JP2013110867A - Thermal power generation portable device - Google Patents

Thermal power generation portable device Download PDF

Info

Publication number
JP2013110867A
JP2013110867A JP2011254288A JP2011254288A JP2013110867A JP 2013110867 A JP2013110867 A JP 2013110867A JP 2011254288 A JP2011254288 A JP 2011254288A JP 2011254288 A JP2011254288 A JP 2011254288A JP 2013110867 A JP2013110867 A JP 2013110867A
Authority
JP
Japan
Prior art keywords
variable resistance
thermoelectric
heat
power generation
thermoelectric generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011254288A
Other languages
Japanese (ja)
Other versions
JP5839957B2 (en
Inventor
Fumio Kimura
文雄 木村
Manabu Omi
学 大海
Takeshi Uchiyama
武 内山
Yoko Shinohara
陽子 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011254288A priority Critical patent/JP5839957B2/en
Publication of JP2013110867A publication Critical patent/JP2013110867A/en
Application granted granted Critical
Publication of JP5839957B2 publication Critical patent/JP5839957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure a desired amount of power generation by suppressing degradation in generation efficiency under a fitted state to an organism.SOLUTION: The present invention comprises: a thermal power generation member 109 that generates electric power on the basis of a temperature difference between a heat source and a heat radiation destination; a variable resistance section that is formed in a heat transfer path between the heat source and the heat radiation destination and changes heat resistance of the heat transfer path; and a variable resistance section movement mechanism that moves the variable resistance section. The variable resistance section movement mechanism has an elastic member 113.

Description

この発明は、熱発電携帯機器に関する。   The present invention relates to a thermoelectric power generation portable device.

従来、例えば、熱発電素子を裏蓋と本体内部の放熱リングとの間に設置し、人体の腕から体温が裏蓋を介して伝達される発熱側の温度と放熱側の温度との温度差によって発電電圧を得る熱発電腕時計が知られている(例えば、特許文献1参照)。   Conventionally, for example, a thermoelectric generator is installed between the back cover and the heat dissipation ring inside the main body, and the temperature difference between the temperature on the heat generation side and the temperature on the heat dissipation side where body temperature is transmitted from the human arm through the back cover. There is known a thermoelectric wristwatch that obtains a power generation voltage by using (see, for example, Patent Document 1).

特許第3054933号公報Japanese Patent No. 3054933

ところで、上記従来技術に係る熱発電腕時計においては、人体の腕に装着された後に熱発電腕時計全体の温度が飽和するように熱的平衡状態に向かい変化することに伴い、熱発電素子の発熱側の温度と放熱側の温度との温度差が小さくなり、熱発電素子の発電電圧が低下することで所望の発電量を確保することができなくなると共に、発電効率が低下してしまう問題がある。   By the way, in the thermoelectric wristwatch according to the above-described prior art, the heat generating side of the thermoelectric generator is accompanied by changing toward the thermal equilibrium state so that the temperature of the entire thermoelectric wristwatch is saturated after being worn on the human arm. The temperature difference between this temperature and the temperature on the heat radiating side becomes small, and the power generation voltage of the thermoelectric generator decreases, so that it becomes impossible to secure a desired power generation amount and the power generation efficiency decreases.

本発明は上記事情に鑑みてなされたもので、生体への装着状態において発電効率の低下を抑制し、所望の発電量を確保することが可能な熱発電携帯機器を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a thermoelectric power generation portable device capable of suppressing a decrease in power generation efficiency in a mounted state on a living body and ensuring a desired power generation amount. .

上記課題を解決して係る目的を達成するために、本発明の熱発電携帯機器は、熱源と放熱先との温度差に基づき発電する熱発電部材と、熱源と放熱先との間の伝熱経路中に設けられ、伝熱経路の熱抵抗を変更する可変抵抗部と、可変抵抗部を移動させる可変抵抗部移動機構と、を備え、可変抵抗部移動機構は、弾性部材を有する事を特徴とする。   In order to solve the above-described problems and achieve the object, the portable thermoelectric generator of the present invention includes a thermoelectric generator that generates electricity based on a temperature difference between a heat source and a heat radiation destination, and heat transfer between the heat source and the heat radiation destination. A variable resistance unit that is provided in the path and that changes the thermal resistance of the heat transfer path; and a variable resistance unit moving mechanism that moves the variable resistance unit. The variable resistance unit moving mechanism includes an elastic member. And

また、可変抵抗部移動機構は、伝熱経路の距離を制御する事を特徴とする。
また、可変抵抗部は、導熱部材である板状部材を有する事を特徴とする。
また、可変抵抗部移動機構は、可変抵抗部を伝熱経路と交差する方向を軸として回転させる事を特徴とする。
また、弾性部材は、ゴムである事を特徴とする。
The variable resistance portion moving mechanism controls the distance of the heat transfer path.
Further, the variable resistance portion has a plate-like member that is a heat conducting member.
The variable resistance portion moving mechanism is characterized in that the variable resistance portion is rotated about the direction intersecting the heat transfer path.
Further, the elastic member is rubber.

また、時間を計る計時部を有し、可変抵抗部移動機構は、計時部により可変抵抗部を移動させることを特徴とする。
また、 熱発電部材の発電電圧を検出する電圧検出部を有し、可変抵抗部移動機構は、発電電圧により可変抵抗部を移動させることを特徴とする。
また、熱発電部材の発電電力を蓄電する蓄電部を有し、可変抵抗部移動機構は、蓄電部の蓄電量により可変抵抗部を移動させることを特徴とする。
Moreover, it has a time measuring part which measures time, and a variable resistance part moving mechanism moves a variable resistance part by a time measuring part, It is characterized by the above-mentioned.
Moreover, it has a voltage detection part which detects the power generation voltage of a thermoelectric power generation member, and a variable resistance part moving mechanism moves a variable resistance part with a power generation voltage, It is characterized by the above-mentioned.
Moreover, it has an electrical storage part which accumulate | stores the generated electric power of a thermoelectric power generation member, and a variable resistance part moving mechanism moves a variable resistance part with the electrical storage amount of an electrical storage part, It is characterized by the above-mentioned.

本発明に係る熱発電携帯機器によれば、例えばペルチェ素子などからなる熱発電部材は、熱源である生体の温度(体温)と熱発電携帯機器外部の雰囲気などの放熱先の温度との温度差に起因して熱発電部材の熱源側位置と放熱先側位置との間に生じる温度差の大きさに応じた発電電圧を出力する。   According to the thermoelectric power generation portable device according to the present invention, the thermoelectric power generation member made of, for example, a Peltier element is a temperature difference between the temperature of the living body (body temperature) as a heat source and the temperature of the heat radiation destination such as the atmosphere outside the thermoelectric power generation portable device. The power generation voltage corresponding to the magnitude of the temperature difference generated between the heat source side position and the heat radiation destination side position of the thermoelectric generation member due to the above is output.

このため、熱源と放熱先との間の所定の温度差に対して、伝熱経路のうち局在的に熱発電部材の熱源側位置と放熱先側位置との間で温度差が増大するようにして伝熱経路の少なくとも一部の熱抵抗を変更することにより、発電電圧を増大させて所望の発電量を確保することができると共に、発電効率の低下を抑制することができる。   For this reason, the temperature difference between the heat source side position and the heat radiation destination side position of the thermoelectric generation member locally increases in the heat transfer path with respect to a predetermined temperature difference between the heat source and the heat radiation destination. By changing the thermal resistance of at least a part of the heat transfer path, it is possible to increase the power generation voltage and secure a desired power generation amount, and to suppress a decrease in power generation efficiency.

例えば、先ず、熱発電携帯機器が熱源である生体に装着された初期状態においては、伝熱経路を構成する直列的な各領域(例えば、機器本体を構成する部材や機器内部の空気などにより構成される各領域)の熱抵抗を同等あるいは熱発電部材の熱抵抗よりも小さな値に設定しておくことにより、熱発電部材の熱源側位置と放熱先側位置との間の温度差を、熱源と放熱先との間の所定の温度差に応じた最大発電状態の温度差まで迅速に増大させることができ、発電効率を増大させることができる。   For example, in the initial state when the portable thermoelectric generator is mounted on a living body that is a heat source, each of the serial regions constituting the heat transfer path (for example, a member constituting the device main body or air inside the device) By setting the thermal resistance of each region) equal to or smaller than the thermal resistance of the thermoelectric generator member, the temperature difference between the heat source side position and the heat radiation destination side position of the thermoelectric generator member It is possible to rapidly increase the temperature difference in the maximum power generation state according to a predetermined temperature difference between the heat sink and the heat radiation destination, thereby increasing the power generation efficiency.

