JP2013109081A - Inverted microscope - Google Patents

Inverted microscope Download PDF

Info

Publication number
JP2013109081A
JP2013109081A JP2011252673A JP2011252673A JP2013109081A JP 2013109081 A JP2013109081 A JP 2013109081A JP 2011252673 A JP2011252673 A JP 2011252673A JP 2011252673 A JP2011252673 A JP 2011252673A JP 2013109081 A JP2013109081 A JP 2013109081A
Authority
JP
Japan
Prior art keywords
optical system
inverted microscope
light
eyepiece
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252673A
Other languages
Japanese (ja)
Inventor
Kazuo Kajitani
和男 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011252673A priority Critical patent/JP2013109081A/en
Priority to EP12192198.5A priority patent/EP2594980A1/en
Priority to US13/675,408 priority patent/US8928974B2/en
Publication of JP2013109081A publication Critical patent/JP2013109081A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0088Inverse microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements

Abstract

PROBLEM TO BE SOLVED: To provide an inverted microscope allowing an ultrawide-field observation despite constituting an ocular optical system and a binocular lens barrel short, light and inexpensive.SOLUTION: An inverted microscope 1 comprises: an objective optical system 2 that collects light from a specimen A; an image-forming optical system 3 that images the light from the specimen A that has been collected by the objective optical system 2 to form an intermediate image; a relay optical system 6 that relays the intermediate image B of the specimen A formed by the image-forming optical system 3; a binocular lens barrel 5 that splits the light from the relay optical system 6; a pair of ocular optical systems 4 that images, in a magnified manner, the intermediate images that have been split by the binocular lens barrel 5 on eyes E of an observer as virtual images. The inverted microscope 1 satisfies the following conditional expressions: (1) K=(Fntl/Ftl)×βRL, (2) Fne=Fe×K, and (3) 0.3<K<0.9.

Description

本発明は、倒立顕微鏡に関するものである。   The present invention relates to an inverted microscope.

従来、顕微鏡の超広視野接眼レンズが知られている(例えば、特許文献1参照。)。
この接眼レンズは、倍率10倍であって、視野数26.5レベルの超広視野接眼レンズである。
Conventionally, an ultra-wide-field eyepiece for a microscope is known (see, for example, Patent Document 1).
This eyepiece is an ultra-wide-field eyepiece having a magnification of 10 and a field number of 26.5.

特許第3250739号公報Japanese Patent No. 3250739

しかしながら、特許文献1の接眼レンズでは、レンズ径が大きく、全長が長く、レンズ枚数が多くなるため、接眼レンズ自体が大型化してしまうという不都合がある。また、視野数26.5を達成するためには、接眼レンズに接続する双眼鏡筒内のプリズムとして、光軸に直交する断面の有効範囲が直径26.5mm以上となっていなければならず、使用するプリズムは外形30mm角とならざるを得ず、双眼鏡筒も大きく、重く、高価なものとなるという不都合がある。   However, the eyepiece of Patent Document 1 has a disadvantage that the lens diameter is large, the total length is long, and the number of lenses is large, so that the eyepiece itself is enlarged. In order to achieve the number of fields of 26.5, the effective range of the cross section perpendicular to the optical axis must be 26.5 mm or more in diameter as a prism in the binocular tube connected to the eyepiece. The prism to be used must have an outer shape of 30 mm square, and the binocular tube is large, heavy, and expensive.

本発明は、上述した事情に鑑みてなされたものであって、接眼光学系および双眼鏡筒を短く、軽くかつ安価に構成しながら、超広視野の観察を行うことができる倒立顕微鏡を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and provides an inverted microscope capable of observing an ultra-wide field of view while configuring an eyepiece optical system and a binocular tube short, light and inexpensive. It is an object.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、試料からの光を集光する対物光学系と、該対物光学系により集光された試料からの光を中間像として結像させる結像光学系と、該結像光学系により結像された前記中間像をリレーするリレー光学系と、該リレー光学系からの光を分岐する光分岐部と、該光分岐部により分岐された前記中間像を拡大して観察者の目に虚像として結像させる一対の接眼光学系とを備え、以下の条件式を満たす倒立顕微鏡を提供する。
K=(Fntl/Ftl)×βRL (1)
Fne=Fe×K (2)
0.3<K<0.9 (3)
ここで、K:係数、Fntl:前記結像光学系の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:前記リレー光学系の倍率、Fne:前記接眼光学系の焦点距離、Fe:前記基準結像光学系と基準対物光学系とを備える倒立顕微鏡における基準接眼光学系の焦点距離である。
In order to achieve the above object, the present invention provides the following means.
The present invention includes an objective optical system that collects light from a sample, an imaging optical system that forms light from the sample collected by the objective optical system as an intermediate image, and the imaging optical system. A relay optical system for relaying the imaged intermediate image, a light branching part for branching light from the relay optical system, and a virtual image in the observer's eye by enlarging the intermediate image branched by the light branching part And an eyepiece optical system that forms an image as an inverted microscope that satisfies the following conditional expression.
K = (Fntl / Ftl) × βRL (1)
Fne = Fe × K (2)
0.3 <K <0.9 (3)
Here, K: coefficient, Fntl: focal length of the imaging optical system, Ftl: focal length of the reference imaging optical system with a magnification of 1, βRL: magnification of the relay optical system, Fne: eyepiece optical system The focal length of the reference eyepiece optical system in an inverted microscope including the reference imaging optical system and the reference objective optical system.

本発明によれば、倍率1倍の基準結像光学系および基準接眼光学系を有する倒立顕微鏡と比較して、接眼光学系の焦点距離を短くして倍率が大きくなり、それと同じ割合で結像光学系とリレー光学系を含む他の光学系を総合した倍率が小さくなる。このようにすることで、倒立顕微鏡の総合倍率を変化させることなく、接眼光学系の倍率を大きくして、視野数を実質的に同じにすることができる。視野数を実質的に同じにするというのは、基準接眼光学系の倍率と接眼光学系の倍率が異なっても同じ視野であることを言う。このとき、結像光学系とリレー光学系を含む他の光学系を総合した倍率が小さくなるので、双眼鏡筒内のプリズムを通過する光束径が細くなり、プリズムを小型化し、双眼鏡筒を小型化することができる。K≦0.3では、結像光学系の焦点距離が短くなりすぎて双眼鏡筒における左右分岐前の空気換算光路長を十分に確保できなくなるか、あるいはリレー光学系の倍率が小さくなりすぎるため、設計が困難になる。Kt≧0.9では、プリズムの実質的な小型化を図ることができない。   According to the present invention, compared with an inverted microscope having a reference imaging optical system and a reference eyepiece optical system with a magnification of 1 ×, the focal length of the eyepiece optical system is shortened to increase the magnification, and image formation is performed at the same rate. The total magnification of other optical systems including the optical system and the relay optical system is reduced. By doing so, the magnification of the eyepiece optical system can be increased and the number of fields of view can be made substantially the same without changing the overall magnification of the inverted microscope. The fact that the number of fields of view is substantially the same means that the field of view is the same even if the magnification of the reference eyepiece optical system and the magnification of the eyepiece optical system are different. At this time, the total magnification of the other optical systems including the imaging optical system and the relay optical system is reduced, so the diameter of the light beam passing through the prism in the binocular tube is reduced, the prism is downsized, and the binocular tube is downsized. can do. When K ≦ 0.3, the focal length of the imaging optical system becomes too short, and it becomes impossible to sufficiently secure the air-converted optical path length before the left and right branching in the binocular tube, or the magnification of the relay optical system becomes too small. Design becomes difficult. If Kt ≧ 0.9, the prism cannot be substantially reduced in size.

