JP2013109964A - Light-emitting element lighting device and illuminating device having its circuit - Google Patents

Light-emitting element lighting device and illuminating device having its circuit Download PDF

Info

Publication number
JP2013109964A
JP2013109964A JP2011254226A JP2011254226A JP2013109964A JP 2013109964 A JP2013109964 A JP 2013109964A JP 2011254226 A JP2011254226 A JP 2011254226A JP 2011254226 A JP2011254226 A JP 2011254226A JP 2013109964 A JP2013109964 A JP 2013109964A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
light
voltage
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011254226A
Other languages
Japanese (ja)
Other versions
JP5962946B2 (en
Inventor
Yoji Konishi
洋史 小西
Masanori Mishima
正徳 三嶋
Masanao Okawa
将直 大川
Yohei Hayashi
洋平 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011254226A priority Critical patent/JP5962946B2/en
Publication of JP2013109964A publication Critical patent/JP2013109964A/en
Application granted granted Critical
Publication of JP5962946B2 publication Critical patent/JP5962946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element lighting device having protection means that detects abnormalities caused by serious damages of a light-emitting element to protect the light-emitting element and peripheral circuits.SOLUTION: A light-emitting element lighting device (9a) using an organic EL light-emitting element has: current controllers (12, 13a) controlling a current flowing in the light-emitting element to a constant current; and a detector (13b) detecting a both-end voltage of the light-emitting element. The current controllers calculate a voltage change amount per unit time, of the detected voltage, and in the case that the calculated change amount exceeds a threshold of a value larger than a value detected at an operation in a rated range, reduce a current amount to be supplied by the power supply part to the light-emitting element or stop the current. By employing the configuration, in the case that the organic EL light-emitting element is damaged seriously and deformed in usage, the current to be supplied to the light-emitting element is reduced or stopped to protect the light-emitting element and peripheral circuits.

Description

本発明は、有機EL等の発光素子を点灯する発光素子点灯装置及び該回路を有する照明装置に関する。   The present invention relates to a light-emitting element lighting device that lights a light-emitting element such as an organic EL, and an illumination device having the circuit.

前記発光素子点灯装置には、発光素子又は該発光素子の電源回路の破壊又は故障等の異常発生によって、発光素子に異常な電力供給が行われた場合に、回路の短絡又は開放があったと判断し、発光素子への電力供給を低減又は停止する回路を備えるものがある。   In the light-emitting element lighting device, it is determined that the circuit is short-circuited or opened when abnormal power supply is performed to the light-emitting element due to the occurrence of abnormality such as destruction or failure of the light-emitting element or the power supply circuit of the light-emitting element. However, some have a circuit for reducing or stopping power supply to the light emitting element.

例えば、特許文献1には、発光素子に印加される電圧を検知し、この電圧が上限値を越えた場合、又は、下限値を下回った場合に、異常発生と判断して回路内に流れる電流量を低減又は停止する手段を有する発光素子点灯装置が記載されている。   For example, in Patent Document 1, a voltage that is applied to a light-emitting element is detected, and when this voltage exceeds an upper limit value or falls below a lower limit value, a current that flows in the circuit is determined to be abnormal. A light emitting element lighting device having means for reducing or stopping the quantity is described.

特開2011−146329号公報JP 2011-146329 A

しかしながら、前記特許文献1に記載の点灯装置は、発光素子点灯装置が発光素子へ定電流制御を行っている際に、発光素子が外部からの衝撃等によって半壊したときは、異常検出を行うことができないことがある。前記「半壊」とは、発光素子が例えば外部から力が掛けられて変形して壊れたが、完全に壊れて回路が短絡又は開放するに至っていない状態をいう。すなわち、抵抗値が急激に低くなったものの、その後に発光素子に印加される電圧が前記下限値を下回らなければ、前記特許文献1に記載の点灯装置では、異常は検出されない。この場合、発光素子が部分点灯する等の異常点灯が継続されるので、部分的な温度上昇により発光素子及び周辺回路がダメージを受けるおそれがある。特に有機EL発光素子は、薄型の面発光光源であるので、上述した半壊状態になりやすい。   However, the lighting device described in Patent Document 1 performs abnormality detection when the light emitting element is partially destroyed by an external impact or the like while the light emitting element lighting device performs constant current control on the light emitting element. May not be possible. The term “half broken” refers to a state in which the light emitting element is deformed and broken due to external force, for example, but is not completely broken and the circuit is not short-circuited or opened. That is, although the resistance value has rapidly decreased, no abnormality is detected in the lighting device described in Patent Document 1 unless the voltage applied to the light emitting element thereafter falls below the lower limit value. In this case, since abnormal lighting such as partial lighting of the light emitting element is continued, the light emitting element and the peripheral circuit may be damaged due to a partial temperature rise. In particular, since the organic EL light emitting element is a thin surface emitting light source, it is likely to be in a semi-destructed state described above.

本発明は、従来の発光素子点灯装置の有する上記問題を解決するためになされたものであり、前記のような発光素子の半壊による異常を検知して、発光素子に流れる電流量を低減又は停止する保護機能を有する発光素子点灯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of conventional light-emitting element lighting devices, and detects or detects the abnormality caused by the partial destruction of the light-emitting element, thereby reducing or stopping the amount of current flowing through the light-emitting element. An object of the present invention is to provide a light emitting element lighting device having a protective function.

上記目的を達成するために本発明は、有機EL発光素子を点灯させる発光素子点灯装置において、前記発光素子に流れる電流を一定に制御する電流制御部と、前記発光素子の両端電圧を検出する電圧検出部と、を備え、前記電流制御部は、前記電圧検出部で検出した電圧の単位時間当たりの電圧変化量を算出し、前記算出した変化量が定格範囲内での動作時に検出される値よりも大きな値の閾値を越えた場合に、前記発光素子に流す電流量を低減又は停止する、ことを特徴とする。   In order to achieve the above object, the present invention provides a light-emitting element lighting device for lighting an organic EL light-emitting element, a current control unit for controlling a current flowing through the light-emitting element to a constant value, and a voltage for detecting a voltage across the light-emitting element. A detection unit, wherein the current control unit calculates a voltage change amount per unit time of the voltage detected by the voltage detection unit, and the calculated change amount is a value detected during operation within a rated range. When the threshold value of a larger value is exceeded, the amount of current flowing through the light emitting element is reduced or stopped.

上記発光素子点灯装置において、前記閾値は、設定環境下での温度変化に伴い生じる電圧の変化量よりも大きな値に設定されていることが好ましい。   In the light-emitting element lighting device, it is preferable that the threshold value is set to a value larger than a voltage change amount caused by a temperature change in a setting environment.

上記発光素子点灯装置において、前記電流制御部は、更に、前記電圧検出部により検出された電圧が下限値を下回った場合又は上限値を越えた場合に、前記発光素子に流す電流を停止することが好ましい。   In the light emitting element lighting device, the current control unit further stops the current flowing through the light emitting element when the voltage detected by the voltage detection unit falls below a lower limit value or exceeds an upper limit value. Is preferred.

上記発光素子点灯装置において、前記電流制御部は、入力される調光信号に応じて定められるデューティ比のPWM調光信号を生成し、該信号に基づいてPWM式の電流を前記発光素子に流すことが好ましい。   In the light emitting element lighting device, the current control unit generates a PWM dimming signal having a duty ratio determined according to an input dimming signal, and causes a PWM current to flow through the light emitting element based on the signal. It is preferable.

本発明の照明装置は、1以上の有機EL発光素子と、各発光素子を点灯するための上記何れかの発光素子点灯装置と、該発光素子点灯装置に電力を供給する電源ユニットと、を有している発光パネルを備えることを特徴とする。   The lighting device of the present invention includes one or more organic EL light emitting elements, any one of the above light emitting element lighting devices for lighting each light emitting element, and a power supply unit that supplies power to the light emitting element lighting device. The light emitting panel is provided.

上記照明装置において、前記電流制御部は、外部から入力された調光信号に応じて定められるデューティ比のPWM調光信号を生成し、該信号に基づいて電流制御を行うことが好ましい。   In the illumination device, it is preferable that the current control unit generates a PWM dimming signal having a duty ratio determined according to a dimming signal input from the outside, and performs current control based on the signal.

本発明によれば、有機EL発光素子に印加される電圧が、定格動作時よりも急激に大きく変化した場合、電流制御部は、発光素子が故障したと判断する。従って、発光素子に印加される前記変化後の電圧が、発光素子の入出力端子間の短絡又は開放を表す値で無い場合であっても、発光素子とその周辺回路の回路素子を保護できる。   According to the present invention, when the voltage applied to the organic EL light emitting element changes more rapidly than during the rated operation, the current control unit determines that the light emitting element has failed. Therefore, even when the voltage after the change applied to the light emitting element is not a value representing a short circuit or an open circuit between the input and output terminals of the light emitting element, the circuit element of the light emitting element and its peripheral circuit can be protected.

実施例に係る発光素子点灯装置を有する照明装置の斜視図。The perspective view of the illuminating device which has the light emitting element lighting device which concerns on an Example. 照明装置の構成図。The block diagram of an illuminating device. 発光素子点灯装置の回路図。The circuit diagram of a light emitting element lighting device. 比較器の入出力波形のタイムチャート。The time chart of the input / output waveform of the comparator. 制御部の実行する処理フローチャート。The process flowchart which a control part performs. 発光素子に印加される電圧の時間の経過に伴う変化を示す一例。An example which shows the change with progress of time of the voltage applied to a light emitting element.

実施形態に係る照明装置の発光素子点灯装置は、発光素子に流れる電流を一定に制御する電流制御部と、発光素子の両端電圧の検出部と、を備える。前記電流制御部は、前記電圧の変化量が閾値を越えた場合に、前記発光素子に流す電流量を低減又は停止する。なお、前記発光素子は、有機EL発光素子のように、外部要因による半壊等の異常発生時、変形することによって内部抵抗が変化するものを用いる。前記電流制御部は、例えば、直流の定電流又はPWM調光信号に基づくPWM式の定電流を発光素子に流す。前記変化量は、発光素子に印加される電圧を周期的(例えば10ms毎)に検出し、検出した電圧の単位時間(例えば、100ms)当たりの変化量(|正又は負の変化値|/t)を算出して求める。前記閾値は、定格範囲内での動作時(又は回路の安定動作時)に検出される値よりも大きな値である。以下、上記構成を有する照明装置の実施例について説明する。   The light emitting element lighting device of the lighting device according to the embodiment includes a current control unit that controls a current flowing through the light emitting element to be constant, and a detection unit that detects a voltage across the light emitting element. The current control unit reduces or stops the amount of current flowing through the light emitting element when the change amount of the voltage exceeds a threshold value. In addition, the said light emitting element uses the thing which internal resistance changes by deform | transforming at the time of abnormality generation | occurrence | production such as half destruction by external factors like an organic EL light emitting element. For example, the current control unit supplies a constant current of a DC type or a constant current of a PWM type based on a PWM dimming signal to the light emitting element. The amount of change is obtained by periodically detecting a voltage applied to the light emitting element (for example, every 10 ms) and changing the detected voltage per unit time (for example, 100 ms) (| positive or negative change value | / t ) Is calculated. The threshold value is a value larger than a value detected during operation within the rated range (or during stable operation of the circuit). Examples of the lighting device having the above configuration will be described below.

図1は、前記構成の発光素子点灯装置を有している照明装置1の斜視図である。照明装置1は、発光部2と、発光部2を天井に吊り下げるための吊り具3と、発光部2と吊り具3とを繋ぐ電源コード4と、を備える。吊り具3は、天井に設けられている商用交流電圧の給電線と電源コード4とを接続する。これにより、電源コード4を介して発光部2に商用交流電圧が供給される。発光部2は、有機EL発光素子を有する発光パネル2aと、該発光パネル2aを囲むフレーム2bと、を備えている。   FIG. 1 is a perspective view of a lighting device 1 having a light emitting element lighting device having the above-described configuration. The lighting device 1 includes a light emitting unit 2, a hanging tool 3 for hanging the light emitting unit 2 on the ceiling, and a power cord 4 that connects the light emitting unit 2 and the hanging tool 3. The hanger 3 connects a commercial AC voltage power supply line provided on the ceiling and the power cord 4. Thereby, the commercial AC voltage is supplied to the light emitting unit 2 through the power cord 4. The light emitting unit 2 includes a light emitting panel 2a having an organic EL light emitting element, and a frame 2b surrounding the light emitting panel 2a.

図2は、前記発光パネル2aの構成を示す。発光パネル2aは、商用交流電圧が入力され、入力された交流電圧を直流電圧に変換して出力する電源ユニット5と、2つの同一構成の発光ユニット6、7を備えている。以下、発光ユニット6についてのみ説明する。発光ユニット6は、3つの同一構成の発光素子モジュール6a〜6cを備えている。以下、発光素子モジュール6aについてのみ説明する。発光素子モジュール6aは、有機EL発光素子8aと、該発光素子8aの発光素子点灯装置9aと、図示しないリモコンから送信されてくる調光信号を受信する受信部10aと、を備えている。発光素子8aは、例えば、定格電圧が7.5V、定格電流が0.3A、発光面積が64cm、の有機EL発光素子である。有機EL発光素子は、外部から力が掛けられて変形して半壊した場合に、内部抵抗が大幅に低下する。受信部10aは、受信した調光信号を発光素子点灯装置9aに出力する。発光素子点灯装置9aは、前記電源ユニット5から電力供給を受けるとともに、受信部10aからの調光信号に応じて定まるデューティ比のPWM調光信号を生成し、生成したPWM調光信号(PWM式の電流)を発光素子8aに供給する。発光素子点灯装置9aは、前記PWM調光信号の最大振幅値が安定するようにPWM式の定電流制御を行う。 FIG. 2 shows a configuration of the light emitting panel 2a. The light emitting panel 2a includes a power supply unit 5 that receives a commercial AC voltage, converts the input AC voltage into a DC voltage, and outputs the DC voltage, and two light emitting units 6 and 7 having the same configuration. Only the light emitting unit 6 will be described below. The light emitting unit 6 includes three light emitting element modules 6a to 6c having the same configuration. Hereinafter, only the light emitting element module 6a will be described. The light emitting element module 6a includes an organic EL light emitting element 8a, a light emitting element lighting device 9a for the light emitting element 8a, and a receiving unit 10a that receives a dimming signal transmitted from a remote controller (not shown). The light emitting element 8a is, for example, an organic EL light emitting element having a rated voltage of 7.5 V, a rated current of 0.3 A, and a light emitting area of 64 cm 2 . When an organic EL light emitting element is deformed by being applied with force from the outside and is partially broken, the internal resistance is greatly reduced. The receiving unit 10a outputs the received dimming signal to the light emitting element lighting device 9a. The light emitting element lighting device 9a receives power supply from the power supply unit 5, generates a PWM dimming signal having a duty ratio determined according to the dimming signal from the receiving unit 10a, and generates the generated PWM dimming signal (PWM type) Is supplied to the light emitting element 8a. The light emitting element lighting device 9a performs PWM constant current control so that the maximum amplitude value of the PWM dimming signal is stabilized.

図3は、発光素子8aに接続されている発光素子点灯装置9aの回路図である。発光素子点灯装置9aは、内部回路用駆動電圧Vccの生成回路11と、発光素子8aに流れる電流を一定に制御する電流制御部として、発光素子8a用の信号生成回路12及び制御部13と、を備えている。   FIG. 3 is a circuit diagram of the light emitting element lighting device 9a connected to the light emitting element 8a. The light-emitting element lighting device 9a includes an internal circuit drive voltage Vcc generation circuit 11, a signal generation circuit 12 for the light-emitting element 8a and a control section 13 as a current control unit that controls the current flowing through the light-emitting element 8a constant, It has.

駆動電源Vccの生成回路11は、直列に接続された抵抗R1及び抵抗R2によって電源ユニット5から供給される直流電圧を分圧して、前記信号生成回路12及び制御用IC13を駆動する駆動電圧Vccを生成する。   The drive power supply Vcc generation circuit 11 divides the DC voltage supplied from the power supply unit 5 by the resistors R1 and R2 connected in series to generate the drive voltage Vcc for driving the signal generation circuit 12 and the control IC 13. Generate.

信号生成回路12は、調光信号に応じたデューティ比のPWM信号を生成して出力するPWM調光信号生成回路12aと、該PWM調光信号に基づいて動作する降圧チョッパ回路12bと、発光素子8aに流れる電流を検出する電流検出部12cと、を備えている。降圧チョッパ回路12bは、平滑用コンデンサC1、スイッチングトランジスタQ1、ダイオードD1、リアクタンスL1、コンデンサC2を有し、図示する構成の一般的な降圧チョッパ回路である。降圧チョッパ回路12bは、PWM調光信号生成回路12aからのPWM調光信号のオン期間中に駆動トランジスタ12cをチョップする駆動信号の生成回路12dを有している。   The signal generation circuit 12 includes a PWM dimming signal generation circuit 12a that generates and outputs a PWM signal having a duty ratio corresponding to the dimming signal, a step-down chopper circuit 12b that operates based on the PWM dimming signal, and a light emitting element And a current detector 12c that detects a current flowing through 8a. The step-down chopper circuit 12b includes a smoothing capacitor C1, a switching transistor Q1, a diode D1, a reactance L1, and a capacitor C2, and is a general step-down chopper circuit having a configuration shown in the drawing. The step-down chopper circuit 12b includes a drive signal generation circuit 12d that chops the drive transistor 12c during the ON period of the PWM dimming signal from the PWM dimming signal generation circuit 12a.

前記PWM調光信号生成回路12aは、2つの比較器OP1、OP2を備えている。比較器OP2は、調光信号に応じたPWM調光信号を出力する。比較器OP2の非反転入力端子(+)には、比較器OP1の出力が入力されている。比較器OP1は、前記PWM調光信号のデューティ比を定める基準電圧Vref0を出力する。比較器OP2の反転入力端子(−)には、スイッチングトランジスタQ8を、オンすることで0Vとなり、オフすることによって抵抗R14を介して入力される電源VccがコンデンサC4に蓄積されて高くなる電圧が印加される。前記スイッチングトランジスタQ8は、後述する制御IC13aの2番ピンから出力される信号に基づいてオン/オフされる。比較器OP2は、OP1から非反転入力端子(+)に入力される電圧よりも反転入力端子(−)に入力される電圧が低い期間、Highレベルの信号を出力する。   The PWM dimming signal generation circuit 12a includes two comparators OP1 and OP2. The comparator OP2 outputs a PWM dimming signal corresponding to the dimming signal. The output of the comparator OP1 is input to the non-inverting input terminal (+) of the comparator OP2. The comparator OP1 outputs a reference voltage Vref0 that determines the duty ratio of the PWM dimming signal. The inverting input terminal (−) of the comparator OP2 has a voltage that becomes 0V when the switching transistor Q8 is turned on and is increased when the power supply Vcc inputted through the resistor R14 is accumulated in the capacitor C4 when turned off. Applied. The switching transistor Q8 is turned on / off based on a signal output from the second pin of the control IC 13a described later. The comparator OP2 outputs a high level signal during a period in which the voltage input to the inverting input terminal (−) is lower than the voltage input to the non-inverting input terminal (+) from OP1.

図4は、(a)が2番ピン、(b)が比較器OP2の反転入力端子(−)、(c)が比較器OP2の非反転入力端子(+)、(d)が比較器OP2の出力端子、での信号を表す。本図に示すように、比較器OP1の出力する基準電圧Vref0に応じて、PWM調光信号のデューティ比が変化する。   In FIG. 4, (a) is the second pin, (b) is the inverting input terminal (−) of the comparator OP2, (c) is the non-inverting input terminal (+) of the comparator OP2, and (d) is the comparator OP2. Represents the signal at the output terminal. As shown in the figure, the duty ratio of the PWM dimming signal changes according to the reference voltage Vref0 output from the comparator OP1.

再び図3を参照する。信号生成回路12は、更に、発光素子8aへ点灯用の定電流を供給する電源部として機能する。比較器OP1の反転入力端子(―)には、電流検出部12cの電流検出抵抗R3によって検出される発光素子8aに流れる電流に比例した電流検出電圧が入力される。スイッチングトランジスタQ6は、直列接続されたR8、R9で構成される分圧回路の中点に接続されている。比較器OP1の非反転入力端子(+)には、スイッチングトランジスタQ6のオン/オフに応じて2種類の基準電圧Vref1/Vref2が入力される。異常の発生していない時、スイッチングトランジスタQ6はオフに設定され、比較器OP1の非反転入力端子(+)には、Vref2(>Vref1)が入力される。比較器OP1は、比較結果を比較器OP2の非反転入力端子(+)に出力する。上記構成により、電流検出部12cに流れる電流量に応じて比較器OP1の出力する基準電圧Vref0が増減され、この結果、比較器OP2の出力する信号のデューティ比が増減されて定電流制御が行われる。   Refer to FIG. 3 again. The signal generation circuit 12 further functions as a power supply unit that supplies a constant current for lighting to the light emitting element 8a. A current detection voltage proportional to the current flowing through the light emitting element 8a detected by the current detection resistor R3 of the current detection unit 12c is input to the inverting input terminal (−) of the comparator OP1. The switching transistor Q6 is connected to the midpoint of the voltage dividing circuit composed of R8 and R9 connected in series. Two types of reference voltages Vref1 / Vref2 are input to the non-inverting input terminal (+) of the comparator OP1 according to the on / off state of the switching transistor Q6. When no abnormality has occurred, the switching transistor Q6 is turned off, and Vref2 (> Vref1) is input to the non-inverting input terminal (+) of the comparator OP1. The comparator OP1 outputs the comparison result to the non-inverting input terminal (+) of the comparator OP2. With the above configuration, the reference voltage Vref0 output from the comparator OP1 is increased / decreased according to the amount of current flowing through the current detector 12c. As a result, the duty ratio of the signal output from the comparator OP2 is increased / decreased to perform constant current control. Is called.

PWM調光信号生成回路12aは、更に、オンすることによって、比較器OP1の非反転入力端子(+)の電位を0VにするスイッチングトランジスタQ7を備えている。後述する異常検出時、スイッチングトランジスタQ7をオンすることで、比較器OP2からの信号出力を停止する。なお、Vref1の値を0.1〜1V等の0V近傍値に設定しておき、異常検出時にスイッチングトランジスタQ6をオンにする構成を採用し、比較器OP2からの信号出力を大幅に低減して発光素子8aに流れる電流を低減してもよい。後に説明するが、異常の程度、即ち、発光素子に印加される電圧の変化量に応じて、まず、スイッチングトランジスタQ6をオンにし、次に、スイッチングトランジスタQ7をオンにする構成を採用してもよい。   The PWM dimming signal generation circuit 12a further includes a switching transistor Q7 that is turned on to bring the potential of the non-inverting input terminal (+) of the comparator OP1 to 0V. When detecting an abnormality described later, the switching transistor Q7 is turned on to stop the signal output from the comparator OP2. In addition, the value of Vref1 is set to a value close to 0V such as 0.1 to 1V, and a configuration is adopted in which the switching transistor Q6 is turned on when an abnormality is detected, thereby greatly reducing the signal output from the comparator OP2. You may reduce the electric current which flows into the light emitting element 8a. As will be described later, a configuration in which the switching transistor Q6 is first turned on and then the switching transistor Q7 is turned on in accordance with the degree of abnormality, that is, the amount of change in voltage applied to the light emitting element may be adopted. Good.

制御部13は、制御IC13aと、直列接続された抵抗R4及び抵抗R5で構成される分圧回路13bと、を備えている。制御IC13aは、A/D変換部13cと、記憶部13dと、該記憶部13dに記憶しているプログラムを実行する演算部13eと、を有するコンピュータである。1番ピンには、前記駆動電源Vccの生成回路11によって生成された電源電圧Vccが入力される。2番ピン乃至5番ピンは、制御信号の出力端子である。6番ピンは、図2に示した受信部10aからの調光信号の入力端子である。7番ピンは、直列接続された抵抗R4及び抵抗R5で構成される分圧回路13bによって、発光素子8aに印加されている電圧Vlaの分圧値が入力される。前記A/D変換部13cは、7番ピンに接続されており、入力値を内部処理用にデジタル信号に変換して演算部13eに出力する。8番ピンは、接地されている。   The control unit 13 includes a control IC 13a and a voltage dividing circuit 13b including a resistor R4 and a resistor R5 connected in series. The control IC 13a is a computer having an A / D conversion unit 13c, a storage unit 13d, and a calculation unit 13e that executes a program stored in the storage unit 13d. The power supply voltage Vcc generated by the drive power supply Vcc generation circuit 11 is input to the first pin. The second to fifth pins are control signal output terminals. The 6th pin is an input terminal for the dimming signal from the receiving unit 10a shown in FIG. The voltage dividing value of the voltage Vla applied to the light emitting element 8a is input to the seventh pin by the voltage dividing circuit 13b including the resistors R4 and R5 connected in series. The A / D converter 13c is connected to the 7th pin, converts an input value into a digital signal for internal processing, and outputs the digital signal to the arithmetic unit 13e. The 8th pin is grounded.

図5は、演算部13eが実行する処理フローを示す。電源投入に応じて、ステップ#1では、初期化処理を実行する。ステップ#2では、2番ピンから調光信号に応じて定まる周期のオン信号を出力し、PWM調光信号生成回路12aに、調光信号に応じて定まるデューティ比のPWM調光信号を生成させる。これにより、発光素子10aが発光する。ステップ#3では、7番ピンへの入力値に基づいて発光素子8aへの定電流制御を行う発光素子初期点灯処理を行う。ステップ#4では、7番ピンへの入力値に基づいて発光素子8aに印加されている電圧Vlaを計測し、記憶部13dに記憶する。前記計測は、7番ピンに入力される電圧を、異常を検知して処理するのに十分な極めて短い周期、例えば10msの周期で検出して行う。   FIG. 5 shows a processing flow executed by the calculation unit 13e. In response to power-on, in step # 1, initialization processing is executed. In step # 2, an ON signal having a period determined according to the dimming signal is output from the second pin, and the PWM dimming signal generation circuit 12a is caused to generate a PWM dimming signal having a duty ratio determined according to the dimming signal. . Thereby, the light emitting element 10a emits light. In Step # 3, a light emitting element initial lighting process for performing constant current control to the light emitting element 8a based on an input value to the 7th pin is performed. In step # 4, the voltage Vla applied to the light emitting element 8a is measured based on the input value to the 7th pin and stored in the storage unit 13d. The measurement is performed by detecting the voltage input to the 7th pin at an extremely short period sufficient to detect and process an abnormality, for example, a period of 10 ms.

ステップ#5では、発光素子電圧Vlaの値が上限値Vth1以下で、かつ、下限値Vth2以上で無い場合(ステップ#5でNo)、ステップ#10に進む。ステップ#10では、3番ピンからオン信号を出力してPWM調光信号生成回路12aから出力される信号の電位を0Vにして回路を停止させた後、処理を終了する。前述したように、発光素子8aの定格電圧が7.5Vの場合、前記上限値Vth1は、例えば10数Vで、前記下限値Vth2は、例えば数Vである。前記処理を行うことによって、回路内で短絡又は開放が発生し、発光素子8aに印加される電圧が上限値を越え、又は、下限値を下回った場合に、発光素子8aへの給電を停止し、発光素子8a及び回路を保護することができる。演算部13eは、前記ステップ#5、#10を実行することによって、発光素子8aの短絡又は開放による異常発生時に発光素子へ供給される電流を停止して発光素子8a及び回路を保護する保護手段として機能する。   In Step # 5, when the value of the light emitting element voltage Vla is not more than the upper limit value Vth1 and not more than the lower limit value Vth2 (No in Step # 5), the process proceeds to Step # 10. In step # 10, an ON signal is output from the third pin, the potential of the signal output from the PWM dimming signal generation circuit 12a is set to 0 V, the circuit is stopped, and then the process ends. As described above, when the rated voltage of the light emitting element 8a is 7.5V, the upper limit value Vth1 is, for example, 10 and several V, and the lower limit value Vth2 is, for example, several V. By performing the above processing, when a short circuit or an open circuit occurs in the circuit and the voltage applied to the light emitting element 8a exceeds the upper limit value or falls below the lower limit value, the power supply to the light emitting element 8a is stopped. The light emitting element 8a and the circuit can be protected. The arithmetic unit 13e performs the steps # 5 and # 10 to stop the current supplied to the light emitting element when an abnormality occurs due to the short circuit or the open circuit of the light emitting element 8a, thereby protecting the light emitting element 8a and the circuit. Function as.

ステップ#5では、発光素子電圧Vlaの値が上限値Vth1以下で、下限値Vth2以上の場合(ステップ#5でYes)、次のステップ#6へと進む。ステップ#6では、7番ピンへの入力値に基づいて発光素子8aへの定電流制御を行う発光素子定常点灯処理を行う。   In step # 5, when the value of the light emitting element voltage Vla is not more than the upper limit value Vth1 and not less than the lower limit value Vth2 (Yes in step # 5), the process proceeds to the next step # 6. In Step # 6, a light emitting element steady lighting process for performing constant current control to the light emitting element 8a based on an input value to the 7th pin is performed.

ステップ#7では、前記記憶部13dに記憶する電圧検出結果に基づいて、異常を検知して処理するのに十分短い周期、例えば100ms毎の電圧変化の傾き(|ΔVla|/t(例えばt=100ms))を求める。例えば100ms毎であれば、前記ステップ#4において10ms毎に行う電位検出10回分の変化量ΔVlaから傾きを算出する。   In step # 7, based on the voltage detection result stored in the storage unit 13d, the slope of the voltage change (| ΔVla | / t (for example, t = for example) every 100 ms is short enough to detect and process the abnormality. 100 ms)). For example, if it is every 100 ms, the inclination is calculated from the change ΔVla for 10 potential detections performed every 10 ms in step # 4.

ステップ#8において、ステップ#7で求めた傾きが閾値α以下の場合(ステップ#8でYes)、発光素子8aの消灯が検出されるまで(ステップ#9でNo)、前記ステップ#4乃至ステップ#8の処理を繰り返し実行する。前記閾値αは、定格範囲内での動作時に検出される値よりも大きな値であり、実際の統計データから、発光素子8aの半壊による異常発生を最もよく検出できる値に設定する。前記定格範囲内での動作時に検出される値とは、例えば、定格範囲内での動作時に、設定環境下での温度変化に伴い生じる電圧の変化量を表す値である。環境温度が37度から60度に変化する場合、前記変化量は、変化に要する期間Tにより変わるが、例えば|―10.3mV|/secであった。前記求めた傾きが閾値αを越えた場合(ステップ#8でNo)、又は、発光素子8aの消灯が確認された場合(ステップ#9でYes)には、ステップ#10に進む。ステップ#10では、3番ピンからオン信号を出力してPWM調光信号生成回路12aから出力される信号の電位を0Vにして回路を停止させた後、処理を終了する。   In step # 8, when the inclination obtained in step # 7 is equal to or less than the threshold value α (Yes in step # 8), the above steps # 4 to step are performed until the light emitting element 8a is detected to be turned off (No in step # 9). The process of # 8 is repeatedly executed. The threshold value α is a value larger than the value detected during operation within the rated range, and is set to a value that can best detect the occurrence of an abnormality due to the partial destruction of the light emitting element 8a from actual statistical data. The value detected during operation within the rated range is, for example, a value that represents the amount of change in voltage that occurs due to a temperature change in a set environment during operation within the rated range. When the environmental temperature changes from 37 degrees to 60 degrees, the amount of change varies depending on the period T required for the change, but is, for example, −10.3 mV | / sec. When the obtained inclination exceeds the threshold α (No in Step # 8), or when it is confirmed that the light emitting element 8a is turned off (Yes in Step # 9), the process proceeds to Step # 10. In step # 10, an ON signal is output from the third pin, the potential of the signal output from the PWM dimming signal generation circuit 12a is set to 0 V, the circuit is stopped, and then the process ends.

図6は、点灯後の数10秒の間に、発光素子8aに印加される電圧(初期の電圧V0)の変化を示す図である。本図では、t1迄の発光素子8aに印加される電圧の変化量(例えば|−2.23mV|/sec)は、設定された環境下において生じる温度変化によるものである。前記閾値αは、この時間の経過に伴う温度変化によって生じる傾きよりも変化量の多い、異常発生時に現れる値(例えば、|−158mV|/sec)を検出できる値(例えばα=|―100mV|/sec)に設定する。t1の時に外部から衝撃を加えて発光素子8aを半壊させた。図示するように、発光素子8aの内部抵抗は、t1(例えば10秒)からt2(例えば12秒)迄の短い間(約2秒間)に大きく減少し、結果、電圧が|―100mV|/secより大きな変化量(例えば|―158mV|/sec)で大きく減少した。この場合、前記ステップ#8の処理を実行することで、発光素子8aの半壊を検知し、発光素子8aに流れる電流を停止することができる。なお、前述したように、ステップ#10では、4番ピンからオン信号を出力して発光素子8aに流れる電流を大幅に低減させてもよい。   FIG. 6 is a diagram showing a change in voltage (initial voltage V0) applied to the light emitting element 8a during several tens of seconds after lighting. In this figure, the amount of change in voltage applied to the light emitting element 8a up to t1 (for example, | −2.23 mV | / sec) is due to temperature change that occurs in a set environment. The threshold value α is a value (for example, α = | −100 mV |) that can detect a value (for example, | −158 mV | / sec) that appears at the time of occurrence of an abnormality, which has a larger amount of change than the slope caused by the temperature change with the passage of time. / sec). At t1, the light emitting element 8a was partially broken by applying an impact from the outside. As shown in the figure, the internal resistance of the light emitting element 8a is greatly reduced in a short period (about 2 seconds) from t1 (for example, 10 seconds) to t2 (for example, 12 seconds). As a result, the voltage is | -100 mV | / sec. It greatly decreased with a larger change amount (for example, | -158 mV | / sec). In this case, by executing the process of Step # 8, it is possible to detect half-breakage of the light emitting element 8a and stop the current flowing through the light emitting element 8a. As described above, in step # 10, an ON signal may be output from the 4th pin to significantly reduce the current flowing through the light emitting element 8a.

なお、一般の有機EL発光素子は、経時劣化に伴い前記初期の電圧V0が上昇する。予め定めた時間経過(例えば10000時間経過)することによって、初期の電圧が、予め設定した電圧V0より大きな閾値Vth1(上限値:例えば電圧V0の120%)にまで増大した場合、前記ステップ#5、#10の処理が実行された後、発光素子8aの取り換えが行われる。   Note that in the general organic EL light emitting element, the initial voltage V0 increases with deterioration over time. If the initial voltage increases to a threshold value Vth1 (upper limit value: for example, 120% of the voltage V0) larger than the preset voltage V0 by elapse of a predetermined time (for example, 10000 hours), the step # 5 , # 10 is executed, the light emitting element 8a is replaced.

更には、前記ステップ#8では、閾値α1(例えば、α1=|−100mV|/sec)と、α2(例えばα2=|−150mV|/sec)と、を用いてもよい。この場合、変化量が閾値α1以上、α2未満の場合(例えば|―120mV|/sec)、ステップ#10で4番ピンからオン信号を出力し、変化量がα2以上の場合(例えば、|―158mV|/sec)、ステップ#10で3番ピンからオン信号を出力する。これにより、異常発生の程度に応じた回路保護処理を行うことができる。   Further, in step # 8, a threshold value α1 (for example, α1 = | −100 mV | / sec) and α2 (for example, α2 = | −150 mV | / sec) may be used. In this case, when the change amount is not less than the threshold value α1 and less than α2 (for example, −120 mV | / sec), an ON signal is output from the fourth pin in step # 10, and when the change amount is not less than α2 (for example, −−). 158 mV | / sec), an ON signal is output from the third pin in step # 10. Thereby, circuit protection processing according to the degree of occurrence of abnormality can be performed.

制御IC13aの演算部13eは、上記ステップ#8、#10の処理を実行することによって、発光素子8aが使用中に半壊し、内部抵抗が急激に変化した場合、発光素子へ供給される電流を低減又は停止して発光素子8a及び周辺回路を保護する保護手段として機能する。   The calculation unit 13e of the control IC 13a performs the processes of steps # 8 and # 10, so that when the light-emitting element 8a is partially destroyed during use and the internal resistance changes suddenly, the current supplied to the light-emitting element is changed. It functions as a protective means for protecting the light emitting element 8a and the peripheral circuit by reducing or stopping.

上記構成の点灯装置9aを用いることによって、発光素子8aが使用中に半壊し、内部抵抗が急激に変化したが、その後の電位が回路の短絡又は開放を表す値で無い場合でも、保護手段が作動して発光素子へ供給される電流を低減又は停止する。これによって、前記半壊した発光素子8a及び周辺回路の保護を行う。   By using the lighting device 9a having the above-described configuration, the light emitting element 8a is partially broken during use, and the internal resistance rapidly changes. Even when the subsequent potential is not a value representing a short circuit or an open circuit, the protective means is Operates to reduce or stop the current supplied to the light emitting element. Thus, the semi-broken light emitting element 8a and peripheral circuits are protected.

なお、本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、閾値αの値は、設定環境として、季節の変化に伴う温度変化等を考慮し、実際の使用状況で生じる温度変化で生じ得る電位変化よりも大きな値に設定するのが好ましい。また、有機EL発光素子は、半壊によって抵抗値が減少するが、本発明の発光素子点灯装置は、半壊によって抵抗値が増加するが、増加後の値が回路の開放を表す上限値を越えない発光素子にも、用いることができる。   In addition, this invention is not restricted to the structure of the said embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the value of the threshold α is preferably set to a value larger than the potential change that can occur due to the temperature change that occurs in the actual use situation in consideration of the temperature change associated with the seasonal change as the setting environment. In addition, although the resistance value of the organic EL light emitting element decreases due to half breakdown, the resistance value of the light emitting element lighting device of the present invention increases due to half breakdown, but the increased value does not exceed the upper limit value indicating the opening of the circuit. It can also be used for a light-emitting element.

本発明は、有機EL発光素子のように、回路の短絡又は開放以外に、内部抵抗の変化を伴うが、その後の電圧が短絡又は開放を表す程の値にならない「半壊」という異常の生じ得る発光素子に用いることができる。   In the present invention, as in the case of an organic EL light emitting device, an abnormality such as “half-destruction” may occur in which the internal voltage is changed in addition to a short circuit or open circuit, but the subsequent voltage does not become a value indicating a short circuit or open circuit. It can be used for a light emitting element.

1 照明装置
2 発光部
2a 発光パネル
5 電源ユニット
6、7 発光ユニット
8a 有機EL発光素子
9a 発光素子点灯装置
11 駆動電圧Vccの生成回路
12 信号生成回路
13 制御部
DESCRIPTION OF SYMBOLS 1 Illuminating device 2 Light emission part 2a Light emission panel 5 Power supply unit 6, 7 Light emission unit 8a Organic EL light emitting element 9a Light emitting element lighting device 11 Drive voltage Vcc generation circuit 12 Signal generation circuit 13 Control part

Claims (6)

有機EL発光素子を点灯させる発光素子点灯装置において、
前記発光素子に流れる電流を一定に制御する電流制御部と、
前記発光素子の両端電圧を検出する電圧検出部と、を備え、
前記電流制御部は、前記電圧検出部で検出した電圧の単位時間当たりの電圧変化量を算出し、前記算出した変化量が定格範囲内での動作時に検出される値よりも大きな値の閾値を越えた場合に、発光素子に流す電流量を低減又は停止する、
ことを特徴とする発光素子点灯装置。
In a light emitting element lighting device for lighting an organic EL light emitting element,
A current control unit for controlling a current flowing through the light emitting element to be constant;
A voltage detector for detecting a voltage across the light emitting element,
The current control unit calculates a voltage change amount per unit time of the voltage detected by the voltage detection unit, and sets a threshold value that is larger than a value detected when the calculated change amount is operated within a rated range. If exceeded, reduce or stop the amount of current flowing to the light emitting element,
The light emitting element lighting device characterized by the above-mentioned.
前記閾値は、設定環境下での温度変化に伴い生じる電圧の変化量よりも大きな値に設定されている、ことを特徴とする請求項1に記載の発光素子点灯装置。   The light emitting element lighting device according to claim 1, wherein the threshold value is set to a value larger than a change amount of a voltage caused by a temperature change in a setting environment. 前記電流制御部は、更に、前記電圧検出部により検出された電圧が下限値を下回った場合又は上限値を越えた場合に、前記発光素子に流す電流を停止することを特徴とする請求項1又は請求項2に記載の発光素子点灯装置。   The current control unit further stops a current flowing through the light emitting element when the voltage detected by the voltage detection unit falls below a lower limit value or exceeds an upper limit value. Or the light emitting element lighting device of Claim 2. 前記電流制御部は、入力される調光信号に応じて定められるデューティ比のPWM調光信号を生成し、該信号に基づいてPWM式の電流を前記発光素子に流す、ことを特徴とする請求項1乃至3の何れか一項に記載の発光素子点灯装置。   The current control unit generates a PWM dimming signal having a duty ratio determined according to an input dimming signal, and causes a PWM current to flow through the light emitting element based on the signal. Item 4. The light-emitting element lighting device according to any one of Items 1 to 3. 1以上の有機EL発光素子と、各発光素子を点灯するための請求項1乃至請求項4の何れか一項に記載の発光素子点灯装置と、該発光素子点灯装置に電力を供給する電源ユニットと、を有している発光パネルを備えることを特徴とする照明装置。   One or more organic EL light emitting elements, the light emitting element lighting device according to any one of claims 1 to 4 for lighting each light emitting element, and a power supply unit for supplying power to the light emitting element lighting device A lighting device comprising: a light-emitting panel. 前記電流制御部は、外部から入力された調光信号に応じて定められるデューティ比のPWM調光信号を生成し、該信号に基づいて電流制御を行う、ことを特徴とする請求項5に記載の照明装置。   The said current control part produces | generates the PWM dimming signal of the duty ratio defined according to the dimming signal input from the outside, and performs current control based on this signal, It is characterized by the above-mentioned. Lighting equipment.
JP2011254226A 2011-11-21 2011-11-21 LIGHT EMITTING ELEMENT LIGHTING DEVICE AND LIGHTING DEVICE HAVING THE CIRCUIT Expired - Fee Related JP5962946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011254226A JP5962946B2 (en) 2011-11-21 2011-11-21 LIGHT EMITTING ELEMENT LIGHTING DEVICE AND LIGHTING DEVICE HAVING THE CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011254226A JP5962946B2 (en) 2011-11-21 2011-11-21 LIGHT EMITTING ELEMENT LIGHTING DEVICE AND LIGHTING DEVICE HAVING THE CIRCUIT

Publications (2)

Publication Number Publication Date
JP2013109964A true JP2013109964A (en) 2013-06-06
JP5962946B2 JP5962946B2 (en) 2016-08-03

Family

ID=48706528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011254226A Expired - Fee Related JP5962946B2 (en) 2011-11-21 2011-11-21 LIGHT EMITTING ELEMENT LIGHTING DEVICE AND LIGHTING DEVICE HAVING THE CIRCUIT

Country Status (1)

Country Link
JP (1) JP5962946B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002104A (en) * 2013-06-17 2015-01-05 岩崎電気株式会社 Led lighting circuit and led illuminating device
JP2016170893A (en) * 2015-03-11 2016-09-23 パナソニックIpマネジメント株式会社 Light emission element lighting device, light emission module and luminaire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111035A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Light emitting diode drive device, illumination device using light emitting diode drive device, in-vehicle cabin illumination device, and vehicle illumination device
JP2009223145A (en) * 2008-03-18 2009-10-01 Pioneer Electronic Corp Display device
JP2011204628A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Failure discrimination device and illumination apparatus using the same
JP2011205868A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Overcurrent preventing power supply apparatus and lighting fixture using the same
JP2011222341A (en) * 2010-04-12 2011-11-04 Odelic Co Ltd Lighting control device for organic electroluminescent panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111035A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Light emitting diode drive device, illumination device using light emitting diode drive device, in-vehicle cabin illumination device, and vehicle illumination device
JP2009223145A (en) * 2008-03-18 2009-10-01 Pioneer Electronic Corp Display device
JP2011204628A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Failure discrimination device and illumination apparatus using the same
JP2011205868A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Overcurrent preventing power supply apparatus and lighting fixture using the same
JP2011222341A (en) * 2010-04-12 2011-11-04 Odelic Co Ltd Lighting control device for organic electroluminescent panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002104A (en) * 2013-06-17 2015-01-05 岩崎電気株式会社 Led lighting circuit and led illuminating device
JP2016170893A (en) * 2015-03-11 2016-09-23 パナソニックIpマネジメント株式会社 Light emission element lighting device, light emission module and luminaire

Also Published As

Publication number Publication date
JP5962946B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5749465B2 (en) LIGHT EMITTING ELEMENT DRIVE CIRCUIT, LIGHT EMITTING DEVICE USING THE SAME, AND ELECTRONIC DEVICE
US9345081B2 (en) LED driver system, controller and associated method
US9888544B2 (en) Driving circuits and methods for controlling light source
US9001482B2 (en) Short-circuit protection circuit of light emitting diode and short-circuit protection method thereof and light emitting diode driving apparatus using the same
US9293983B2 (en) Switching power-supply apparatus
TWI632765B (en) DC-DC transformer
US20110273112A1 (en) Light emitting driver
US9148920B2 (en) Light emitting diode driving apparatus capable of detecting whether current leakage phenomenon occurs on LED load and light emitting diode driving method thereof
JP2012186165A (en) Controllers, systems and methods for controlling dimming of light sources
CA2610566A1 (en) Input current or voltage limited power supply
US9013107B2 (en) Load driving apparatus relating to light-emitting-diodes
CN114384964A (en) Control circuit for power improving circuit and semiconductor integrated circuit device
US9658274B2 (en) Light-emitting element failure detector and method for detecting light-emitting element failure
JP5962946B2 (en) LIGHT EMITTING ELEMENT LIGHTING DEVICE AND LIGHTING DEVICE HAVING THE CIRCUIT
US9055649B2 (en) Control circuit and control method of light emitting device circuit
TWI434612B (en) Led driving circuit with circuit detection and power conversion circuit with circuit detection
JP6244971B2 (en) Lighting device and lighting apparatus
KR101196199B1 (en) Circuit for blocking overcurrent in dc/dc converter
EP3007521A2 (en) Driving circuit with dimming controller for driving light sources
US9000688B2 (en) Control circuit for light emitting diode of display
JP6062227B2 (en) Power supply
US20130271006A1 (en) LED Driving Circuit
JP2017016979A (en) Hot-swap protection circuit, and constant current power supply device
JP2017509304A (en) DC / DC converter and driving method of DC / DC converter
JP2020198244A (en) Led driving device and display apparatus, and control apparatus for the led driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R151 Written notification of patent or utility model registration

Ref document number: 5962946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees