閉じて配管B1における洗浄剤の流路を閉鎖すると共に、第六バルブV6を開いて配管C1における水質調整剤の流路を開放し、第三配管系R3の海水の流路に水質調整剤供給手段Cから水質調整剤を供給する。これにより、第二流路A2から流出する海水に水質調整剤が添加されて水質調整工程が行われる。水質調整工程を行うことで、所望する水質の海水をバラストタンクTに排出することができる。例えば、死滅処理工程等を行うことで、海水の水質が変化(悪化)した場合(pH等が変化した場合)には、水質調整工程を行うことで、海水を元の水質に戻した上でバラストタンクTへ排出することができる。   In addition, the fifth valve V5 is closed to close the flow path of the cleaning agent in the pipe B1, and the sixth valve V6 is opened to open the flow path of the water quality adjusting agent in the pipe C1 and the seawater of the third piping system R3. The water quality adjusting agent is supplied from the water quality adjusting agent supply means C to the flow path. Thereby, a water quality adjustment agent is added to the seawater which flows out out of 2nd flow path A2, and a water quality adjustment process is performed. By performing the water quality adjustment step, seawater having a desired water quality can be discharged to the ballast tank T. For example, when the quality of seawater changes (deteriorates) by performing a killing process or the like (when pH or the like changes), the seawater is returned to the original water quality by performing a water quality adjustment process. It can be discharged to the ballast tank T.

なお、洗浄工程又は水質調整工程は、何れか一方のみが行われるようにしてもよい。斯かる場合には、洗浄剤供給手段B又は水質調整剤供給手段Cの何れか一方のみを備えた死滅処理設備を用いることができる。また、水質調整工程は、上記のような循環流路を形成した状態で行っても良い。循環流路を形成した状態で水質調整工程を行うことで、循環流路内の海水全体を所望する水質に調整した上で、第三配管系R3を介して排出することができる。このため、海水の排出先であるバラストタンクTに所望する水質の海水を確実に供給することができる。   Note that only one of the washing step and the water quality adjustment step may be performed. In such a case, a killing treatment facility provided with only one of the cleaning agent supply means B and the water quality adjusting agent supply means C can be used. Moreover, you may perform a water quality adjustment process in the state which formed the above circulation channels. By performing the water quality adjustment step in a state where the circulation flow path is formed, the entire seawater in the circulation flow path can be adjusted to the desired water quality and then discharged through the third piping system R3. For this reason, the desired quality seawater can be reliably supplied to the ballast tank T from which the seawater is discharged.

また、上記では、循環流路を形成した状態で、洗浄材供給手段Bから洗浄剤が海水の流路に供給されているが、これに限定されるものではなく、循環流路を形成せずに洗浄材供給手段Bから海水の流路に洗浄剤を添加してもよい。   In the above, the cleaning agent is supplied from the cleaning material supply means B to the seawater flow channel in a state where the circulation flow channel is formed. However, the present invention is not limited to this, and the circulation flow channel is not formed. In addition, a cleaning agent may be added from the cleaning material supply means B to the seawater channel.

また、上記実施形態では、海中を水源SIとし、海中からの海水を熱交換器Aで熱交換させて死滅温度以上に温度上昇させているが、これに限定されるものではなく、バラストとして用いられる又は用いられた海水を提供可能な水源であればよい。例えば、図3に示すように、バラストタンクTを水源SIIとし、バラストタンクT内(水源SII)の海水を熱交換器Aで熱交換させて海中生物の死滅処理を行った後、該海水をバラストタンクTへ返送するようにしてもよい。この場合、第一配管系R1’は、バラストタンクT(水源SII)と熱交換器A(具体的には、第一流路A1の入口A11)とを流体的に連結している。また、該第一配管系R1’は、上記実施形態の配管L1と、第一バルブV1と、第一ポンプP1とから構成されている。   Moreover, in the said embodiment, the sea is made into the water source SI, and the seawater from the sea is heat-exchanged with the heat exchanger A, and it raises temperature more than a death temperature, However, It is not limited to this, It uses as a ballast Any water source that can provide the seawater used or used can be used. For example, as shown in FIG. 3, after the ballast tank T is used as the water source SII, the seawater in the ballast tank T (water source SII) is heat-exchanged by the heat exchanger A, and the marine organisms are killed. It may be returned to the ballast tank T. In this case, the first piping system R1 'fluidly connects the ballast tank T (water source SII) and the heat exchanger A (specifically, the inlet A11 of the first flow path A1). The first piping system R1 'includes the piping L1, the first valve V1, and the first pump P1 of the above embodiment.