上記発明においては、以下の条件式を満たすことが好ましい。
15<FN<22 (4)
ここで、FN:前記接眼光学系の視野数である。
In the said invention, it is preferable to satisfy the following conditional expressions.
15 <FN <22 (4)
Here, FN is the number of fields of view of the eyepiece optical system.

また、上記発明においては、以下の条件式を満たすことが好ましい。
0.45<K (5)
ここで、FN:前記接眼光学系の視野数である。
このようにすることで、K≦0.45とする場合と比較して接眼光学系の焦点距離を長くすることができ、接眼光学系のコマ収差の特性が良好となる。
Moreover, in the said invention, it is preferable to satisfy the following conditional expressions.
0.45 <K (5)
Here, FN is the number of fields of view of the eyepiece optical system.
By doing so, the focal length of the eyepiece optical system can be increased compared to the case where K ≦ 0.45, and the coma aberration characteristic of the eyepiece optical system is improved.

また、上記発明においは、以下の条件を満たすことが好ましい。
140<Fntl<210 (6)
0.55<βRL<1.1 (7)
8<Fne<23 (8)
Moreover, in the said invention, it is preferable to satisfy the following conditions.
140 <Fntl <210 (6)
0.55 <βRL <1.1 (7)
8 <Fne <23 (8)

本発明によれば、接眼光学系および双眼鏡筒を短く、軽くかつ安価に構成しながら、超広視野の観察が可能な倒立顕微鏡を提供することができるという効果を奏する。   According to the present invention, it is possible to provide an inverted microscope capable of observing an ultra-wide field of view while configuring the eyepiece optical system and the binocular tube to be short, light and inexpensive.

本発明の第1の実施形態に係る倒立顕微鏡を示す図である。It is a figure which shows the inverted microscope which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る倒立顕微鏡の変形例を示す図である。It is a figure which shows the modification of the inverted microscope which concerns on the 1st Embodiment of this invention. (a)本発明の第1の実施形態に係る倒立顕微鏡、(b)従来の倒立顕微鏡を示す図である。(A) It is a figure which shows the inverted microscope which concerns on the 1st Embodiment of this invention, (b) The conventional inverted microscope. 図1の倒立顕微鏡の第1実施例に係るレンズ構成を示す図である。It is a figure which shows the lens structure which concerns on 1st Example of the inverted microscope of FIG. 図4の倒立顕微鏡の収差図である。FIG. 5 is an aberration diagram of the inverted microscope of FIG. 4. 図1の倒立顕微鏡の第2実施例に係るレンズ構成を示す図である。It is a figure which shows the lens structure which concerns on 2nd Example of the inverted microscope of FIG. 図6の倒立顕微鏡の収差図である。FIG. 7 is an aberration diagram of the inverted microscope of FIG. 6.

(第1の実施形態)
本発明の第1の実施形態に係る倒立顕微鏡1について、図面を参照して以下に説明する。
本実施形態に係る倒立顕微鏡1は、図1に示されるように、試料Aを搭載するステージSの下方に配置された対物光学系2と、該対物光学系2を介して試料Aに照射する照明光を供給する照明光学系7と、無限遠光束からなる試料Aからの光を集光して中間像として結像させる結像光学系3と、結像光学系3により結像されミラー11により水平方向に反射した中間像をリレーするリレー光学系6と、リレー光学系6によりリレーされる中間像を2つに分岐する双眼鏡筒5(光分岐部)と、試料Aの中間像を拡大して観察者の両眼Eの網膜が配置される位置にそれぞれ結像させる接眼光学系4とを備えている。
(First embodiment)
An inverted microscope 1 according to a first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the inverted microscope 1 according to the present embodiment irradiates the sample A via the objective optical system 2 disposed below the stage S on which the sample A is mounted, and the objective optical system 2. An illumination optical system 7 for supplying illumination light, an imaging optical system 3 for condensing the light from the sample A consisting of an infinite light beam to form an intermediate image, and an image formed by the imaging optical system 3 and a mirror 11 Relay optical system 6 that relays the intermediate image reflected in the horizontal direction, binocular tube 5 (light branching section) that branches the intermediate image relayed by relay optical system 6 into two, and the intermediate image of sample A is enlarged And an eyepiece optical system 4 that forms images at positions where the retinas of both eyes E of the observer are arranged.

対物光学系2は、試料Aから発せられた光を集光して略無限遠光束として鉛直下方に導くようになっている。
照明光学系7は、照明光を発生する水銀灯等の光源8と、光源8からの照明光を集光する集光光学系9と、該集光光学系9により集光された照明光を対物光学系2の光軸OAに沿う方向に偏向するダイクロイックミラー10とを備えている。集光光学系7の焦点位置は対物光学系2の後側焦点位置に一致しており、略平行光からなる照明光を試料Aに照射することができるようになっている。
The objective optical system 2 condenses the light emitted from the sample A and guides it vertically downward as a substantially infinite light beam.
The illumination optical system 7 includes a light source 8 such as a mercury lamp that generates illumination light, a condensing optical system 9 that condenses the illumination light from the light source 8, and the illumination light collected by the condensing optical system 9 as an object. And a dichroic mirror 10 that deflects in a direction along the optical axis OA of the optical system 2. The focal position of the condensing optical system 7 coincides with the rear focal position of the objective optical system 2 so that illumination light composed of substantially parallel light can be irradiated onto the sample A.

リレー光学系6は、結像光学系3により結像されミラー11により水平方向に反射した中間像をリレーするものであり、複数のリレーレンズ12〜15を備える。また、リレーレンズ13とリレーレンズ14との間には水平方向の光束を鉛直方向に反射させるミラー16が設けられている。   The relay optical system 6 relays an intermediate image formed by the imaging optical system 3 and reflected in the horizontal direction by the mirror 11, and includes a plurality of relay lenses 12 to 15. Further, a mirror 16 is provided between the relay lens 13 and the relay lens 14 to reflect the horizontal light flux in the vertical direction.

双眼鏡筒5は、リレー光学系6を通過した光束を斜め上方に傾斜した方向に反射するプリズム17と、該プリズム17によって反射された光を2つに分岐する双眼分岐用プリズム18を備えている。
接眼光学系4は、リレー光学系6によってリレーされた試料Aの中間像を拡大して、観察者の両眼Eの網膜が配置される位置にそれぞれ結像させる。なお、接眼光学系4は、双眼分岐用プリズム18により分岐された2つの光束のそれぞれに対応する一対の光学系である。
The binocular tube 5 includes a prism 17 that reflects the light beam that has passed through the relay optical system 6 in a direction inclined obliquely upward, and a binocular branching prism 18 that branches the light reflected by the prism 17 into two. .
The eyepiece optical system 4 enlarges the intermediate image of the sample A relayed by the relay optical system 6 and forms images at positions where the retinas of the eyes B of the observer are arranged. The eyepiece optical system 4 is a pair of optical systems corresponding to each of the two light beams branched by the binocular branching prism 18.

本実施形態に係る倒立顕微鏡1によれば、照明光学系7の光源8から発せられた照明光は、集光光学系9によって集光された後、ダイクロイックミラー10によって対物光学系2の光軸OAに沿う方向に偏向される。そして、照明光は、対物光学系2によって、該対物光学系3の鉛直上方のステージS上に配置されている試料Aに照射される。   According to the inverted microscope 1 according to the present embodiment, the illumination light emitted from the light source 8 of the illumination optical system 7 is condensed by the condensing optical system 9 and then the optical axis of the objective optical system 2 by the dichroic mirror 10. It is deflected in a direction along OA. Then, the illumination light is irradiated by the objective optical system 2 onto the sample A disposed on the stage S vertically above the objective optical system 3.

試料Aから下方に発せられた光は、対物光学系2により集光されて、鉛直下方に向かう略無限遠光束となり、ダイクロイックミラー10を透過して接眼光学系3に入射する。接眼光学系3に入射した光束はミラー11によって鉛直方向から水平方向に反射し、リレー光学系6のリレーレンズ12に入射する。リレー光学系6は水平方向に入射した光束をミラー16によって鉛直上方に反射させ、双眼鏡筒5に光束を入射させる。双眼鏡筒5は、プリズム17によって反射した光束を双眼分岐用プリズム18により2つに分岐する。そして、一対の接眼光学系4によって試料Aの中間像が拡大されて、観察者の両眼Eの網膜が配置される位置に結像される。観察者は、接眼光学系4の焦点位置に両眼Eを配置しておくことにより、試料Aの像を詳細に観察することができる。   The light emitted downward from the sample A is collected by the objective optical system 2 and becomes a substantially infinite light beam directed vertically downward, passes through the dichroic mirror 10 and enters the eyepiece optical system 3. The light beam incident on the eyepiece optical system 3 is reflected from the vertical direction to the horizontal direction by the mirror 11 and enters the relay lens 12 of the relay optical system 6. The relay optical system 6 reflects the light beam incident in the horizontal direction vertically upward by the mirror 16 and makes the light beam enter the binocular tube 5. The binocular tube 5 branches the light beam reflected by the prism 17 into two by the binocular branching prism 18. Then, the intermediate image of the sample A is magnified by the pair of eyepiece optical systems 4 and formed at a position where the retinas of the eyes B of the observer are arranged. The observer can observe the image of the sample A in detail by arranging both eyes E at the focal position of the eyepiece optical system 4.

図1に示す倒立顕微鏡1は、ミラー11およびミラー16の2箇所で光束の方向を変更するものであったが、ミラー11の1箇所で光束の方向を変更する図2に示す変形例を採用してもよい。図2に示すリレー光学系6では、図1に示すリレー光学系6からミラー16、リレーレンズ14、リレーレンズ15が削除されている。また、図2に示す双眼鏡筒5では、図1に示す双眼鏡筒5からプリズム17が削除されている。なお、図2で図1と同一の符号を付した構成は図1と同様であるものとし、説明を省略する。   The inverted microscope 1 shown in FIG. 1 changes the direction of the light beam at two locations of the mirror 11 and the mirror 16, but adopts the modification shown in FIG. 2 that changes the direction of the light beam at one location of the mirror 11. May be. In the relay optical system 6 shown in FIG. 2, the mirror 16, the relay lens 14, and the relay lens 15 are deleted from the relay optical system 6 shown in FIG. Moreover, in the binocular tube 5 shown in FIG. 2, the prism 17 is deleted from the binocular tube 5 shown in FIG. 2, the same reference numerals as those in FIG. 1 are the same as those in FIG. 1, and description thereof is omitted.

次に、本実施形態に係る倒立顕微鏡1の顕微鏡光学系を、参考例と比較しつつ説明する。
本実施形態に係る倒立顕微鏡1の顕微鏡光学系は、図3(a)に示されるように、試料Aからの光を集光する対物光学系2と、該対物光学系2により集光された試料Aからの光を中間像Bとして結像させる結像光学系3と、該結像光学系3により結像された中間像Bをリレーするリレー光学系6と、該リレー光学系6からの光を2つに分岐する双眼鏡筒5(光分岐部)と、該双眼鏡筒5(光分岐部)により分岐された試料Aの中間像Cを拡大して観察者の目Eに視角2ωの虚像Dとして結像させる接眼光学系4とを備えている。
Next, the microscope optical system of the inverted microscope 1 according to the present embodiment will be described in comparison with a reference example.
As shown in FIG. 3A, the microscope optical system of the inverted microscope 1 according to the present embodiment is focused by the objective optical system 2 that collects the light from the sample A and the objective optical system 2. An image forming optical system 3 that forms light from the sample A as an intermediate image B, a relay optical system 6 that relays the intermediate image B formed by the image forming optical system 3, and a relay optical system 6 A binocular tube 5 (light branching portion) that branches light into two and an intermediate image C of the sample A branched by the binocular tube 5 (light branching portion) are magnified, and a virtual image with a viewing angle 2ω is observed in the observer's eyes E And an eyepiece optical system 4 that forms an image as D.

図3(b)は、参考例として、基準対物光学系2’、倍率が1倍である基準結像光学系3’、倍率が10倍である基準接眼光学系4’、双眼鏡筒5’、倍率が1倍である基準リレー光学系6’を有する倒立顕微鏡1’の顕微鏡光学系を示している。
なお、図3においては、各光学系のそれぞれを、単一のレンズとして示しているが、実際には、それぞれ複数のレンズによって構成されている。
FIG. 3B shows, as a reference example, a reference objective optical system 2 ′, a reference imaging optical system 3 ′ having a magnification of 1 ×, a reference eyepiece optical system 4 ′ having a magnification of 10 ×, a binocular tube 5 ′, A microscope optical system of an inverted microscope 1 ′ having a reference relay optical system 6 ′ having a magnification of 1 is shown.
In FIG. 3, each optical system is shown as a single lens, but in actuality, each optical system is constituted by a plurality of lenses.

