JP2013110648A - Bar-shaped workpiece imaging apparatus and bar-shaped workpiece tip end concentric determination apparatus - Google Patents

Bar-shaped workpiece imaging apparatus and bar-shaped workpiece tip end concentric determination apparatus Download PDF

Info

Publication number
JP2013110648A
JP2013110648A JP2011255364A JP2011255364A JP2013110648A JP 2013110648 A JP2013110648 A JP 2013110648A JP 2011255364 A JP2011255364 A JP 2011255364A JP 2011255364 A JP2011255364 A JP 2011255364A JP 2013110648 A JP2013110648 A JP 2013110648A
Authority
JP
Japan
Prior art keywords
shaped workpiece
rod
camera
tip
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011255364A
Other languages
Japanese (ja)
Other versions
JP5838757B2 (en
Inventor
Yuichiro Maruyama
祐一郎 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011255364A priority Critical patent/JP5838757B2/en
Publication of JP2013110648A publication Critical patent/JP2013110648A/en
Application granted granted Critical
Publication of JP5838757B2 publication Critical patent/JP5838757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bar-shaped workpiece imaging apparatus capable of shortening measurement time and managing a bar-shaped workpiece with high precision, and a bar-shaped workpiece tip end concentric determination apparatus.SOLUTION: A bar-shaped workpiece imaging apparatus includes a lens barrel 13 having beam splitters 42 and 43, spectrally separates an image light beam from an object lens 41 into three optical paths P1 to P3 and enlarges the image light beams P1 to P3 of the optical paths to capture the light beams with cameras 14, 15, and 16. By sliding the center positions of the optical axes of the beam splitters 42 and 43, the camera 14 connected to the lens barrel 13 is allowed to capture a tip-end processing part 21, the camera 15 is allowed to capture one part of the profiles of a main unit straight part 23, and the camera 16 is allowed to capture the another part of the profiles of the main unit straight part 23. By analyzing the image signals of these cameras 14, 15, and 16, the quality of a bar-shaped workpiece 10 is determined according to whether the position of the axis center of the tip-end processing part 21 is identical with the axis center of the main unit straight part 23.

Description

本発明は、先端加工部を有する棒状ワークを撮像するための棒状ワーク撮像装置、およびこのような棒状ワークの良否を管理するための棒状ワークの先端同心判定装置に関するものである。   The present invention relates to a rod-like workpiece imaging device for imaging a rod-like workpiece having a tip machining portion, and a rod-like workpiece tip concentricity determining device for managing the quality of such a rod-like workpiece.

金属の薄板等に小孔を穿設するのに、先端加工部を有する棒状の加工ツール(以下、棒状ワークと称する)が使用される場合がある。このような棒状ワークを使って高精度の小孔を穿設する場合、棒状ワークの寸法ズレや偏心が起こらないように、棒状ワークの形状を精度良く管理する必要がある。例えばカメラで棒状ワークの全体像を撮像し、この撮像画像を解析して、その先端加工部の中心が軸中心にあり、偏心が生じていないかどうかをチェックすることが考えられる。このようなカメラを用いた光学的な手法により、対象物をアライメント管理を行うものとしては、カメラで対象物のマークを撮像し、撮像されたマークを用いて対象物をアライメントさせるものが提案されている(特許文献1参照)。   A rod-shaped processing tool (hereinafter referred to as a rod-shaped workpiece) having a tip processing portion may be used to drill a small hole in a metal thin plate or the like. When drilling a high-precision small hole using such a rod-shaped workpiece, it is necessary to accurately manage the shape of the rod-shaped workpiece so that dimensional displacement and eccentricity of the rod-shaped workpiece do not occur. For example, it is conceivable to capture an entire image of a rod-shaped workpiece with a camera, analyze the captured image, and check whether the center of the tip processed portion is at the center of the axis and no eccentricity occurs. As a method for performing alignment management of an object by an optical method using such a camera, an object in which a mark of the object is imaged by the camera and the object is aligned using the imaged mark is proposed. (See Patent Document 1).

特開2007−19147号公報JP 2007-19147 A

しかしながら、上記のような、単一のカメラにより、棒状ワークの全体像を撮像し、この撮像画像を解析する手法において、棒状ワークが例えば薄板に数マイクロメーターの小孔を穿設するもののような場合には、その形状の良否の判定が困難となる。つまり、小孔に対応する先端加工部の径が数マイクロメーターのオーダーとなるのに対し、先端加工部を支持する本体部分が、その径において数ミリメートルのオーダーに、またその長さにおいて数センチメートルのオーダーになることが想定される。このため、カメラの撮像倍率を棒状ワークの全体画像を視野内に取り込む倍率に設定すると、先端加工部の撮像画像は非常に小さくなってしまう。また、この場合、全体画像に対してフォーカスが設定されてしまうと、先端加工部の細部のフォーカスが十分でなくなる。このため、先端加工部の画像を解析して、形状の良否を判定するのが難しくなる。   However, in the above-described technique for capturing an entire image of a rod-shaped workpiece with a single camera and analyzing the captured image, the rod-shaped workpiece is, for example, a thin plate having a small hole of several micrometers. In this case, it is difficult to determine whether the shape is good or bad. In other words, the diameter of the tip processed portion corresponding to the small hole is on the order of several micrometers, whereas the body portion that supports the tip processed portion is on the order of several millimeters in diameter and several centimeters in length. It is assumed to be on the order of meters. For this reason, if the imaging magnification of the camera is set to a magnification that captures the entire image of the rod-shaped workpiece in the field of view, the captured image of the tip processing portion becomes very small. In this case, if the focus is set on the entire image, the focus on the details of the tip processed portion becomes insufficient. For this reason, it becomes difficult to determine the quality of the shape by analyzing the image of the tip processed portion.

かかる場合、例えば複数のカメラを並べて配置し、各カメラで、棒状ワークの先端加工部や両端のストレート部を個々に撮像することが考えられる。しかし、棒状ワークを撮像するための限られたスペースに、複数のカメラを並べて配置するのは物理的に困難である。また、複数のカメラを並べて配置して、棒状ワークの先端加工部や両端のストレート部を撮像する場合には、各カメラ毎に、撮像位置を設定し、フォーカスを設定する必要があり、作業が煩雑になる。さらに、複数のカメラの相互間において、精度良くキャリブレーションを行う必要がある。   In such a case, for example, it is conceivable that a plurality of cameras are arranged side by side, and the tip processed portion of the rod-shaped workpiece and the straight portions at both ends are individually imaged with each camera. However, it is physically difficult to arrange a plurality of cameras side by side in a limited space for imaging a rod-shaped workpiece. In addition, when multiple cameras are arranged side by side and the tip processed part of a rod-shaped workpiece and the straight part at both ends are imaged, it is necessary to set the imaging position and set the focus for each camera. It becomes complicated. Furthermore, it is necessary to perform calibration with high accuracy between a plurality of cameras.