そして、熱発電携帯機器全体の温度が飽和するように熱的平衡状態に向かい変化することに伴い、熱発電部材の熱源側位置と放熱先側位置との間の温度差および熱発電部材の発電電圧が低下した後においては、例えば熱源と放熱先との間における伝熱経路で熱発電部材に対して直列接続の関係を有する適宜の領域の熱抵抗を増大させるなどによって、伝熱経路の少なくとも一部の熱抵抗を変更する。   The temperature difference between the heat source side position and the heat radiation side position of the thermoelectric generation member and the power generation of the thermoelectric generation member with the change toward the thermal equilibrium state so that the temperature of the entire thermoelectric portable device is saturated After the voltage decreases, for example, by increasing the thermal resistance of an appropriate region having a serial connection relationship with the thermoelectric generator member in the heat transfer path between the heat source and the heat radiating destination, at least in the heat transfer path. Change some thermal resistance.

これにより、いわば、熱源と放熱先との間の所定の温度差が伝熱経路の全体に亘って配分されたような熱的平衡状態が変更されて、この所定の温度差が伝熱経路の一部に局在的に集中するような熱的平衡状態が形成される。   As a result, the so-called thermal equilibrium state in which the predetermined temperature difference between the heat source and the heat radiation destination is distributed over the entire heat transfer path is changed, and this predetermined temperature difference is changed in the heat transfer path. A thermal equilibrium state is formed which is concentrated locally in a part.

そして、熱源と放熱先との間の所定の温度差に基づいて伝熱経路の一部に局在的な温度差が形成された後、伝熱経路の熱抵抗を変更前の状態(例えば、伝熱経路を構成する直列的な各領域の熱抵抗が同等あるいは熱発電部材の熱抵抗よりも小さい状態)などに変更する。   Then, after a local temperature difference is formed in a part of the heat transfer path based on a predetermined temperature difference between the heat source and the heat radiation destination, the heat resistance of the heat transfer path is changed to a state before the change (for example, The thermal resistance of each of the series regions constituting the heat transfer path is equal to or smaller than the thermal resistance of the thermoelectric generator member).

これにより、熱的過渡状態において熱発電部材の熱源側位置と放熱先側位置との間の温度差および熱発電部材の発電電圧を初期状態の程度(例えば、最大発電状態での温度差および発電電圧など)まで再度増大させることができ、所望の発電量を確保することができると共に、発電効率の低下を抑制することができる。   As a result, the temperature difference between the heat source side position and the heat radiation destination side position of the thermoelectric generator member and the power generation voltage of the thermoelectric generator member in the thermal transient state are adjusted to the extent of the initial state (for example, the temperature difference and power generation in the maximum power generation state). Voltage, etc.) can be increased again, a desired power generation amount can be ensured, and a decrease in power generation efficiency can be suppressed.

発電効率の低下を抑制し、所望の発電量を確保することが可能な熱発電携帯機器を提供することを目的としている。   An object of the present invention is to provide a portable thermoelectric generator capable of suppressing a decrease in power generation efficiency and ensuring a desired power generation amount.

本発明に係る第一の実施例を示す熱発電携帯機器の断面図である。It is sectional drawing of the thermoelectric portable apparatus which shows the 1st Example which concerns on this invention. 本発明に係る第二の実施例を示す熱発電携帯機器の断面図である。It is sectional drawing of the thermoelectric portable apparatus which shows the 2nd Example which concerns on this invention. 本発明に係る第三の実施例を示す熱発電携帯機器の断面図である。It is sectional drawing of the thermoelectric portable apparatus which shows the 3rd Example which concerns on this invention. 本発明に係る熱発電携帯機器のムーブメントの構成を示すブロック図である。It is a block diagram which shows the structure of the movement of the thermoelectric portable apparatus which concerns on this invention. 本発明に係る熱発電携帯機器の熱抵抗を説明する等価回路図である。It is an equivalent circuit diagram explaining the thermal resistance of the thermoelectric generation portable apparatus which concerns on this invention. 本発明の実施の形態に係る熱発電携帯機器が生体に装着された状態における熱抵抗モデルでの温度分布の一例を示す図である。It is a figure which shows an example of the temperature distribution in the thermal resistance model in the state with which the thermoelectric portable apparatus which concerns on embodiment of this invention was mounted | worn with the biological body. 本発明に係る熱発電携帯機器が生体に装着された以後における熱発電部材の熱源側位置の温度と放熱先側位置の温度との間に生じる温度差ΔTpの変化の一例を示すグラフ図である。It is a graph which shows an example of the change of the temperature difference (DELTA) Tp which arises between the temperature of the heat-source side position of the thermoelectric generation member after the thermoelectric generation portable apparatus which concerns on this invention is mounted | worn with the living body, and the temperature of the radiation-destination side position. . 本発明に係る熱発電携帯機器が生体に装着された以後における、弾性部材の弾性変形に伴う熱抵抗と、熱抵抗モデルでの温度分布の変化とを示す図である。It is a figure which shows the thermal resistance accompanying the elastic deformation of an elastic member, and the change of the temperature distribution in a thermal resistance model after the thermoelectric generation portable apparatus which concerns on this invention was mounted | worn with the biological body. 本発明に係る熱発電携帯機器が生体に装着された以後における、弾性部材の弾性変形に伴う熱抵抗と、熱発電部材の熱源側位置の温度と放熱先側位置の温度との間に生じる温度差ΔTpの変化とを示す図である。The temperature generated between the thermal resistance accompanying the elastic deformation of the elastic member and the temperature at the heat source side position and the temperature at the heat radiation destination side of the thermoelectric generator member after the portable thermoelectric generator according to the present invention is mounted on the living body. It is a figure which shows the change of difference (DELTA) Tp. 本発明に係る変形機構部の自動駆動を説明するためのブロック図である。It is a block diagram for demonstrating the automatic drive of the deformation | transformation mechanism part which concerns on this invention.

以下、本発明の実施形態に係る熱発電携帯機器および熱発電携帯機器の発電制御方法について添付図面を参照しながら説明する。   Hereinafter, a thermoelectric power generation portable device and a power generation control method of the thermoelectric generation portable device according to an embodiment of the present invention will be described with reference to the accompanying drawings.

(第一の実施形態)
図1、4〜10を用いて、第一の実施形態について説明する。
図1(a)、(b)は本発明に係る第一の実施形態を示す熱発電携帯機器の断面図である。熱発電携帯機器1100は、例えば人体の腕に装着される腕時計であって、図1に示すように、筐体101と、枠体102と、カバーガラス103と、裏蓋104と、保持部材105と、文字盤106と、ムーブメント107と、基板108と、熱発電部材109と、接着層110と、導熱部材111と、導熱接合層112と、弾性部材113より構成されている。実際には文字盤106の上には指針部があるが、本図にては省略されている。
(First embodiment)
The first embodiment will be described with reference to FIGS.
1 (a) and 1 (b) are cross-sectional views of a thermoelectric portable device showing a first embodiment according to the present invention. The thermoelectric portable device 1100 is a wristwatch that is worn on, for example, an arm of a human body. As shown in FIG. 1, as shown in FIG. 1, a housing 101, a frame body 102, a cover glass 103, a back cover 104, and a holding member 105. The dial 106, the movement 107, the substrate 108, the thermoelectric generator 109, the adhesive layer 110, the heat conducting member 111, the heat conducting joining layer 112, and the elastic member 113. Actually, there is a pointer portion on the dial 106, but it is omitted in this figure.

この弾性部材113は接着層110を介在して、熱発電部材109と一体接続されている。さらに、弾性部材113は、例えば金属性のばね材、ゴム材等の弾性体からなっている。
筐体101は、例えば金属などにより筒状に形成され、一方の開口端はカバーガラス103により閉塞され、他方の開口端には筒状の枠体102の一方の開口端が接続されている。
The elastic member 113 is integrally connected to the thermoelectric generation member 109 with the adhesive layer 110 interposed. Furthermore, the elastic member 113 is made of an elastic body such as a metallic spring material or rubber material.
The casing 101 is formed in a cylindrical shape by, for example, metal, etc., one opening end is closed by a cover glass 103, and one opening end of the cylindrical frame body 102 is connected to the other opening end.

枠体102は、例えば合成樹脂などにより筒状に形成され、他方の開口端は裏蓋104により閉塞されている。
保持部材105は、例えばアルミニウム、銅、真鍮等の金属により形成され、筐体101および枠体102の内部に収容されている。
The frame body 102 is formed in a cylindrical shape with, for example, a synthetic resin, and the other opening end is closed with a back cover 104.
The holding member 105 is made of, for example, a metal such as aluminum, copper, or brass, and is accommodated in the housing 101 and the frame body 102.

ムーブメント107は、例えば、文字盤106の裏面側に配置されて保持部材105により保持されている。
ムーブメント107は、例えば図4に示すように、制御部401と、針駆動部402と、昇圧部403と、蓄電部404とを備えて構成されている。
For example, the movement 107 is disposed on the back side of the dial 106 and is held by the holding member 105.
For example, as shown in FIG. 4, the movement 107 includes a control unit 401, a needle driving unit 402, a boosting unit 403, and a power storage unit 404.

制御部401は、例えば蓄電部404から供給される電力により作動する発振回路および分周回路およびモータ駆動パルス出力回路などを備え、分周回路から出力される計時の基準となる信号に応じて、針駆動部402を駆動するための駆動パルスをモータ駆動パルス出力回路から出力する。
針駆動部402は、例えばステッピングモータなどを備え、制御部401から出力される駆動パルスに応じて指針部405を回転駆動する。
The control unit 401 includes, for example, an oscillation circuit, a frequency dividing circuit, a motor drive pulse output circuit, and the like that are operated by electric power supplied from the power storage unit 404, and according to a signal that is a reference for timing output from the frequency dividing circuit, A drive pulse for driving the needle drive unit 402 is output from the motor drive pulse output circuit.
The needle drive unit 402 includes, for example, a stepping motor and the like, and rotationally drives the pointer unit 405 according to the drive pulse output from the control unit 401.

昇圧部403は、例えば発振回路およびチャージポンプ回路などを備え、熱発電部材109に接続され、熱発電部材109から出力される発電電圧を昇圧して昇圧電圧を出力する。蓄電部404は、例えば2次電池やコンデンサなどを備え、昇圧部403に接続され、昇圧部403から出力される電力を蓄電する。   The boosting unit 403 includes, for example, an oscillation circuit and a charge pump circuit, and is connected to the thermoelectric generator member 109 to boost the generated voltage output from the thermoelectric generator member 109 and output the boosted voltage. The power storage unit 404 includes, for example, a secondary battery, a capacitor, and the like, is connected to the booster 403, and stores the power output from the booster 403.

基板108は、例えば保持部材105により保持されている。
熱発電部材109は、例えばペルチェ素子や熱電対などからなり、保持部材105と導熱部材111とによって挟み込まれるようにして保持されている。
導熱部材111は、例えば銅などにより板状に形成され、裏蓋104の内面側に配置されている。
The substrate 108 is held by a holding member 105, for example.
The thermoelectric generator 109 is made of, for example, a Peltier element or a thermocouple, and is held so as to be sandwiched between the holding member 105 and the heat conducting member 111.
The heat conducting member 111 is formed in a plate shape from, for example, copper, and is disposed on the inner surface side of the back cover 104.

弾性部材113は導熱部材111から保持部材105の伝熱経路の熱抵抗を変更する可変抵抗部である。筐体101には筐体空隙部114が形成され、この筐体空隙部114と対応した枠体ピン部115が枠体102に形成されており、この筐体空隙部114と枠体ピン部114によって、弾性体変形機構部116が形成されている。この筐体101と枠体102の接続部に設けられた弾性体変形機構部116によって、筐体101を上下に移動させる事によって、弾性部材113は弾性変形する。弾性体変形機構部116は、可変抵抗部である弾性体変形機構部116を移動させる可変抵抗部移動機構である。   The elastic member 113 is a variable resistance portion that changes the thermal resistance of the heat transfer path from the heat conducting member 111 to the holding member 105. A casing gap 114 is formed in the casing 101, and a frame pin portion 115 corresponding to the casing gap 114 is formed in the frame 102. The casing gap 114 and the frame pin 114 As a result, the elastic body deformation mechanism 116 is formed. The elastic member 113 is elastically deformed by moving the case 101 up and down by the elastic body deformation mechanism 116 provided at the connection part of the case 101 and the frame 102. The elastic body deformation mechanism part 116 is a variable resistance part moving mechanism that moves the elastic body deformation mechanism part 116 that is a variable resistance part.

図1(a)、(b)において、図1(a)は、筐体101を下側に移動させる前の状態を示す図であって、弾性部材113が弾性変形する前の状態を示す図である。この時、弾性部材113の保持部材105との接触面積は非常に小さい状態になっている。それゆえ、生体から発生し、導熱部材111から伝わる熱流は、保持部材105に伝達しにくい状態、すなわち熱抵抗が高い状態となっている。それに対して、図1(b)は、筐体101を下側に移動させた後の状態を示す図であって、弾性部材113が圧縮によって弾性変形した状態を示す図である。この時、弾性部材113の保持部材105との接触面積は、大きな状態になっている。それゆえ、生体から発生する熱流は、保持部材105に伝達しやすい状態、すなわち熱抵抗が低い状態となっている。 図5は本発明に係る熱発電携帯機器1100における熱抵抗モデルを説明する図であって、温度Tcの熱源である生体より発生する熱流伝達に対する熱抵抗は、裏蓋104と導熱部材109による熱抵抗R5と、熱発電部材109による熱抵抗R4と、枠体102と内部雰囲気による熱抵抗R3と、弾性変形する弾性部材113が存在する保持部材105と熱発電部材109の経路間の熱抵抗Rcxと、筐体101と保持部材105による熱抵抗R2と放熱によるR1によって構成されている。弾性部材113の保持部材105との接触面積を変化させると、この熱抵抗Rcxを変化させる事になる。   1A and 1B, FIG. 1A is a diagram showing a state before the casing 101 is moved downward, and shows a state before the elastic member 113 is elastically deformed. It is. At this time, the contact area between the elastic member 113 and the holding member 105 is very small. Therefore, the heat flow generated from the living body and transmitted from the heat conducting member 111 is in a state where it is difficult to transmit to the holding member 105, that is, a state in which the thermal resistance is high. On the other hand, FIG. 1B is a diagram illustrating a state after the housing 101 is moved downward, and is a diagram illustrating a state in which the elastic member 113 is elastically deformed by compression. At this time, the contact area of the elastic member 113 with the holding member 105 is large. Therefore, the heat flow generated from the living body is in a state where it is easily transmitted to the holding member 105, that is, in a state where the thermal resistance is low. FIG. 5 is a diagram for explaining a thermal resistance model in the portable thermoelectric generator 1100 according to the present invention. The thermal resistance to heat flow generated from a living body that is a heat source of the temperature Tc is the heat resistance by the back cover 104 and the heat conducting member 109. A resistance R5, a thermal resistance R4 due to the thermoelectric generator 109, a thermal resistance R3 due to the frame 102 and the internal atmosphere, and a thermal resistance Rcx between paths of the holding member 105 and the thermoelectric generator 109 where the elastic member 113 is elastically deformed. And a thermal resistance R2 by the casing 101 and the holding member 105 and R1 by heat dissipation. When the contact area between the elastic member 113 and the holding member 105 is changed, the thermal resistance Rcx is changed.

そして、熱発電部材109は、熱源である生体の温度(熱源温度Tc)と熱発電携帯機器1100の外部の雰囲気などの放熱先の温度(雰囲気温度Ta)との温度差に起因して熱発電部材109の熱源側位置の温度Tp2と放熱先側位置の温度Tp1との間に生じる温度差ΔTp(=Tp2−Tp1)の大きさに応じた発電電圧を出力する。   The thermoelectric generation member 109 generates thermoelectric power due to a temperature difference between the temperature of the living body (heat source temperature Tc) as a heat source and the temperature of the heat radiation destination (atmosphere temperature Ta) such as the atmosphere outside the thermoelectric generator portable device 1100. A power generation voltage corresponding to the magnitude of a temperature difference ΔTp (= Tp2−Tp1) generated between the temperature Tp2 at the heat source side position of the member 109 and the temperature Tp1 at the heat radiation destination side position is output.

なお、熱発電携帯機器1100は、例えば、各熱抵抗R1,R5および弾性変形後の熱抵抗を示す熱抵抗Rcxが、熱発電部材109の熱抵抗R4と同等あるいは熱発電部材109の熱抵抗R4よりも小さくなるように構成されている。また、熱抵抗R3は、例えば、各熱抵抗R1,R2,R4,R5、Rcxよりも大きくなるように構成されている。   In the thermoelectric generator 1100, for example, the thermal resistances R1, R5 and the thermal resistance Rcx indicating the thermal resistance after elastic deformation are equal to the thermal resistance R4 of the thermoelectric generation member 109 or the thermal resistance R4 of the thermoelectric generation member 109. It is comprised so that it may become smaller. Further, the thermal resistance R3 is configured to be larger than, for example, the thermal resistances R1, R2, R4, R5, and Rcx.

