JP2013109888A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2013109888A
JP2013109888A JP2011252553A JP2011252553A JP2013109888A JP 2013109888 A JP2013109888 A JP 2013109888A JP 2011252553 A JP2011252553 A JP 2011252553A JP 2011252553 A JP2011252553 A JP 2011252553A JP 2013109888 A JP2013109888 A JP 2013109888A
Authority
JP
Japan
Prior art keywords
hot water
temperature
fuel cell
water storage
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252553A
Other languages
Japanese (ja)
Inventor
Kohei Yamaguchi
耕平 山口
Takayuki Urata
隆行 浦田
Akinari Nakamura
彰成 中村
Yoshikazu Tanaka
良和 田中
Hiroki Ogura
啓貴 小倉
Atsushi Asaue
淳 麻植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011252553A priority Critical patent/JP2013109888A/en
Publication of JP2013109888A publication Critical patent/JP2013109888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the temperature of a heating medium is changed by rapid change in temperature of hot water to a heat exchanger.SOLUTION: A fuel cell system 1 comprises a hot water storage tank 5, a heating medium temperature detector 4, a stored hot water circulation passage 6, a circulation temperature detector 11, a bypass pathway 7, a switch 8 which switches water conduction from the bypass pathway 7 to the hot water storage tank 5 when the temperature detected by the circulation temperature detector 11 reaches or goes above a predetermined temperature, a circulator 9 for circulating the hot water in the stored hot water circulation passage 6 or the bypass pathway 7, and a controller 10 controlling the amount of hot water circulating the stored hot water circulation passage 6 or the bypass pathway 7 by controlling the output of the circulator 9 on the basis of the temperature detected by the heating medium temperature detector 4. The controller 10 changes the output of the circulator 9 by a predetermined amount, when the temperature detected by the circulation temperature detector 11 reaches or goes above a predetermined temperature.

Description

本発明は、燃料ガスと空気を用いて発電を行う燃料電池と、燃料電池の発電電力及び排熱を利用する燃料電池システムに関するものである。   The present invention relates to a fuel cell that generates power using fuel gas and air, and a fuel cell system that uses generated power and exhaust heat of the fuel cell.

排熱を給湯に使用することを目的とした従来の燃料電池システムとして、以下に記載されているようなものがある(例えば、特許文献1参照)。   As a conventional fuel cell system intended to use exhaust heat for hot water supply, there is one as described below (for example, see Patent Document 1).

図3は、従来の燃料電池システムの構成図である。図3に示すように、従来の燃料電池システムは、燃料電池ユニット1と貯湯ユニット2により構成されている。そして、燃料電池ユニット1と貯湯ユニット2は、循環経路3、4と、貯湯タンク5上部に戻す循環経路6と、貯湯タンク5に戻さずに循環経路4に接続されるバイパス経路7とで構成され、循環ポンプ8により水を循環させている。燃料電池ユニット1と貯湯ユニット2を循環する水は、貯湯タンク5の下部より循環ポンプ8を通り、熱媒体経路20を流れる燃料電池9の排熱を回収した熱媒体(例えば、水)と熱交換器10により熱交換することによって加熱され湯水となる。   FIG. 3 is a configuration diagram of a conventional fuel cell system. As shown in FIG. 3, the conventional fuel cell system includes a fuel cell unit 1 and a hot water storage unit 2. The fuel cell unit 1 and the hot water storage unit 2 are composed of circulation paths 3 and 4, a circulation path 6 that returns to the upper part of the hot water storage tank 5, and a bypass path 7 that is connected to the circulation path 4 without returning to the hot water storage tank 5. The water is circulated by the circulation pump 8. The water circulating through the fuel cell unit 1 and the hot water storage unit 2 passes through the circulation pump 8 from the lower part of the hot water storage tank 5 and the heat medium (for example, water) and heat recovered from the exhaust heat of the fuel cell 9 flowing through the heat medium path 20. Heat is exchanged by the exchanger 10 to become hot water.

循環経路3を流れる湯水は、貯湯タンク5の上部温度を低下させないようにするために、温度センサー11で検出され、その温度が貯湯タンク5の上部の温度よりも高い時は貯湯タンク5上部に戻す循環経路6によって貯湯タンク5の上部に搬送される。ここで加熱された熱回収の湯水の温度が貯湯タンク5の上部の温度よりも低い時は切替弁12によってバイパス経路7に搬送され回路内を循環する。また、水は、給水配管13で供給され、給湯として使用されるお湯14は貯湯タンク5上部から給湯配管15の温水と給水配管13の水を混合弁16で所定の温度に混合し出湯される。   The hot water flowing through the circulation path 3 is detected by the temperature sensor 11 so as not to lower the upper temperature of the hot water storage tank 5. When the temperature is higher than the upper temperature of the hot water storage tank 5, It is conveyed to the upper part of the hot water storage tank 5 by the return circulation path 6. When the temperature of the heat recovery hot water heated here is lower than the temperature of the upper part of the hot water storage tank 5, it is conveyed to the bypass path 7 by the switching valve 12 and circulates in the circuit. Further, water is supplied through the water supply pipe 13, and hot water 14 used as hot water is discharged from the upper part of the hot water storage tank 5 by mixing hot water in the hot water supply pipe 15 and water in the water supply pipe 13 to a predetermined temperature by the mixing valve 16. .