バラストタンクT内(水源SII)の海水は、バラストタンクTに連結された第五配管系R5を介して海中(水源SI)からバラストタンクT内に供給される。第五配管系R5は、海中(水源SI)からの海水をバラストタンクTへ流通させる配管L5と、該配管L5内に海中(水源SI)から海水を吸引すると共にバラストタンクTへ海水を圧送する第三ポンプP3と、配管L5を流通する海水を濾過するフィルターFとを備えている。   Seawater in the ballast tank T (water source SII) is supplied into the ballast tank T from the sea (water source SI) through a fifth piping system R5 connected to the ballast tank T. The fifth piping system R5 sucks seawater from the sea (water source SI) into the pipe L5 and circulates the seawater from the sea (water source SI) to the ballast tank T and pumps the seawater to the ballast tank T. A third pump P3 and a filter F for filtering seawater flowing through the pipe L5 are provided.

そして、バラストタンクT内(水源SII)の海水に対して、上述したような海水導入工程、循環工程、及び、死滅処理工程を行うことで、バラストとして用いられた海水が熱交換器A(具体的には、第一流路A1)で死滅温度以上に温度上昇される。このため、バラストタンクTへ返送される海水は、海中生物が死滅した状態となっている。これにより、バラストタンクT内の海水中に存在する生きた生物の量を経時的に減少させることができる。言い換えれば、バラストタンクT内の海水中の生きた生物の濃度を希釈することができる。   Then, the seawater used as the ballast is converted into the heat exchanger A (specifically) by performing the seawater introduction process, the circulation process, and the killing process as described above on the seawater in the ballast tank T (water source SII). Specifically, the temperature is raised above the kill temperature in the first flow path A1). For this reason, the seawater returned to the ballast tank T is in a state where marine organisms have been killed. Thereby, the amount of living organisms present in the seawater in the ballast tank T can be reduced over time. In other words, the concentration of living organisms in the seawater in the ballast tank T can be diluted.

また、上述のように、バラストタンクT内(水源SII)の海中生物を死滅処理する場合には、死滅処理工程において第二流路A2から流出する海水を元のバラストタンクTへ返送せずに、死滅処理後の海水のみを貯留する他のバラストタンクへ供給したり、海中に排出したりしてもよい。   Further, as described above, when marine organisms in the ballast tank T (water source SII) are killed, the seawater flowing out from the second flow path A2 is not returned to the original ballast tank T in the killing process. Alternatively, it may be supplied to other ballast tanks that store only the seawater after the killing process, or discharged into the sea.

このように、バラストとして用いられた海水(バラスト水)中の生物の死滅処理を、従来のように、海水の貯留設備を用いることなく行うことができるため、死滅処理設備を小規模なものにすることができる。このため、船舶内に死滅処理設備を設置することが容易になり、航行中にバラスト水中の生物の死滅処理を行い易くなる。   In this way, the extinction treatment of organisms in the seawater (ballast water) used as ballast can be performed without using seawater storage equipment as in the past, so the extinction treatment equipment can be reduced in size. can do. For this reason, it becomes easy to install a killing treatment facility in a ship, and it becomes easy to kill a living thing in ballast water during navigation.

また、上記実施形態では、第二配管系R2を流通する海水が熱量供与部R21で水蒸気と接触することで加熱されるが、これに限定されるものではなく、第二配管系R2を形成する配管L2がヒーター等の加熱手段で加熱されることで、間接的に第二配管系R2内の海水が加熱されてもよい。   Moreover, in the said embodiment, although the seawater which distribute | circulates 2nd piping system R2 contacts with water vapor | steam in the calorie | heat amount provision part R21, it is not limited to this, The 2nd piping system R2 is formed. Seawater in 2nd piping system R2 may be heated indirectly by heating piping L2 with heating means, such as a heater.

また、上記実施形態では、第一流路A1で熱交換された海水が熱交換器Aから流出して第二配管系R2へ供給され、該第二配管系R2から熱交換器Aへ海水が再度供給されているが、これに限定されるものではなく、第一流路A1から流出した海水が熱交換器A内で第二流路A2に供給されるようにしてもよい。   Moreover, in the said embodiment, the seawater heat-exchanged by 1st flow path A1 flows out from the heat exchanger A, is supplied to 2nd piping system R2, and seawater is again from this 2nd piping system R2 to the heat exchanger A. Although it is supplied, the present invention is not limited to this, and the seawater flowing out from the first flow path A1 may be supplied to the second flow path A2 in the heat exchanger A.

また、上記実施形態の循環工程では、第二流路A2を流通した海水が熱交換器Aから流出して第三配管系R3に供給され、その後、第四配管系R4に供給されているが、これに限定されるものではなく、第二流路A2から流出した海水が熱交換器A内で第一流路A1へ供給されるようにしてもよい。   Moreover, in the circulation process of the said embodiment, although the seawater which distribute | circulated the 2nd flow path A2 flows out from the heat exchanger A, it is supplied to 3rd piping system R3, and is supplied to 4th piping system R4 after that. However, the present invention is not limited to this, and the seawater flowing out from the second flow path A2 may be supplied to the first flow path A1 in the heat exchanger A.

また、上記実施形態では、死滅処理工程に先立ち、海水導入工程及び循環工程を行っているが、これに限定されるものではなく、水源SI,SIIからの海水を熱量供与部R21で上記の熱量(交換熱量)を有する温度にまで海水を加熱することが可能な場合には、循環工程を行うことなく、海水導入工程と死滅処理工程とを連続して行ってもよい。例えば、水源SIからの海水の供給量を少なくすることで、熱量供与部R21を通過する海水量を低減し、熱量供与部R21において海水が加熱され易くなり、前記交換熱量を有する温度にまで海水を加熱し易くなる。これにより、第一バルブV1及び第三バルブV3を開いた状態にすると共に、第二バルブV2及び第四バルブV4を閉じた状態にし、水源SIから熱交換器Aに海水を導入する海水導入工程を行うと共に、該海水導入工程に連続して死滅処理工程を行うことができる。   Moreover, in the said embodiment, although the seawater introduction | transduction process and the circulation process are performed prior to the extinction process process, it is not limited to this, The above-mentioned calorie | heat amount is supplied to the seawater from water sources SI and SII by calorie | heat amount provision part R21. When the seawater can be heated to a temperature having (exchange heat quantity), the seawater introduction step and the extinction treatment step may be performed continuously without performing the circulation step. For example, by reducing the amount of seawater supplied from the water source SI, the amount of seawater that passes through the calorific value donating unit R21 is reduced, and the seawater is easily heated in the calorific value donating unit R21. It becomes easy to heat. Thus, the first valve V1 and the third valve V3 are opened, the second valve V2 and the fourth valve V4 are closed, and seawater is introduced from the water source SI to the heat exchanger A. And a killing process step can be performed continuously to the seawater introduction step.

A…熱交換器、A1…第一流路、A2…第二流路、F…フィルター、P1…第一ポンプ、P2…第二ポンプ、R1…第一配管系、R2…第二配管系、R21…熱量供与部、R3…第三配管系、R4…第四配管系、SI,SII…水源、T…バラストタンク、V1…第一バルブ、V2…第二バルブ、V3…第三バルブ、V4…第四バルブ   A ... heat exchanger, A1 ... first flow path, A2 ... second flow path, F ... filter, P1 ... first pump, P2 ... second pump, R1 ... first piping system, R2 ... second piping system, R21 ... calorie donating part, R3 ... third piping system, R4 ... fourth piping system, SI, SII ... water source, T ... ballast tank, V1 ... first valve, V2 ... second valve, V3 ... third valve, V4 ... 4th valve

Claims (12)