本発明は、簡単な構造で且つ高い精度で、棒状ワークを撮像することができる棒状ワーク撮像装置および棒状ワークの先端同心判定装置を提供することを課題としている。   An object of the present invention is to provide a rod-shaped workpiece imaging device and a rod-shaped workpiece tip concentricity determination device capable of imaging a rod-shaped workpiece with a simple structure and high accuracy.

本発明の棒状ワーク撮像装置は、先端加工部と、本体ストレート部とを有する棒状ワークを撮像する棒状ワーク撮像装置であって、対物レンズを有する鏡筒と、鏡筒に連なり、先端加工部を撮像する第1カメラと、鏡筒と第1カメラとの間の光路に介設され、光路に対し相互に逆方向に位置ズレさせて配置した第1ビームスプリッターおよび第2ビームスプリッターと、第1ビームスプリッターを介して、本体ストレート部の一方の輪郭を撮像する第2カメラと、第2ビームスプリッターを介して、本体ストレート部の他方の輪郭を撮像する第3カメラと、を備えたことを特徴とする。   A rod-shaped workpiece imaging device of the present invention is a rod-shaped workpiece imaging device that images a rod-shaped workpiece having a tip processing portion and a main body straight portion, and is connected to a lens barrel having an objective lens and a lens barrel. A first camera that captures an image, a first beam splitter and a second beam splitter that are disposed in an optical path between the lens barrel and the first camera and are disposed in positions opposite to each other in the optical path; A second camera that images one contour of the main body straight portion via the beam splitter, and a third camera that images the other contour of the main body straight portion via the second beam splitter. And

この構成によれば、第1のカメラにより、棒状ワークにおける先端加工部の拡大画像を撮像し、第2のカメラにより、本体ストレート部における一方の輪郭の拡大画像を撮像し、第3のカメラにより、本体ストレート部における他方の輪郭の拡大画像を撮像することができる。また、第2カメラを、鏡筒と第1カメラとの間の光路上に設けた第1ビームスプリッターを介して配設し、第3カメラを、光路上に設けた第2ビームスプリッターを介して配設しているため、全体として縦長に且つコンパクトに構成することができる。したがって、簡単な構造で且つ高い精度で、棒状ワークを撮像することができる。   According to this configuration, the first camera captures an enlarged image of the tip processing portion of the rod-shaped workpiece, the second camera captures an enlarged image of one contour of the main body straight portion, and the third camera. An enlarged image of the other contour in the main body straight portion can be taken. Further, the second camera is disposed via a first beam splitter provided on the optical path between the lens barrel and the first camera, and the third camera is disposed via a second beam splitter provided on the optical path. Since it is arranged, it can be configured vertically and compactly as a whole. Therefore, it is possible to image a rod-like workpiece with a simple structure and high accuracy.

この場合、第1ビームスプリッターは、一方の輪郭が第2カメラの視野中心に来るように、第2ビームスプリッターは、他方の輪郭が第3カメラの視野中心に来るように、それぞれ位置ズレして配置されていることが好ましい。   In this case, the first beam splitter is displaced so that one contour is at the center of the field of view of the second camera, and the second beam splitter is shifted so that the other contour is at the center of the field of view of the third camera. It is preferable that they are arranged.

この構成によれば、第1ビームスプリッターを一方の輪郭が第2カメラの視野中心に来るように位置ズレさせ、第2ビームスプリッターを他方の輪郭が第3カメラの視野中心に来るように位置ズレさせることで、第2のカメラで本体ストレート部の一方の輪郭を確実に撮像することができ、また第3のカメラで本体ストレート部の他方の輪郭を確実に撮像することができる。   According to this configuration, the first beam splitter is displaced so that one contour is at the center of the field of view of the second camera, and the second beam splitter is displaced so that the other contour is at the center of the field of view of the third camera. By doing so, one contour of the main body straight portion can be reliably imaged with the second camera, and the other contour of the main body straight portion can be reliably imaged with the third camera.

本発明のワークの先端同心判定装置は、上述の棒状ワーク撮像装置と、棒状ワークを基部でチャックするチャック手段と、棒状ワーク撮像装置に対し、チャック手段を介して棒状ワークを軸方向に相対的に進退させる進退動手段と、棒状ワーク撮像装置および進退動手段を制御し、棒状ワークを進退させながら、第1カメラにより先端加工部を撮像し、第2カメラにより本体ストレート部の一方の輪郭を撮像し、第3カメラにより本体ストレート部の一方の輪郭を撮像する、撮像動作を実施する制御手段と、第1カメラの撮像結果と、第2カメラおよび第3カメラの撮像結果とを画像処理し、先端加工部の軸心と本体ストレート部の軸心とが合致しているか否かを判定する、判定動作を実施する同軸判定手段と、を備えたことを特徴とする。   The workpiece concentricity determination device according to the present invention includes the above-described rod-shaped workpiece imaging device, chuck means for chucking the rod-shaped workpiece at the base, and the rod-shaped workpiece imaging device relative to the rod-shaped workpiece imaging device via the chuck means. The advancing / retreating means for advancing and retreating, the rod-shaped workpiece imaging device and the advancing / retreating means are controlled, and while the rod-shaped workpiece is advanced and retracted, the tip camera is imaged by the first camera, and one contour of the main body straight portion is imaged by the second camera Image processing is performed on the control means for performing an imaging operation, the imaging result of the first camera, and the imaging results of the second camera and the third camera. And a coaxial determination means for performing a determination operation for determining whether or not the axial center of the tip processed portion and the axial center of the main body straight portion coincide with each other.

この構成によれば、各カメラの撮像結果から、先端加工部の軸心と本体ストレート部の軸心とを求め、求められた先端加工部の軸心と本体ストレート部の軸心とが合致しているか否かを判定するようにしているため、棒状ワークの形状の良否を、簡単に且つ精度良く判定することができる。   According to this configuration, the axial center of the tip processed portion and the axial center of the main body straight portion are obtained from the imaging results of each camera, and the obtained axial center of the tip processed portion matches the axial center of the main body straight portion. Therefore, it is possible to easily and accurately determine the quality of the bar-shaped workpiece.

この場合、チャック手段を介して、棒状ワークを所定の角度ピッチで軸心廻りに回転させる回転手段を、更に備え、制御手段は、回転手段を更に制御し、所定の角度ピッチ毎に撮像動作を実施し、同軸判定手段は、全ての角度ピッチにおいて、判定動作を実施すると共に、全ての判定動作において、先端加工部の軸心と本体ストレート部の軸心とが合致しているときに、当該棒状ワークを良品と判定することが好ましい。   In this case, rotation means for rotating the rod-like workpiece around the axis center at a predetermined angular pitch via the chuck means is further provided, and the control means further controls the rotation means to perform an imaging operation at every predetermined angle pitch. The coaxial determination means performs the determination operation at all the angular pitches, and in all the determination operations, when the axial center of the tip processed portion is coincident with the axial center of the main body straight portion, It is preferable to determine that the rod-shaped workpiece is a non-defective product.