また、従来の燃料電池の冷却装置として、ラジエータを用いて燃料電池の冷却を行うものがある(例えば、特許文献2参照)。   Further, as a conventional fuel cell cooling device, there is one that cools a fuel cell using a radiator (see, for example, Patent Document 2).

特開平11−223385号公報JP-A-11-223385 特開2004−178826号公報JP 2004-178826 A

しかしながら、上記従来の燃料電池システムの構成では、排熱回収した湯水の温度により、切替弁12で経路を切り替えた際に熱交換器10へ流入する湯水の温度が変動することによって、熱媒体経路20を流れる熱媒体の温度が変動し、燃料電池1の発電が不安定になるという課題を有していた。特に、貯湯タンク5の下部の湯水の温度よりバイパス経路7を流れる湯水の温度が高い場合、経路を切り替える際に熱交換器10へ流入する湯水の温度が急激に変動することによって、熱交換器10での授受熱量が変化し、熱媒体経路20を流れる熱媒体の温度が変動する恐れがあった。この変動に伴って燃料電池9の電圧低下といった出力変動が起こり、燃料電池システムの運転が不安定となる恐れがあった。   However, in the configuration of the conventional fuel cell system described above, the temperature of the hot water flowing into the heat exchanger 10 when the path is switched by the switching valve 12 varies depending on the temperature of the hot water recovered from the exhaust heat, whereby the heat medium path. 20 has a problem that the temperature of the heat medium flowing through 20 fluctuates and power generation of the fuel cell 1 becomes unstable. In particular, when the temperature of the hot water flowing through the bypass path 7 is higher than the temperature of the hot water in the lower part of the hot water storage tank 5, the temperature of the hot water flowing into the heat exchanger 10 when the path is switched changes rapidly. The amount of heat exchanged at 10 may change, and the temperature of the heat medium flowing through the heat medium path 20 may fluctuate. Along with this fluctuation, output fluctuation such as a voltage drop of the fuel cell 9 occurs, and there is a possibility that the operation of the fuel cell system becomes unstable.

より具体的には、循環経路6からバイパス経路7に経路を切り替える際に、熱交換器10へ流入する湯水の温度が上昇する場合があり、燃料電池9に供給される熱媒体の温度が上昇する恐れがあった。これにより、燃料電池9の温度が上昇し、高分子電解質膜が十分
に湿潤されず、燃料電池9の出力が低下する恐れがあった。また、バイパス経路7から循環経路6に経路を切り替える際に、熱交換器10へ流入する湯水の温度が低下する場合があり、燃料電池9に供給される熱媒体の温度が低下する恐れがあった。これにより、燃料電池9の温度が低下し、反応ガス中の水分が結露してフラッディングが起こり、膜電極接合体に反応ガスが十分に供給されず、燃料電池9の出力が低下する恐れがあった。
More specifically, when switching the path from the circulation path 6 to the bypass path 7, the temperature of hot water flowing into the heat exchanger 10 may increase, and the temperature of the heat medium supplied to the fuel cell 9 increases. There was a fear. As a result, the temperature of the fuel cell 9 rises, the polymer electrolyte membrane is not sufficiently wetted, and the output of the fuel cell 9 may be reduced. Further, when switching the path from the bypass path 7 to the circulation path 6, the temperature of the hot water flowing into the heat exchanger 10 may decrease, and the temperature of the heat medium supplied to the fuel cell 9 may decrease. It was. As a result, the temperature of the fuel cell 9 is lowered, moisture in the reaction gas is condensed and flooding occurs, and the reaction gas is not sufficiently supplied to the membrane electrode assembly, which may reduce the output of the fuel cell 9. It was.

また、特許文献2に記載の従来の燃料電池の冷却装置の技術では、排熱を給湯に用いるという観点から、未だ改善の余地があった。   Further, the conventional fuel cell cooling device technology described in Patent Document 2 still has room for improvement from the viewpoint of using exhaust heat for hot water supply.

本発明は、上記従来の燃料電池システムの課題を解決するもので、燃料電池に供給される熱媒体の温度の変動を抑制し、安定した運転が可能な燃料電池システムを提供することを目的とする。   An object of the present invention is to solve the above-described problems of the conventional fuel cell system, and to provide a fuel cell system capable of suppressing the fluctuation of the temperature of the heat medium supplied to the fuel cell and capable of stable operation. To do.

上記従来の課題を解決するために、本発明の燃料電池システムは、温度センサーが所定温度以上となり循環経路上に構成された切替器によってバイパス経路から貯湯タンクへの通水に切り替える際に、制御器によって循環器の出力を所定量変化させる。   In order to solve the above-described conventional problems, the fuel cell system of the present invention is controlled when the temperature sensor becomes equal to or higher than a predetermined temperature and is switched from the bypass path to the hot water storage tank by the switch configured on the circulation path. The output of the circulator is changed by a predetermined amount by the vessel.

すなわち、切替器によって経路を切り替える際に、循環器によって循環経路を流れる湯水の量を変化させ、熱交換器に流入する湯水の量を変化させる。   That is, when the path is switched by the switch, the amount of hot water flowing through the circulation path is changed by the circulator, and the amount of hot water flowing into the heat exchanger is changed.

本発明の燃料電池システムによれば、熱交換器に供給される熱量の変動を抑制することができ、燃料電池に供給される熱媒体の温度の変動を抑制することが出来る。そのため、燃料電池の発電状態が安定となり、燃料電池システムの安定した運転が可能となる。   According to the fuel cell system of the present invention, fluctuations in the amount of heat supplied to the heat exchanger can be suppressed, and fluctuations in the temperature of the heat medium supplied to the fuel cell can be suppressed. Therefore, the power generation state of the fuel cell becomes stable, and the fuel cell system can be stably operated.

本発明の実施の形態1における燃料電池システムの構成図1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態1における制御器の出力決定処理手順のフローチャートFlowchart of controller output determination processing procedure in Embodiment 1 of the present invention 従来の燃料電池システムの構成図Configuration diagram of conventional fuel cell system

第1の発明は、燃料ガスと空気を用いて発電を行う高分子電解質型燃料電池と、前記燃料電池の排熱を回収する熱交換器と、前記燃料電池と前記熱交換器間に熱媒体を循環させる熱媒体循環経路と、前記熱媒体の温度を検知する熱媒体温度検出器と、前記熱交換器で回収された排熱を溜める貯湯タンクと、前記貯湯タンクの下部の水を前記燃料電池の排熱を利用して湯水とし、前記貯湯タンクの上部に前記湯水を戻すように、前記貯湯タンク及び前記熱交換器を環状に接続された貯湯循環経路と、前記貯湯循環経路を流れる湯水の温度を検出する循環温度検出器と、前記貯湯タンクを迂回するように前記貯湯循環経路に接続されたバイパス経路と、前記循環温度検出器で検出された温度が第1の所定温度以上となった場合に前記バイパス経路への通水から前記貯湯タンクへの通水に切り替え、前記第1の所定温度より低い第2の所定温度以下となった場合に前記貯湯タンクへの通水から前記バイパス経路への通水に切り替える切替器と、前記貯湯循環経路または前記バイパス経路の湯水を循環させる循環器と、前記循環温度検出器で検出された温度が前記第1の所定温度以上となった場合に前記循環器の出力を第1の所定量低下させ、前記第2の所定温度以下となった場合に前記循環器の出力を第2の所定量増加させる制御器と、を備える燃料電池システムである。   A first invention includes a polymer electrolyte fuel cell that generates power using fuel gas and air, a heat exchanger that recovers exhaust heat of the fuel cell, and a heat medium between the fuel cell and the heat exchanger. A heat medium circulation path for circulating the heat medium, a heat medium temperature detector for detecting the temperature of the heat medium, a hot water storage tank for collecting exhaust heat recovered by the heat exchanger, and water below the hot water storage tank as the fuel A hot water circulating path in which the hot water storage tank and the heat exchanger are annularly connected so as to return the hot water to the upper part of the hot water storage tank by using exhaust heat of the battery, and hot water flowing through the hot water storage circulating path A circulating temperature detector for detecting the temperature of the hot water, a bypass path connected to the hot water storage circulation path to bypass the hot water storage tank, and a temperature detected by the circulating temperature detector is equal to or higher than a first predetermined temperature. If the bypass path Switching from passing water to passing through the hot water storage tank, and switching from passing water through the hot water storage tank to passing through the bypass path when the temperature falls below a second predetermined temperature lower than the first predetermined temperature. A switch, a circulator for circulating hot water in the hot water storage circulation path or the bypass path, and an output of the circulator when the temperature detected by the circulation temperature detector is equal to or higher than the first predetermined temperature. And a controller that decreases the first predetermined amount and increases the output of the circulator by a second predetermined amount when the temperature falls below the second predetermined temperature.

すなわち、循環温度検出器で検出された温度が第1の所定温度以上となり、切替器によってバイパス経路への通水から貯湯タンクへ向かう貯湯循環経路に切り替える際に、循環
器によって循環経路を流れる湯水の量を低下させ、熱交換器に流入する湯水の量を低下させる。また、循環温度検出器で検出された温度が第2の所定温度以下となり、切替器によって貯湯タンクへの通水からバイパス経路への通水に切り替える際に、循環器によって循環経路を流れる湯水の量を増加させ、熱交換器に流入する湯水の量を増加させる。
That is, when the temperature detected by the circulation temperature detector becomes equal to or higher than the first predetermined temperature and the switch is switched to the hot water storage circulation path from the water passing through the bypass path to the hot water storage tank, the hot water flowing through the circulation path by the circulator The amount of hot water flowing into the heat exchanger is reduced. In addition, when the temperature detected by the circulation temperature detector becomes equal to or lower than the second predetermined temperature and the switching device switches the water flow from the hot water storage tank to the bypass route, the hot water flowing through the circulation route is circulated by the circulator. Increase the amount and increase the amount of hot water flowing into the heat exchanger.

これにより、これにより、熱交換器に供給される熱量の変動を抑制し、熱交換器での授受熱量を安定とすることができ、熱媒体の温度の変動を低減することが出来る。その結果、燃料電池の発電状態が安定し、安定した運転が可能な燃料電池システムが実現出来る。   Thereby, the fluctuation | variation of the calorie | heat amount supplied to a heat exchanger can be suppressed by this, the heat transfer amount in a heat exchanger can be stabilized, and the fluctuation | variation of the temperature of a heat medium can be reduced. As a result, it is possible to realize a fuel cell system in which the power generation state of the fuel cell is stable and stable operation is possible.

第2の発明は、特に第1の発明において、制御器は前記第1所定量及び前記第2所定量を燃料電池の発電量に応じて変化させる。   In a second aspect of the invention, particularly in the first aspect of the invention, the controller changes the first predetermined amount and the second predetermined amount according to the amount of power generated by the fuel cell.

つまり、切替器により通水を切り替える際に、燃料電池の発電量に応じた変化量で循環器の出力を変化させる。これにより循環経路を流れる湯水の量を変化させ、熱交換器での授受熱量を安定とすることができ、熱媒体の温度の変動を低減することができるので、燃料電池の運転を安定化できる。   That is, when the water flow is switched by the switch, the output of the circulator is changed by a change amount corresponding to the power generation amount of the fuel cell. As a result, the amount of hot water flowing through the circulation path can be changed, the amount of heat exchanged in the heat exchanger can be stabilized, and fluctuations in the temperature of the heat medium can be reduced, so that the operation of the fuel cell can be stabilized. .

以下、本発明の実施の形態について図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as those of the conventional examples or the embodiments described above, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
以下に、本発明の実施の形態1における燃料電池システムについて、図面を用いて説明する。
(Embodiment 1)
The fuel cell system according to Embodiment 1 of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態1における燃料電池システムの構成図である。   FIG. 1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention.

図1に示すように、本実施の形態における燃料電池システムは、燃料ガスと空気を用いて発電を行う高分子電解質型燃料電池1と、燃料電池1の排熱を回収する熱交換器2と、燃料電池1と熱交換器2の間に熱媒体(例えば、水)を循環させる熱媒体循環経路3と、熱媒体の温度を検知する熱媒体温度検出器4と、熱交換器2で回収された排熱を溜める貯湯タンク5と、貯湯タンク5の下部の水を燃料電池1の排熱を利用して湯水とし、貯湯タンク5の上部に湯水を戻すように、貯湯タンク5及び熱交換器2を環状に接続された貯湯循環経路6と、貯湯循環経路6を流れる湯水の温度を検出する循環温度検出器11と、貯湯タンク5を迂回するように貯湯循環経路6に接続されたバイパス経路7と、循環温度検出器11により検出された温度が所定温度となった時にバイパス経路7への通水と貯湯タンク5への通水とを切り替える切替器である切替弁8と、貯湯循環経路6またはバイパス経路7の湯水を循環させる循環器である貯湯ポンプ9と、熱媒体温度検出器4で検出された温度に基づき貯湯ポンプ9の出力を制御することによって貯湯循環経路6またはバイパス経路7を循環する湯水の量を制御する制御器10とを備えている。   As shown in FIG. 1, the fuel cell system according to the present embodiment includes a polymer electrolyte fuel cell 1 that generates power using fuel gas and air, a heat exchanger 2 that recovers exhaust heat from the fuel cell 1, The heat medium circulation path 3 for circulating the heat medium (for example, water) between the fuel cell 1 and the heat exchanger 2, the heat medium temperature detector 4 for detecting the temperature of the heat medium, and the heat exchanger 2 collect the heat medium. The hot water storage tank 5 for storing the exhausted heat and the water in the lower part of the hot water storage tank 5 are converted into hot water using the exhaust heat of the fuel cell 1 and the hot water is returned to the upper part of the hot water storage tank 5 so as to exchange heat. A hot water storage circulation path 6 connected in a ring shape, a circulation temperature detector 11 for detecting the temperature of hot water flowing through the hot water storage circulation path 6, and a bypass connected to the hot water storage circulation path 6 so as to bypass the hot water storage tank 5 Temperature detected by path 7 and circulating temperature detector 11 A switching valve 8 that is a switch for switching between water flow to the bypass path 7 and water flow to the hot water storage tank 5 when the temperature reaches a predetermined temperature, and a circulator that circulates hot water in the hot water storage circulation path 6 or the bypass path 7. A hot water storage pump 9 and a controller 10 that controls the amount of hot water circulating in the hot water storage circulation path 6 or the bypass path 7 by controlling the output of the hot water storage pump 9 based on the temperature detected by the heat medium temperature detector 4. I have.

燃料電池1では、燃料ガス供給器30から供給された水素含有ガスなどの燃料ガスと、酸化剤ガス供給器31から供給された空気などの酸化剤ガスとの電気化学反応により発電を行う。さらに、燃料電池1では発電に伴って発熱するため、熱媒体ポンプ13により燃料電池1を経由して熱媒体循環経路3を循環する熱媒体により冷却される。熱媒体ポンプ13としては、主に遠心ポンプ、斜流ポンプ、往復ポンプなどが用いられ、熱交換器2としては、おもにプレート式熱交換器や二重管式熱交換器などが用いられる。燃料電池1において熱を回収し温度が上昇した熱媒体は、熱交換器2で貯湯水と熱交換して熱媒体ポンプ13によって再び燃料電池1に供給される。   In the fuel cell 1, power generation is performed by an electrochemical reaction between a fuel gas such as a hydrogen-containing gas supplied from the fuel gas supply device 30 and an oxidant gas such as air supplied from the oxidant gas supply device 31. Further, since the fuel cell 1 generates heat as power is generated, the fuel cell 1 is cooled by the heat medium circulating through the heat medium circulation path 3 via the fuel cell 1 by the heat medium pump 13. As the heat medium pump 13, a centrifugal pump, a mixed flow pump, a reciprocating pump or the like is mainly used, and as the heat exchanger 2, a plate heat exchanger or a double pipe heat exchanger is mainly used. The heat medium whose temperature has risen due to the recovery of heat in the fuel cell 1 is exchanged with the hot water in the heat exchanger 2 and supplied again to the fuel cell 1 by the heat medium pump 13.

貯湯循環経路6は、貯湯タンク5の下部と循環器である貯湯ポンプ9の吸入口とが接続され、貯湯ポンプ9の吐出口と熱交換器2の貯湯水入口とが接続されることで温度の低い貯湯水を貯湯タンク5の下部から取り出して熱交換器2に供給する。   The hot water storage circulation path 6 is connected to the lower part of the hot water storage tank 5 and the suction port of the hot water storage pump 9 which is a circulator, and the discharge port of the hot water storage pump 9 is connected to the hot water storage water inlet of the heat exchanger 2. Hot water stored at a low temperature is taken out from the lower part of the hot water storage tank 5 and supplied to the heat exchanger 2.

循環温度検出器11は熱交換器2の貯湯水出口側からの貯湯循環経路水の温度を検出する。この検出された温度が第1の所定温度(例えば43℃)より高い場合には貯湯タンク5上部に貯湯水を戻し、第2の所定温度(例えば40℃)より低ければバイパス経路7を経由するように切替器である切替弁8を切り替えることにより、貯湯タンク5上部より所定温度以上のお湯を貯湯する。また、タンク下部温度検出器14が所定温度(例えば43℃)となれば燃料電池1の発電を停止する。   The circulation temperature detector 11 detects the temperature of the hot water circulation path water from the hot water outlet side of the heat exchanger 2. When the detected temperature is higher than the first predetermined temperature (for example, 43 ° C.), the hot water is returned to the upper part of the hot water storage tank 5, and when the detected temperature is lower than the second predetermined temperature (for example, 40 ° C.), it passes through the bypass path 7. In this way, hot water having a predetermined temperature or higher is stored from the upper part of the hot water storage tank 5 by switching the switching valve 8 which is a switching device. Further, when the tank lower temperature detector 14 reaches a predetermined temperature (for example, 43 ° C.), the power generation of the fuel cell 1 is stopped.

このように貯湯タンク5上部より高温のお湯を貯える積層沸き上げ方式とすることで、貯湯タンク5全体を同時に沸き上げる場合と比較して短時間で必要な温度のお湯が貯湯タンク5上部より貯えられる。貯湯タンク5の底部には給水経路が接続されており、上部には貯湯タンク5に貯えられた高温の貯湯水を台所や洗面所、風呂などの熱負荷に供給する温水経路が接続され、貯湯タンク5に貯湯されたお湯を熱負荷に供給し、貯湯されたお湯が減少すると、給水経路より貯湯タンク5底部に給水される。   In this way, by using a stacked boiling system that stores hot water from the upper part of the hot water storage tank 5, hot water having a required temperature is stored from the upper part of the hot water storage tank 5 in a shorter time than when the entire hot water storage tank 5 is heated simultaneously. It is done. A water supply path is connected to the bottom of the hot water storage tank 5, and a hot water path for supplying hot hot water stored in the hot water storage tank 5 to a heat load such as a kitchen, a washroom, and a bath is connected to the top of the hot water storage tank 5. When the hot water stored in the tank 5 is supplied to the heat load and the stored hot water decreases, the hot water stored in the tank 5 is supplied to the bottom of the hot water storage tank 5 from the water supply path.

貯湯ポンプ9は熱媒体温度検出器4で検出される温度が一定(例えば57℃)となるように制御器10により出力を制御する。例えば熱媒体温度検出器4で検出される温度が目標とする温度(例えば57℃)より高くなれば貯湯ポンプ9の出力を増加することにより貯湯循環経路6を流れる水量を増加させ、熱交換器2での授受熱量を安定とすることにより、熱媒体温度検出器4で検出される温度が目標とする温度となるように制御する。   The hot water storage pump 9 controls the output by the controller 10 so that the temperature detected by the heat medium temperature detector 4 is constant (for example, 57 ° C.). For example, if the temperature detected by the heat medium temperature detector 4 is higher than a target temperature (for example, 57 ° C.), the amount of water flowing through the hot water storage circulation path 6 is increased by increasing the output of the hot water storage pump 9, and the heat exchanger By controlling the amount of heat exchanged at 2 to be stable, the temperature detected by the heat medium temperature detector 4 is controlled to be the target temperature.

さらに制御器10は循環温度検出器11で検出される温度が第1の所定温度以上(例えば43℃以上)となった場合、貯湯ポンプ9の出力を第1の所定量低下させる。すなわち、循環温度検出器11で検出される温度が第1の所定温度以上となった場合、切替器8が切り替わる動作と同時に貯湯ポンプ9の出力を低下させる。また、制御器10は循環温度検出器11で検出される温度が第2の所定温度以下となった場合、貯湯ポンプ9の出力を第2の所定量増加させる。すなわち、循環温度検出器11で検出される温度が第2の所定温度以下となった場合、切替器8が切り替わる動作と同時に貯湯ポンプ9の出力を増加させる。   Further, when the temperature detected by the circulating temperature detector 11 becomes equal to or higher than a first predetermined temperature (for example, 43 ° C. or higher), the controller 10 decreases the output of the hot water storage pump 9 by a first predetermined amount. That is, when the temperature detected by the circulating temperature detector 11 is equal to or higher than the first predetermined temperature, the output of the hot water storage pump 9 is reduced simultaneously with the operation of switching the switch 8. Further, when the temperature detected by the circulating temperature detector 11 becomes equal to or lower than the second predetermined temperature, the controller 10 increases the output of the hot water storage pump 9 by a second predetermined amount. That is, when the temperature detected by the circulating temperature detector 11 becomes equal to or lower than the second predetermined temperature, the output of the hot water storage pump 9 is increased simultaneously with the operation of switching the switch 8.

なお、制御器は前記第1の所定量及び前記第2の所定量を出力変化前の出力の大きさに対する一定割合としても良い。これにより、変化直前の熱媒体の流量に応じた変化量で循環器の出力を変化させ、熱交換器での授受熱量を安定とすることができ、熱媒体の温度の変動を低減することができるので、燃料電池の運転を安定化できる。   The controller may set the first predetermined amount and the second predetermined amount to a constant ratio with respect to the output magnitude before the output change. As a result, the output of the circulator can be changed by a change amount corresponding to the flow rate of the heat medium immediately before the change, the heat exchange amount in the heat exchanger can be stabilized, and the fluctuation of the temperature of the heat medium can be reduced. As a result, the operation of the fuel cell can be stabilized.

図2は、制御器10での貯湯ポンプ9の出力決定処理手順をフローチャートで示している。制御器10は、循環温度検出器11で検出された温度が第1の所定温度以上(例えば43℃)かを判断する(ステップS50)。循環温度検出器11で検出された温度が第1の所定温度以上になっていなければ次に、第2の所定温度以下(例えば40℃)かを判断する(ステップ52)。このとき、第1の所定温度以上であれば、貯湯ポンプ9の出力を第1所定量低下させた出力で動作させ(ステップ51、ステップ55)、第2の所定温度以下であれば貯湯ポンプ9の出力を第2所定量増加させた出力で動作させる(ステップ52、ステップ53、ステップ55)。   FIG. 2 is a flowchart showing an output determination process procedure of the hot water storage pump 9 in the controller 10. The controller 10 determines whether the temperature detected by the circulating temperature detector 11 is equal to or higher than a first predetermined temperature (for example, 43 ° C.) (step S50). If the temperature detected by the circulating temperature detector 11 is not equal to or higher than the first predetermined temperature, it is next determined whether it is equal to or lower than the second predetermined temperature (for example, 40 ° C.) (step 52). At this time, if the temperature is equal to or higher than the first predetermined temperature, the output of the hot water storage pump 9 is operated with the output decreased by the first predetermined amount (step 51, step 55). Is operated with the output increased by the second predetermined amount (step 52, step 53, step 55).

ステップ52において、第2の所定温度以下でなければ、循環温度検出器11で前回検出時の温度で判定された第1の所定量もしくは第2の所定量を低下もしくは増加させる。例えば前回、循環温度検出器11で検出された温度が第1の所定温度以上であって、今回
循環温度検出器11で検出された温度が第1の所定温度より低く、第2の所定温度より高い場合は、第1の所定量を低下させた出力で貯湯ポンプ9を動作させる。このようにすることにより循環温度検出器11で検出された温度で貯湯ポンプ9がチャタリングすることなく動作でき、貯湯循環経路6もしくはバイパス経路7を流れる湯水の流量を安定化することが出来る。熱媒体 本実施の形態によれば切替器8によりバイパス経路7への通水と貯湯タンク5への通水とを切り替える際に、貯湯循環経路6またはバイパス経路7を流れる湯水の量を変化させることにより熱交換器2での授受熱量の変動を抑制し、熱媒体の温度変動を低減することができるので、燃料電池1の運転を安定化できる。
In step 52, if not below the second predetermined temperature, the circulating temperature detector 11 decreases or increases the first predetermined amount or the second predetermined amount determined by the temperature at the previous detection. For example, the temperature detected by the circulating temperature detector 11 last time is equal to or higher than a first predetermined temperature, and the temperature detected by the circulating temperature detector 11 this time is lower than the first predetermined temperature and higher than the second predetermined temperature. When it is high, the hot water storage pump 9 is operated with an output obtained by reducing the first predetermined amount. By doing so, the hot water storage pump 9 can operate without chattering at the temperature detected by the circulating temperature detector 11, and the flow rate of hot water flowing through the hot water storage circulation path 6 or the bypass path 7 can be stabilized. Heat medium According to the present embodiment, the amount of hot water flowing through the hot water circulation path 6 or the bypass path 7 is changed when the switch 8 switches between water flow to the bypass path 7 and water flow to the hot water storage tank 5. As a result, fluctuations in the amount of heat exchanged in the heat exchanger 2 can be suppressed and temperature fluctuations of the heat medium can be reduced, so that the operation of the fuel cell 1 can be stabilized.

(実施の形態2)
本発明の実施の形態2にかかる燃料電池システムは、実施の形態1の燃料電池システムと同様の構成を有しており、実施の形態1と同様に運転されるが、以下の点が実施の形態1とは異なっている。
(Embodiment 2)
The fuel cell system according to the second embodiment of the present invention has the same configuration as the fuel cell system of the first embodiment, and is operated in the same manner as in the first embodiment. It is different from Form 1.

本実施の形態の燃料電池システムは、循環温度検出器11で検出された温度が所定温度となった場合に貯湯ポンプ9の出力を燃料電池の発電量に基づく所定量で変化させることを特徴とする。すなわち循環温度検出器11で検出された温度が第1の所定温度以上となった場合には、熱媒体温度検出器4で検出された温度に基づく出力に燃料電池1の発電量に基づく第1の所定量を低下させた出力で貯湯ポンプ9を制御し、循環温度検出器11で検出された温度が第2の所定温度以下となった場合には、熱媒体温度検出器4で検出された温度に基づく出力に燃料電池1の発電量に基づく第2の所定量を増加させた出力で貯湯ポンプ9を制御する。   The fuel cell system of the present embodiment is characterized in that when the temperature detected by the circulating temperature detector 11 reaches a predetermined temperature, the output of the hot water storage pump 9 is changed by a predetermined amount based on the power generation amount of the fuel cell. To do. That is, when the temperature detected by the circulating temperature detector 11 is equal to or higher than the first predetermined temperature, the output based on the temperature detected by the heat medium temperature detector 4 is added to the first output based on the power generation amount of the fuel cell 1. When the temperature detected by the circulating temperature detector 11 is equal to or lower than the second predetermined temperature, the hot water storage pump 4 is detected. The hot water storage pump 9 is controlled with an output obtained by increasing the second predetermined amount based on the power generation amount of the fuel cell 1 to the output based on the temperature.

通常、燃料電池1の発電にともなう排熱は、発電量の大きさに伴い増減しており、燃料電池1の発電量に基づき貯湯ポンプ9の出力を変化させることにより、貯湯循環経路6もしくはバイパス経路7を流れる湯水の量をより早期に安定化することが出来る。   Normally, the exhaust heat generated by the power generation of the fuel cell 1 increases or decreases with the amount of power generation. By changing the output of the hot water storage pump 9 based on the power generation amount of the fuel cell 1, the hot water storage circulation path 6 or the bypass The amount of hot water flowing through the path 7 can be stabilized earlier.

本実施の形態によれば、切替器8によりバイパス経路7への通水と貯湯タンク5への通水とを切り替える際に、貯湯循環経路6またはバイパス経路7を流れる湯水の量を燃料電池1の発電量に基づき変化させることにより熱交換器2での授受熱量の変動を抑制し、熱媒体の温度変動を低減することができるので、燃料電池1の運転を安定化できる。   According to the present embodiment, the amount of hot water flowing through the hot water storage circulation path 6 or the bypass path 7 is changed to the fuel cell 1 when switching between the water flow to the bypass path 7 and the water flow to the hot water storage tank 5 by the switch 8. Since the variation in the amount of heat exchanged in the heat exchanger 2 can be suppressed and the variation in the temperature of the heat medium can be reduced by changing the amount based on the amount of power generated, the operation of the fuel cell 1 can be stabilized.

なお、本実施の形態では、熱媒体として水を用いたが、これに限定されず、例えば、オイル又は不凍液を用いてもよい。不凍液としては、例えば、エチレングリコール、プロピレングリコール、及び、これらの水溶液を用いることができる。   In this embodiment, water is used as the heat medium. However, the present invention is not limited to this. For example, oil or antifreeze may be used. As the antifreeze, for example, ethylene glycol, propylene glycol, and an aqueous solution thereof can be used.

本発明の燃料電池システムによれば、バイパス経路の通水と貯湯タンクへの通水とを切り替わる際に、貯湯循環経路またはバイパス経路を流れる湯水の量を変化させることにより熱交換器の授受熱量の変動を低減することができるので、高分子電解質型燃料電池の運転を安定化できる。   According to the fuel cell system of the present invention, the amount of heat exchanged by the heat exchanger is changed by changing the amount of hot water flowing through the hot water storage circulation path or the bypass path when switching between the water passing through the bypass path and the water passing through the hot water storage tank. Therefore, the operation of the polymer electrolyte fuel cell can be stabilized.

1 燃料電池
2 熱交換器
3 熱媒体循環経路
4 熱媒体温度検出器
5 貯湯タンク
6 貯湯循環経路
7 バイパス経路
8 切替弁(切替器)
9 貯湯ポンプ(循環器)
10 制御器
11 循環温度検出器
12 燃料電池システム
13 熱媒体ポンプ
14 タンク下部温度検出器
30 燃料ガス供給器
31 酸化剤ガス供給器
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Heat exchanger 3 Heat medium circulation path 4 Heat medium temperature detector 5 Hot water storage tank 6 Hot water storage circulation path 7 Bypass path 8 Switching valve (switch)
9 Hot water storage pump (circulator)
DESCRIPTION OF SYMBOLS 10 Controller 11 Circulating temperature detector 12 Fuel cell system 13 Heat medium pump 14 Tank lower temperature detector 30 Fuel gas supply 31 Oxidant gas supply

Claims (2)

燃料ガスと空気を用いて発電を行う高分子電解質型燃料電池と、
前記燃料電池の排熱を回収する熱交換器と、
前記燃料電池と前記熱交換器間に熱媒体を循環させる熱媒体循環経路と、
前記熱媒体の温度を検知する熱媒体温度検出器と、
前記熱交換器で回収された排熱を溜める貯湯タンクと、
前記貯湯タンクの下部の水を前記燃料電池の排熱を利用して湯水とし、前記貯湯タンクの上部に前記湯水を戻すように、前記貯湯タンク及び前記熱交換器を環状に接続された貯湯循環経路と、
前記貯湯循環経路を流れる湯水の温度を検出する循環温度検出器と、
前記貯湯タンクを迂回するように前記貯湯循環経路に接続されたバイパス経路と、
前記循環温度検出器で検出された温度が第1の所定温度以上となった場合に前記バイパス経路への通水から前記貯湯タンクへの通水に切り替え、前記第1の所定温度より低い第2の所定温度以下となった場合に前記貯湯タンクへの通水から前記バイパス経路への通水に切り替える切替器と、
前記貯湯循環経路または前記バイパス経路の湯水を循環させる循環器と、
前記循環温度検出器で検出された温度が前記第1の所定温度以上となった場合に前記循環器の出力を第1の所定量低下させ、前記第2の所定温度以下となった場合に前記循環器の出力を第2の所定量増加させる制御器と、
を備える、燃料電池システム。
A polymer electrolyte fuel cell that generates power using fuel gas and air; and
A heat exchanger for recovering exhaust heat of the fuel cell;
A heat medium circulation path for circulating a heat medium between the fuel cell and the heat exchanger;
A heat medium temperature detector for detecting the temperature of the heat medium;
A hot water storage tank for collecting exhaust heat recovered by the heat exchanger;
Hot water circulation in which the hot water storage tank and the heat exchanger are connected in an annular shape so that the water in the lower part of the hot water storage tank is converted into hot water using the exhaust heat of the fuel cell, and the hot water is returned to the upper part of the hot water storage tank. Route,
A circulating temperature detector for detecting the temperature of hot water flowing through the hot water circulation path;
A bypass path connected to the hot water circulation path to bypass the hot water storage tank;
When the temperature detected by the circulating temperature detector becomes equal to or higher than a first predetermined temperature, the water is switched from passing through the bypass path to passing through the hot water storage tank, and the second lower than the first predetermined temperature. A switch for switching from passing water to the hot water storage tank to passing water to the bypass path when the temperature is below a predetermined temperature of
A circulator for circulating hot water in the hot water storage circulation path or the bypass path;
When the temperature detected by the circulating temperature detector is equal to or higher than the first predetermined temperature, the output of the circulator is decreased by a first predetermined amount, and when the temperature is equal to or lower than the second predetermined temperature, the A controller for increasing the output of the circulator by a second predetermined amount;
A fuel cell system comprising:
前記制御器は、前記第1所定量及び前記第2所定量を、前記燃料電池の発電量に応じて変化させる請求項1記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the controller changes the first predetermined amount and the second predetermined amount according to a power generation amount of the fuel cell.
JP2011252553A 2011-11-18 2011-11-18 Fuel cell system Pending JP2013109888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252553A JP2013109888A (en) 2011-11-18 2011-11-18 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252553A JP2013109888A (en) 2011-11-18 2011-11-18 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2013109888A true JP2013109888A (en) 2013-06-06

Family

ID=48706474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252553A Pending JP2013109888A (en) 2011-11-18 2011-11-18 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2013109888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040670A (en) * 2013-08-23 2015-03-02 株式会社ノーリツ Hot water storage and supply device
WO2017007198A1 (en) * 2015-07-08 2017-01-12 주식회사 경동나비엔 Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040670A (en) * 2013-08-23 2015-03-02 株式会社ノーリツ Hot water storage and supply device
WO2017007198A1 (en) * 2015-07-08 2017-01-12 주식회사 경동나비엔 Fuel cell system

Similar Documents

Publication Publication Date Title
US20060150652A1 (en) Cooling/heating apparatus using waste heat from fuel cell
JPWO2006057223A1 (en) Fuel cell system
KR101022010B1 (en) Fuel Cell System
JP2005100873A (en) Fuel cell system
JPWO2009078181A1 (en) Cogeneration system
JP2010129353A (en) Starting control device for fuel cell system
KR20130085325A (en) Fuel cell system and method for operating the same at low temperature
JP5434283B2 (en) Fuel cell system
JP5799766B2 (en) Fuel cell system
JPWO2010109790A1 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2013109888A (en) Fuel cell system
JP4355349B2 (en) Fuel cell system
JP7113725B2 (en) fuel cell system
JP2010287362A (en) Fuel cell system
JP2014182923A (en) Fuel cell system and operation method thereof
JP4690023B2 (en) Fuel cell system
JP5287368B2 (en) Fuel cell system
JP2009212066A (en) Fuel cell system
JP2019077924A (en) Hydrogen production, storage, and consumption system
KR100671682B1 (en) Apparatus and method for heat exchange of liquid fuel type fuel cell system
JP2011257130A (en) Apparatus for recovering exhaust heat
US20180069250A1 (en) Fuel cell system and its operation method
WO2010007759A1 (en) Fuel cell system
JP2006179225A (en) Fuel cell system
JP2016152191A (en) Fuel cell system