本実施の形態による熱発電携帯機器1100は上記構成を備えており、次に、この熱発電携帯機器1100の動作について説明する。
先ず、例えば図6に示すように、熱発電携帯機器1100外部の雰囲気の温度(雰囲気温度)Taに比べて、より高い温度(熱源温度)Tcを有する熱源である生体に対して、熱発電携帯機器1100が生体に装着されて裏蓋104が生体に接触すると、裏蓋104および導熱部材111からなる領域を経由して、熱源から熱発電部材109の熱源側位置に熱流が伝達される。
The thermoelectric power generation portable device 1100 according to the present embodiment has the above-described configuration. Next, the operation of the thermoelectric power generation portable device 1100 will be described.
First, as shown in FIG. 6, for example, a portable thermoelectric generator is used for a living body that is a heat source having a higher temperature (heat source temperature) Tc than the temperature (atmosphere temperature) Ta of the atmosphere outside the portable thermoelectric generator device 1100. When the device 1100 is mounted on a living body and the back cover 104 comes into contact with the living body, a heat flow is transmitted from the heat source to the heat source side position of the thermoelectric generation member 109 via the region including the back cover 104 and the heat conducting member 111.

この熱的過渡状態において、熱発電部材109の熱源側位置の温度Tp2が上昇し、例えば図7に示すように、熱発電部材109の熱源側位置の温度Tp2と放熱先側位置の温度Tp1との間に生じる温度差ΔTp(=Tp2−Tp1)および熱発電部材109の発電電圧が極大値に向かい増大する。   In this thermal transient state, the temperature Tp2 at the heat source side position of the thermoelectric generation member 109 rises. For example, as shown in FIG. 7, the temperature Tp2 at the heat source side position of the thermoelectric generation member 109 and the temperature Tp1 at the heat radiation destination side position The temperature difference ΔTp (= Tp2−Tp1) generated during the period and the power generation voltage of the thermoelectric generation member 109 increase toward the maximum value.

なお、温度差ΔTpの最大値は、例えば、熱源から放熱先までの間の伝熱経路全体の熱抵抗Rと、熱発電部材109の熱抵抗R4と、枠体102および枠体102内部の雰囲気からなる領域(つまり、図5に示す熱抵抗モデルにおいて熱発電部材109に対して並列接続の関係を有する領域)の熱抵抗R3と、雰囲気温度Taおよび熱源温度Tcとにより、下記[数1]に示すように記述される。   Note that the maximum value of the temperature difference ΔTp is, for example, the thermal resistance R of the entire heat transfer path from the heat source to the heat radiating destination, the thermal resistance R4 of the thermoelectric generator 109, and the atmosphere in the frame 102 and the frame 102. 5 (ie, a region having a parallel connection relationship with the thermoelectric generator 109 in the thermal resistance model shown in FIG. 5), the ambient temperature Ta, and the heat source temperature Tc, the following [Equation 1]: Is described as follows.

Figure 2013110867
Figure 2013110867

そして、熱発電部材109および枠体102および枠体102内部の雰囲気からなる領域を経由して、熱発電部材109の放熱先側位置、さらに放熱先に向かい熱流が伝達されることに伴い、温度差ΔTpが極大値から低下傾向に変化し、熱発電携帯機器1100全体の温度が飽和する熱的平衡状態、いわば、熱源と放熱先との間の所定の温度差(Tc−Ta)が伝熱経路の全体に亘って配分されることで局所的な温度勾配が小さくなる熱的平衡状態が形成される。   As the heat flow is transmitted toward the heat radiation destination side position of the thermoelectric generation member 109 and further toward the heat radiation destination through the thermoelectric generation member 109, the frame 102, and the region of the atmosphere inside the frame body 102, the temperature is increased. The difference ΔTp changes from a maximum value to a decreasing tendency, and the thermal equilibrium state where the temperature of the portable thermoelectric generator 1100 as a whole is saturated, in other words, a predetermined temperature difference (Tc−Ta) between the heat source and the heat radiation destination is transferred. A thermal equilibrium state is formed in which the local temperature gradient is reduced by being distributed over the entire path.

このような熱発電携帯機器1100全体の温度が飽和する熱的平衡状態が維持されると、温度差ΔTpおよび発電電圧が低下した状態が維持されることになるが、熱源と放熱先との間における伝熱経路の少なくとも一部の熱抵抗(例えば、熱抵抗Rcx)が弾性部材113の変形によって変更されると、再度、熱的過渡状態が生じ、温度差ΔTpおよび発電電圧が増大する。   When such a thermal equilibrium state where the temperature of the entire thermoelectric portable device 1100 is saturated is maintained, a state in which the temperature difference ΔTp and the power generation voltage are reduced is maintained. When at least a part of the thermal resistance (for example, thermal resistance Rcx) in the heat transfer path is changed by deformation of the elastic member 113, a thermal transient state occurs again, and the temperature difference ΔTp and the generated voltage increase.

例えば、先ず、熱発電携帯機器1100が熱源である生体に装着された初期状態において、図1(b)に示すように弾性体変形機構部116によって、筐体101を下に移動させる事により、弾性部材113を変形させ、熱抵抗Rcxが小さな値のRcaになっていると、図8(Aa)に示すように、裏蓋104および導熱部材111からなる領域を経由して熱源から熱発電部材109の熱源側位置に熱流が伝達されて熱源側位置の温度Tp2が上昇する。一方、熱発電部材109の放熱先側位置は、変形した弾性部材113、放熱部、筐体101および保持部材105からなる領域とを介して熱発電携帯機器1100外部の雰囲気により冷却され、放熱先側位置の温度Tp1の上昇が抑制される。これにより、例えば図9に示す時刻t1に到る期間のように、熱発電部材109の熱源側位置の温度Tp2と放熱先側位置の温度Tp1との間に生じる温度差ΔTp(=Tp2−Tp1)および熱発電部材109の発電電圧は極大値に向かい増大する。   For example, first, in the initial state where the portable thermoelectric generator 1100 is attached to a living body as a heat source, the elastic body deforming mechanism 116 moves the casing 101 downward as shown in FIG. When the elastic member 113 is deformed and the thermal resistance Rcx is a small value Rca, as shown in FIG. 8 (Aa), the thermoelectric power generation member is passed from the heat source via the region including the back cover 104 and the heat conducting member 111. The heat flow is transmitted to the heat source side position 109, and the temperature Tp2 at the heat source side position rises. On the other hand, the heat radiation side position of the thermoelectric generation member 109 is cooled by the atmosphere outside the thermoelectric portable device 1100 via the deformed elastic member 113, the heat radiation part, the housing 101, and the holding member 105, and the heat radiation destination side position. An increase in the temperature Tp1 at the side position is suppressed. As a result, for example, during the period up to time t1 shown in FIG. 9, the temperature difference ΔTp (= Tp2−Tp1) generated between the temperature Tp2 at the heat source side position of the thermoelectric generator 109 and the temperature Tp1 at the heat radiation side position. ) And the power generation voltage of the thermoelectric generation member 109 increases toward the maximum value.

次に、熱発電携帯機器1100全体の温度が飽和するように熱的平衡状態に向かい変化することに伴い、いわば、熱源と放熱先との間の所定の温度差(Tc−Ta)が伝熱経路の全体に亘って配分されることで局所的な温度勾配が小さくなり、例えば図9に示す時刻t1から時刻t2に到る期間のように、熱発電部材109の熱源側位置の温度Tp2と放熱先側位置の温度Tp1との間に生じる温度差ΔTp(=Tp2−Tp1)および熱発電部材109の発電電圧が低下傾向に変化する。   Next, as the temperature of the entire thermoelectric portable device 1100 changes toward a thermal equilibrium state so as to saturate, so to speak, a predetermined temperature difference (Tc−Ta) between the heat source and the heat radiation destination is a heat transfer. The local temperature gradient is reduced by being distributed over the entire path. For example, during the period from time t1 to time t2 illustrated in FIG. The temperature difference ΔTp (= Tp2−Tp1) generated between the heat radiation destination side position and the temperature Tp1 and the power generation voltage of the thermoelectric generation member 109 change in a decreasing tendency.

次に、図1(a)に示すように弾性体変形機構部116によって、筐体101を上に移動させると、変形した弾性部材113が元の形状に復帰する。すると熱抵抗Rcxが大きな値のRcbになる。すると、図8(b)に示すように、裏蓋104および導熱部材111からなる領域と熱発電部材109または枠体102および枠体102内部の雰囲気からなる領域とを経由して熱源から熱発電部材109の放熱先側位置に伝達された熱流は、形状復帰した弾性部材113の部分で、ほぼせき止められる。   Next, when the casing 101 is moved upward by the elastic body deformation mechanism 116 as shown in FIG. 1A, the deformed elastic member 113 returns to its original shape. Then, the thermal resistance Rcx becomes a large value Rcb. Then, as shown in FIG. 8B, thermoelectric power generation from the heat source via the region composed of the back cover 104 and the heat conducting member 111 and the region composed of the thermoelectric generation member 109 or the frame 102 and the atmosphere inside the frame 102. The heat flow transmitted to the heat radiation destination side position of the member 109 is substantially blocked by the elastic member 113 whose shape has been restored.

これにより、例えば図9に示す時刻t2から時刻t3に到る期間のように、熱発電部材109の放熱先側位置の温度Tp1は熱源側位置の温度Tp2に等しくなるように上昇し、温度差ΔTpおよび熱発電部材109の発電電圧がゼロに向かい低下傾向に変化する。一方、筐体101および保持部材105からなる領域は、熱発電携帯機器1100外部の雰囲気により冷却され易くなり、筐体101および保持部材105からなる領域の温度Tbが低下する。   Thus, for example, during a period from time t2 to time t3 shown in FIG. 9, the temperature Tp1 at the heat radiation destination side position of the thermoelectric generator 109 rises to be equal to the temperature Tp2 at the heat source side position, and the temperature difference ΔTp and the power generation voltage of the thermoelectric generation member 109 change toward zero and change downward. On the other hand, the region composed of the casing 101 and the holding member 105 is easily cooled by the atmosphere outside the thermoelectric power generation portable device 1100, and the temperature Tb of the region composed of the casing 101 and the holding member 105 decreases.

つまり、変形した弾性部材113が元の形状に復帰する事で、熱源と放熱先との間の伝熱経路での温度分布が変更されて、熱発電部材109の放熱先側位置の温度Tp1と筐体101および保持部材105からなる領域の温度Tbとの間の温度差が増大する。   That is, when the deformed elastic member 113 returns to its original shape, the temperature distribution in the heat transfer path between the heat source and the heat radiation destination is changed, and the temperature Tp1 at the heat radiation destination side position of the thermoelectric generation member 109 is changed. The temperature difference between the temperature Tb of the region composed of the housing 101 and the holding member 105 increases.

これにより、いわば、熱源と放熱先との間の所定の温度差(Tc−Ta)が伝熱経路の全体に亘って配分されたような熱的平衡状態が変更されて、この所定の温度差(Tc−Ta)が伝熱経路の一部(つまり、筐体101および保持部材105からなる領域)に局在的に集中するような熱的平衡状態が形成される。   This changes the thermal equilibrium state in which a predetermined temperature difference (Tc−Ta) between the heat source and the heat radiation destination is distributed over the entire heat transfer path, so that this predetermined temperature difference is changed. A thermal equilibrium state is formed such that (Tc-Ta) is locally concentrated in a part of the heat transfer path (that is, a region including the casing 101 and the holding member 105).

再度、図1(b)に示すように弾性体変形機構部116によって、筐体101を下に移動させると、弾性部材113が変形し、熱抵抗Rcxが小さな値のRcaになる。
すると、図8(c)に示すように、熱発電部材109の放熱先側位置は、放熱部と筐体101、変形した弾性部材113および保持部材105からなる領域とを介して熱発電携帯機器1100外部の雰囲気により冷却され、放熱先側位置の温度Tp1が低下する。
When the casing 101 is moved downward by the elastic body deformation mechanism 116 again as shown in FIG. 1B, the elastic member 113 is deformed and the thermal resistance Rcx becomes a small value Rca.
Then, as shown in FIG. 8C, the position of the heat generating side of the thermoelectric generation member 109 is positioned through the heat dissipation portion and the region including the housing 101, the deformed elastic member 113, and the holding member 105. 1100 The air is cooled by the atmosphere outside, and the temperature Tp1 at the heat radiation destination side is lowered.

これにより、例えば図9に示す時刻t3から時刻t4に到る期間のように、熱発電部材109の放熱先側位置の温度Tp1が低下する熱的過渡状態において、熱発電部材109の熱源側位置の温度Tp2と放熱先側位置の温度Tp1との間に生じる温度差ΔTp(=Tp2−Tp1)および熱発電部材109の発電電圧は極大値に向かい増大する。   Thus, for example, in the thermal transient state in which the temperature Tp1 of the heat radiation destination side position of the thermoelectric generation member 109 decreases during the period from time t3 to time t4 shown in FIG. 9, the heat source side position of the thermoelectric generation member 109 The difference in temperature ΔTp (= Tp2−Tp1) generated between the temperature Tp2 and the temperature Tp1 at the heat radiation destination side position and the power generation voltage of the thermoelectric generator 109 increase toward the maximum value.

そして、例えば図9に示す時刻t4以降の期間のように、温度差ΔTp(=Tp2−Tp1)および熱発電部材109の発電電圧が極大値に到達した以後においては、熱発電携帯機器1100全体の温度が飽和するように熱的平衡状態に向かい変化することに伴い、いわば、熱源と放熱先との間の所定の温度差(Tc−Ta)が伝熱経路の全体に亘って配分されることで局所的な温度勾配が小さくなり、熱発電部材109の熱源側位置の温度Tp2と放熱先側位置の温度Tp1との間に生じる温度差ΔTp(=Tp2−Tp1)および熱発電部材109の発電電圧が低下傾向に変化する。   And, for example, after the temperature difference ΔTp (= Tp2−Tp1) and the power generation voltage of the thermoelectric generation member 109 reach the maximum value as in the period after time t4 shown in FIG. As the temperature changes toward thermal equilibrium so that it saturates, the so-called predetermined temperature difference (Tc-Ta) between the heat source and the heat radiation destination is distributed over the entire heat transfer path. Thus, the local temperature gradient becomes smaller, the temperature difference ΔTp (= Tp2−Tp1) generated between the temperature Tp2 at the heat source side position of the thermoelectric generator member 109 and the temperature Tp1 at the heat radiation destination side position, and the power generation of the thermoelectric generator member 109. The voltage changes to a downward trend.

上述したように、本実施の形態による熱発電携帯機器1100によれば、弾性体変形機構部116によって筐体101を上下運動に応じて、弾性部材113の弾性変形による熱抵抗Rcxが変更され、その結果、熱源と放熱先との間の所定の温度差(Tc−Ta)に対して、局在的に熱発電部材109の熱源側位置と放熱先側位置との間で温度差ΔTp(=Tp2−Tp1)を増大させることができ、発電電圧を増大させて所望の発電量を確保することができると共に、発電効率の低下を抑制することができる。   As described above, according to the thermoelectric portable device 1100 according to the present embodiment, the thermal resistance Rcx due to the elastic deformation of the elastic member 113 is changed according to the vertical movement of the casing 101 by the elastic body deformation mechanism 116. As a result, with respect to a predetermined temperature difference (Tc−Ta) between the heat source and the heat radiation destination, a temperature difference ΔTp (== between the heat source side position and the heat radiation destination side position of the thermoelectric generation member 109 locally. Tp2−Tp1) can be increased, and the power generation voltage can be increased to ensure a desired power generation amount, and a decrease in power generation efficiency can be suppressed.

さらに、弾性体変形機構部116と弾性部材113を備えるだけで、機器構成が複雑化することを抑制しつつ、伝熱経路の少なくとも一部の熱抵抗を容易に変更することができる。   Furthermore, it is possible to easily change the thermal resistance of at least a part of the heat transfer path while only suppressing the deformation of the device configuration only by including the elastic body deformation mechanism 116 and the elastic member 113.

なお、上述した実施の形態においては、変形前の弾性部材113の断面形状が半円状であるが、形状に関して、これに限定されない事は言うまでも無い。さらに変形前の状態、すなわち、弾性体変形機構部116を下側移動させる前の状態において、弾性部材113は保持部材105と極めて小さな接触面積で接しているが、完全に空隙を形成している状態でもなんら問題ない。この弾性部材113の材質は願わくば、弾性変形率の大きなゴムなどが好ましいが、金属性の弾性部材や、樹脂性の弾性部材であってもよい。   In the above-described embodiment, the cross-sectional shape of the elastic member 113 before deformation is a semicircular shape, but it goes without saying that the shape is not limited to this. Further, the elastic member 113 is in contact with the holding member 105 with a very small contact area in a state before the deformation, that is, a state before the elastic body deformation mechanism portion 116 is moved downward, but completely forms a gap. There is no problem even in the state. The elastic member 113 is preferably made of rubber having a large elastic deformation rate, but may be a metallic elastic member or a resinous elastic member.