船舶のバラストに用いられる又は用いられた海水を温度上昇させることで、該海水中の生物を死滅させて処理する海中生物の死滅処理方法であって、
流体を流通させる第一流路と第二流路とを備え、該第一流路内の流体と第二流路内の流体との間で熱交換を行う熱交換器の第一流路に水源から海水を供給すると共に、第一流路から流出した海水に対し、該海水が第二流路を流通する際に第一流路内の海水の温度を海水中の生物が死滅する温度以上に上昇させ得る熱量を与え、該熱量が与えられた海水を第二流路に供給し、第一流路内の海水と第二流路内の海水との間で熱交換させる死滅処理工程を備えることを特徴とする海中生物の死滅処理方法。
A method for killing marine organisms in which seawater used or used in ship ballasts is heated to kill the organisms in the seawater for treatment,
A first flow path and a second flow path through which the fluid is circulated, and the heat flow from the water source to the first flow path of the heat exchanger that exchanges heat between the fluid in the first flow path and the fluid in the second flow path And the amount of heat that can raise the temperature of the seawater in the first flow path above the temperature at which organisms in the seawater die when the seawater flows through the second flow path. And supplying a seawater to which the amount of heat is supplied to the second flow path, and a heat treatment is performed between the seawater in the first flow path and the seawater in the second flow path. How to kill marine life.
水源からの海水を熱交換器に供給して第一流路及び第二流路を海水で満たした状態で、水源からの海水の供給を停止し、第一流路から流出する海水に所定の熱量を与えて第二流路に供給すると共に、第二流路から流出する海水を第一流路に供給し、第一流路及び第二流路内の海水を死滅温度以上にする循環工程を更に備え、前記死滅処理工程は、循環工程後に行われることを特徴とする請求項1に記載の海中生物の死滅処理方法。   With the seawater from the water source supplied to the heat exchanger and the first channel and the second channel filled with seawater, the supply of seawater from the water source is stopped, and a predetermined amount of heat is given to the seawater flowing out from the first channel. Providing and supplying the second flow path with seawater flowing out from the second flow path to the first flow path, further comprising a circulation step of bringing the seawater in the first flow path and the second flow path to a dead temperature or higher, The method for killing marine organisms according to claim 1, wherein the killing process is performed after the circulation process. 前記死滅処理工程を行った後、水源から熱交換器の第一流路への海水の供給を停止し、第二流路から流出する海水を第一流路に供給すると共に、海水の流路を形成する部材を洗浄する洗浄剤を海水の流路内に供給する洗浄工程を更に備えることを特徴とする請求項1又は2に記載の海中生物の死滅処理方法。   After performing the killing process, the supply of seawater from the water source to the first flow path of the heat exchanger is stopped, the seawater flowing out from the second flow path is supplied to the first flow path, and the flow path of seawater is formed. The method for killing marine organisms according to claim 1 or 2, further comprising a cleaning step of supplying a cleaning agent for cleaning the member to be performed into the flow path of seawater. 海水が流通する流路内に海水の水質を調整する水質調整剤を供給する水質調整工程を更に備えることを特徴とする請求項1乃至3の何れか一項に記載の海中生物の死滅処理方法。   The method for killing marine organisms according to any one of claims 1 to 3, further comprising a water quality adjusting step of supplying a water quality adjusting agent for adjusting the quality of the sea water into a flow path through which the sea water flows. . 前記熱交換器は、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして前記第一流路と前記第二流路とが交互に複数形成され、各伝熱プレートに形成された貫通穴が連なって流体を第一流路に流出入させる第一流入路及び第一流出路が形成されると共に、第一流路に供給される流体よりも高温の流体を第二流路に流出入させる第二流入路及び第二流出路が形成されたプレート式熱交換器であることを特徴とする請求項1乃至4の何れか一項に記載の海中生物の死滅処理方法。   In the heat exchanger, a plurality of the first flow paths and the second flow paths are alternately formed between the plurality of stacked heat transfer plates, with each heat transfer plate serving as a boundary. The first inflow passage and the first outflow passage through which the through holes are connected to allow the fluid to flow into and out of the first flow path are formed, and fluid having a higher temperature than the fluid supplied to the first flow path flows into and out of the second flow path. The method for killing marine organisms according to any one of claims 1 to 4, wherein the heat exchanger is a plate heat exchanger in which a second inflow path and a second outflow path are formed. 船舶のバラストに用いられる又は用いられた海水を温度上昇させることで、該海水中の生物を死滅させる海中生物の死滅処理設備において、
それぞれ流通する流体同士の間で熱交換可能に配置された第一流路及び第二流路を備えた熱交換器と、該熱交換器の第一流路の入口と前記海水の水源とを流体的に連結する第一配管系と、熱交換器の第一流路の出口と第二流路の入口とを流体的に連結する第二配管系と、熱交換器の第二流路の出口と海水の排出先とを流体的に連結する第三配管系とを備え、前記第二配管系は、第一流路から流出した海水に対し、該海水が第二流路を流通する際に第一流路内の海水の温度を海水中の生物が死滅する温度以上に上昇させ得る熱量を与える熱量供与部を備えることを特徴とする海中生物の死滅処理設備。
In a marine organism killing treatment facility that kills organisms in the seawater by raising the temperature of the seawater used or used for the ballast of the ship,