この構成によれば、所定の角度ピッチ毎に撮像動作を実施し、先端加工部の軸心と本体ストレート部の軸心とが合致しているか否かを判定することで、棒状ワークの偏心状態を精度良く検出・判定することができる。   According to this configuration, the imaging operation is performed at every predetermined angular pitch, and it is determined whether the axial center of the tip processed portion and the axial center of the main body straight portion are coincident with each other. Can be detected and determined with high accuracy.

また、棒状ワークは、更に先端加工部と本体ストレート部に連なるテーパー補強部を有し、先端加工部、テーパー補強部および本体ストレート部を一括して撮像する低倍率撮像手段と、棒状ワーク撮像装置および低倍率撮像手段に対し、チャック手段を介して棒状ワークを相対的に且つ交互に臨ませる交互移動手段と、更に備え、制御手段は、低倍率撮像手段および交互移動手段を更に制御し、低倍率撮像手段の撮像結果に基づいて、棒状ワークの先端加工部を棒状ワーク撮像装置に臨ませることが好ましい。   The rod-shaped workpiece further has a taper reinforcing portion connected to the tip processed portion and the main body straight portion, and a low magnification imaging means for collectively imaging the tip processed portion, the taper reinforcing portion and the main body straight portion, and a rod-shaped workpiece imaging device. And an alternating moving means for causing the bar-shaped workpiece to face each other relatively and alternately via the chuck means with respect to the low magnification imaging means, and a control means further controls the low magnification imaging means and the alternating moving means, Based on the imaging result of the magnification imaging means, it is preferable that the tip processed portion of the rod-shaped workpiece faces the rod-shaped workpiece imaging device.

この構成によれば、低倍率撮像手段の撮像結果に基づいて、棒状ワークの先端加工部を棒状ワーク撮像装置に臨ませるようにしているため、棒状ワーク撮像装置の視野内に先端加工部を確実に取り込むことができ、棒状ワークの撮像を効率良く行うことができる。   According to this configuration, since the tip processing portion of the rod-shaped workpiece faces the rod-shaped workpiece imaging device based on the imaging result of the low-magnification imaging means, the tip processing portion is reliably located within the field of view of the rod-shaped workpiece imaging device. The rod-shaped workpiece can be imaged efficiently.

判定対象となる棒状ワークの外観図である。It is an external view of the rod-shaped workpiece used as judgment object. 第1の実施形態に係る棒状ワークの先端同心判定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the tip concentricity determination apparatus of the rod-shaped workpiece which concerns on 1st Embodiment. 棒状ワークの先端同心判定装置におけるワーク回転機構の説明図である。It is explanatory drawing of the workpiece | work rotation mechanism in the front-end | tip concentricity determination apparatus of a rod-shaped workpiece. 棒状ワークの先端同心判定装置における光路および撮像画像の説明図である。It is explanatory drawing of the optical path and picked-up image in the tip concentricity determination apparatus of a rod-shaped workpiece. 棒状ワークの先端同心判定装置における光路および撮像画像の説明図である。It is explanatory drawing of the optical path and picked-up image in the tip concentricity determination apparatus of a rod-shaped workpiece. 各カメラによる棒状ワークの撮像部位(視野)の説明図である。It is explanatory drawing of the imaging site | part (visual field) of the rod-shaped workpiece | work by each camera. 棒状ワークの先端同心判定装置における良否判定処理を説明するフローチャートである。It is a flowchart explaining the quality determination process in the tip concentricity determination apparatus of a rod-shaped workpiece. 棒状ワークの先端同心判定装置における低倍率カメラの説明図である。It is explanatory drawing of the low magnification camera in the front-end | tip concentricity determination apparatus of a rod-shaped workpiece.

以下、添付の図面を参照して、本発明の一実施形態に係る棒状ワーク撮像装置を適用した棒状ワークの先端同心判定装置(以下、単に「先端同心判定装置」という)について説明する。この先端同心判定装置は、製造した棒状ワークの先端部に芯ズレが生じているか否か等の、形状の良否を光学的に判定するものである。以下、理解を容易にすべく、棒状ワークの構造から説明する。   A rod-shaped workpiece tip concentricity determination device (hereinafter simply referred to as a “tip concentricity determination device”) to which a rod-shaped workpiece imaging device according to an embodiment of the present invention is applied will be described below with reference to the accompanying drawings. The tip concentricity determination device optically determines the quality of the shape, such as whether or not a core misalignment has occurred at the tip of the manufactured bar-shaped workpiece. Hereinafter, the structure of the rod-shaped workpiece will be described for easy understanding.

図1は、棒状ワーク10の外観図であり、同図に示すように、棒状ワーク10は、先端加工部21と、この先端加工部21に連なるテーパー補強部22と、テーパー補強部22に連なる本体ストレート部23と、本体ストレート部23に連なる装置取付け部24と、を有している。先端加工部21は、その径が数マイクロメーターのオーダーのものであり、本体ストレート部23は、その径が数ミリメートルのオーダーであって、長さが数センチメートルのオーダーのもとなっている。このように構成された棒状ワーク10は、例えばプレス穴あけ装置に搭載され、板金に精密な小孔を穿設するポンチとして使用される。   FIG. 1 is an external view of a rod-shaped workpiece 10. As shown in FIG. 1, the rod-shaped workpiece 10 is linked to a tip processed portion 21, a taper reinforcing portion 22 connected to the tip processed portion 21, and a taper reinforcing portion 22. The main body straight part 23 and the apparatus attachment part 24 connected to the main body straight part 23 are provided. The tip processed portion 21 has a diameter of the order of several micrometers, and the main body straight portion 23 has a diameter of the order of several millimeters and a length of the order of several centimeters. . The bar-shaped workpiece 10 configured as described above is mounted on, for example, a press drilling device, and used as a punch for punching a precise small hole in a sheet metal.

図2は、先端同心判定装置1の構成を示すブロック図であり、同図に示すように、先端同心判定装置1は、棒状ワーク10を搭載し、棒状ワーク10を軸方向に進退させると共に軸心廻りに回転させるワーク移動部2と、ワーク移動部2に搭載された棒状ワーク10を撮像するワーク撮像部3(ワーク撮像装置)と、ワーク移動部2およびワーク撮像部3を制御する制御部12(制御手段)と、を備えている。   FIG. 2 is a block diagram showing the configuration of the tip concentricity determining device 1. As shown in FIG. 2, the tip concentricity determining device 1 is mounted with a rod-shaped workpiece 10, and moves the rod-shaped workpiece 10 forward and backward in the axial direction. A workpiece moving unit 2 that rotates around the center, a workpiece imaging unit 3 (work imaging device) that images the rod-shaped workpiece 10 mounted on the workpiece moving unit 2, and a control unit that controls the workpiece moving unit 2 and the workpiece imaging unit 3. 12 (control means).