なお、弾性体を保持部材105と熱発電部材109を、弾性部材113を用いず、弾性体変形機構部116を用いて接触させる方法もあるが、この場合は直接、熱発電部材109に保持部材105が接触させるので、熱発電部材109が破損したり、劣化する危険性がある。それにたいして、本発明の如く弾性変形しやすい弾性体を用いると、弾性体が緩衝材の役割をはたし過度の接触圧力が緩和されるので、熱発電部材109の破損や劣化を防ぐことができる。それゆえ、本発明にかかる弾性体のヤング率は、少なくとも保持部材105よりも小さい材料である事が望ましい。   Note that there is a method in which the elastic body is brought into contact with the holding member 105 and the thermoelectric generator 109 using the elastic body deformation mechanism 116 without using the elastic member 113. In this case, the holding member 105 is directly connected to the thermoelectric generator 109. Since 105 contacts, there exists a danger that the thermoelectric generation member 109 may be damaged or deteriorated. On the other hand, when an elastic body that is easily elastically deformed as in the present invention is used, the elastic body serves as a cushioning material and the excessive contact pressure is relieved, so that the thermoelectric power generation member 109 can be prevented from being damaged or deteriorated. it can. Therefore, it is desirable that the elastic body according to the present invention has a material whose Young's modulus is at least smaller than that of the holding member 105.

本発明に係る熱発電携帯機器1100の弾性変形を促す筐体101の上下駆動は、手動操作機構部を設けても良い。
なお、弾性体変形機構部116(以下、変形機構部と呼ぶ)を自動的に駆動する変形機構駆動部を備えてもよい。以下、変形機構部の自動駆動に関して説明する。
The vertical drive of the casing 101 that promotes elastic deformation of the thermoelectric generator 1100 according to the present invention may be provided with a manual operation mechanism.
In addition, you may provide the deformation mechanism drive part which drives the elastic body deformation mechanism part 116 (henceforth a deformation mechanism part) automatically. Hereinafter, automatic driving of the deformation mechanism unit will be described.

図10は、本発明に係る変形機構部の自動駆動を説明するためのブロック図である。
本図において、熱発電部材109の発電電圧を検出する電圧センサ1002と、蓄電部404の蓄電量を検出する蓄電量センサ1003及び変形機構駆動部1001とを備えている。この変形機構駆動部1001は、例えばムーブメント107に備えられ、変形機構部1004を駆動するモータなどを備え、制御部401から出力される計時の基準となる信号と、電圧センサ1002から出力される発電電圧の検出結果の信号と、蓄電量センサ1003から出力される蓄電量の検出結果の信号とのうち、少なくとも何れか1つに応じて、変形機構部1004を駆動するタイミングおよび速度などを制御しつつ変形機構部1004を自動的に駆動する。この変形機構部1004に手動により操作可能な手動操作部材を備えてもよい。
FIG. 10 is a block diagram for explaining automatic driving of the deformation mechanism unit according to the present invention.
In this figure, a voltage sensor 1002 for detecting the power generation voltage of the thermoelectric generation member 109, a power storage amount sensor 1003 for detecting the power storage amount of the power storage unit 404, and a deformation mechanism driving unit 1001 are provided. The deformation mechanism drive unit 1001 is provided in the movement 107, for example, and includes a motor or the like that drives the deformation mechanism unit 1004. The deformation mechanism drive unit 1001 outputs a signal that serves as a time reference output from the control unit 401 and a power generation output from the voltage sensor 1002. The timing and speed at which the deformation mechanism unit 1004 is driven are controlled according to at least one of the voltage detection result signal and the storage amount detection result signal output from the storage amount sensor 1003. However, the deformation mechanism unit 1004 is automatically driven. The deformation mechanism 1004 may be provided with a manual operation member that can be manually operated.

以下に、本発明に係る変形機構部1004の自動駆動のための発電制御方法について、図1記載の本発明に係る熱発電携帯機器1100を用いて説明する。
例えば、変形機構駆動部1001は、制御部401から出力される計時の基準となる信号に基づき、予め設定された時間に応じて、あるいは指針部405の秒針と分針と時針とのうち少なくとも何れか1つに連動して、変形機構部1004を駆動し、弾性部材113が存在する保持部材105と熱発電部材109の経路の熱抵抗Rcxを変更し、図1(a)(b)に示すように、熱抵抗Rcxが、熱抵抗Rcbと熱抵抗Rcaとに切り替えられる。ここで、熱抵抗Rcxを低減させる変形機構部1004の駆動を正駆動、熱抵抗Rcxを増大させる変形機構部1004の駆動を逆駆動として、以下説明をつづける。
Hereinafter, a power generation control method for automatically driving the deformation mechanism unit 1004 according to the present invention will be described using the thermoelectric power generation portable device 1100 according to the present invention shown in FIG.
For example, the deformation mechanism drive unit 1001 is based on a signal that is a reference for timing output from the control unit 401, according to a preset time, or at least one of the second hand, the minute hand, and the hour hand of the pointer unit 405. In conjunction with one, the deformation mechanism unit 1004 is driven to change the thermal resistance Rcx of the path between the holding member 105 where the elastic member 113 exists and the thermoelectric generation member 109, as shown in FIGS. In addition, the thermal resistance Rcx is switched between the thermal resistance Rcb and the thermal resistance Rca. Here, the driving of the deformation mechanism unit 1004 for reducing the thermal resistance Rcx is assumed to be forward driving, and the driving of the deformation mechanism unit 1004 for increasing the thermal resistance Rcx is assumed to be reverse driving.

また、例えば、変形機構駆動部1001は、電圧センサ1002から出力される発電電圧の検出結果の信号に基づき、発電電圧が所定の閾値(例えば、昇圧部403の昇圧動作が可能な下限電圧や熱発電携帯機器1100の作動に要する下限電圧など)以上である場合には、図8(a)に示すように、熱抵抗R2が小さな値の熱抵抗Rcaとなるように変形機構部1004を正駆動させる。そして、発電電圧が所定の閾値未満になった以後においては、一時的に(例えば、図9に示す時刻t2から時刻t3に亘る所定期間などにおいて)、図8(b)に示すように変形機構部1004を逆駆動して、熱抵抗Rcxを一時的に大きな値の熱抵抗Rcbに増大させる。   Further, for example, the deformation mechanism driving unit 1001 determines that the generated voltage is a predetermined threshold (for example, a lower limit voltage or a heat that allows the boosting unit 403 to perform a boosting operation) based on a detection result signal of the generated voltage output from the voltage sensor 1002. 8), the deformation mechanism 1004 is positively driven so that the thermal resistance R2 becomes a small thermal resistance Rca, as shown in FIG. 8A. Let Then, after the generated voltage becomes less than the predetermined threshold, temporarily (for example, in a predetermined period from time t2 to time t3 shown in FIG. 9), the deformation mechanism as shown in FIG. 8B. The unit 1004 is reversely driven to temporarily increase the thermal resistance Rcx to a large thermal resistance Rcb.

そして、例えば所定期間の経過後などにおいて、再度、図8(c)に示すように、変形機構部1004を再度、正駆動して、熱抵抗R2を小さな値の弾性変形後熱抵抗R21に設定する。
また、例えば、変形機構駆動部1001は、蓄電量センサ1003から出力される蓄電量の検出結果の信号に基づき、蓄電量が所定の閾値(例えば、熱発電携帯機器1100の作動の要する下限電力など)以上である場合には、図8(a)に示すように熱流が変形機構部1004を経由するように変形機構部1004を正駆動して、熱抵抗Rcxを小さな値の熱抵抗R2caに設定する。
Then, for example, after the elapse of a predetermined period, as shown in FIG. 8C, the deformation mechanism unit 1004 is again driven positively, and the thermal resistance R2 is set to a small value after the elastic deformation R21. To do.
In addition, for example, the deformation mechanism driving unit 1001 determines that the charged amount is a predetermined threshold (for example, the lower limit power required for the operation of the thermoelectric portable device 1100, etc.) based on the signal of the charged amount detection result output from the charged amount sensor 1003. In the case of the above, as shown in FIG. 8A, the deformation mechanism unit 1004 is positively driven so that the heat flow passes through the deformation mechanism unit 1004, and the thermal resistance Rcx is set to a small value of the thermal resistance R2ca. To do.

そして、蓄電量が所定の閾値未満になった以後においては、一時的に(例えば、図9に示す時刻t2から時刻t3に亘る所定期間などにおいて)、図8(b)に示すように変形機構部1004を逆駆動して、熱抵抗Rcxを一時的に大きな値の熱抵抗Rcbに増大させる。
そして、例えば所定期間の経過後などにおいて、再度、図8(c)に示すように熱流が変形機構部1004を経由するように変形機構部1004を再度、正駆動して、熱抵抗R2を小さな値の弾性変形後熱抵抗R2aに設定する。
Then, after the charged amount becomes less than the predetermined threshold value, temporarily (for example, in a predetermined period from time t2 to time t3 shown in FIG. 9), the deformation mechanism as shown in FIG. 8B. The unit 1004 is reversely driven to temporarily increase the thermal resistance Rcx to a large thermal resistance Rcb.
Then, for example, after the elapse of a predetermined period, the deformation mechanism unit 1004 is again positively driven so that the heat flow passes through the deformation mechanism unit 1004 as shown in FIG. The value is set to the thermal resistance R2a after elastic deformation.