A heat exchanger having a first flow path and a second flow path that are arranged so as to be able to exchange heat between fluids that circulate, and an inlet of the first flow path of the heat exchanger and a water source of the seawater are fluidly connected. A second piping system fluidly connecting the outlet of the first flow path of the heat exchanger and the inlet of the second flow path, the outlet of the second flow path of the heat exchanger, and seawater A third piping system that fluidly connects the discharge destination to the first flow path when the seawater flows through the second flow path with respect to the seawater that flows out from the first flow path. A marine organism killing treatment facility comprising a calorific value donating section for providing a calorific value that can raise the temperature of the seawater above the temperature at which organisms in the seawater die.
第二流路の出口と第一流路の入口とを流体的に連結する第四配管系をさらに備え、第一配管系、第三配管系、及び、第四配管系は、海水の流路を開閉可能に構成されていることを特徴とする請求項6に記載の海中生物の死滅処理設備。   A fourth piping system that fluidly connects the outlet of the second channel and the inlet of the first channel; the first piping system, the third piping system, and the fourth piping system provide a channel for the seawater; It is comprised so that opening and closing is possible, The killing processing equipment of the marine organisms of Claim 6 characterized by the above-mentioned. 海水の流路を形成する部材を洗浄する洗浄剤を該流路内に供給する洗浄剤供給手段が第一配管系、第二配管系、又は、第三配管系の少なくとも一つに連結されていることを特徴とする請求項6に記載の海中生物の死滅処理設備。   A cleaning agent supplying means for supplying a cleaning agent for cleaning the member forming the sea water flow path into the flow path is connected to at least one of the first piping system, the second piping system, or the third piping system. The marine organism extinction treatment facility according to claim 6. 海水の流路を形成する部材を洗浄する洗浄剤を該流路内に供給する洗浄剤供給手段が第一配管系、第二配管系、第三配管系、又は、第四配管系の少なくとも一つに連結されていることを特徴とする請求項7に記載の海中生物の死滅処理設備。   At least one of the first piping system, the second piping system, the third piping system, and the fourth piping system is a cleaning agent supply means for supplying a cleaning agent for cleaning the member forming the sea water flow path into the flow path. The marine organism extinction treatment facility according to claim 7, wherein the marine organism extinction treatment facility is connected to a marine organism. 海水が流通する流路内に海水の水質を調整する水質調整剤を供給する水質調整剤供給手段が第一配管系、第二配管系、又は、第三配管系の少なくとも一つに連結されていることを特徴とする請求項6又は8に記載の海中生物の死滅処理設備。   A water quality adjusting agent supplying means for supplying a water quality adjusting agent for adjusting the quality of the sea water into the flow path through which the sea water flows is connected to at least one of the first piping system, the second piping system, or the third piping system. The marine organism killing treatment facility according to claim 6 or 8, wherein 海水が流通する流路内に海水の水質を調整する水質調整剤を供給する水質調整剤供給手段が第一配管系、第二配管系、第三配管系、又は、第四配管系の少なくとも一つに連結されていることを特徴とする請求項7又は9に記載の海中生物の死滅処理設備。   At least one of the first piping system, the second piping system, the third piping system, or the fourth piping system is a water quality adjusting agent supplying means for supplying a water quality adjusting agent for adjusting the quality of the sea water into the flow path through which the sea water flows. The marine organism killing treatment facility according to claim 7 or 9, wherein the marine organism killing treatment facility is connected to a marine organism. 前記熱交換器は、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして前記第一流路と前記第二流路とが交互に複数形成され、各伝熱プレートに形成された貫通穴が連なって流体を第一流路に流出入させる第一流入路及び第一流出路が形成されると共に、第一流路に供給される流体よりも高温の流体を第二流路に流出入させる第二流入路及び第二流出路が形成されたプレート式熱交換器であることを特徴とする請求項6乃至11の何れか一項に記載の海中生物の死滅処理設備。   In the heat exchanger, a plurality of the first flow paths and the second flow paths are alternately formed between the plurality of stacked heat transfer plates, with each heat transfer plate serving as a boundary. The first inflow passage and the first outflow passage through which the through holes are connected to allow the fluid to flow into and out of the first flow path are formed, and fluid having a higher temperature than the fluid supplied to the first flow path flows into and out of the second flow path It is a plate type heat exchanger in which the 2nd inflow path and 2nd outflow path to be formed were formed, The killing treatment equipment of the marine organisms according to any one of claims 6 to 11 characterized by things.
JP2011259109A 2011-11-28 2011-11-28 How to kill marine life Active JP5806093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011259109A JP5806093B2 (en) 2011-11-28 2011-11-28 How to kill marine life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259109A JP5806093B2 (en) 2011-11-28 2011-11-28 How to kill marine life

Publications (2)

Publication Number Publication Date
JP2013111516A true JP2013111516A (en) 2013-06-10
JP5806093B2 JP5806093B2 (en) 2015-11-10

Family

ID=48707646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259109A Active JP5806093B2 (en) 2011-11-28 2011-11-28 How to kill marine life

Country Status (1)

Country Link
JP (1) JP5806093B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216181A (en) * 2006-02-20 2007-08-30 Jfe Engineering Kk Ballast water treatment apparatus and method
JP2007533440A (en) * 2004-04-23 2007-11-22 パッケージド エンヴァイロメンタル ソリューションズ ピーティーワイ リミティッド Sterilization system
JP2008110276A (en) * 2006-10-27 2008-05-15 Daiko Sangyo:Kk Heat recovery type purification treatment method of ballast water and heat recovery type purification treatment system using this
JP2010023691A (en) * 2008-07-18 2010-02-04 National Maritime Research Institute Ballast water treatment method and ballast water treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533440A (en) * 2004-04-23 2007-11-22 パッケージド エンヴァイロメンタル ソリューションズ ピーティーワイ リミティッド Sterilization system
JP2007216181A (en) * 2006-02-20 2007-08-30 Jfe Engineering Kk Ballast water treatment apparatus and method
JP2008110276A (en) * 2006-10-27 2008-05-15 Daiko Sangyo:Kk Heat recovery type purification treatment method of ballast water and heat recovery type purification treatment system using this
JP2010023691A (en) * 2008-07-18 2010-02-04 National Maritime Research Institute Ballast water treatment method and ballast water treatment apparatus

Also Published As

Publication number Publication date
JP5806093B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
KR101729652B1 (en) Ballast water and fish farm treatment system
KR102107924B1 (en) Ultrapure water production equipment
JP2014061483A (en) Intermediate pressure outer irradiation type ultraviolet lamp and microorganism inactivation device for ballast water
JP2010023691A (en) Ballast water treatment method and ballast water treatment apparatus
JP5806093B2 (en) How to kill marine life
KR102435280B1 (en) Tank filtering device
CN103070132A (en) Temperature control device in seawater breeding pond water reflow treatment
EA022088B1 (en) A method and an apparatus for continuously sterilizing water for spraying the pistons in a piston pump or a homogenizer
US11767095B2 (en) System and a method for heat treatment of water of a vessel
JP2013043488A (en) Ballast water treatment apparatus
KR101027286B1 (en) Ship&#39;s ballast water treatment apparatus using steam produced from boiler
KR101269632B1 (en) Apparatus for sterilization of ballast water using heat-exchanger
JP2005152799A (en) Ship ballast water treatment apparatus
JP3986517B2 (en) Ballast water heat sterilizer and heat sterilization method thereof
KR100658020B1 (en) Heat exchanger of the pasteurization device
KR20130050457A (en) Marine growth preventing system and sea water supplying system and ship having the same
CN110066666A (en) For handling the method and system of organic waste
JP7059664B2 (en) Heat pump system
NO20110943A1 (en) System and method for pasteurizing water containing biomass.
GB2579749A (en) System for delousing fish by means of heated water
KR101863986B1 (en) Sea Water Supply System for Electrolysis Unit of Ballast Water Treatment System
JPH10253271A (en) Coolant system of generation plate
JP2014189122A (en) Ballast water treatment system, ship mounting this ballast water treatment system, and ballast water treatment method
KR200399465Y1 (en) Heat exchanger of the pasteurization device
JP2012189293A (en) Heat exchange system, and maintenance method of plate-type heat exchanger

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250