図2および図3に示すように、ワーク移動部2は、搭載した棒状ワーク10を、その軸方向であるX軸方向およびこれに直交するY軸方向に移動させるX−Yステージ11(進退動手段)と、X−Yステージ11上に配設され、棒状ワーク10を回転させるワーク回転機構31(回転手段)と、を有している。また、ワーク回転機構31は、棒状ワーク10をその装置取付け部24の部分でチャッキングするチャック部32(チャック手段)と、チャック部32を介して、棒状ワーク10を軸心廻りに間欠回転させる機構本体33と、で構成されている(図3参照)。   As shown in FIGS. 2 and 3, the workpiece moving unit 2 moves the mounted rod-shaped workpiece 10 in the X-axis direction that is the axial direction and the Y-axis direction that is perpendicular to the X-Y stage 11 (advance / retreat). Means) and a work rotation mechanism 31 (rotation means) that is disposed on the XY stage 11 and rotates the rod-like work 10. The workpiece rotating mechanism 31 also intermittently rotates the rod-shaped workpiece 10 around the axis through the chuck portion 32 (chuck means) for chucking the rod-shaped workpiece 10 at the device mounting portion 24 and the chuck portion 32. And a mechanism main body 33 (see FIG. 3).

そして、X−Yステージ11およびワーク回転機構31(機構本体33)は、それぞれ制御部12に接続されている。X−Yステージ11は、制御部12からの指令により、棒状ワーク10をX軸方向およびY軸方向に移動(進退)させる。一方、ワーク回転機構31は、制御部12からの指令により、棒状ワーク10をその軸心廻り所望の角度ピッチで間欠回転させる。   The XY stage 11 and the work rotation mechanism 31 (mechanism body 33) are each connected to the control unit 12. The XY stage 11 moves (advances / retreats) the rod-shaped workpiece 10 in the X-axis direction and the Y-axis direction according to a command from the control unit 12. On the other hand, the workpiece rotation mechanism 31 intermittently rotates the rod-shaped workpiece 10 around its axis at a desired angle pitch according to a command from the control unit 12.

図2に示すように、ワーク撮像部3は、先端をX−Yステージ11上の棒状ワーク10に臨ませた鏡筒13と、鏡筒13の基端部に接続した第1カメラ14と、鏡筒13の側部基端側に接続した第2カメラ15、鏡筒13の側部先端側に接続した第3カメラ16と、を備えている。
また、鏡筒13は光路上において、先端部に設けた対物レンズ41と、先端側の第2ビームスプリッター43と、基端側の第1ビームスプリッター42と、第1カメラ14に対応する第1接眼レンズ44と、第2カメラ15に対応する第2接眼レンズ45と、第3カメラ16対応する第3接眼レンズ46と、を有している。
As shown in FIG. 2, the workpiece imaging unit 3 includes a lens barrel 13 having a distal end facing the rod-shaped workpiece 10 on the XY stage 11, a first camera 14 connected to a proximal end portion of the lens barrel 13, A second camera 15 connected to the side base end side of the lens barrel 13 and a third camera 16 connected to the side tip end side of the lens barrel 13 are provided.
The lens barrel 13 has an objective lens 41 provided at the distal end, a second beam splitter 43 at the distal end, a first beam splitter 42 at the proximal end, and a first camera 14 corresponding to the first camera 14 on the optical path. The eyepiece 44 includes a second eyepiece 45 corresponding to the second camera 15, and a third eyepiece 46 corresponding to the third camera 16.

対物レンズ41は、検査対象の棒状ワーク10からの光を集光して鏡筒13内に導く。第2ビームスプリッター43は、対物レンズ41からの像光を、第3接眼レンズ46に向かう光路と、第1ビームスプリッター42に向かう光路とに分光する。同様に、第1ビームスプリッター42は、第2ビームスプリッター43からの像光を、第1接眼レンズ44に向かう光路と、第2接眼レンズ45に向かう光路とに分光する。   The objective lens 41 collects light from the rod-shaped workpiece 10 to be inspected and guides it into the lens barrel 13. The second beam splitter 43 splits the image light from the objective lens 41 into an optical path toward the third eyepiece lens 46 and an optical path toward the first beam splitter 42. Similarly, the first beam splitter 42 splits the image light from the second beam splitter 43 into an optical path toward the first eyepiece lens 44 and an optical path toward the second eyepiece lens 45.

すなわち、検査対象の棒状ワーク10からの像光は、対物レンズ41から、第2ビームスプリッター43および第1ビームスプリッター42を介して第1接眼レンズ44に向かう第1光路P1と、対物レンズ41から、第2ビームスプリッター43を介し、第1ビームスプリッター42で分光されて第2接眼レンズ45に向かう第2光路P2と、対物レンズ41から、第2ビームスプリッター43で分光されて第3接眼レンズ46に向かう第3光路P3と、に分光される。   That is, the image light from the rod-shaped workpiece 10 to be inspected is transmitted from the objective lens 41 through the first optical path P1 from the objective lens 41 to the first eyepiece 44 via the second beam splitter 43 and the first beam splitter 42. Through the second beam splitter 43, the second optical path P2 that is split by the first beam splitter 42 and travels toward the second eyepiece 45, and from the objective lens 41, is split by the second beam splitter 43 and the third eyepiece 46. To the third optical path P3 toward the.

ここで、第1ビームスプリッター42および第2ビームスプリッター43の光軸の中心は、第2接眼レンズ45および第3接眼レンズ46の光軸の中心に対して位置ズレして、配設されている。これにより、第1接眼レンズ44により、棒状ワーク10の像光のうち先端加工部21を中心とする像光が拡大され、第2接眼レンズ45により、棒状ワーク10の像光のうち本体ストレート部23の左右一方の輪郭を中心とする像光が拡大され、第3接眼レンズ46により、棒状ワーク10の像光のうち本体ストレート部23の他方の輪郭を中心とする像光が拡大される(詳細は、後述する。)。   Here, the centers of the optical axes of the first beam splitter 42 and the second beam splitter 43 are arranged so as to be shifted from the centers of the optical axes of the second eyepiece lens 45 and the third eyepiece lens 46. . As a result, the first eyepiece 44 enlarges the image light centered on the distal end processing portion 21 of the image light of the rod-shaped workpiece 10, and the second eyepiece lens 45 enlarges the main body straight portion of the image light of the rod-shaped workpiece 10. 23, the image light centered on one of the left and right contours is enlarged, and the third eyepiece 46 magnifies the image light centered on the other contour of the main body straight portion 23 among the image light of the rod-shaped workpiece 10 ( Details will be described later.)

第1カメラ14、第2カメラ15および第3カメラ16は、それぞれ鏡筒13の第1接眼レンズ44、第2接眼レンズ45および第3接眼レンズ46に対応する位置に配設されている。第1カメラ14は、第1光路P1を介して、第1接眼レンズ44で拡大された先端加工部21の位置の画像を撮像する。第2カメラ15は、第2光路P2を介して、第2接眼レンズ45で拡大された本体ストレート部23の左右一方の輪郭の位置の画像を撮像する。第3カメラ16は、第3光路P3を介して、第3接眼レンズ46で拡大された本体ストレート部23の他方の輪郭の位置の画像を撮像する。   The first camera 14, the second camera 15, and the third camera 16 are disposed at positions corresponding to the first eyepiece lens 44, the second eyepiece lens 45, and the third eyepiece lens 46 of the lens barrel 13, respectively. The first camera 14 captures an image of the position of the tip processing portion 21 enlarged by the first eyepiece 44 via the first optical path P1. The second camera 15 captures an image of the position of one of the left and right contours of the main body straight portion 23 magnified by the second eyepiece 45 via the second optical path P2. The third camera 16 captures an image of the position of the other contour of the main body straight portion 23 magnified by the third eyepiece 46 via the third optical path P3.

そして、第1カメラ14、第2カメラ15および第3カメラ16の撮像信号は、制御部12の画像処理部51に送られる。画像処理部51は、棒状ワーク10の形状の良否を判定するために、第1カメラ14、第2カメラ15および第3カメラ16の撮像信号の画像処理を実施する。なお、請求項に言う「同軸判定手段」は、画像処理部51を含む制御部12により構成されている。   Then, the imaging signals of the first camera 14, the second camera 15, and the third camera 16 are sent to the image processing unit 51 of the control unit 12. The image processing unit 51 performs image processing of imaging signals of the first camera 14, the second camera 15, and the third camera 16 in order to determine whether the shape of the rod-shaped workpiece 10 is good or bad. The “coaxial determination means” described in the claims is configured by the control unit 12 including the image processing unit 51.

次に、図4および図5を参照して、第1光路P1、第2光路P2および第3光路P3を介して撮像される棒状ワーク10の像が、第1カメラ14、第2カメラ15および第3カメラ16に、それぞれどのように写し込まれるかについて説明する。
両図に示すように、対物レンズ41、第2ビームスプリッター43、第1ビームスプリッター42および第1接眼レンズ44を経る、第1光路P1の像光は、第1接眼レンズ44で拡大され、第1カメラ14により撮像される。この場合、X−Yステージ11により、先端加工部21が第1カメラ14の視野中心となるように棒状ワーク10を移動させ、先端加工部21の拡大画像が撮像される。
Next, referring to FIG. 4 and FIG. 5, an image of the rod-shaped workpiece 10 imaged through the first optical path P1, the second optical path P2, and the third optical path P3 is the first camera 14, the second camera 15, and A description will be given of how each image is imprinted on the third camera 16.
As shown in both figures, the image light in the first optical path P1 passing through the objective lens 41, the second beam splitter 43, the first beam splitter 42, and the first eyepiece 44 is magnified by the first eyepiece 44, The image is taken by one camera 14. In this case, the XY stage 11 moves the rod-shaped workpiece 10 so that the tip processing unit 21 is at the center of the visual field of the first camera 14, and an enlarged image of the tip processing unit 21 is captured.

また、対物レンズ41、第2ビームスプリッター43、第1ビームスプリッター42および第2接眼レンズ45を経る、第2光路P2の像光は、第2接眼レンズ45で拡大され、第2カメラ15により撮像される。この場合、X−Yステージ11により、鏡筒13の中心が本体ストレート部23の軸心に移動しており、上記した第1ビームスプリッター42の位置ズレにより、第2カメラ15では、本体ストレート部23の一方の輪郭が視野中心となって、その拡大画像が撮像される。
同様に、対物レンズ41、第2ビームスプリッター43および第3接眼レンズ46を経る、第3光路P3の像光は、第3接眼レンズ46で拡大され、第3カメラ16により撮像される。この場合も、上記した第2ビームスプリッター43の位置ズレにより、第3カメラ16では、本体ストレート部23の他方の輪郭が視野中心となって、その拡大画像が撮像される。
In addition, the image light in the second optical path P <b> 2 that passes through the objective lens 41, the second beam splitter 43, the first beam splitter 42, and the second eyepiece lens 45 is magnified by the second eyepiece lens 45 and captured by the second camera 15. Is done. In this case, the center of the lens barrel 13 is moved to the axial center of the main body straight portion 23 by the XY stage 11, and the main body straight portion of the second camera 15 is caused by the positional deviation of the first beam splitter 42 described above. One of the outlines 23 is the center of the visual field, and the enlarged image is taken.
Similarly, the image light on the third optical path P <b> 3 that passes through the objective lens 41, the second beam splitter 43, and the third eyepiece lens 46 is magnified by the third eyepiece lens 46 and captured by the third camera 16. Also in this case, due to the positional deviation of the second beam splitter 43 described above, the third camera 16 captures an enlarged image of the other contour of the main body straight portion 23 as the center of the visual field.

図6は、棒状ワーク10の全体画像の中で、第1カメラ14、第2カメラ15および第3カメラ16で撮像される部分を示している。同図に示すように、第1カメラ14では、棒状ワーク10の全体画像の中で、棒状ワーク10の先端加工部21の部分A1の拡大画像が撮像される。第2カメラ15では、棒状ワーク10の本体ストレート部23の一方の輪郭の部分A2の拡大画像が撮像される。第3カメラ16では、棒状ワーク10の本体ストレート部23の他方の輪郭の部分A3の拡大画像が撮像される。なお、第1カメラ14、第2カメラ15および第3カメラ16で撮像される像の倍率は、独立して設定可能に構成されている。   FIG. 6 shows a portion captured by the first camera 14, the second camera 15, and the third camera 16 in the entire image of the rod-shaped workpiece 10. As shown in the figure, the first camera 14 captures an enlarged image of the portion A1 of the tip processing portion 21 of the rod-shaped workpiece 10 in the entire image of the rod-shaped workpiece 10. In the second camera 15, an enlarged image of the portion A <b> 2 of one contour of the main body straight portion 23 of the rod-shaped workpiece 10 is captured. The third camera 16 captures an enlarged image of the other contour portion A3 of the main body straight portion 23 of the rod-shaped workpiece 10. Note that the magnifications of images picked up by the first camera 14, the second camera 15, and the third camera 16 can be set independently.

次に、図7のフローチャートを参照して、先端同心判定装置1による棒状ワーク10の良否を判定する処理手順について説明する。
棒状ワーク10の良否を判定する場合には、先ず作業者は、検査対象の棒状ワーク10をX−Yステージ11上のワーク回転機構31にチャッキングする(S01)。次に、制御部12は、X−Yステージ11を駆動し、ワーク回転機構31にチャッキングした棒状ワーク10を、所望の位置に設定する(S02)。
Next, with reference to the flowchart of FIG. 7, the process sequence which determines the quality of the rod-shaped workpiece 10 by the tip concentricity determination apparatus 1 is demonstrated.
When judging the quality of the bar-shaped workpiece 10, first, the operator chucks the bar-shaped workpiece 10 to be inspected on the workpiece rotation mechanism 31 on the XY stage 11 (S01). Next, the control unit 12 drives the XY stage 11 and sets the bar-shaped workpiece 10 chucked by the workpiece rotation mechanism 31 to a desired position (S02).