この構成によれば、例えば所定の時間や時刻に応じて、あるいは、例えば熱発電部材109の発電電圧の低下に応じて、あるいは、例えば蓄電部404の蓄電量の低下に応じて、自動的に伝熱経路の少なくとも一部(つまり、保持部材105と熱発電部材109の伝熱経路からなる領域)の熱抵抗Rcxを変更することにより、所望の発電電圧および発電量を容易に確保することができると共に、発電効率の低下を抑制することができる。   According to this configuration, for example, automatically according to a predetermined time or time, for example, according to a decrease in the power generation voltage of the thermoelectric generation member 109, or according to a decrease in the amount of power stored in the power storage unit 404, for example. By changing the thermal resistance Rcx of at least a part of the heat transfer path (that is, the region consisting of the heat transfer path of the holding member 105 and the thermoelectric generator 109), it is possible to easily secure a desired power generation voltage and power generation amount. In addition, it is possible to suppress a decrease in power generation efficiency.

さらに、変形機構駆動部1001は、例えば針駆動部402の動力により変形機構部1004を回転駆動する駆動機構であってもよく、例えば変形機構部1004に対する針駆動部402の動力の伝達を断接する機構と変速機構となどを備えて構成されてもよい。
また、この第3変形例において、少なくとも電圧センサ1002または蓄電量センサ1003は省略されてもよい。この場合には、少なくとも制御部401から出力される計時の基準となる信号に基づき変形機構部1004の駆動が制御される。
Furthermore, the deformation mechanism drive unit 1001 may be a drive mechanism that rotationally drives the deformation mechanism unit 1004 with the power of the needle drive unit 402, for example, and connects / disconnects transmission of power from the needle drive unit 402 to the deformation mechanism unit 1004. A mechanism, a transmission mechanism, and the like may be provided.
In the third modification, at least the voltage sensor 1002 or the storage amount sensor 1003 may be omitted. In this case, the driving of the deformation mechanism unit 1004 is controlled based on at least a signal that is a reference for timing output from the control unit 401.

なお、上述した実施の形態においては、熱発電携帯機器1100を指針部405によるアナログ表示の腕時計としたが、これに限定されず、例えば液晶表示などによるデジタル表示の腕時計であってもよい。
また、上述した実施の形態においては、熱発電携帯機器1100を人体に装着される腕時計としたが、これに限定されず、人体や動物に装着される携帯型の電子機器として、例えば、ヘッドフォンや、立体視用の眼鏡や、脈拍と心拍数と呼吸数と血圧と体温となどの生体情報を計測して計測結果を無線送信する電子機器などであってもよい。
In the above-described embodiment, the thermoelectric portable device 1100 is an analog display wristwatch using the pointer unit 405. However, the present invention is not limited to this, and may be a digital display wristwatch such as a liquid crystal display.
In the above-described embodiment, the thermoelectric power generation portable device 1100 is a wristwatch worn on the human body, but is not limited to this, and portable electronic devices worn on the human body or animals include headphones, Also, stereoscopic glasses or electronic devices that measure biological information such as pulse, heart rate, respiratory rate, blood pressure, and body temperature and wirelessly transmit the measurement results may be used.

(第二の実施形態)
図2に基づいて、第二の実施形態について説明する。
図2(a)(b)は、本発明に係る第二の実施形態を示す熱発電携帯機器2100の断面図である。本図記載の熱発電携帯機器2100においては、基板108と板状部材202がコイル状の弾性部材201を介して接続されており、弾性体変形機構部116の上下運動によって、保持部材105と熱発電部材109の離間距離が変化し、弾性部材201が変形すると、板状部材202を介して、保持部材105と熱発電部材109が熱的に接続される。すなわち、図2(a)においては、板状部材202は、保持部材105と熱発電部材109の双方に接触しておらず、熱抵抗Rcxは極めて高い状態が実現される。それに対して、図2(b)においては、弾性体変形機構部116の下側への移動によって、保持部材105と熱発電部材109の離間距離が減少し、その結果、弾性部材201の弾性変形によって、板状部材202は、保持部材105と熱発電部材109の双方に接触し、熱抵抗Rcxが極めて低い状態が実現される。この本発明に係る熱発電携帯機器2100の熱的な動作および効果は、図1(a)(b)記載の熱発電携帯機器1100と全く同じであるので省略する。
(Second embodiment)
A second embodiment will be described based on FIG.
FIGS. 2A and 2B are cross-sectional views of a portable thermoelectric generator 2100 showing a second embodiment according to the present invention. In the thermoelectric power generation portable device 2100 shown in the figure, the substrate 108 and the plate-like member 202 are connected via the coil-like elastic member 201, and the holding member 105 and the heat are moved by the vertical movement of the elastic body deformation mechanism 116. When the separation distance of the power generation member 109 changes and the elastic member 201 is deformed, the holding member 105 and the thermoelectric generation member 109 are thermally connected via the plate-like member 202. That is, in FIG. 2A, the plate-like member 202 is not in contact with both the holding member 105 and the thermoelectric generator 109, and a state in which the thermal resistance Rcx is extremely high is realized. On the other hand, in FIG. 2B, the separation distance between the holding member 105 and the thermoelectric generation member 109 decreases due to the downward movement of the elastic body deformation mechanism portion 116, and as a result, the elastic deformation of the elastic member 201 occurs. Thus, the plate-like member 202 is in contact with both the holding member 105 and the thermoelectric generation member 109, and a state in which the thermal resistance Rcx is extremely low is realized. The thermal operation and effect of the portable thermoelectric generator 2100 according to the present invention are the same as those of the portable thermoelectric generator 1100 shown in FIGS.

本発明に係る熱発電携帯機器2100においては、基板108に弾性部材201が接続されているが、この構造に限定されるものではなく、弾性部材201は保持部材105と接続されていてもよい。さらに本図記載の弾性部材201はスプリング形状をしているが、この形状に限定されるものではない。また、板状部材202の表裏面に板状部材202に弾性ゴム材を貼り付ける事によって、さらに強力な熱発電部材109の劣化防止を行ってもよい。   In the thermoelectric power generation portable device 2100 according to the present invention, the elastic member 201 is connected to the substrate 108, but is not limited to this structure, and the elastic member 201 may be connected to the holding member 105. Furthermore, although the elastic member 201 shown in the figure has a spring shape, the shape is not limited to this. In addition, a more powerful deterioration of the thermoelectric generator 109 may be prevented by attaching an elastic rubber material to the plate member 202 on the front and back surfaces of the plate member 202.

(第三の実施形態)
図3に基づいて、第三の実施形態について説明する。
図3(a)(b)は、本発明に係る第三の実施形態を示す熱発電携帯機器3100の断面図である。本図記載の熱発電携帯機器3100においては、保持部材105と熱発電部材109との離間距離の変化はない。そのかわりに、弾性体回転機構部303が具備されている。すなわち、弾性部材301は回転シャフト302に接続され、この回転シャフト302は枠体102に取り付けられており、この回転シャフト302の回転によって、保持部材105と熱発電部材109の間の熱抵抗Rcxを可変させる事ができる。一定の離間距離の下で、その間の熱抵抗を可変させ低熱抵抗を実現すると共に、熱発電部材109の劣化防止を防ぐためには、本特許記載の如く弾性変形を伴った弾性体回転機構が必要不可欠である。
(Third embodiment)
A third embodiment will be described with reference to FIG.
FIGS. 3A and 3B are cross-sectional views of a portable thermoelectric generator 3100 showing a third embodiment according to the present invention. In the thermoelectric power generation portable device 3100 shown in the figure, there is no change in the separation distance between the holding member 105 and the thermoelectric generation member 109. Instead, an elastic body rotation mechanism 303 is provided. That is, the elastic member 301 is connected to the rotating shaft 302, and the rotating shaft 302 is attached to the frame body 102, and the rotation of the rotating shaft 302 reduces the thermal resistance Rcx between the holding member 105 and the thermoelectric generation member 109. Can be varied. In order to realize a low thermal resistance by varying the thermal resistance between them under a certain separation distance, and to prevent the thermoelectric power generation member 109 from being deteriorated, an elastic body rotation mechanism with elastic deformation as described in this patent is required. It is essential.