本実施形態に係る倒立顕微鏡1は、以下の条件式を満たしている。
K=(Fntl/Ftl)×βRL (1)
Fne=Fe×K (2)
0.3<K<0.9 (3)
ここで、K:係数、Fntl:結像光学系3の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:リレー光学系の倍率、Fne:接眼光学系4の焦点距離、Fe:基準結像光学系3’と基準対物光学系2’とを備える倒立顕微鏡1’における基準接眼光学系4’の焦点距離である。
The inverted microscope 1 according to the present embodiment satisfies the following conditional expression.
K = (Fntl / Ftl) × βRL (1)
Fne = Fe × K (2)
0.3 <K <0.9 (3)
Here, K: coefficient, Fntl: focal length of the imaging optical system 3, Ftl: focal length of the reference imaging optical system having a magnification of 1, βRL: magnification of the relay optical system, Fne: eyepiece optical system 4 Focal length, Fe: focal length of the reference eyepiece optical system 4 ′ in the inverted microscope 1 ′ having the reference imaging optical system 3 ′ and the reference objective optical system 2 ′

このように構成された本実施形態に係る倒立顕微鏡1によれば、試料Aからの光が対物光学系2により集光されて略平行光として結像光学系3に入射されると、結像光学系3によって集光されることにより中間像Bを結像した後にリレー光学系6に入射させられ、双眼鏡筒5を経由して更に接眼光学系4に入射させられる。   According to the inverted microscope 1 according to the present embodiment configured as described above, when the light from the sample A is collected by the objective optical system 2 and is incident on the imaging optical system 3 as substantially parallel light, the image is formed. After being focused by the optical system 3, the intermediate image B is formed and then incident on the relay optical system 6, and further incident on the eyepiece optical system 4 via the binocular tube 5.

この場合において、本実施形態に係る倒立顕微鏡1は、倍率1倍の基準結像光学系3’、倍率1倍の基準リレー光学系6’、および倍率10倍の基準接眼光学系4’を有する倒立顕微鏡1’と比較して、接眼光学系4の焦点距離Fneを短くして倍率を大きくしている。そして、接眼光学系4の倍率を大きくした割合と同じ割合で対物光学系2と結像光学系3とリレー光学系6を総合した倍率を小さくする。その結果、倒立顕微鏡1’の総合倍率を変化させずに、接眼光学系4の視野数を実質的に同じにすることができる。ここで、本実施形態においては、図3(a)に示す対物光学系2は図3(b)に示す基準対物光学系2’と同一であるものとする。   In this case, the inverted microscope 1 according to the present embodiment includes a reference imaging optical system 3 ′ having a magnification of 1 ×, a reference relay optical system 6 ′ having a magnification of 1 ×, and a reference eyepiece optical system 4 ′ having a magnification of 10 ×. Compared with the inverted microscope 1 ', the focal length Fne of the eyepiece optical system 4 is shortened to increase the magnification. Then, the total magnification of the objective optical system 2, the imaging optical system 3, and the relay optical system 6 is reduced at the same ratio as the ratio of increasing the magnification of the eyepiece optical system 4. As a result, the number of fields of view of the eyepiece optical system 4 can be made substantially the same without changing the overall magnification of the inverted microscope 1 '. Here, in the present embodiment, it is assumed that the objective optical system 2 shown in FIG. 3A is the same as the reference objective optical system 2 'shown in FIG.

本実施形態に係る倒立顕微鏡1は、基準結像光学系3’と比較して、結像光学系3の焦点距離Fntlを短くしている。これにより、結像光学系3の倍率が小さくなり、結像光学系3による中間像Bが縮小されることにより、双眼鏡筒5を通過する際の光束径を細くすることができる。その結果、双眼鏡筒5内の双眼分岐用プリズム18のサイズを小型化することができ、双眼鏡筒5を小型化することができるという利点がある。   The inverted microscope 1 according to the present embodiment has a shorter focal length Fntl of the imaging optical system 3 than the reference imaging optical system 3 '. As a result, the magnification of the imaging optical system 3 is reduced, and the intermediate image B by the imaging optical system 3 is reduced, whereby the beam diameter when passing through the binocular tube 5 can be reduced. As a result, there is an advantage that the size of the binocular branching prism 18 in the binocular tube 5 can be reduced, and the binocular tube 5 can be reduced in size.

さらに、本実施形態に係る倒立顕微鏡1によれば、接眼光学系4の焦点距離Fneを短くし、それと同じ割合で結像光学系3とリレー光学系6を総合した倍率を小さくしている。これにより、倒立顕微鏡1の総合倍率は変化しない。中間像Cの像高は中間像C’の像高のK倍になるが、目(E)で見る虚像DとD’の高さは等しく、視野数を実質的に同じにすることができる。視野数を実質的に同じにするというのは基準接眼光学系4’の視角2ω’と接眼光学系4の視角2ωとは同じであることを言う。   Furthermore, according to the inverted microscope 1 according to the present embodiment, the focal length Fne of the eyepiece optical system 4 is shortened, and the total magnification of the imaging optical system 3 and the relay optical system 6 is decreased at the same ratio. Thereby, the total magnification of the inverted microscope 1 does not change. Although the image height of the intermediate image C is K times the image height of the intermediate image C ′, the heights of the virtual images D and D ′ viewed with the eyes (E) are equal, and the number of fields can be made substantially the same. . The fact that the number of fields of view is substantially the same means that the viewing angle 2ω ′ of the reference eyepiece optical system 4 ′ and the viewing angle 2ω of the eyepiece optical system 4 are the same.

本実施形態に係る倒立顕微鏡1は、前述した係数Kを0.3<K<0.9とした。このようにしたのは、K≦0.3では、結像光学系の焦点距離が短くなりすぎて双眼鏡筒における左右分岐前の空気換算光路長を十分に確保できなくなるか、あるいはリレー光学系の倍率が小さくなりすぎるため、設計が困難になるからである。また、K≧0.9では、プリズムの実質的な小型化を図ることができないからである。   In the inverted microscope 1 according to the present embodiment, the above-described coefficient K is set to 0.3 <K <0.9. This is because, when K ≦ 0.3, the focal length of the imaging optical system becomes too short to sufficiently secure the air-converted optical path length before the left and right branches in the binocular tube, or the relay optical system This is because the design becomes difficult because the magnification becomes too small. Further, when K ≧ 0.9, the prism cannot be substantially reduced in size.

ここでは、さらに、以下の条件式を満たすことが好ましい。
15<FN<22 (4)
ここで、FN:接眼光学系4の視野数であり中間像Cの直径に等しい。
Here, it is further preferable to satisfy the following conditional expression.
15 <FN <22 (4)
Here, FN is the number of fields of the eyepiece optical system 4 and is equal to the diameter of the intermediate image C.

また、さらに、以下の条件式を満たすことが好ましい。
0.45<K (5)
このようにすることで、K≦0.45とする場合と比較して接眼光学系の焦点距離を長くすることができ、接眼光学系のコマ収差の特性が良好となる。
Furthermore, it is preferable that the following conditional expression is satisfied.
0.45 <K (5)
By doing so, the focal length of the eyepiece optical system can be increased compared to the case where K ≦ 0.45, and the coma aberration characteristic of the eyepiece optical system is improved.

また、さらに、以下の条件式を満たすことが好ましい。
140<Fntl<210 (6)
0.55<βRL<1.1 (7)
8<Fne<23 (8)
Furthermore, it is preferable that the following conditional expression is satisfied.
140 <Fntl <210 (6)
0.55 <βRL <1.1 (7)
8 <Fne <23 (8)

なお、傾斜角度可変鏡筒や接眼レンズのアイポイントを低くするための鏡筒などでは機構を内蔵するために光路を伸ばす必要があるため結像光学系にリレー系を含むものがあるが対物光学系と接眼光学系の間にある光学系を結像光学系とみなすことで本発明が適用できる。   It should be noted that there are some optical systems that include a relay system in the imaging optical system because the optical path needs to be extended in order to incorporate the mechanism in the tilt angle variable lens barrel and the lens barrel for lowering the eye point of the eyepiece, but objective optics The present invention can be applied by regarding an optical system between the system and the eyepiece optical system as an imaging optical system.

(第1実施例)
次に、本発明の第1の実施形態に係る倒立顕微鏡1の第1実施例について以下に説明する。本実施例に係る倒立顕微鏡1のレンズ構成を図4に示し、レンズデータを表1に、収差図を図5に示す。双眼鏡筒5のプリズムは、空気換算して面番号36の面間隔に含まれる。図4において面番号は一部のみ表示し他を省略している。
(First embodiment)
Next, a first example of the inverted microscope 1 according to the first embodiment of the present invention will be described below. The lens configuration of the inverted microscope 1 according to this example is shown in FIG. 4, the lens data is shown in Table 1, and the aberration diagram is shown in FIG. The prism of the binocular tube 5 is included in the surface interval of surface number 36 in terms of air. In FIG. 4, only part of the surface numbers are shown and others are omitted.

図5(a)は像面湾曲(非点隔差)、(b)はディストーション、(c)は軸外横収差(コマ収差、倍率色収差)、(d)は球面収差である。各収差は接眼光学系4の後にある目Eの代わりに焦点距離25mmの理想レンズをつけて計算した収差をそれぞれ示している。   5A shows field curvature (astigmatism), FIG. 5B shows distortion, FIG. 5C shows off-axis lateral aberration (coma aberration, lateral chromatic aberration), and FIG. 5D shows spherical aberration. Each aberration indicates an aberration calculated by attaching an ideal lens having a focal length of 25 mm instead of the eye E behind the eyepiece optical system 4.

[表1]
面番号 曲率半径 面間隔 屈折率 アッベ数
物体面 ∞ 0.17(カバーガラス) 1.521 56
1 ∞ 3.59(WD)
(対物光学系2)
2 −11.16 6.3 1.6935 53.2
3 ∞ 4.5 1.4343 94.8
4 −10.14 0.18
5 12.98 4.05 1.4343 94.8
6 ―14.35 0.18
7 11.31 4.5 1.4338 95.0
8 −10.04 7.02 1.72 50.3
9 12.18 2.97
10 −5.69 0.9 1.5725 57.7
11 112.56 2.07 1.4978 82.6
12 −10.77 0.18
13 −139.45 6.75 1.7859 44.2
14 −17.46 0.45
15 545.57 1.8 1.6228 57.0
16 16.13 4.05 1.4978 82.6
17 −42.23 102
(結像光学系3)
18 135.09 4.8 1.497 81.5
19 −49.98 4.0 1.8044 39.6
20 −85.54 161.92
(リレー光学系6)
21 78.79 5.5 1.6031 60.6
22 −37.35 2.9 1.8052 25.4
23 −112.22 4.38
24 21.27 7.67 1.744 44.8
25 ∞ 3.3 1.741 52.6
26 15.46 114.89
27 −197.29 2.98 1.5085 61.2
28 38.36 4.9
29 48.8 7.88 1.456 90.3
30 −31.16 3.15 1.5085 61.2
31 −42.51 31.3
32 57.99 3.17 1.4875 70.2
33 294.37 0.35
34 34.35 6.33 1.7234 38.0
35 −95.99 2.74 1.7185 33.5
36 27.37 165.67
(接眼光学系4)
37 ∞ 3.84 1.7859 44.2
38 −25.0 3.95
39 −17.02 2.25 1.8052 25.4
40 31.5 5.92 1.6516 58.5
41 −31.5 0.14
42 80.44 3.6 1.744 44.8
43 −47.22 0.14
44 23.58 4.32 1.5688 56.4
45 ∞
[Table 1]
Surface number Curvature radius Surface spacing Refractive index Abbe number Object surface ∞ 0.17 (cover glass) 1.521 56
1 ∞ 3.59 (WD)
(Objective optical system 2)
2-11.16 6.3 1.6935 53.2
3 ∞ 4.5 1.4343 94.8
4- 10.14 0.18
5 12.98 4.05 1.4343 94.8
6-14.35 0.18
7 11.31 4.5 1.4338 95.0
8-10.04 7.02 1.72 50.3
9 12.18 2.97
10-5.69 0.9 1.5725 57.7
11 112.56 2.07 1.4978 82.6
12 -10.77 0.18
13-139.45 6.75 1.7859 44.2
14-17.46 0.45
15 545.57 1.8 1.6228 57.0
16 16.13 4.05 1.4978 82.6
17 -42.23 102
(Imaging optical system 3)
18 135.09 4.8 1.497 81.5
19-49.98 4.0 1.8044 39.6
20-85.54 161.92
(Relay optical system 6)
21 78.79 5.5 1.6031 60.6
22 -37.35 2.9 1.8052 25.4
23-112.22 4.38
24 21.27 7.67 1.744 44.8
25 ∞ 3.3 1.741 52.6
26 15.46 114.89
27-197.29 2.98 1.5085 61.2
28 38.36 4.9
29 48.8 7.88 1.456 90.3
30 -31.16 3.15 1.5085 61.2
31 -42.51 31.3
32 57.999 3.17 1.4875 70.2
33 294.37 0.35
34 34.35 6.33 1.7234 38.0
35-95.99 2.74 1.7185 33.5
36 27.37 165.67
(Eyepiece optical system 4)
37 ∞ 3.84 1.7859 44.2
38 -25.0 3.95
39 -17.02 2.25 1.8052 25.4
40 31.5 5.92 1.6516 58.5
41 -31.5 0.14
42 80.44 3.6 1.744 44.8
43 -47.22 0.14
44 23.58 4.32 1.5688 56.4
45 ∞

K=0.8
Fntl=144
Ftl=180
βRL=1.0
Fne=20
Fe=25
FN=20
2ω=53.1°
Fob=18
M’=Ftl/Fob×250/Fe=100
M=Fntl/Fob×βRL×250/Fne=100
K = 0.8
Fntl = 144
Ftl = 180
βRL = 1.0
Fne = 20
Fe = 25
FN = 20
2ω = 53.1 °
Fob = 18
M ′ = Ftl / Fob × 250 / Fe = 100
M = Fntl / Fob × βRL × 250 / Fne = 100

ここで、K:係数、Fntl:結像光学系3の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:リレー光学系の倍率、Fne:接眼光学系4の焦点距離、Fe:基準結像光学系3’と基準対物光学系2’とを備える倒立顕微鏡1’における基準接眼光学系4’の焦点距離、FN:中間像Cの直径に等しい接眼光学系4の視野数、2ω:接眼光学系4の視角、M:本実施例の倒立顕微鏡1の総合倍率、Fob:対物光学系2および基準対物光学系2’の焦点距離、M’:基準対物光学系2’と基準結像光学系3’と基準接眼光学系4’を備える倒立顕微鏡1’の総合倍率である。   Here, K: coefficient, Fntl: focal length of the imaging optical system 3, Ftl: focal length of the reference imaging optical system having a magnification of 1, βRL: magnification of the relay optical system, Fne: eyepiece optical system 4 Focal length, Fe: focal length of reference eyepiece optical system 4 ′ in inverted microscope 1 ′ having reference imaging optical system 3 ′ and reference objective optical system 2 ′, FN: eyepiece optical system 4 equal to the diameter of intermediate image C 2ω: viewing angle of the eyepiece optical system 4, M: total magnification of the inverted microscope 1 of this embodiment, Fob: focal length of the objective optical system 2 and the reference objective optical system 2 ′, M ′: reference objective optical system This is the total magnification of an inverted microscope 1 ′ having 2 ′, a reference imaging optical system 3 ′, and a reference eyepiece optical system 4 ′.

(第2実施例)
次に、本発明の第1の実施形態に係る倒立顕微鏡1の第2実施例について以下に説明する。
本実施例に係る倒立顕微鏡1のレンズ構成を図6に示し、レンズデータを表2に、収差図を図7に示す。双眼鏡筒5のプリズムは、空気換算して面番号31の面間隔に含まれる。図6において面番号は一部のみ表示し他を省略している。
(Second embodiment)
Next, a second example of the inverted microscope 1 according to the first embodiment of the present invention will be described below.
FIG. 6 shows the lens configuration of the inverted microscope 1 according to the present example, Table 2 shows lens data, and FIG. 7 shows aberration diagrams. The prism of the binocular tube 5 is included in the surface interval of the surface number 31 in terms of air. In FIG. 6, only part of the surface numbers are shown and others are omitted.

図7(a)は像面湾曲(非点隔差)、(b)はディストーション、(c)は軸外横収差(コマ収差、倍率色収差)、(d)は球面収差である。各収差は接眼光学系4の後にある目Eの代わりに焦点距離25mmの理想レンズをつけて計算した収差をそれぞれ示している。   7A shows field curvature (astigmatism), FIG. 7B shows distortion, FIG. 7C shows off-axis lateral aberration (coma aberration, lateral chromatic aberration), and FIG. 7D shows spherical aberration. Each aberration indicates an aberration calculated by attaching an ideal lens having a focal length of 25 mm instead of the eye E behind the eyepiece optical system 4.

[表2]
面番号 曲率半径 面間隔 屈折率 アッベ数
物体面 ∞ 0.17(カバーガラス) 1.521 56
1 ∞ 22.86(WD)
(対物光学系2)
2 55.38 3.44 1.497 81.5
3 −26.01 0.24
4 15.43 4.43 1.6779 55.3
5 −52.53 1.62 1.5317 48.9
6 10.57 6.37
7 −10.02 1.75 1.5955 39.2
8 111.49 5.18 1.497 81.5
9 −20.91 0.72
10 −52.75 2.68 1.4875 70.2
11 −21.88 0.56
12 −52.75 2.68 1.4875 70.2
13 −21.88 102
(結像光学系3)
14 187.63 6.67 1.497 81.5
15 −69.42 5.56 1.8044 39.6
16 −118.8 217.57
(リレー光学系6)
17 78.79 5.5 1.6031 60.6
18 −37.35 2.9 1.8052 25.4
19 −112.22 4.38
20 21.27 7.67 1.744 44.8
21 ∞ 3.3 1.741 52.6
22 15.46 114.89
23 −197.29 2.98 1.5085 61.2
24 38.36 4.9
25 48.8 7.88 1.456 90.3
26 −31.16 3.15 1.5085 61.2
27 −42.51 12.53
28 ∞ 18.77
29 167.48 5.79 1.4875 70.2
30 −60.93 3.8 1.7185 33.5
31 −106.39 161.61
(接眼光学系4)
32 −22.29 2.28 1.8052 25.4
33 −14.64 1.07 1.5163 64.1
34 22.29 17.15
35 −43.68 5.0 1.755 52.3
36 −21.78 0.29
37 ∞ 1.79 1.8052 25.4
38 36.41 7.85 1.7292 54.7
39 −49.98 0.29
40 49.98 7.85 1.7292 54.7
41 −36.41 1.79 1.8052 25.4
42 ∞ 0.29
43 21.78 3.57 1.755 52.3
44 43.68
[Table 2]
Surface number Curvature radius Surface spacing Refractive index Abbe number Object surface ∞ 0.17 (cover glass) 1.521 56
1 ∞ 22.86 (WD)
(Objective optical system 2)
2 55.38 3.44 1.497 81.5
3 -26.01 0.24
4 15.43 4.43 1.6679 55.3
5-52.53 1.62 1.5317 48.9
6 10.57 6.37
7 -10.02 1.75 1.5955 39.2
8 111.49 5.18 1.497 81.5
9-20.91 0.72
10 -52.75 2.68 1.4875 70.2
11 -21.88 0.56
12 -52.75 2.68 1.4875 70.2
13-21.88 102
(Imaging optical system 3)
14 187.63 6.67 1.497 81.5
15-69.42 5.56 1.8044 39.6
16-118.8 217.57
(Relay optical system 6)
17 78.79 5.5 1.6031 60.6
18-37.35 2.9 1.8052 25.4
19-112.22 4.38
20 21.27 7.67 1.744 44.8
21 ∞ 3.3 1.741 52.6
22 15.46 114.89
23 -197.29 2.98 1.5085 61.2
24 38.36 4.9
25 48.8 7.88 1.456 90.3
26 -31.16 3.15 1.5085 61.2
27 -42.51 12.53
28 ∞ 18.77
29 167.48 5.79 1.4875 70.2
30-60.93 3.8 1.7185 33.5
31-106.39 161.61
(Eyepiece optical system 4)
32 -22.29 2.28 1.8052 25.4
33 -14.64 1.07 1.5163 64.1
34 22.29 17.15
35-43.68 5.0 1.755 52.3
36-21.78 0.29
37 ∞ 1.79 1.8052 25.4
38 36.41 7.85 1.7292 54.7
39 -49.98 0.29
40 49.98 7.85 1.7292 54.7
41 -36.41 1.79 1.8052 25.4
42 ∞ 0.29
43 21.78 3.57 1.755 52.3
44 43.68

K=0.5
Fntl=200
Ftl=360
βRL=0.9
Fne=12.5
Fe=25
FN=16
2ω=65.2°
Fob=36
M’=Ftl/Fob×250/Fe=100
M=Fntl/Fob×βRL×250/Fne=100
K = 0.5
Fntl = 200
Ftl = 360
βRL = 0.9
Fne = 12.5
Fe = 25
FN = 16
2ω = 65.2 °
Fob = 36
M ′ = Ftl / Fob × 250 / Fe = 100
M = Fntl / Fob × βRL × 250 / Fne = 100

ここで、K:係数、Fntl:結像光学系3の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:リレー光学系の倍率、Fne:接眼光学系4の焦点距離、Fe:基準結像光学系3’と基準対物光学系2’とを備える倒立顕微鏡1’における基準接眼光学系4’の焦点距離、FN:中間像Cの直径に等しい接眼光学系4の視野数、2ω:接眼光学系4の視角、M:本実施例の倒立顕微鏡1の総合倍率、Fob:対物光学系2および基準対物光学系2’の焦点距離、M’:基準対物光学系2’と基準結像光学系3’と基準接眼光学系4’を備える倒立顕微鏡1’の総合倍率である。   Here, K: coefficient, Fntl: focal length of the imaging optical system 3, Ftl: focal length of the reference imaging optical system having a magnification of 1, βRL: magnification of the relay optical system, Fne: eyepiece optical system 4 Focal length, Fe: focal length of reference eyepiece optical system 4 ′ in inverted microscope 1 ′ having reference imaging optical system 3 ′ and reference objective optical system 2 ′, FN: eyepiece optical system 4 equal to the diameter of intermediate image C 2ω: viewing angle of the eyepiece optical system 4, M: total magnification of the inverted microscope 1 of this embodiment, Fob: focal length of the objective optical system 2 and the reference objective optical system 2 ′, M ′: reference objective optical system This is the total magnification of an inverted microscope 1 ′ having 2 ′, a reference imaging optical system 3 ′, and a reference eyepiece optical system 4 ′.

(他の実施形態)
第1の実施形態に係る倒立顕微鏡1は、倍率1倍の基準結像光学系3’と比較して結像光学系3の焦点距離Fntlを短くするものであったが、他の態様であっても良い。具体的には、結像光学系3の焦点距離Fntlを基準結像光学系3’の焦点距離Ftlと同じにしても良い。この場合、第1の実施形態に係る(1)から(3)の条件式を満たすために、リレー光学系6の倍率βRLを小さくする。
(Other embodiments)
The inverted microscope 1 according to the first embodiment shortens the focal length Fntl of the imaging optical system 3 as compared with the reference imaging optical system 3 ′ having a magnification of 1 ×. May be. Specifically, the focal length Fntl of the imaging optical system 3 may be the same as the focal length Ftl of the reference imaging optical system 3 ′. In this case, in order to satisfy the conditional expressions (1) to (3) according to the first embodiment, the magnification βRL of the relay optical system 6 is reduced.

このようにすることで、倍率1倍の基準結像光学系および基準接眼光学系を有する倒立顕微鏡と比較して、接眼光学系の焦点距離を短くして倍率を大きくし、それと同じ割合で対物光学系2と結像光学系3とリレー光学系6を総合した倍率を小さくする。従って、この場合でも、倒立顕微鏡1’の総合倍率を変化させずに、接眼光学系4の視野数を実質的に同じにすることができる。また、双眼鏡筒5を通過する際の光束径を細くして、双眼鏡筒5を小型化することができる。   By doing so, the focal length of the eyepiece optical system is shortened and the magnification is increased compared to an inverted microscope having a reference imaging optical system and a reference eyepiece optical system with a magnification of 1 ×, and the objective is increased at the same rate. The total magnification of the optical system 2, the imaging optical system 3, and the relay optical system 6 is reduced. Accordingly, even in this case, the number of fields of view of the eyepiece optical system 4 can be made substantially the same without changing the overall magnification of the inverted microscope 1 '. Further, the binocular tube 5 can be reduced in size by reducing the diameter of the light beam when passing through the binocular tube 5.

また、第1の実施形態では、図3(a)に示す対物光学系2は図3(b)に示す基準対物光学系と同一であるものとしたが、他の態様であっても良い。具体的には、図3(b)に示す基準対物光学系2’の倍率を、図3(a)に示す対物光学系2の倍率と異ならせてもよい。この場合、倍率1倍の基準結像光学系および基準接眼光学系を有する倒立顕微鏡と比較して、接眼光学系の焦点距離を短くして倍率を大きくし、それと同じ割合で対物光学系2と結像光学系3とリレー光学系6を総合した倍率を小さくする。このようにすることで、倒立顕微鏡1の総合倍率を変化させずに、接眼光学系4の全長を短縮しつつ視野数を実質的に同じにすることができる。また、双眼鏡筒5を通過する際の光束径を細くして、双眼鏡筒5を小型化することができる。   In the first embodiment, the objective optical system 2 shown in FIG. 3 (a) is the same as the reference objective optical system shown in FIG. 3 (b). Specifically, the magnification of the reference objective optical system 2 ′ shown in FIG. 3B may be different from the magnification of the objective optical system 2 shown in FIG. In this case, as compared with an inverted microscope having a reference imaging optical system and a reference eyepiece optical system having a magnification of 1 ×, the focal length of the eyepiece optical system is shortened to increase the magnification, and the objective optical system 2 and The total magnification of the imaging optical system 3 and the relay optical system 6 is reduced. In this way, the number of fields of view can be made substantially the same while shortening the overall length of the eyepiece optical system 4 without changing the overall magnification of the inverted microscope 1. Further, the binocular tube 5 can be reduced in size by reducing the diameter of the light beam when passing through the binocular tube 5.

A 試料
B 中間像
C 中間像
D 虚像
E 目
OA 光軸
ω 接眼光学系の視角の片側角度
1,1’ 倒立顕微鏡
2 対物光学系
2’ 基準対物光学系
3 結像光学系
3’ 基準結像光学系
4 接眼光学系
4’ 基準接眼光学系
5,5’ 双眼鏡筒(光分岐部)
6 リレー光学系
6’ 基準リレー光学系
7 照明光学系
A Sample B Intermediate image C Intermediate image D Virtual image E Eye OA Optical axis ω One-sided angle of viewing angle of eyepiece optical system 1,1 ′ Inverted microscope 2 Objective optical system 2 ′ Reference objective optical system 3 Imaging optical system 3 ′ Reference imaging Optical system 4 Eyepiece optical system 4 'Reference eyepiece optical system 5, 5' Binocular tube (light branching section)
6 Relay optical system 6 'Reference relay optical system 7 Illumination optical system

Claims (4)

試料からの光を集光する対物光学系と、
該対物光学系により集光された試料からの光を中間像として結像させる結像光学系と、
該結像光学系により結像された前記中間像をリレーするリレー光学系と、
該リレー光学系からの光を分岐する光分岐部と、
該光分岐部により分岐された前記中間像を拡大して観察者の目に虚像として結像させる一対の接眼光学系とを備え、
以下の条件式を満たす倒立顕微鏡。
K=(Fntl/Ftl)×βRL (1)
Fne=Fe×K (2)
0.3<K<0.9 (3)
ここで、
K:係数
Fntl:前記結像光学系の焦点距離、
Ftl:倍率が1倍である基準結像光学系の焦点距離、
βRL:前記リレー光学系の倍率、
Fne:前記接眼光学系の焦点距離、
Fe:前記基準結像光学系と基準対物光学系とを備える倒立顕微鏡における接眼光学系の焦点距離、
である。
An objective optical system for collecting light from the sample;
An imaging optical system for forming light from the sample collected by the objective optical system as an intermediate image;
A relay optical system that relays the intermediate image formed by the imaging optical system;
An optical branching unit for branching light from the relay optical system;
A pair of eyepiece optical systems for enlarging the intermediate image branched by the light branching section to form a virtual image in the eyes of the observer;
An inverted microscope that satisfies the following conditional expression.
K = (Fntl / Ftl) × βRL (1)
Fne = Fe × K (2)
0.3 <K <0.9 (3)
here,
K: coefficient Fntl: focal length of the imaging optical system,
Ftl: Focal length of the reference imaging optical system having a magnification of 1 ×
βRL: magnification of the relay optical system,
Fne: focal length of the eyepiece optical system,
Fe: focal length of an eyepiece optical system in an inverted microscope comprising the reference imaging optical system and the reference objective optical system,
It is.
以下の条件式を満たす請求項1に記載の倒立顕微鏡。
15<FN<22 (4)
ここで、FN:前記接眼光学系の視野数
である。
The inverted microscope according to claim 1, which satisfies the following conditional expression.
15 <FN <22 (4)
Here, FN is the number of fields of view of the eyepiece optical system.
以下の条件式を満たす請求項1または請求項2に記載の倒立顕微鏡。
0.45<K (5)
The inverted microscope according to claim 1 or 2, wherein the following conditional expression is satisfied.
0.45 <K (5)
以下の条件式を満たす請求項1から請求項3のいずれか1項に記載の倒立顕微鏡。
140<Fntl<210 (6)
0.55<βRL<1.1 (7)
8<Fne<23 (8)
The inverted microscope according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
140 <Fntl <210 (6)
0.55 <βRL <1.1 (7)
8 <Fne <23 (8)
JP2011252673A 2011-11-18 2011-11-18 Inverted microscope Pending JP2013109081A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011252673A JP2013109081A (en) 2011-11-18 2011-11-18 Inverted microscope
EP12192198.5A EP2594980A1 (en) 2011-11-18 2012-11-12 Inverted microscope
US13/675,408 US8928974B2 (en) 2011-11-18 2012-11-13 Inverted microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252673A JP2013109081A (en) 2011-11-18 2011-11-18 Inverted microscope

Publications (1)

Publication Number Publication Date
JP2013109081A true JP2013109081A (en) 2013-06-06

Family

ID=47143760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252673A Pending JP2013109081A (en) 2011-11-18 2011-11-18 Inverted microscope

Country Status (3)

Country Link
US (1) US8928974B2 (en)
EP (1) EP2594980A1 (en)
JP (1) JP2013109081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536130A (en) * 2014-12-17 2015-04-22 青岛歌尔声学科技有限公司 Micro-display eye lens, head-mounted eye lens system and micro-display head-mounted equipment
CN111352211A (en) * 2018-12-23 2020-06-30 辽宁中蓝电子科技有限公司 Small-head high-resolution lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815612A (en) * 1994-07-01 1996-01-19 Olympus Optical Co Ltd Microscope device
JP2001154107A (en) * 1999-11-29 2001-06-08 Mitsutoyo Corp Microscope
JP2009512887A (en) * 2005-10-20 2009-03-26 カール ツァイス サージカル ゲーエムベーハー Microscope system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202047A (en) * 1961-06-21 1965-08-24 Bausch & Lomb Inverted microscope with u-shaped optical path and tubular mounts for objective and relay lens systems
US4204748A (en) * 1976-12-10 1980-05-27 Olympus Optical Co., Ltd. Focal relay lens system for an inverted microscope
US4158475A (en) * 1978-04-18 1979-06-19 American Optical Corporation Optical system for inverted microscopes
JPH03250739A (en) 1990-02-28 1991-11-08 Fujitsu Ltd Semiconductor device and its manufacture
JP3250739B2 (en) 1991-10-24 2002-01-28 オリンパス光学工業株式会社 Super wide field eyepiece for microscope
US5808791A (en) * 1994-07-01 1998-09-15 Olympus Optical Co., Ltd. Microscope apparatus
JPH0949971A (en) * 1995-08-08 1997-02-18 Nikon Corp Microscope
JP2002267940A (en) * 2001-03-09 2002-09-18 Olympus Optical Co Ltd Inverted microscope system
US6813071B2 (en) * 2001-03-23 2004-11-02 Olympus Optical Co., Ltd. Inverted microscope
JP2002303795A (en) * 2001-04-04 2002-10-18 Olympus Optical Co Ltd Inverted microscope
JP2004347777A (en) * 2003-05-21 2004-12-09 Olympus Corp Total reflection fluorescence microscope
US20100302628A1 (en) * 2007-08-07 2010-12-02 Nikon Corporation Microscope
JP5387409B2 (en) * 2007-09-04 2014-01-15 株式会社ニコン Relay variable power optical system and microscope having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815612A (en) * 1994-07-01 1996-01-19 Olympus Optical Co Ltd Microscope device
JP2001154107A (en) * 1999-11-29 2001-06-08 Mitsutoyo Corp Microscope
JP2009512887A (en) * 2005-10-20 2009-03-26 カール ツァイス サージカル ゲーエムベーハー Microscope system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536130A (en) * 2014-12-17 2015-04-22 青岛歌尔声学科技有限公司 Micro-display eye lens, head-mounted eye lens system and micro-display head-mounted equipment
CN104536130B (en) * 2014-12-17 2017-02-22 青岛歌尔声学科技有限公司 Micro-display eye lens, head-mounted eye lens system and micro-display head-mounted equipment
CN111352211A (en) * 2018-12-23 2020-06-30 辽宁中蓝电子科技有限公司 Small-head high-resolution lens

Also Published As

Publication number Publication date
US8928974B2 (en) 2015-01-06
EP2594980A1 (en) 2013-05-22
US20130128345A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5192892B2 (en) Stereo photography optical system
JP6006014B2 (en) Microscope, microscope system, and image composition method
JPWO2018047335A1 (en) Stereoscopic endoscope
JP5624909B2 (en) Microscope objective lens and microscope apparatus provided with the same
JP5705014B2 (en) Imaging lens, imaging optical system, and microscope
JP6274952B2 (en) Immersion microscope objective lens and microscope using the same
US8964285B2 (en) Microscope optical system
JP2013109081A (en) Inverted microscope
CN109983383B (en) Endoscope objective optical system
JP5836087B2 (en) Microscope relay optical system
JP4160270B2 (en) Imaging optics and lens barrel
JP2012145687A (en) Scanner type microscope
JP2017016066A (en) Microscope optical system
US20210165201A1 (en) Microscope objective lens and microscope
JP6829527B2 (en) A device for imaging a sample and its method
JP4742373B2 (en) Imaging optics and lens barrel
JP5734713B2 (en) Observation optical system
JP2016148735A (en) Relay optical system and microscope device
JP2013221956A (en) Microscope
JP2006194976A (en) Objective lens
JP2014056207A (en) Microscope objective lens, microscope objective lens unit, and control method
JP2011059205A (en) Microscope device
JP2003075720A (en) Image-forming lens for image pickup
JP2017134276A (en) Imaging device and capsule endoscope
JP2001117009A (en) Inverted microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201