ここで、図8は、棒状ワーク10を所定の位置に設定するための構成である。同図に示すように、上述のワーク撮像部3(鏡筒13)に近接して、低倍率のカメラ装置101(低倍率撮像手段)が設けられている。低倍率のカメラ装置101では、X−Yステージ11(交換移動手段)を利用し、棒状ワーク10を低倍率のカメラ装置101の直下に移動させ、棒状ワーク10の先端加工部21、テーパー補強部22および本体ストレート部23を一括して画像認識する。そして、この認識結果に基づいて、制御部12は、先端加工部21の中心座標および本体ストレート部23の中心座標を求める。すなわち、上記の部分A1の中心座標、および部分A2と部分A3との中心座標を求める。
そして、制御部12は、この部分A1の中心座標に基づいて、X−Yステージ11を駆動し、棒状ワーク10を適宜、X軸方向およびY軸方向に移動させて、部分A1の中心が第1カメラ14の視野中心に来るように設定する。
Here, FIG. 8 shows a configuration for setting the bar-shaped workpiece 10 to a predetermined position. As shown in the figure, a low-magnification camera device 101 (low-magnification imaging means) is provided in the vicinity of the workpiece imaging unit 3 (lens barrel 13) described above. In the low-magnification camera device 101, the XY stage 11 (exchange moving means) is used to move the rod-shaped workpiece 10 directly below the low-magnification camera device 101, and the tip processing portion 21 and the taper reinforcing portion of the rod-shaped workpiece 10 are moved. 22 and the main body straight portion 23 are collectively recognized. And based on this recognition result, the control part 12 calculates | requires the center coordinate of the front-end | tip process part 21, and the center coordinate of the main body straight part 23. FIG. That is, the center coordinates of the part A1 and the center coordinates of the parts A2 and A3 are obtained.
Then, the control unit 12 drives the XY stage 11 based on the center coordinates of the portion A1, moves the rod-shaped workpiece 10 in the X-axis direction and the Y-axis direction as appropriate, and the center of the portion A1 is the first. It sets so that it may come to the visual field center of 1 camera 14.

このようにして、棒状ワーク10が所定の位置に設定されたら、第1カメラ14により先端加工部21を撮像する(S03)。次に再度、X−Yステージ11を駆動し、鏡筒13の中心に、部分A2と部分A3との中心が来るように、棒状ワーク10をX軸方向に移動(前進)させる(S04)。ここで、第2カメラ15により本体ストレート部23の一方の輪郭を撮像する(S05)と同時に、第3カメラ16により本体ストレート部23の他方の輪郭を撮像する(S06)。   In this way, when the rod-shaped workpiece 10 is set at a predetermined position, the tip processing unit 21 is imaged by the first camera 14 (S03). Next, the XY stage 11 is driven again, and the rod-shaped workpiece 10 is moved (advanced) in the X-axis direction so that the center of the part A2 and the part A3 comes to the center of the lens barrel 13 (S04). Here, one contour of the main body straight portion 23 is imaged by the second camera 15 (S05), and at the same time, the other contour of the main body straight portion 23 is imaged by the third camera 16 (S06).

続いて、制御部12は、ステップ:S03で第1カメラ14により撮像された先端加工部21の画像を解析し、この解析結果から先端加工部21の軸心の位置を求める(S07)。また、ステップ:S05で第2カメラ15により撮像された本体ストレート部23の一方の輪郭の画像と、ステップ:S06で撮像された本体ストレート部23の他方の輪郭の画像とを解析し、この解析結果から、本体ストレート部23の軸心の位置を求める(S08)。   Subsequently, the control unit 12 analyzes the image of the tip processing unit 21 captured by the first camera 14 in step S03, and obtains the position of the axis of the tip processing unit 21 from the analysis result (S07). In addition, an image of one contour of the main body straight portion 23 captured by the second camera 15 in step S05 and an image of the other contour of the main body straight portion 23 captured in step S06 are analyzed, and this analysis is performed. From the result, the position of the axial center of the main body straight portion 23 is obtained (S08).

先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが求められたら、先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが合致しているかどうかを判定する(S09)。ここで、棒状ワーク10に偏心が生じていると、先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とは合致しなくなる。ステップ:S09で先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが合致していなければ(S09:No)、その棒状ワーク10は不良と判定して(S10)、処理を終了する。   If the position of the axial center of the tip processed portion 21 and the position of the axial center of the main body straight portion 23 are obtained, is the position of the axial center of the tip processed portion 21 and the position of the axial center of the main body straight portion 23 matched? It is determined whether or not (S09). Here, when the bar-shaped workpiece 10 is eccentric, the position of the axial center of the tip processed portion 21 and the position of the axial center of the main body straight portion 23 do not match. Step: If the position of the axial center of the tip processed portion 21 does not match the position of the axial center of the main body straight portion 23 in S09 (S09: No), it is determined that the rod-shaped workpiece 10 is defective (S10), The process ends.

一方、ステップ:S09で先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが合致していると判定されると(S09:Yes)、ワーク回転機構31により、棒状ワーク10を所定の角度ピッチで回転させる(S11)。そして、棒状ワーク10が1回転したかどうかを判定し(S12)、1回転していなければ(S12:No)、処理をステップS03にリターンする。以下、ステップ:S12で、ワーク回転機構31が1回転したと判定されるまで、ステップ:S03からステップ:S12の処理を繰り返す。   On the other hand, if it is determined in step S09 that the position of the axial center of the tip processing portion 21 matches the position of the axial center of the main body straight portion 23 (S09: Yes), the workpiece rotating mechanism 31 causes the bar-shaped workpiece to be aligned. 10 is rotated at a predetermined angular pitch (S11). Then, it is determined whether or not the rod-shaped workpiece 10 has made one revolution (S12), and if it has not made one revolution (S12: No), the process returns to step S03. Hereinafter, the process from step S03 to step S12 is repeated until it is determined in step S12 that the work rotation mechanism 31 has made one rotation.

これにより、ワーク回転機構31を所定の角度ピッチで回転させ、棒状ワーク10の各回転角毎に、ステップ:S3〜ステップ:S12の処理を行って、先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが合致するかどうかが判断される。この場合、棒状ワーク10に偏心がなければ、どの回転角でも先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが合致することになるが、棒状ワーク10に偏心が生じていると、ある回転角では先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが合致しなくなる。   Thereby, the work rotation mechanism 31 is rotated at a predetermined angular pitch, and the processing of step: S3 to step: S12 is performed for each rotation angle of the rod-shaped work 10, and the position of the shaft center of the tip processing portion 21 and the main body It is determined whether or not the position of the axis of the straight portion 23 matches. In this case, if there is no eccentricity in the rod-shaped workpiece 10, the position of the axial center of the tip processed portion 21 and the position of the axial center of the main body straight portion 23 coincide with each other at any rotation angle. If it occurs, the position of the axial center of the tip processed portion 21 and the position of the axial center of the main body straight portion 23 will not match at a certain rotation angle.

ステップ:S3からステップ:S12の処理を繰り返し、棒状ワーク10をどの角度に設定したときにも、ステップ:S9で先端加工部21の軸心の位置と本体ストレート部23の軸心の位置とが合致していると判定される場合には、ステップ:S12で、ワーク回転機構31が1回転したと判定すると、その棒状ワーク10は良品と判定して(S13)、処理を終了する。   Steps S3 to S12 are repeated, and the position of the axial center of the tip processed portion 21 and the axial center of the main body straight portion 23 is determined in step S9 regardless of the angle at which the rod-shaped workpiece 10 is set. If it is determined that they match, if it is determined in step S12 that the work rotation mechanism 31 has made one rotation, the bar-shaped work 10 is determined to be a non-defective product (S13), and the process ends.

以上のように、実施形態の先端同心判定装置1では、第1ビームスプリッター42および第2ビームスプリッター43を介して、鏡筒13に第1光路P1、第2光路P2および第3光路P3を構成し、第1カメラ14で先端加工部21を撮像し、第2カメラ15で本体ストレート部23の一方の輪郭を撮像し、第3カメラ16で本体ストレート部23の他方の輪郭を撮像するようにしているため、先端加工部21の画像と、本体ストレート部23の両側の輪郭の画像と、単一のワーク撮像部3で撮像することができる。これにより、棒状ワーク10に偏心があるかどうかを、適切に判定することができる。   As described above, in the tip concentricity determination apparatus 1 according to the embodiment, the first optical path P1, the second optical path P2, and the third optical path P3 are configured in the lens barrel 13 via the first beam splitter 42 and the second beam splitter 43. The first camera 14 images the tip processing portion 21, the second camera 15 images one contour of the main body straight portion 23, and the third camera 16 images the other contour of the main body straight portion 23. Therefore, an image of the tip processing portion 21, an image of the contours on both sides of the main body straight portion 23, and a single workpiece imaging unit 3 can be captured. Thereby, it can be determined appropriately whether the rod-shaped workpiece 10 is eccentric.

また、実施形態の先端同心判定装置1では、光学系が1つの鏡筒13内に納められているので、第1カメラ14、第2カメラ15および第3カメラ16毎に、撮像位置やフォーカスを調整する必要がなく、且つ全体として設置スペースを容易に確保できる。これにより、棒状ワーク10の良否の判定のための測定時間を短縮できると共に、高い精度で棒状ワーク10の製品管理を行うことができる。   In the tip concentricity determination device 1 of the embodiment, since the optical system is housed in one lens barrel 13, the imaging position and focus are set for each of the first camera 14, the second camera 15, and the third camera 16. There is no need to adjust, and the installation space can be easily secured as a whole. Thereby, while the measurement time for the quality determination of the rod-shaped workpiece 10 can be shortened, product management of the rod-shaped workpiece 10 can be performed with high accuracy.

本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。   The present invention is not limited to the above-described embodiments, and various modifications and applications can be made without departing from the gist of the present invention.

1:先端同心判定装置、2:ワーク移動部、3:ワーク撮像部、10:棒状ワーク、11:X−Yステージ、12:制御部、13:鏡筒、14:第1カメラ、15:第2カメラ、16:第3カメラ、21:先端加工部、22:テーパー補強部、23:本体ストレート部、31:ワーク回転機構、32:チャック部、41:対物レンズ、42:第1ビームスプリッター、43:第2ビームスプリッター、44:第1接眼レンズ、45:第2接眼レンズ、46:第3接眼レンズ、51:画像処理部、P1:第1光路、P2:第2光路、P3:第3光路 1: tip concentricity determination device, 2: workpiece moving unit, 3: workpiece imaging unit, 10: rod-shaped workpiece, 11: XY stage, 12: control unit, 13: lens barrel, 14: first camera, 15: first 2 cameras, 16: 3rd camera, 21: tip processing part, 22: taper reinforcing part, 23: main body straight part, 31: work rotating mechanism, 32: chuck part, 41: objective lens, 42: first beam splitter, 43: second beam splitter, 44: first eyepiece lens, 45: second eyepiece lens, 46: third eyepiece lens, 51: image processing unit, P1: first optical path, P2: second optical path, P3: third Light path

Claims (5)