すなわち、図3(a)においては、弾性部材301は、保持部材105と熱発電部材109の双方に接触していない状態を示しており、熱抵抗Rcxは極めて高い状態が実現されている。それに対して、図3(b)においては、回転シャフト302が回転させて、弾性部材301を、保持部材105と熱発電部材109の双方に接触させた状態を示している。この接触状態は、弾性部材301が弾性変形を伴っているので、十分な接触圧が実現されている。それゆえ熱抵抗Rcxは極めて低い状態が実現されている。この本発明に係る熱発電携帯機器3100の熱的な動作および効果は、図1(a)(b)記載の熱発電携帯機器1100と全く同じであるので省略する。また、熱発電携帯機器3100における弾性部材301の材質は願わくば、弾性変形率の大きなゴムなどが好ましいが、金属性の弾性部材や、樹脂性の弾性部材であってもよい。   That is, FIG. 3A shows a state where the elastic member 301 is not in contact with both the holding member 105 and the thermoelectric generation member 109, and a state in which the thermal resistance Rcx is extremely high is realized. On the other hand, FIG. 3B shows a state in which the rotating shaft 302 is rotated and the elastic member 301 is brought into contact with both the holding member 105 and the thermoelectric generation member 109. In this contact state, since the elastic member 301 is accompanied by elastic deformation, a sufficient contact pressure is realized. Therefore, a very low thermal resistance Rcx is realized. The thermal operation and effects of the portable thermoelectric generator 3100 according to the present invention are completely the same as those of the portable thermoelectric generator 1100 shown in FIGS. The material of the elastic member 301 in the thermoelectric portable device 3100 is preferably a rubber having a large elastic deformation rate, but may be a metallic elastic member or a resinous elastic member.

1100 熱発電携帯機器
101 筐体
102 枠体
103 カバーガラス
104 裏蓋
105 保持部材
106 文字盤
107 ムーブメント
108 基板
109 熱発電部材
110 接着層
111 導熱部材
112 導熱接合層
113 弾性部材
114 筐体空隙部
115 枠体ピン部
116 弾性体変形機構部
DESCRIPTION OF SYMBOLS 1100 Thermoelectric portable apparatus 101 Case 102 Frame 103 Cover glass 104 Back cover 105 Holding member 106 Dial 107 Movement 108 Substrate 109 Thermoelectric generation member 110 Adhesion layer 111 Heat conduction member 112 Heat conduction joining layer 113 Elastic member 114 Case gap 115 Frame body pin part 116 Elastic body deformation | transformation mechanism part

Claims (8)

熱源と放熱先との温度差に基づき発電する熱発電部材と、
前記熱源と前記放熱先との間の伝熱経路中に設けられ、前記伝熱経路の熱抵抗を変更する前記可変抵抗部と、
前記可変抵抗部を移動させる可変抵抗部移動機構と、を備え、
前記可変抵抗部移動機構は、弾性部材を有する事を特徴とする熱発電携帯機器。
A thermoelectric generator that generates electricity based on the temperature difference between the heat source and the heat radiation destination;
The variable resistance unit that is provided in a heat transfer path between the heat source and the heat radiation destination, and changes a heat resistance of the heat transfer path;
A variable resistance part moving mechanism for moving the variable resistance part,
The variable resistance portion moving mechanism includes an elastic member, and is a portable thermoelectric generator.
前記可変抵抗部移動機構は、前記伝熱経路の距離を制御する事を特徴とする請求項1に記載の熱発電携帯機器。   The portable thermoelectric generator according to claim 1, wherein the variable resistance unit moving mechanism controls a distance of the heat transfer path. 前記可変抵抗部は、導熱部材である板状部材を有する事を特徴とした請求項2に記載の熱発電携帯機器。   3. The portable thermoelectric generator according to claim 2, wherein the variable resistance portion includes a plate-like member that is a heat conducting member. 前記可変抵抗部移動機構は、前記可変抵抗部を前記伝熱経路と交差する方向を軸として回転させる事を特徴とする請求項1に記載の熱発電携帯機器。   2. The portable thermoelectric generator according to claim 1, wherein the variable resistance unit moving mechanism rotates the variable resistance unit about a direction intersecting the heat transfer path. 前記弾性部材は、ゴムである事を特徴とする請求項1から請求項4のいずれか一項に記載の熱発電携帯機器。   The thermoelectric power generation portable device according to any one of claims 1 to 4, wherein the elastic member is rubber. 時間を計る計時部を有し、
前記可変抵抗部移動機構は、前記計時部により前記可変抵抗部を移動させることを特徴とする請求項1から5のいずれか一項に記載の熱発電携帯機器。
Has a timekeeping section that measures time,
The thermoelectric generator portable device according to any one of claims 1 to 5, wherein the variable resistance portion moving mechanism moves the variable resistance portion by the timekeeping portion.
前記熱発電部材の発電電圧を検出する電圧検出部を有し、
前記可変抵抗部移動機構は、前記発電電圧により前記可変抵抗部を移動させることを特徴とする請求項1から5のいずれか一項に記載の熱発電携帯機器。
A voltage detection unit for detecting a power generation voltage of the thermoelectric generation member;
6. The portable thermoelectric generator according to claim 1, wherein the variable resistance portion moving mechanism moves the variable resistance portion according to the generated voltage. 7.
熱発電部材の発電電力を蓄電する蓄電部を有し、
前記可変抵抗部移動機構は、前記蓄電部の蓄電量により前記可変抵抗部を移動させることを特徴とする請求項1から5のいずれか一項に記載の熱発電携帯機器。
It has a power storage unit that stores the power generated by the thermoelectric power generation member,
6. The portable thermoelectric generator according to claim 1, wherein the variable resistance unit moving mechanism moves the variable resistance unit according to an amount of power stored in the power storage unit.
JP2011254288A 2011-11-21 2011-11-21 Portable thermoelectric generator Active JP5839957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011254288A JP5839957B2 (en) 2011-11-21 2011-11-21 Portable thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011254288A JP5839957B2 (en) 2011-11-21 2011-11-21 Portable thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2013110867A true JP2013110867A (en) 2013-06-06
JP5839957B2 JP5839957B2 (en) 2016-01-06

Family

ID=48707113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011254288A Active JP5839957B2 (en) 2011-11-21 2011-11-21 Portable thermoelectric generator

Country Status (1)

Country Link
JP (1) JP5839957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018989A1 (en) * 2020-07-21 2022-01-27 ソニーグループ株式会社 Thermoelectric power generation module and method for producing thermoelectric power generation module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035824A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Power generator for vehicle
JP2011035059A (en) * 2009-07-30 2011-02-17 Swcc Showa Cable Systems Co Ltd Thermoelectric conversion power generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035824A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Power generator for vehicle
JP2011035059A (en) * 2009-07-30 2011-02-17 Swcc Showa Cable Systems Co Ltd Thermoelectric conversion power generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018989A1 (en) * 2020-07-21 2022-01-27 ソニーグループ株式会社 Thermoelectric power generation module and method for producing thermoelectric power generation module
US20230263060A1 (en) * 2020-07-21 2023-08-17 Sony Group Corporation Thermoelectric power generation module and method of manufacturing thermoelectric power generation module

Also Published As

Publication number Publication date
JP5839957B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5843259B2 (en) Thermoelectric power generation portable device and power generation control method for thermoelectric power generation portable device
US6407965B1 (en) Timepiece having thermoelectric generator unit
JP4884050B2 (en) Drive device
US8345363B2 (en) Drive device, lens part, and camera module
EP2342459A2 (en) Control of a shape memory alloy actuation arrangement
JP5839957B2 (en) Portable thermoelectric generator
JP2013078175A (en) Electronic apparatus
US6359841B1 (en) Timepiece and portable electronic device having thermoelectric generator unit
CN109818391B (en) Portable information processing device, integrated circuit, and battery pack
JP5379982B2 (en) Imaging device
JP2003102186A (en) Electric charging system for instrument having thermal power generating system
US6316714B1 (en) Power generating block provided with thermoelectric generation unit
JP5764464B2 (en) Portable thermoelectric generator
Yamada et al. Self-powered artificial sensory nervous system using ring oscillator for pulse density modulation
JP2014139585A (en) Temperature measurement device
JP3166089U (en) Kinematically powered thermometer
JP2011059395A (en) Lens driving device, image acquisition device, and electronic equipment
US10013025B2 (en) Wearable device with power state control
JP5764465B2 (en) Thermoelectric power generation portable device and power generation control method for thermoelectric power generation portable device
JP3041357B2 (en) Power generation block with thermal power generation unit
JP2014171838A (en) Heat exhaust shoes
JP2995408B1 (en) Clock with flat thermal conductor and thermoelectric generator unit
JP2015184185A (en) Electronic clinical thermometer
JP2013198376A (en) Thermal power generator, clock having the same, and control method of the same
JP2001037260A (en) Energy converting method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R150 Certificate of patent or registration of utility model

Ref document number: 5839957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250