JP2013110260A - Wire power generation element and wire power generation system - Google Patents

Wire power generation element and wire power generation system Download PDF

Info

Publication number
JP2013110260A
JP2013110260A JP2011253838A JP2011253838A JP2013110260A JP 2013110260 A JP2013110260 A JP 2013110260A JP 2011253838 A JP2011253838 A JP 2011253838A JP 2011253838 A JP2011253838 A JP 2011253838A JP 2013110260 A JP2013110260 A JP 2013110260A
Authority
JP
Japan
Prior art keywords
power generation
electromotive force
wire
generation element
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011253838A
Other languages
Japanese (ja)
Other versions
JP5783496B2 (en
Inventor
Taro Fujita
太郎 藤田
Kenichi Sakakura
賢一 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011253838A priority Critical patent/JP5783496B2/en
Publication of JP2013110260A publication Critical patent/JP2013110260A/en
Application granted granted Critical
Publication of JP5783496B2 publication Critical patent/JP5783496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation element and a power generation system in which a thermal electromotive force and an inductive electromotive force are utilized and an electromotive force similar to a conventional one can be obtained with smaller scale.SOLUTION: A wire power generation element is composed of a wire 1 obtained by insulation-coating a metal line 1 and a wire 2 obtained by insulation-coating a metal line 2 constituting the thermocouple by joint with the metal line 1. The metal line 1 and the metal line 2 are alternately connected in series, the metal line 1 and the metal line 2 joined to each other are formed into a coil, and two or more of wires 1 and two or more of wires 2 are formed into a twisted pair, respectively. The wire power generation element is used in a wire power generation system.

Description

本発明は、水中と水上、地中と地表間等の温度差を利用した熱起電力による発電及び誘導起電力による発電をともに行うことができるハイブリッド型の電線発電素子、並びにこの電線発電素子を含む電線発電システムに関する。   The present invention relates to a hybrid electric wire power generating element capable of performing both power generation by thermoelectromotive force and electric power generation by induced electromotive force using a temperature difference between underwater and on the water, between the ground and the surface, and the like. Including electric wire power generation system.

電気を消費する箇所、地域それぞれの近傍で小規模の発電を行うことは、送電設備を不要とし送電ロスもない発電方法として近年注目されている。そして、この小規模、分散型の発電方法として、自然界や設置される環境に存在する温度差を利用し、いわゆるゼーベック効果、すなわち、異種金属の接合部間に温度差があると電位差が発生するとの熱電効果を利用して、Wオーダー又はそれ以下の発電を行う方法が提案されている。   In recent years, small-scale power generation in the vicinity of areas where electricity is consumed and in each region has attracted attention as a power generation method that eliminates the need for power transmission facilities and causes no transmission loss. And as this small-scale, distributed power generation method, using the temperature difference existing in the natural world and the environment where it is installed, the so-called Seebeck effect, that is, the potential difference occurs when there is a temperature difference between the junctions of dissimilar metals There has been proposed a method of generating power of W order or less using the thermoelectric effect.

例えば、特許文献1には、地表や地中にある温度差を利用して発電する熱電対発電装置が開示されている。この発電装置は、路面、構築物の屋上面、露地面と地中上層部の温度差から発電する地表熱電対発電機と、地中上層部と地中深層部の温度差から発電する地中熱電対発電機とを有するものであり、未利用熱エネルギーを使い二酸化炭素の排出がない安定した発電を目的としている。   For example, Patent Literature 1 discloses a thermocouple power generator that generates power using a temperature difference on the ground surface or in the ground. This power generator is composed of a surface thermocouple generator that generates electricity from the temperature difference between the road surface, the roof of the structure, the open ground and the upper ground layer, and a subsurface thermoelectric generator that generates power from the temperature difference between the upper ground layer and the deep underground layer. It has a counter-generator, and aims at stable power generation that uses unused thermal energy and does not emit carbon dioxide.

しかし、ゼーベック効果により得られる起電力は、現在知られている金属の組合せでは、接合部間の温度差が30℃程度であってもせいぜい1mV程度である。従って、特許文献1に記載されているような熱電対発電装置では、多くの用途で求められる起電力は得られない。また、設置される場所や時間帯等によっては、必ずしも充分な温度差が得られるとは限らない。   However, the electromotive force obtained by the Seebeck effect is about 1 mV at most even if the temperature difference between the junctions is about 30 ° C. in the currently known combination of metals. Therefore, in the thermocouple power generator as described in Patent Document 1, the electromotive force required for many applications cannot be obtained. In addition, a sufficient temperature difference is not always obtained depending on the installation location and time zone.

そこで、ゼーベック効果による熱起電力と他の起電力と組合せたハイブリッド型の発電装置が提案されている。例えば特許文献2には、他の起電力として誘導起電力を利用するハイブリッド電線発電素子及び電線発電システムが開示されている。この発電素子、発電システムでは、異種金属線からなる多数の熱電対が交互に直列に接続されており、接合部を交互に異なる温度状態に設定してゼーベック効果による発電をするとともに、熱電対の要素数を増し、それらを直列に接続することにより起電力の増大を図っている。   In view of this, a hybrid-type power generation device that combines a thermoelectromotive force by the Seebeck effect and another electromotive force has been proposed. For example, Patent Literature 2 discloses a hybrid electric wire power generation element and an electric wire power generation system that use an induced electromotive force as another electromotive force. In this power generation element and power generation system, a large number of thermocouples made of dissimilar metal wires are alternately connected in series, and power is generated by the Seebeck effect by alternately setting the joints at different temperature states. The electromotive force is increased by increasing the number of elements and connecting them in series.

さらに、熱電対をコイル状に連結して、熱電対のコイルを通る磁束の変化により生じる誘導起電力による発電も行う。そして、磁束の変化が得られる場所として、家庭用電源コード、水道メーター、窓のサッシ等が挙げられ、これらの箇所に設置することにより、ゼーベック効果による起電力と誘導起電力がともに得られると記載されている(特許文献2の図1、図2、図5、段落0029、0061、0063、0076、0084、0092等)。   Furthermore, the thermocouple is connected in a coil shape, and power generation is also performed by an induced electromotive force generated by a change in magnetic flux passing through the thermocouple coil. And as a place where the change of magnetic flux can be obtained, household power cord, water meter, window sash, etc. can be mentioned, and when installed in these places, both electromotive force and induced electromotive force due to Seebeck effect can be obtained (FIG. 1, FIG. 2, FIG. 5, paragraphs 0029, 0061, 0063, 0076, 0084, 0092, etc. of Patent Document 2).

特開2008−271666号公報JP 2008-271666 A 特開2007−228719号公報JP 2007-228719 A

近年、小規模、分散型の発電素子、発電システムについてのユーザの要求は高まっており、起電力の増大とともに、より小規模な発電素子、発電システムが望まれている。しかし、前記のような、ゼーベック効果による起電力と誘導起電力を利用した従来の発電素子、発電システムは、この近年のユーザの要求を満たすものではなかった。例えば、3℃の温度差でボルトのオーダーの起電力を得るためには、2500対程度の熱電対を直列に接続する必要があり、素子の小規模化を困難にしていた。又、特許文献2に記載されているような設置場所で得られる磁束の変化により大きな誘導起電力を得る場合も、同様に、熱電対の要素数を増やす必要があり、素子の小規模化を困難にしていた。   In recent years, user demands for small-scale, distributed power generation elements and power generation systems have increased, and smaller power generation elements and power generation systems are desired as electromotive forces increase. However, the conventional power generation element and power generation system using the electromotive force and induced electromotive force due to the Seebeck effect as described above do not satisfy the demands of users in recent years. For example, in order to obtain an electromotive force on the order of volts at a temperature difference of 3 ° C., it is necessary to connect about 2500 thermocouples in series, which makes it difficult to reduce the scale of the element. In addition, when obtaining a large induced electromotive force due to a change in magnetic flux obtained at an installation location as described in Patent Document 2, it is necessary to increase the number of elements of the thermocouple in the same manner, thereby reducing the size of the element. It was difficult.

本発明は、熱起電力と誘導起電力を利用した発電素子、発電システムであって、より小規模で従来と同様な起電力が得られる発電素子、発電システムを提供することを課題とする。   An object of the present invention is to provide a power generation element and a power generation system that use a thermoelectromotive force and an induced electromotive force, and that can generate an electromotive force similar to the conventional one on a smaller scale.

本発明者は、上記の課題を解決するために鋭意検討した結果、異種金属を交互に直列に接続してなり、ゼーベック効果による熱起電力と磁界の変動による誘導起電力を利用するハイブリッド型の電線発電素子、電線発電システムにおいて、熱電対を構成する金属(半導体も含む)線を、同種の金属の線がツイストペア(撚り対線)を形成する様に配置することにより、同じ大きさの装置内により多数の熱電対素子を収納し得ること、従って、同じ大きさの装置であっても、より大きな熱起電力と誘導起電力が得られることを見出し、本発明を完成した。すなわち、前記の課題は以下に示す各請求項の構成により解決することができる。   As a result of intensive studies to solve the above problems, the inventor of the present invention is a hybrid type in which dissimilar metals are alternately connected in series, and uses a thermoelectromotive force due to the Seebeck effect and an induced electromotive force due to magnetic field fluctuations. In wire electric power generation elements and electric wire power generation systems, by arranging metal (including semiconductor) wires that make up thermocouples so that the same type of metal wires form twisted pairs (twisted pairs), It has been found that a larger number of thermocouple elements can be accommodated therein, and therefore, a larger thermoelectromotive force and induced electromotive force can be obtained even with a device of the same size, and the present invention has been completed. That is, the said subject can be solved by the structure of each claim shown below.

請求項1に記載の発明は、金属線1を絶縁被覆した電線1、及び金属線1との接合により熱電対を構成する金属線2を絶縁被覆した電線2からなり、金属線1及び金属線2が交互に直列に接合され、接合された金属線1及び金属線2がコイルを形成し、かつ2本以上の電線1及び2本以上の電線2がそれぞれツイストペアを形成していることを特徴とする電線発電素子である。   The invention according to claim 1 is composed of an electric wire 1 in which a metal wire 1 is insulation-coated and an electric wire 2 in which a metal wire 2 constituting a thermocouple is joined by being joined to the metal wire 1, and the metal wire 1 and the metal wire 2 are alternately joined in series, the joined metal wires 1 and 2 form a coil, and two or more wires 1 and two or more wires 2 form a twisted pair, respectively. It is an electric wire power generation element.

ここで「熱電対を構成する」とは、異種の金属線間が接合され、隣接する接合部が、異なる温度状態に設定されてゼーベック効果による熱起電力を発生することを意味する。すなわち、金属線2は、金属線1と接合されたとき、ゼーベック効果による熱起電力が発生する金属から選ばれる。   Here, “constituting a thermocouple” means that dissimilar metal wires are joined, and adjacent joints are set to different temperature states to generate thermoelectromotive force due to the Seebeck effect. That is, the metal wire 2 is selected from metals that generate thermoelectromotive force due to the Seebeck effect when bonded to the metal wire 1.

この電線発電素子では、金属線1及び金属線2が交互に直列に接合されている。従って、金属線1及びそれと接合する金属線2の一対の組合せ(熱電対の要素)数を増やすことにより起電力を増大することができる。又、金属線1及び金属線2が交互に直列に接合された電線はコイルを形成している。従って、このコイルを通る磁束が変化すると、誘導起電力を生じる。   In the electric wire power generation element, the metal wires 1 and the metal wires 2 are alternately joined in series. Therefore, the electromotive force can be increased by increasing the number of combinations (thermocouple elements) of the metal wire 1 and the metal wire 2 joined thereto. Moreover, the electric wire in which the metal wire 1 and the metal wire 2 are alternately joined in series forms a coil. Therefore, when the magnetic flux passing through this coil changes, an induced electromotive force is generated.

この電線発電素子は、2本以上の電線1及び2本以上の電線2がそれぞれツイストペアを形成することを特徴とする。ツイストペアを形成するとは、2本以上の電線が、互いに巻きつくように撚られて一体化すること(2本の場合はペアを形成すること)を意味する。2種の金属線が何れもツイストペアを形成しているので、同じ大きさの装置内により多数の熱電対要素を収納することが可能であり、熱起電力及び誘導起電力いずれについてもより大きな起電力が得られる。又は、同じ起電力が、よりコンパクト(小規模)な装置により得られる。   This electric wire power generation element is characterized in that two or more electric wires 1 and two or more electric wires 2 each form a twisted pair. Forming a twisted pair means that two or more electric wires are twisted and integrated so as to be wound together (in the case of two, a pair is formed). Since both types of metal wires form a twisted pair, a large number of thermocouple elements can be accommodated in an apparatus of the same size, and a larger electromotive force is generated for both the thermoelectromotive force and the induced electromotive force. Electric power is obtained. Alternatively, the same electromotive force can be obtained by a more compact (small scale) device.

なお、ツイストペアを形成する金属線はそれぞれ絶縁性の樹脂等で絶縁被覆されているので金属線間には電流は流れない。そして、ツイストペアを形成するので、各金属線は撚られてコイル状となっており、このコイルを通る磁束が変化することによっても誘導起電力が発生する。従って、より大きな起電力が得られる。   Since the metal wires forming the twisted pair are each covered with an insulating resin or the like, no current flows between the metal wires. Since a twisted pair is formed, each metal wire is twisted into a coil shape, and an induced electromotive force is also generated when the magnetic flux passing through the coil changes. Therefore, a larger electromotive force can be obtained.

請求項2に記載の発明は、請求項1に記載の電線発電素子及び起電力処理部を有し、前記起電力処理部は、前記電線発電素子で生じる熱起電力を処理する第1処理回路及び誘導起電力を処理する第2処理回路を有することを特長とする電線発電システムである。この起電力処理部は、特許文献2に記載の電源部30と同様な処理装置であり、熱起電力を平滑化する機能を有する回路及び誘導起電力を整流し平滑化する機能を有する回路を含む装置である。   Invention of Claim 2 has the electric wire electric power generating element and electromotive force process part of Claim 1, and the said electromotive force process part processes the thermoelectromotive force which arises in the said electric wire electric power generation element. And a second power generation system for processing the induced electromotive force. This electromotive force processing unit is a processing device similar to the power supply unit 30 described in Patent Document 2, and includes a circuit having a function of smoothing the thermoelectromotive force and a circuit having a function of rectifying and smoothing the induced electromotive force. It is a device including.

すなわち、第1処理回路は、熱起電力による出力を平滑化する平滑化回路を有し、さらに平滑化回路の出力を所定の電圧に昇圧する昇圧回路やその出力を充電するための充電手段を有していてもよい。第2処理回路は、誘導起電力による交流の出力成分を整流するための整流回路と前記整流回路の出力を平滑化する平滑化回路を有し、さらに平滑化回路の出力を所定の電圧に昇圧する昇圧回路やその出力を充電するための充電手段を有していてもよい。   That is, the first processing circuit has a smoothing circuit that smoothes the output due to the thermoelectromotive force, and further includes a boosting circuit that boosts the output of the smoothing circuit to a predetermined voltage and a charging means for charging the output. You may have. The second processing circuit has a rectifying circuit for rectifying an AC output component caused by the induced electromotive force and a smoothing circuit for smoothing the output of the rectifying circuit, and further boosts the output of the smoothing circuit to a predetermined voltage. There may be provided a boosting circuit for charging and a charging means for charging the output thereof.

本請求項の電線発電システムは、請求項1に記載の電線発電素子を用いているので、同じ大きさのシステムであれば従来の電線発電システムより大きな起電力が得られる。又は、同じ大きさの起電力をより小規模のシステムで得られる。従って、優れた小規模、分散型の電線発電システムとなる。   Since the electric wire power generation system according to the present invention uses the electric wire power generation element according to the first aspect, an electromotive force larger than that of the conventional electric wire power generation system can be obtained if the system has the same size. Or, an electromotive force of the same magnitude can be obtained in a smaller system. Therefore, it becomes an excellent small-scale, distributed electric power generation system.

本発明では、熱起電力と誘導電流を利用するハイブリッド型の発電装置において、同じ大きさの装置内に、より多数の熱電対素子を収納することが可能となりより高い起電力が得られる。又は、同じ大きさの起電力を、より小規模の装置で得ることができる。   In the present invention, in a hybrid power generation device that uses thermoelectromotive force and induced current, a larger number of thermocouple elements can be accommodated in a device of the same size, and higher electromotive force can be obtained. Alternatively, an electromotive force of the same magnitude can be obtained with a smaller device.

本発明の電線発電素子の一例の要部の構成を示す模式図である。It is a schematic diagram which shows the structure of the principal part of an example of the electric wire electric power generating element of this invention. 本発明の電線発電素子による起電力の時間変化を模式的に示すグラフ図である。It is a graph which shows typically the time change of the electromotive force by the electric wire electric power generating element of this invention. 本発明の電線発電システムの回路構成を示す図である。It is a figure which shows the circuit structure of the electric wire electric power generation system of this invention.

以下、本発明の実施の形態を図に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

本発明の発電素子を構成する2種の金属線の種類やその組合せは、ゼーベック効果を生じさせる温度環境と誘導起電力を発揮させる外部磁界等を考慮して最適な組合せが選択される。例えば、家庭内や屋外、温帯における地上と地表等の通常の使用環境であれば、起電力や経済性の観点から、クロメル(Ni−Cr系合金)とナイシル(Ni−Si系合金)、鉄(Fe系)とコンスタンタン(Cu−Ni系合金)、Cu−コンスタンタン等を挙げることができる。   As the types and combinations of the two types of metal wires constituting the power generating element of the present invention, an optimal combination is selected in consideration of the temperature environment that causes the Seebeck effect and the external magnetic field that exerts the induced electromotive force. For example, in normal usage environments such as the ground and the ground surface in homes, outdoors, and temperate zones, from the viewpoint of electromotive force and economy, chromel (Ni-Cr alloy), nisil (Ni-Si alloy), iron (Fe-based), constantan (Cu-Ni-based alloy), Cu-constantan, and the like.

金属線1及び金属線2を絶縁被覆する絶縁性の樹脂としては、エナメル線の被覆等に通常用いられる樹脂、ポリウレタン、ポリイミド等を用いることができる。   As an insulating resin that insulates and coats the metal wire 1 and the metal wire 2, resins, polyurethane, polyimide, and the like that are usually used for enamel wire coating or the like can be used.

ツイストペアの撚りのピッチは、接合部間の距離、金属線の直径、設置場所の環境等によりその好ましい範囲は変動し、前記の条件等を考慮して最適なピッチが選択される。。   The preferred range of twisted twisted pair pitch varies depending on the distance between the joints, the diameter of the metal wire, the environment of the installation location, and the like, and the optimum pitch is selected in consideration of the above conditions and the like. .

(1)次に、本発明の電線発電素子の一例の形態を、その要部の構成を示す図面を参照しつつ説明する。図1は、本発明の電線発電素子の一例の要部の構成を示す模式図である。 (1) Next, the form of an example of the electric wire power generation element of the present invention will be described with reference to the drawings showing the configuration of the main part thereof. FIG. 1 is a schematic diagram showing a configuration of a main part of an example of the electric wire power generation element of the present invention.

図1において、破線で表される10は絶縁被覆されたCu(電気銅)線(金属線1)であり、実線で表される20は絶縁被覆されたコンスタンタン(Cu55w%、Ni45w%)線(金属線2)であり、19は正極側端子であり、29は負極側端子である。12はCu線10とコンスタンタン線20の高温側接合部であり、21はCu線10とコンスタンタン線20の低温側接合部であり、これらの接合部では、Cu線10とコンスタンタン線20の絶縁被覆は除去され、Cu線10とコンスタンタン線20が接合されている。   In FIG. 1, 10 indicated by a broken line is an insulation-coated Cu (electrocopper) wire (metal wire 1), and 20 indicated by a solid line is an insulation-coated constantan (Cu55w%, Ni45w%) wire ( The metal wire 2), 19 is a positive terminal, and 29 is a negative terminal. Reference numeral 12 denotes a high-temperature side junction between the Cu wire 10 and the constantan wire 20, and 21 denotes a low-temperature side junction between the Cu wire 10 and the constantan wire 20. In these junctions, the insulating coating of the Cu wire 10 and the constantan wire 20 is provided. Is removed, and the Cu wire 10 and the constantan wire 20 are joined.

図1に示す様に、Cu線10とコンスタンタン線20は交互に接続されており、複数の熱電対要素が直列に連結されて、電線発電素子が形成されている。電線発電素子による発電が行われるとき、高温側接合部12は高温の環境に設置され、低温側接合部21は低温の環境に設置される。図1中の点線が囲まれた領域Tは、温度T1の高温部を表わし、同Tは、温度T2の低温部を表わす。T1とT2の温度差を利用したゼーベック効果により高温側接合部12と低温側接合部21間に電位差が生じ、図中の矢印Aで示す電流が生じる。なお、図1の例では熱電対要素の数は、高温側に3箇所、低温側に4箇所しか示していないが、これは図の煩雑化を防ぐためであり、通常の使用環境や用途の場合、大きな熱起電力を得るため、直列に連結される熱電対要素の数ははるかに多く、数百〜数千に達する場合が多い。 As shown in FIG. 1, the Cu wires 10 and the constantan wires 20 are alternately connected, and a plurality of thermocouple elements are connected in series to form a wire power generating element. When power generation by the electric wire power generation element is performed, the high temperature side joint portion 12 is installed in a high temperature environment, and the low temperature side joint portion 21 is installed in a low temperature environment. Region T 1 where the dotted line is enclosed in Figure 1 represents the high-temperature portion of the temperature T1, the T 2 are represent the low temperature section of the temperature T2. Due to the Seebeck effect using the temperature difference between T1 and T2, a potential difference is generated between the high temperature side junction 12 and the low temperature side junction 21 and a current indicated by an arrow A in the figure is generated. In the example of FIG. 1, only three thermocouple elements are shown on the high temperature side and four on the low temperature side, but this is to prevent complication of the figure, and the normal use environment and application In many cases, the number of thermocouple elements connected in series is much larger, reaching hundreds to thousands, in order to obtain a large thermoelectromotive force.

又、図1に示す様に、2本のCu線10と2本のコンスタンタン線20は、互いに巻きつくように撚られてツイストペアを形成している。この電線発電素子を、図1中の点線Bで表わされる磁束が変化している環境に置けば、ツイストペア中の各金属線はコイル状に形成されているので、各金属線中にこの磁束の変化による誘導起電力が生じる。前記のように、通常の場合、熱電対要素の数は数百〜数千に達し、従って多数のツイストペアが直列に連結しているので、大きな誘導起電力を発生することも可能である。   Further, as shown in FIG. 1, the two Cu wires 10 and the two constantan wires 20 are twisted so as to be wound around each other to form a twisted pair. If this electric wire power generation element is placed in an environment where the magnetic flux represented by the dotted line B in FIG. 1 is changing, each metal wire in the twisted pair is formed in a coil shape. An induced electromotive force is generated due to the change. As described above, in the normal case, the number of thermocouple elements reaches several hundred to several thousand, so that a large number of twisted pairs are connected in series, so that a large induced electromotive force can be generated.

さらに、Cu線10からなるツイストペアは、図1において紙面の上方に突出するように設けられており、コンスタンタン線20からなるツイストペアは、図1において紙面の下方に突出するように設けられており、Cu線10からなるツイストペアとコンスタンタン線20からなるツイストペアが連結してコイルが形成されている。そして、この電線発電素子を、図1中の矢印Cで表わされる磁束が生じかつこの磁束が変動している環境に置けば、各金属線中にこの磁束の変化による誘導起電力が生じる。   Further, the twisted pair made of Cu wire 10 is provided so as to protrude above the paper surface in FIG. 1, and the twisted pair made of constantan wire 20 is provided so as to protrude below the paper surface in FIG. A twisted pair made of the Cu wire 10 and a twisted pair made of the constantan wire 20 are connected to form a coil. When this electric wire power generation element is placed in an environment where a magnetic flux represented by an arrow C in FIG. 1 is generated and this magnetic flux fluctuates, an induced electromotive force is generated in each metal wire due to the change of the magnetic flux.

なお、設置される箇所の磁界の如何によっては、Cu線10からなるツイストペアとコンスタンタン線20からなるツイストペアを連結して形成するコイルの内部に強磁性体をはめ込むことにより、誘導起電力の増加を図ることも可能である。   In addition, depending on the magnetic field of the installation location, the induction electromotive force can be increased by inserting a ferromagnetic material in the coil formed by connecting the twisted pair composed of the Cu wire 10 and the twisted pair composed of the constantan wire 20. It is also possible to plan.

このようにこの電線発電素子によれば、ゼーベック効果による熱起電力及び種々の方向の磁束の変化による誘導起電力が生じ、これらを利用しているので、従来の電線発電素子に比べて大きな起電力を得ることができる。   As described above, according to this electric wire power generation element, a thermoelectromotive force due to the Seebeck effect and an induced electromotive force due to changes in magnetic flux in various directions are generated, and since these are used, a large electromotive force is generated as compared with the conventional electric power generation element. Electric power can be obtained.

(2)続いて、本発明の電線発電素子の一例((1)にて説明した電線発電素子の構成)による発電の様子を、図面を参照しつつ説明する。図2は、この電線発電素子による起電力の時間変化を模式的に示すグラフである。グラフの縦軸は起電力(発電電圧V)を示し、横軸は時間の経過を表わす。 (2) Next, the state of power generation by an example of the electric wire power generation element of the present invention (configuration of the electric power generation element described in (1)) will be described with reference to the drawings. FIG. 2 is a graph schematically showing the time change of the electromotive force by the electric wire power generation element. The vertical axis of the graph represents electromotive force (generated voltage V), and the horizontal axis represents the passage of time.

図2中のVは、ゼーベック効果で生じた熱起電力を表わす。一般的には電線発電素子の熱電対の接点間の温度差の変化は穏やかであるため、図2に示されるようにゼーベック効果で生じた熱起電力Vは略一定である。即ち、一定電圧下での直流である。 V 1 in FIG. 2 represents a thermoelectromotive force generated by the Seebeck effect. In general, the change in temperature difference between the thermocouple contacts of the electric power generation element is gentle, so that the thermoelectromotive force V 1 generated by the Seebeck effect is substantially constant as shown in FIG. That is, it is a direct current under a constant voltage.

一方、誘導起電力は、磁束の変化、すなわち、磁界の強度や向きの変化に応じて電圧や向きが変化する。図2中のVはこの誘導起電力を表わすが、図2に示されるように、電圧や向きが変化する交流である。従って、熱起電力及び誘導起電力を合成した起電力は、図2の実線で示す波型のように変化する。 On the other hand, the induced electromotive force changes in voltage and direction according to changes in magnetic flux, that is, changes in magnetic field strength and direction. V 2 in FIG. 2 represents this induced electromotive force, but as shown in FIG. 2, it is an alternating current whose voltage and direction change. Therefore, the electromotive force obtained by synthesizing the thermoelectromotive force and the induced electromotive force changes like a wave shape indicated by a solid line in FIG.

実際には、高温側T1と低温側のT2の温度差、コイルの大きさやその内部を通過する外部磁界の方向や強度の変化等の如何によって、VとVの絶対値そのものやその大きさが変化する。そこで、これらの変化による影響を緩和するために、本発明の電線発電システムでは平滑化回路が設けられている。 Actually, the absolute values of V 1 and V 2 themselves and their magnitudes depend on the temperature difference between the high temperature side T1 and the low temperature side T2, the size of the coil, the direction of the external magnetic field passing through it, and the change in strength, etc. Changes. Therefore, in order to mitigate the effects of these changes, the electric wire power generation system of the present invention is provided with a smoothing circuit.

(3)次に、本発明の電線発電素子を用いた電線発電システムの1例の形態を、図面を参照しつつ説明する。 (3) Next, an example of a wire power generation system using the wire power generation element of the present invention will be described with reference to the drawings.

図3は、本発明の電線発電素子を用いた電線発電システムの構成を示す図である。図3において、100は本発明の電線発電素子である。電線発電素子100としては、(1)にて説明した電線発電素子等を使用することができる。   FIG. 3 is a diagram showing a configuration of a wire power generation system using the wire power generation element of the present invention. In FIG. 3, 100 is the electric wire power generation element of this invention. As the electric wire power generation element 100, the electric wire power generation element described in (1) can be used.

図3において、200は起電力処理部である。又、211は熱起電力の平滑化回路THであり、212は誘導起電力の平滑化回路IDであり、220は整流回路であり、240は充電手段であり、300は電力使用機器である。   In FIG. 3, reference numeral 200 denotes an electromotive force processing unit. Reference numeral 211 is a thermoelectromotive force smoothing circuit TH, 212 is an induced electromotive force smoothing circuit ID, 220 is a rectifier circuit, 240 is a charging means, and 300 is a power using device.

電線発電素子100の熱起電力による出力は、平滑化回路TH211により平滑化されて、充電手段240を充電する。電線発電素子100の誘導起電力による出力は、交流であるので、整流回路220により直流に変換された後、平滑化回路ID212により平滑化されて、充電手段240を充電する。すなわち、平滑化回路TH211は、電線発電素子で生じる熱起電力を処理する第1処理回路を構成し、整流回路220及び平滑化回路ID212は、電線発電素子で生じる誘導起電力を処理する第2処理回路を構成する。   The output by the thermoelectromotive force of the electric wire power generation element 100 is smoothed by the smoothing circuit TH211 and charges the charging means 240. Since the output by the induced electromotive force of the electric wire power generation element 100 is alternating current, it is converted into direct current by the rectifier circuit 220 and then smoothed by the smoothing circuit ID 212 to charge the charging means 240. That is, the smoothing circuit TH211 constitutes a first processing circuit for processing the thermoelectromotive force generated in the electric wire power generation element, and the rectification circuit 220 and the smoothing circuit ID 212 are the second processing for processing the induced electromotive force generated in the electric wire power generation element. A processing circuit is configured.

充電手段240は、リチウム電池等の2次電池を有し、さらに平滑化された熱起電力や誘導起電力を2次電池の充電可能な電圧に昇圧するための手段、又充電を制御するための手段として、昇圧回路、充電回路、コンデンサー、充電制御回路等を有していてもよい。   The charging means 240 has a secondary battery such as a lithium battery, and further, means for boosting the smoothed thermoelectromotive force and induced electromotive force to a rechargeable voltage of the secondary battery, and for controlling charging. As the means, a booster circuit, a charging circuit, a capacitor, a charging control circuit, and the like may be provided.

図3の電線発電システムでは、電線発電素子100で発電された電力は、充電手段240に蓄電された後、充電手段240から電力使用機器300に供給される。電線発電素子100で発電された電力を直接電力使用機器300に供給する方法も考えられるが、充電手段240に蓄電した後供給することにより、安定した電圧で電力を供給することができる。   In the electric wire power generation system of FIG. 3, the electric power generated by the electric wire power generation element 100 is stored in the charging unit 240 and then supplied from the charging unit 240 to the power using device 300. Although the method of supplying the electric power generated with the electric wire electric power generation element 100 directly to the electric power usage apparatus 300 is also considered, electric power can be supplied with a stable voltage by supplying the electric power after storing it in the charging means 240.

(4)続いて、前記の電線発電システムの利用例、特に設置個所について説明する。 (4) Next, a usage example of the electric wire power generation system, particularly an installation location will be described.

本発明の電線発電システムは、特許文献2の請求項9〜11に記載の設置方法と同様に設置することができる。例えば、電線発電素子100を、矩形のコイルの状態に成形し、その対向する辺を、異方向に交流電流が流れる一対の平行導線の一方の導線の近傍で並走するように配置するとともに、電線発電素子100の温接合部を前記平行導線の一方のジュール熱による発熱がある当該導線に密着させ、冷接合部を前記平行導線から断熱材で隔離して外気温に触れるように設置して、熱起電力とともに誘導起電力を得る方法も考えられる。具体的な設置場所としては、家庭用交流電源の電源アダプターが考えられる。   The electric wire power generation system of the present invention can be installed in the same manner as the installation method described in claims 9 to 11 of Patent Document 2. For example, the electric wire power generation element 100 is formed in a rectangular coil state, and the opposing sides thereof are arranged so as to run in parallel in the vicinity of one of the pair of parallel conductors in which an alternating current flows in different directions, The hot junction of the electric power generating element 100 is placed in close contact with the one of the parallel conductors that generates heat due to one Joule heat, and the cold joint is isolated from the parallel conductor with a heat insulating material so as to be exposed to the outside air temperature. A method of obtaining an induced electromotive force together with a thermoelectromotive force is also conceivable. As a specific installation place, a power adapter for a household AC power supply can be considered.

又、矩形のコイルの状態に成形された電線発電システム100の一辺を水道管に沿って設けるとともに、対向する辺を、異方向に交流電流が流れる一対の平行導線の一方の導線の近傍で並走するように配置し、冬場は、電線発電素子100の冷接合部を水道管に密着させ、電線発電素子100の温接点部を地中に埋設し、夏場は、温接合部を前記金属管に密着させ、冷接合部を地中に埋設して、熱起電力とともに誘導起電力を得る方法も考えられる。   In addition, one side of the electric power generation system 100 formed in a rectangular coil state is provided along the water pipe, and the opposite side is arranged in the vicinity of one of the pair of parallel conductors through which alternating current flows in different directions. In winter, the cold junction of the electric power generation element 100 is closely attached to the water pipe, and the hot junction of the electric power generation element 100 is buried in the ground. In the summer, the hot junction is connected to the metal pipe. A method of obtaining an induced electromotive force together with a thermoelectromotive force by causing the cold bonded portion to be buried in the ground and embedded in the ground is also conceivable.

電線発電素子100の矩形のコイルの状態に成形されたその一辺を、窓、ドア、壁、屋根など非導電性材料の外縁部に沿って内蔵させ、その一接合部を外気に、他の冷接合部を室内気に触れるように、設置する方法等も考えられる。   One side of the electric wire power generation element 100 formed in the state of a rectangular coil is built in along the outer edge of a non-conductive material such as a window, door, wall, roof, etc. A method of installing the joint so as to touch the room air is also conceivable.

なお、家庭用の温水供給用の配管等では不使用が継続することが多く、この結果配管の温度が常温あるいは周囲環境の温度と同じとなり、ゼーベック効果による発電を期待できなくなってしまうことが多々あり得る。しかし、家屋内の商用電源による磁界の変化は必ずある。そこで、家人が温水を使用している場合にはゼーベック効果による発電を主に行い、温水を使用していない場合には誘導起電力で生じた電流を用いて待機状態を維持する等の必要最小限の処理を行わせることができる。   In many cases, household hot water supply pipes are not used continuously, and as a result, the temperature of the pipes becomes the same as the room temperature or the ambient temperature, and it is often impossible to expect power generation due to the Seebeck effect. possible. However, there is always a change in the magnetic field due to the commercial power supply in the house. Therefore, if the householder is using hot water, the power generation is mainly based on the Seebeck effect, and if hot water is not used, the minimum required such as maintaining the standby state using the current generated by the induced electromotive force. Limit processing can be performed.

なお、工場等においても、休日や深夜には温水管や熱水管の温度が低下するが、一方電力用電線の存在による大きな磁界変動が期待できる場合には、前記と同様の作用、効果を発揮することが可能となる。   In factories, etc., the temperature of hot water pipes and hot water pipes decreases on holidays and late at night. On the other hand, if large magnetic field fluctuations can be expected due to the presence of power cables, the same functions and effects as described above are exhibited. It becomes possible to do.

本発明は、電気を消費する箇所、地域それぞれの近傍で小規模ではあるが電力を供給することが可能であるため、例えばユビキタスセンサーネットワーク等へ利用することができる。   The present invention can be used for a ubiquitous sensor network or the like, for example, because it is possible to supply electric power although it is small-scale in the vicinity of each location and area where electricity is consumed.

10 Cu線
12 高温側接合部
19 正極側端子
20 コンスタンタン線
21 低温側接合部
29 負極側端子
100 電線発電素子
200 起電力処理部
211 平滑化回路TH
212 平滑化回路ID
220 整流回路
240 充電手段
300 電力使用機器
DESCRIPTION OF SYMBOLS 10 Cu wire 12 High temperature side junction 19 Positive electrode side terminal 20 Constantan wire 21 Low temperature side junction 29 Negative electrode side terminal 100 Electric power generation element 200 Electromotive force processing part 211 Smoothing circuit TH
212 Smoothing circuit ID
220 Rectifier circuit 240 Charging means 300 Electric power use device

Claims (2)

金属線1を絶縁被覆した電線1、及び金属線1との接合により熱電対を構成する金属線2を絶縁被覆した電線2からなり、金属線1及び金属線2が交互に直列に接合され、接合された金属線1及び金属線2がコイルを形成し、かつ2本以上の電線1及び2本以上の電線2がそれぞれツイストペアを形成していることを特徴とする電線発電素子。   It consists of an electric wire 1 insulatively coated with a metal wire 1 and an electric wire 2 insulatively coated with a metal wire 2 constituting a thermocouple by joining with the metal wire 1, and the metal wire 1 and the metal wire 2 are alternately joined in series, The electric wire power generating element characterized in that the joined metal wire 1 and metal wire 2 form a coil, and two or more wires 1 and two or more wires 2 form a twisted pair. 請求項1に記載の電線発電素子及び起電力処理部を有し、前記起電力処理部は、前記電線発電素子で生じる熱起電力を処理する第1処理回路及び誘導起電力を処理する第2処理回路を有することを特長とする電線発電システム。   The electric power generation element and the electromotive force processing unit according to claim 1, wherein the electromotive force processing unit is a first processing circuit that processes a thermoelectromotive force generated in the electric wire power generation element and a second that processes the induced electromotive force. An electric power generation system characterized by having a processing circuit.
JP2011253838A 2011-11-21 2011-11-21 Electric wire power generation element and electric wire power generation system Expired - Fee Related JP5783496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253838A JP5783496B2 (en) 2011-11-21 2011-11-21 Electric wire power generation element and electric wire power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253838A JP5783496B2 (en) 2011-11-21 2011-11-21 Electric wire power generation element and electric wire power generation system

Publications (2)

Publication Number Publication Date
JP2013110260A true JP2013110260A (en) 2013-06-06
JP5783496B2 JP5783496B2 (en) 2015-09-24

Family

ID=48706741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253838A Expired - Fee Related JP5783496B2 (en) 2011-11-21 2011-11-21 Electric wire power generation element and electric wire power generation system

Country Status (1)

Country Link
JP (1) JP5783496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055600A (en) * 2013-09-13 2015-03-23 株式会社リコー Heat type infrared sensor
JP2015076943A (en) * 2013-10-08 2015-04-20 矢崎総業株式会社 Thermal power generation device for vehicle
JP7319685B2 (en) 2020-11-25 2023-08-02 山里産業株式会社 thermocouple

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150075A (en) * 1990-10-15 1992-05-22 Iwate Tokyo Wire Seisakusho:Kk Very thin thermocouple type temperature sensor
JP2000234961A (en) * 1999-02-15 2000-08-29 Hamada Heavy Industries Ltd Temperature sensor and thermocouple for processing unit of semiconductor
JP2007228719A (en) * 2006-02-23 2007-09-06 Toshiba Corp Hybrid power generation element, power supply device using the same and installation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150075A (en) * 1990-10-15 1992-05-22 Iwate Tokyo Wire Seisakusho:Kk Very thin thermocouple type temperature sensor
JP2000234961A (en) * 1999-02-15 2000-08-29 Hamada Heavy Industries Ltd Temperature sensor and thermocouple for processing unit of semiconductor
JP2007228719A (en) * 2006-02-23 2007-09-06 Toshiba Corp Hybrid power generation element, power supply device using the same and installation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055600A (en) * 2013-09-13 2015-03-23 株式会社リコー Heat type infrared sensor
JP2015076943A (en) * 2013-10-08 2015-04-20 矢崎総業株式会社 Thermal power generation device for vehicle
JP7319685B2 (en) 2020-11-25 2023-08-02 山里産業株式会社 thermocouple

Also Published As

Publication number Publication date
JP5783496B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
Yang et al. Hybrid energy harvesting for condition monitoring sensors in power grids
Hamza et al. Design and analysis of solar PV based low-power low-voltage DC microgrid architectures for rural electrification
CN101785073A (en) Power transmitting apparatus, power transmitter and power receiver for power transmitting apparatus and method for operating power transmitting apparatus
Gupta et al. Energy harvesting from electromagnetic energy radiating from AC power lines
JP5783496B2 (en) Electric wire power generation element and electric wire power generation system
JP2007228719A (en) Hybrid power generation element, power supply device using the same and installation method thereof
Sordiashie Electromagnetic harvesting to power energy management sensors in the built environment
Khan Energy harvesting from the stray electromagnetic field around the electrical power cable for smart grid applications
Dell et al. Thermoelectric generator using passive cooling
KR20140043197A (en) Warm water apparatus for use of thermoelectric generator
Jung et al. Development of highly efficient energy harvester based on magnetic field emanating from a household power line and its autonomous interface electronics
WO2002101912A1 (en) Thermoelectric effect device, direct energy conversion system, and energy conversion system
US9608189B2 (en) Thermoelectric generator unit and method of testing the thermoelectric generator unit
WO2011029123A1 (en) A non-moving part or static electric generator
CN101065853B (en) Thermal energy transfer circuit system
EP2954544B1 (en) Transmission of electric power
JP2003092433A (en) Thermoelectric effect device, energy direct conversion system and energy conversion system
Barberis et al. Sustainable entrepreneurship via energy saving: energy harvester exploiting seebeck effect in traditional domestic boiler
KR101544083B1 (en) Portable apparatus for charging device using thermoelectric element and method thereof
Sawant et al. An overview of technological advancements and future possibilities in wireless power transmission
KR102379603B1 (en) Loss-energy harvesting apparatus of power cable
US10443889B2 (en) Super-high-efficiency induction hot water heater
Ruchira et al. Experimental Investigation of PV Microinverter Technology for Low-Power Applications
Lohote et al. Systematic Design and Analysis of Wireless Power Transmission and Energy Distribution
Afsar et al. Energy Harvesting Using Thermoelectric Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5783496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150712

LAPS Cancellation because of no payment of annual fees