先端加工部と、本体ストレート部とを有する棒状ワークを撮像する棒状ワーク撮像装置であって、
対物レンズを有する鏡筒と、
前記鏡筒に連なり、前記先端加工部を撮像する第1カメラと、
前記鏡筒と前記第1カメラとの間の光路に介設され、前記光路に対し相互に逆方向に位置ズレさせて配置した第1ビームスプリッターおよび第2ビームスプリッターと、
前記第1ビームスプリッターを介して、前記本体ストレート部の一方の輪郭を撮像する第2カメラと、
前記第2ビームスプリッターを介して、前記本体ストレート部の他方の輪郭を撮像する第3カメラと、を備えたことを特徴とする棒状ワーク撮像装置。
A rod-shaped workpiece imaging device that images a rod-shaped workpiece having a tip processing portion and a main body straight portion,
A lens barrel having an objective lens;
A first camera that is connected to the lens barrel and images the tip processing portion;
A first beam splitter and a second beam splitter which are interposed in an optical path between the lens barrel and the first camera, and are arranged so as to be shifted in opposite directions with respect to the optical path;
A second camera that images one outline of the main body straight portion via the first beam splitter;
A rod-shaped workpiece imaging device comprising: a third camera that images the other contour of the main body straight portion via the second beam splitter.
前記第1ビームスプリッターは、前記一方の輪郭が前記第2カメラの視野中心に来るように、前記第2ビームスプリッターは、前記他方の輪郭が前記第3カメラの視野中心に来るように、それぞれ位置ズレして配置されていることを特徴とする請求項1に記載の棒状ワーク撮像装置。   The first beam splitter is positioned so that the one contour is at the center of the field of view of the second camera, and the second beam splitter is positioned so that the other contour is at the center of the field of view of the third camera. The rod-like workpiece imaging device according to claim 1, wherein the rod-like workpiece imaging device is arranged in a shifted manner. 請求項1または2に記載の棒状ワーク撮像装置と、
前記棒状ワークを基部でチャックするチャック手段と、
前記棒状ワーク撮像装置に対し、前記チャック手段を介して前記棒状ワークを軸方向に相対的に進退させる進退動手段と、
前記棒状ワーク撮像装置および前記進退動手段を制御し、前記棒状ワークを進退させながら、前記第1カメラにより前記先端加工部を撮像し、前記第2カメラにより前記本体ストレート部の一方の輪郭を撮像し、前記第3カメラにより前記本体ストレート部の一方の輪郭を撮像する、撮像動作を実施する制御手段と、
前記第1カメラの撮像結果と、前記第2カメラおよび前記第3カメラの撮像結果とを画像処理し、前記先端加工部の軸心と前記本体ストレート部の軸心とが合致しているか否かを判定する、判定動作を実施する同軸判定手段と、を備えたことを特徴とする棒状ワークの先端同心判定装置。
A rod-shaped workpiece imaging device according to claim 1 or 2,
Chuck means for chucking the rod-like workpiece at the base;
Advancing / retracting means for relatively moving the rod-shaped workpiece in the axial direction via the chuck means with respect to the rod-shaped workpiece imaging device;
The rod-shaped workpiece imaging device and the advancing / retracting means are controlled to image the tip processing portion with the first camera while the rod-shaped workpiece is advanced and retracted, and one contour of the main body straight portion is imaged with the second camera. And a control means for performing an imaging operation for imaging one contour of the main body straight portion by the third camera;
Whether the imaging result of the first camera and the imaging results of the second camera and the third camera are image-processed, and whether or not the axis of the tip processing part and the axis of the main body straight part match And a coaxial determination means for performing a determination operation.
前記チャック手段を介して、前記棒状ワークを所定の角度ピッチで前記軸心廻りに回転させる回転手段を、更に備え、
前記制御手段は、前記回転手段を更に制御し、前記所定の角度ピッチ毎に前記撮像動作を実施し、
前記同軸判定手段は、全ての前記角度ピッチにおいて、前記判定動作を実施すると共に、全ての前記判定動作において、前記先端加工部の軸心と前記本体ストレート部の軸心とが合致しているときに、当該棒状ワークを良品と判定することを特徴とする請求項3に記載の棒状ワークの先端同心判定装置。
Rotating means for rotating the rod-like workpiece around the axis at a predetermined angular pitch via the chuck means, further comprising:
The control means further controls the rotation means, and performs the imaging operation at every predetermined angle pitch,
The coaxial determination means performs the determination operation at all the angular pitches, and in all the determination operations, the axis of the tip processed portion and the axis of the main body straight portion match. 4. The apparatus according to claim 3, wherein the bar-shaped workpiece is determined as a non-defective product.
前記棒状ワークは、更に前記先端加工部と前記本体ストレート部に連なるテーパー補強部を有し、
前記先端加工部、前記テーパー補強部および前記本体ストレート部を一括して撮像する低倍率撮像手段と、
前記棒状ワーク撮像装置および前記低倍率撮像手段に対し、前記チャック手段を介して前記棒状ワークを相対的に且つ交互に臨ませる交互移動手段と、更に備え、
前記制御手段は、前記低倍率撮像手段および前記交互移動手段を更に制御し、前記低倍率撮像手段の撮像結果に基づいて、前記棒状ワークの前記先端加工部を前記棒状ワーク撮像装置に臨ませることを特徴とする請求項3または4に記載の棒状ワークの先端同心判定装置。
The rod-shaped workpiece further has a taper reinforcing portion connected to the tip processed portion and the main body straight portion,
Low-magnification imaging means for collectively imaging the tip processed portion, the taper reinforcing portion, and the main body straight portion;
The bar-shaped workpiece imaging device and the low-magnification imaging unit further include an alternating movement unit that causes the bar-shaped workpiece to face relatively and alternately via the chuck unit, and
The control means further controls the low-magnification imaging means and the alternating movement means, and causes the tip processed portion of the rod-shaped workpiece to face the rod-shaped workpiece imaging device based on the imaging result of the low-magnification imaging means. The tip concentricity determination apparatus of the rod-shaped workpiece of Claim 3 or 4 characterized by these.
JP2011255364A 2011-11-22 2011-11-22 Bar-shaped workpiece imaging device and rod-shaped workpiece tip concentricity determination device Expired - Fee Related JP5838757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011255364A JP5838757B2 (en) 2011-11-22 2011-11-22 Bar-shaped workpiece imaging device and rod-shaped workpiece tip concentricity determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011255364A JP5838757B2 (en) 2011-11-22 2011-11-22 Bar-shaped workpiece imaging device and rod-shaped workpiece tip concentricity determination device

Publications (2)

Publication Number Publication Date
JP2013110648A true JP2013110648A (en) 2013-06-06
JP5838757B2 JP5838757B2 (en) 2016-01-06

Family

ID=48706987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011255364A Expired - Fee Related JP5838757B2 (en) 2011-11-22 2011-11-22 Bar-shaped workpiece imaging device and rod-shaped workpiece tip concentricity determination device

Country Status (1)

Country Link
JP (1) JP5838757B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110243A (en) * 1987-10-23 1989-04-26 Hitachi Vlsi Eng Corp Appearance inspecting device
JPH0490284A (en) * 1990-08-02 1992-03-24 Kyodo Printing Co Ltd Image pickup element device
JP2005292047A (en) * 2004-04-02 2005-10-20 Sony Corp X-ray tomographic imaging device, and x-ray tomographic imaging method
JP2008046010A (en) * 2006-08-17 2008-02-28 Seiko Epson Corp Contour measurement method of round bar-shaped work
JP2008306039A (en) * 2007-06-08 2008-12-18 Shinkawa Ltd Imaging device for bonding apparatus and imaging method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110243A (en) * 1987-10-23 1989-04-26 Hitachi Vlsi Eng Corp Appearance inspecting device
JPH0490284A (en) * 1990-08-02 1992-03-24 Kyodo Printing Co Ltd Image pickup element device
JP2005292047A (en) * 2004-04-02 2005-10-20 Sony Corp X-ray tomographic imaging device, and x-ray tomographic imaging method
JP2008046010A (en) * 2006-08-17 2008-02-28 Seiko Epson Corp Contour measurement method of round bar-shaped work
JP2008306039A (en) * 2007-06-08 2008-12-18 Shinkawa Ltd Imaging device for bonding apparatus and imaging method

Also Published As

Publication number Publication date
JP5838757B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP2016093872A (en) Device and method of automatically setting tool correction value of machine tool
JP6297283B2 (en) Automatic setting device and automatic setting method for tool offset value of machine tool
US9870961B2 (en) Wafer processing method
WO2014132845A1 (en) Tool shape measurement method and tool shape measurement device
TW201630287A (en) Laser processing apparatus
WO2014109120A1 (en) Three-dimensional laser processing machine
JP5896844B2 (en) Machine tool with workpiece diameter measurement function
CN102110587B (en) Consumption managing method of cutting blade
JP4697843B2 (en) Alignment device and processing device
JP2016132039A (en) Method of and apparatus for detection of tool tip and device for setting tool correction value
CN110783245B (en) Alignment method
JP7088771B2 (en) Alignment method
JP5200345B2 (en) Clamp mechanism, measuring device
JP2000074644A (en) Measuring apparatus of rod type cutting tool and measuring method of drill which uses the measuring apparatus
CN102189333A (en) Laser cutting machine with CCD automatic focusing system
CN111408835B (en) Rapid alignment method and alignment system for laser focal plane and machining datum
JP5838757B2 (en) Bar-shaped workpiece imaging device and rod-shaped workpiece tip concentricity determination device
JP4671889B2 (en) Drilling device and drilling method
JP6224462B2 (en) Method for detecting operating characteristics of machining feed mechanism in laser machining apparatus and laser machining apparatus
JP2008046010A (en) Contour measurement method of round bar-shaped work
KR102398139B1 (en) Alignment device of robot coordinate system and specimen coordinate system and coordinate system alignment method using the same
JP5389613B2 (en) Method for managing consumption of cutting blade in cutting apparatus
JP6397776B2 (en) Calibration jig, calibration method, and laser processing machine
JP2006202890A (en) Cutting device
JP2022187184A (en) Machine tool

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5838757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees