JP2013108659A - Method for producing hydrogen-containing ice - Google Patents

Method for producing hydrogen-containing ice Download PDF

Info

Publication number
JP2013108659A
JP2013108659A JP2011253106A JP2011253106A JP2013108659A JP 2013108659 A JP2013108659 A JP 2013108659A JP 2011253106 A JP2011253106 A JP 2011253106A JP 2011253106 A JP2011253106 A JP 2011253106A JP 2013108659 A JP2013108659 A JP 2013108659A
Authority
JP
Japan
Prior art keywords
ice
magnesium hydride
hydrogen
magnesium
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011253106A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uesugi
浩之 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Coke Lab Co Ltd
Original Assignee
Bio Coke Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Coke Lab Co Ltd filed Critical Bio Coke Lab Co Ltd
Priority to JP2011253106A priority Critical patent/JP2013108659A/en
Publication of JP2013108659A publication Critical patent/JP2013108659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing hydrogen-containing ice with hydrogen contained.SOLUTION: Firstly, magnesium hydride is produced. In this case, pulverization is performed so that the mean particle diameter of magnesium hydride particles is preferably set to 0.1-20 μm, more preferably set to 0.1-5 μm. The produced granular magnesium hydride is put in water cooled to about 2°C, agitated by an agitator, and suspended. Further, magnesium hydride suspension is subjected to rapid ice making by an ice making device. When ice is produced, hydrolysis reaction of the magnesium hydride makes progress. Therefore, in the ice, the magnesium hydrate and hydrogen exist in the ice, and the hydrogen exists in the ice as dissolved hydrogen and bubbles.

Description

本発明は、水素が含まれた氷の製造方法に関する。   The present invention relates to a method for producing ice containing hydrogen.

水素水(電解還元水)中に含まれる水素は体内で生成された活性酸素のうち有害なヒドロキシルラジカルにのみ作用して無害化することにより、老化を抑止し人体の健康を維持する効果を奏する。水素水の製造方法については例えば特許文献1に記載されているように、常温常圧の水を電気分解することにより生成する方法がある。   Hydrogen contained in hydrogen water (electrolytically reduced water) acts only on harmful hydroxyl radicals in the active oxygen produced in the body to make them harmless, thereby suppressing aging and maintaining the health of the human body. . As a method for producing hydrogen water, for example, as described in Patent Document 1, there is a method of generating water by electrolyzing water at normal temperature and pressure.

しかし水素の水に対する溶解度は常温常圧下では最大で1.6ppmであり、特許文献1に記載の方法では飽和量より多量の水素が含まれた水を製造することができないという問題がある。   However, the solubility of hydrogen in water is 1.6 ppm at maximum under normal temperature and normal pressure, and the method described in Patent Document 1 has a problem that water containing a larger amount of hydrogen than the saturation amount cannot be produced.

特許第3349710号公報Japanese Patent No. 3349710

本発明は飽和量よりも多量の水素が含まれた氷を製造する方法の提供を目的とする。   An object of the present invention is to provide a method for producing ice containing a larger amount of hydrogen than the saturation amount.

本発明に係る水素含有氷の製造方法は、粒状の水素化マグネシウムを水に混合して生成された液体を製氷することを特徴とする。   The method for producing hydrogen-containing ice according to the present invention is characterized in that a liquid produced by mixing granular magnesium hydride with water is made into ice.

水素化マグネシウムは(1)式で示される加水分解反応により、水素が発生する。発生した水素は水素化マグネシウム懸濁液中に飽和量が溶存されるほか、気泡となって氷中に存在する。これにより水素の水に対する飽和量よりも多くの量が含まれた水素が含まれた氷を製氷することができる。   Magnesium hydride generates hydrogen by a hydrolysis reaction represented by the formula (1). The generated hydrogen is dissolved in the magnesium hydride suspension, and in the form of bubbles, it is present in ice. Thereby, ice containing hydrogen containing a larger amount than the saturation amount of hydrogen with respect to water can be made.

Figure 2013108659
Figure 2013108659

本発明に係る水素含有氷の製造方法は、前記粒状の水素化マグネシウムの平均粒径は0.1μm以上20μm以下であることを特徴とする。   The method for producing hydrogen-containing ice according to the present invention is characterized in that the granular magnesium hydride has an average particle size of 0.1 μm or more and 20 μm or less.

水素化マグネシウム粒子の平均粒径とは、水素化マグネシウムの粒度分布を測定して得られた50wt%径である。50wt%径とは、50%累積度数の粒径である。つまり、粒径が小さい水素化マグネシウム粒子から順に累積し、その累積値が50%に達したときの粒径である。平均粒径が50μmを超える場合には加水分解反応が十分に行われない場合がある。一方、平均粒径があまりに小さすぎる場合は製氷する前に殆ど加水分解反応が終了して水素気泡となり、大気中に放出されるため、多量の水素を含んだ氷の製氷が困難になる。従って水素化マグネシウムの平均粒径は0.1μm以上20μm以下程度であることが望ましい。   The average particle diameter of the magnesium hydride particles is a 50 wt% diameter obtained by measuring the particle size distribution of the magnesium hydride. The 50 wt% diameter is a particle diameter having a 50% cumulative frequency. That is, the particle size is obtained when the magnesium hydride particles having a smaller particle size are accumulated in order and the accumulated value reaches 50%. When the average particle size exceeds 50 μm, the hydrolysis reaction may not be sufficiently performed. On the other hand, if the average particle size is too small, the hydrolysis reaction is almost completed before ice making and hydrogen bubbles are formed and released into the atmosphere, making it difficult to make ice containing a large amount of hydrogen. Therefore, the average particle size of magnesium hydride is desirably about 0.1 μm or more and 20 μm or less.

本発明に係る水素含有氷の製造方法は、前記粒状の水素化マグネシウムの平均粒径は0.1μm以上5μm以下であることを特徴とする。   The method for producing hydrogen-containing ice according to the present invention is characterized in that the granular magnesium hydride has an average particle size of 0.1 μm or more and 5 μm or less.

加水分解反応が十分に行われるためには、水素化マグネシウムの平均粒径は0.1μm以上5μm以下であることがさらに望ましい。   In order for the hydrolysis reaction to be sufficiently performed, the average particle size of magnesium hydride is more preferably 0.1 μm or more and 5 μm or less.

本発明によれば、粒状の水素化マグネシウムを水に添加・撹拌して水と混合させた水素化マグネシウム懸濁液を急速に冷却することにより、製氷された氷中には加水分解反応により発生した水素が溶存し、かつ発生した水素の気泡が含まれる。従って飽和量よりも多量の水素が含まれた氷を製氷することができる。   According to the present invention, a magnesium hydride suspension in which granular magnesium hydride is added to water and stirred and mixed with water is rapidly cooled to generate ice in the produced ice by a hydrolysis reaction. The dissolved hydrogen is dissolved, and the generated hydrogen bubbles are included. Therefore, ice containing a larger amount of hydrogen than the saturation amount can be made.

水素化マグネシウム粒子製造装置を示すブロック図である。It is a block diagram which shows a magnesium hydride particle manufacturing apparatus. 本発明における製氷装置を示す模式図である。It is a schematic diagram which shows the ice making apparatus in this invention. 水素化マグネシウム懸濁液が製氷された様子を示す模式図である。It is a schematic diagram which shows a mode that the magnesium hydride suspension was made into ice.

本発明における実施の形態について説明する。以下本実施の形態に係る氷の製造方法について説明する。まず、平均粒径が0.1μm以上5μm以下の水素化マグネシウム粒子を生成する。   Embodiments of the present invention will be described. Hereinafter, a method for producing ice according to the present embodiment will be described. First, magnesium hydride particles having an average particle size of 0.1 μm to 5 μm are generated.

図1は水素化マグネシウム粒子製造装置を示すブロック図である。水素化マグネシウム粒子製造装置は、粒子間衝突方式のジェット粉砕機1を備える。   FIG. 1 is a block diagram showing an apparatus for producing magnesium hydride particles. The apparatus for producing magnesium hydride particles includes a jet crusher 1 of an interparticle collision type.

ジェット粉砕機1は、円筒状のミルを備え、ミルの内周面には複数の粉砕ノズルと、一つの原料供給口とが周方向に等配されている。原料供給口には、平均粒径5μmを超える水素化マグネシウム粗粒子をジェット粉砕機1へ供給する供給機振動フィーダ2が設けられている。また、粉砕ノズルには、圧縮ガスをジェット粉砕機1へ供給する圧縮機3がエアフィルタ4を介して設けられている。粉砕ノズルによる最大吐出圧力は1.57MPaである。更に、ミルは、ジェット粉砕機1にて粉砕された平均粒径0.1μm以上5μm以下の水素化マグネシウム粒子を回収する回収器5を適宜箇所に備える。回収器5は、例えば円筒ろ布である。   The jet crusher 1 includes a cylindrical mill, and a plurality of crushing nozzles and one raw material supply port are equally arranged in the circumferential direction on the inner peripheral surface of the mill. The raw material supply port is provided with a feeder vibratory feeder 2 for supplying magnesium hydride coarse particles having an average particle size exceeding 5 μm to the jet crusher 1. The pulverizing nozzle is provided with a compressor 3 for supplying compressed gas to the jet pulverizer 1 via an air filter 4. The maximum discharge pressure by the crushing nozzle is 1.57 MPa. Further, the mill is appropriately equipped with a collector 5 for collecting magnesium hydride particles having an average particle diameter of 0.1 μm or more and 5 μm or less pulverized by the jet pulverizer 1. The collector 5 is, for example, a cylindrical filter cloth.

原料供給口からミル内部へ供給された水素化マグネシウム粗粒子は、粉砕ノズルから噴射された高圧ジェット気流によって旋回しながら加速し、粒子間衝突によって粉砕される。なお、水素化マグネシウム粗粒子は、円筒状のミル内部を旋回加速する構成であるため、ミルの内周壁への粒子衝突が少なく、ミル壁面が削れることによる不純物混入の虞が低い。   The magnesium hydride coarse particles supplied from the raw material supply port to the inside of the mill are accelerated while swirling by the high-pressure jet stream injected from the pulverizing nozzle, and are pulverized by collision between particles. In addition, since the magnesium hydride coarse particles are configured to rotationally accelerate inside the cylindrical mill, there are few particle collisions with the inner peripheral wall of the mill, and there is little risk of contamination due to scraping of the mill wall surface.

これらの装置を用いて、平均粒径5μmを超える水素化マグネシウム粗粒子を生成する。水素化マグネシウム粗粒子は、(2)式に示すようにマグネシウムを主成分とする原料粒子と、水素ガスとを反応させることによって得られる。   These apparatuses are used to produce magnesium hydride coarse particles having an average particle size exceeding 5 μm. Magnesium hydride coarse particles are obtained by reacting raw material particles containing magnesium as a main component with hydrogen gas as shown in the formula (2).

Figure 2013108659
Figure 2013108659

詳細な反応手順は以下の通りである。まず、マグネシウムを主成分とする原料粒子を封入容器内に封入した水素ガス雰囲気中に保持しておき、封入容器内の水素ガス雰囲気の圧力を所定圧力に維持し、封入容器内の水素ガス雰囲気の温度を室温から上昇させ、封入容器内の水素ガス雰囲気の温度を、単体のマグネシウム及び水素分子が化合して水素化マグネシウムが生成する反応と逆反応との平衡曲線上の前記所定圧力に対応する温度よりも高温で、前記温度からの温度差が100℃以内である第1温度に所定の第1期間維持する。具体的には、水素ガスの圧力は4MPa、第1温度は550℃、第1期間は1時間である。上述の処理によって、原料粒子表面の被膜が除去される。   The detailed reaction procedure is as follows. First, the raw material particles containing magnesium as a main component are kept in a hydrogen gas atmosphere sealed in a sealed container, and the pressure of the hydrogen gas atmosphere in the sealed container is maintained at a predetermined pressure. The temperature of the hydrogen gas atmosphere in the enclosure is increased from room temperature, and the temperature of the hydrogen gas atmosphere in the enclosure corresponds to the predetermined pressure on the equilibrium curve between the reaction in which the magnesium and hydrogen molecules combine to produce magnesium hydride and the reverse reaction. The first temperature is maintained at a first temperature that is higher than the temperature at which the temperature difference is within 100 ° C. from the temperature. Specifically, the pressure of hydrogen gas is 4 MPa, the first temperature is 550 ° C., and the first period is 1 hour. The coating on the surface of the raw material particles is removed by the above-described treatment.

次いで、封入容器内の水素ガス雰囲気の温度を、室温へ戻さずに、前記平衡曲線上の前記所定圧力に対応する温度よりも低温で、前記温度からの温度差が100℃以内である温度に、所定の第2期間維持する。具体的には、第2温度は400℃、第2期間は20時間である。この処理によって、原料粒子から水素化マグネシウムを製造することができる。   Next, without returning the temperature of the hydrogen gas atmosphere in the enclosure to room temperature, the temperature is lower than the temperature corresponding to the predetermined pressure on the equilibrium curve, and the temperature difference from the temperature is within 100 ° C. The second period is maintained. Specifically, the second temperature is 400 ° C. and the second period is 20 hours. By this treatment, magnesium hydride can be produced from the raw material particles.

供給機振動フィーダ2を用いて、水素化マグネシウム粗粒子をジェット粉砕機1へ供給する。次いで、高圧ガスをジェット粉砕機1へ供給することによって、水素化マグネシウム粗粒子を、平均粒径0.1μm以上5μm以下の水素化マグネシウム粒子に粉砕し、粉砕した水素化マグネシウム粒子を回収して、製造工程を終える。水素化マグネシウムの粒度分布は、例えばレーザー回折式粒度分布測定器(CILAS社製、製品名CILAS1064)を用いた湿式法(媒体:IPA)にて測定される。   Using the feeder vibration feeder 2, the magnesium hydride coarse particles are supplied to the jet pulverizer 1. Next, by supplying high-pressure gas to the jet pulverizer 1, the magnesium hydride coarse particles are pulverized into magnesium hydride particles having an average particle size of 0.1 μm to 5 μm, and the pulverized magnesium hydride particles are recovered. Finish the manufacturing process. The particle size distribution of magnesium hydride is measured by, for example, a wet method (medium: IPA) using a laser diffraction particle size distribution analyzer (product name: CILAS 1064, manufactured by CILAS).

なお、水素化マグネシウム粒子の平均粒径は0.1μm以上20μm以下であれば加水分解反応を進行させる望ましい効果を奏することができる。平均粒径が0.1μm以上20μm以下の水素化マグネシウム粒子も前述した平均粒径0.1μm以上5μm以下の場合と同様の工程により製造することができる。   In addition, if the average particle diameter of the magnesium hydride particles is 0.1 μm or more and 20 μm or less, a desirable effect of promoting the hydrolysis reaction can be obtained. Magnesium hydride particles having an average particle size of 0.1 μm or more and 20 μm or less can also be produced by the same steps as in the case of the average particle size of 0.1 μm or more and 5 μm or less.

このようにして製造された水素化マグネシウムを水に強制撹拌して混合させ、水素化マグネシウム懸濁液を生成する。製氷を迅速に行うため水は0℃に近い水温とすることが望ましく、本実施の形態では2℃程度である。水素化マグネシウム懸濁液は加水分解反応が進行し、水素が飽和量まで溶存する。また、加水分解反応により水素が生成され水中に気泡となって存在する。なお、加水分解反応により、水素化マグネシウムの15.2wt%の水素が発生する。   The magnesium hydride produced in this way is forcibly stirred and mixed with water to produce a magnesium hydride suspension. In order to perform ice making quickly, it is desirable that the water temperature is close to 0 ° C., which is about 2 ° C. in the present embodiment. The magnesium hydride suspension undergoes a hydrolysis reaction, and hydrogen is dissolved to a saturation amount. Moreover, hydrogen is produced | generated by hydrolysis reaction and it exists as a bubble in water. In addition, 15.2 wt% hydrogen of magnesium hydride is generated by the hydrolysis reaction.

加水分解反応により水素化マグネシウム懸濁液中に発生した水素の気泡は互いに合体し、より大きな気泡となる。気泡は大きくなることにより浮力が増すので、水中を上昇し、大気中に放出される。このように大気中へ放出されることを防止するため、水素化マグネシウム懸濁液を急速冷却し、製氷する。   The hydrogen bubbles generated in the magnesium hydride suspension by the hydrolysis reaction merge with each other to form larger bubbles. Since the bubbles increase in buoyancy as they become larger, they rise in water and are released into the atmosphere. In order to prevent such release into the atmosphere, the magnesium hydride suspension is rapidly cooled and iced.

従って、急速冷却により氷中には溶存状態の水素と気泡の水素が含まれるので、飽和量よりも高い濃度の水素が含まれた氷が製造される。   Therefore, since the ice contains dissolved hydrogen and bubble hydrogen, the ice containing the hydrogen having a concentration higher than the saturation amount is produced.

氷を飲料用の液体中に入れ、水素を摂取する場合を想定すると、摂取効率の面からは、氷はできる限り多量の水素が氷の中に存在する方が望ましい。ただしあまりに多量の水素を混合させた場合、氷が溶解するとともに水素ガスの急激な生成が生じる場合がある。従って例えば1リットルの水に0.1g以上1.0g以下の水素化マグネシウムを混合させることが望ましく、さらに、0.4g以上0.6g以下の水素化マグネシウムを加えることがより望ましい。   Assuming that hydrogen is ingested by putting ice in a beverage liquid, it is desirable that the ice contains as much hydrogen as possible in terms of ingestion efficiency. However, if too much hydrogen is mixed, ice may melt and hydrogen gas may be rapidly generated. Therefore, for example, it is desirable to mix 0.1 g or more and 1.0 g or less of magnesium hydride in 1 liter of water, and it is more desirable to add 0.4 g or more and 0.6 g or less of magnesium hydride.

図2は本発明における製氷装置を示す模式図である。製氷装置は容器11の内の中央上部に下向きに開口した複数の凹部12aを有する製氷皿12と、この製氷皿12の下方に設けられ、前記製氷皿12の淵と接着及び分離させることができる平板状の給液板14を備える。この給液板14の移動は給液板14の一端付近に水平方向に設けられ、図示しないモーターによって回転する回転軸13により行う。製氷皿12における凹部12aを有する面の裏面は冷却装置15が接着されている。   FIG. 2 is a schematic view showing an ice making device according to the present invention. The ice making device is provided below the ice tray 12 with an ice tray 12 having a plurality of recesses 12a opened downward at the center upper portion of the container 11 and can be bonded and separated from the basket of the ice tray 12. A flat liquid supply plate 14 is provided. The movement of the liquid supply plate 14 is performed by a rotating shaft 13 provided in the horizontal direction near one end of the liquid supply plate 14 and rotated by a motor (not shown). A cooling device 15 is bonded to the back surface of the ice tray 12 having the recess 12a.

給液板14には、凹部12aの夫々に対応する位置に給液孔14aが設けられており、給液孔14aはホース16を介して給液ポンプ17と繋がっている。給液ポンプ17には前述した水素化マグネシウム懸濁液が貯蔵されている。   The liquid supply plate 14 is provided with a liquid supply hole 14 a at a position corresponding to each of the recesses 12 a, and the liquid supply hole 14 a is connected to the liquid supply pump 17 through the hose 16. The liquid supply pump 17 stores the above-described magnesium hydride suspension.

回転軸13、冷却装置15及び給液ポンプ17は制御部18と接続されている。制御部18は冷却装置15及び給液ポンプ17の作動及び停止の他、給液板14の傾斜を制御するため回転軸13を回転させる。   The rotating shaft 13, the cooling device 15, and the liquid supply pump 17 are connected to the control unit 18. The control unit 18 rotates the rotating shaft 13 in order to control the inclination of the liquid supply plate 14 in addition to the operation and stop of the cooling device 15 and the liquid supply pump 17.

製氷を行うための制御部18の動作について説明する。制御部18はまず回転軸13を作動させて給液板14を製氷皿12の淵と接着する位置に移動させる。その後給液ポンプ17を作動させ、給液孔14aより、凹部12a内を満たす量の水素化マグネシウム懸濁液を給液させる。水素化マグネシウム懸濁液を給液させた後には、冷却装置15を作動させ、水素化マグネシウム懸濁液を製氷する。家庭用の冷凍庫では数cm四方の氷を10個冷却するために数kw程度の冷却能力にて行うが、冷却装置15ではより急速に冷却を行うため、例えば同量の製氷を行うために10kw以上の製氷能力を有する。水素化マグネシウム懸濁液の製氷後には、給液板14を傾斜させ、氷を落下させる。制御部18はさらに製氷を行うか否かを判定し、さらに製氷を続行する場合には再度製氷の各工程を繰り返し、製氷を続行しない場合には処理を終了する。この工程により水素化マグネシウム懸濁液の製氷を行う。   The operation of the control unit 18 for making ice will be described. First, the control unit 18 operates the rotary shaft 13 to move the liquid supply plate 14 to a position where it adheres to the basket of the ice tray 12. Thereafter, the liquid supply pump 17 is operated to supply the magnesium hydride suspension in an amount that fills the recess 12a through the liquid supply hole 14a. After supplying the magnesium hydride suspension, the cooling device 15 is operated to produce the magnesium hydride suspension. In a freezer for home use, cooling is performed with a cooling capacity of about several kW to cool 10 pieces of ice of several centimeters. However, the cooling device 15 performs cooling more rapidly, for example, 10 kW for making the same amount of ice. It has the above ice making ability. After ice making of the magnesium hydride suspension, the liquid supply plate 14 is tilted to drop the ice. The control unit 18 determines whether or not ice making is to be further performed. If ice making is to be continued, each process of ice making is repeated again. If ice making is not to be continued, the process is terminated. By this process, the magnesium hydride suspension is iced.

図3は水素化マグネシウム懸濁液が製氷された様子を示す模式図であり、図3Aは製氷前、図3Bは製氷後の様子を示す。水素化マグネシウム懸濁液が製氷される際に加水分解反応が生じることにより、氷の中に水酸化マグネシウム分子、溶存水素及び水素気泡が存在する。   FIG. 3 is a schematic diagram showing a state in which the magnesium hydride suspension has been made into ice, FIG. 3A shows a state before ice making, and FIG. 3B shows a state after ice making. A hydrolysis reaction occurs when the magnesium hydride suspension is made, so that magnesium hydroxide molecules, dissolved hydrogen, and hydrogen bubbles are present in the ice.

1 ジェット粉砕機
2 供給機振動フィーダ
3 圧縮機
4 エアフィルタ
5 回収器
11 容器
12 製氷皿
12a 凹部
13 回転軸
14 給液板
14a 給液孔
15 冷却装置
16 ホース
17 給液ポンプ
18 制御部
DESCRIPTION OF SYMBOLS 1 Jet crusher 2 Feeder vibration feeder 3 Compressor 4 Air filter 5 Collecter 11 Container 12 Ice tray 12a Recess 13 Rotating shaft 14 Liquid supply plate 14a Liquid supply hole 15 Cooling device 16 Hose 17 Liquid supply pump 18 Control part

Claims (3)

粒状の水素化マグネシウムを水に混合して生成された液体を製氷する
ことを特徴とする水素含有氷の製造方法。
A method for producing hydrogen-containing ice, comprising: ice-making a liquid produced by mixing granular magnesium hydride with water.
前記粒状の水素化マグネシウムの平均粒径は0.1μm以上20μm以下である
ことを特徴とする請求項1に記載の水素含有氷の製造方法。
2. The method for producing hydrogen-containing ice according to claim 1, wherein an average particle diameter of the granular magnesium hydride is 0.1 μm or more and 20 μm or less.
前記粒状の水素化マグネシウムの平均粒径は0.1μm以上5μm以下である
ことを特徴とする請求項2に記載の水素含有氷の製造方法。
The method for producing hydrogen-containing ice according to claim 2, wherein the granular magnesium hydride has an average particle size of 0.1 µm or more and 5 µm or less.
JP2011253106A 2011-11-18 2011-11-18 Method for producing hydrogen-containing ice Pending JP2013108659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253106A JP2013108659A (en) 2011-11-18 2011-11-18 Method for producing hydrogen-containing ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253106A JP2013108659A (en) 2011-11-18 2011-11-18 Method for producing hydrogen-containing ice

Publications (1)

Publication Number Publication Date
JP2013108659A true JP2013108659A (en) 2013-06-06

Family

ID=48705593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253106A Pending JP2013108659A (en) 2011-11-18 2011-11-18 Method for producing hydrogen-containing ice

Country Status (1)

Country Link
JP (1) JP2013108659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641098B1 (en) * 2016-01-26 2016-08-01 주식회사 에이치티시 apparatus for manufacturing an hydrogen storage ice
WO2017082305A1 (en) * 2015-11-10 2017-05-18 江藤酸素株式会社 Hydrogen-containing ice and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275441A (en) * 2005-03-30 2006-10-12 Japan Organo Co Ltd Hydrogen gas-containing ice and its making method, and fresh food preserving method
WO2007055146A1 (en) * 2005-11-10 2007-05-18 Hiromaito Co., Ltd. Hydrogen-generating agent and use thereof
JP2007175699A (en) * 2005-12-02 2007-07-12 Chugoku Electric Manufacture Co Ltd System for producing electrolytic seawater ice, apparatus for producing electrolytic seawater, ice-making apparatus, method for producing electrolytic seawater ice, and method for preserving fresh fish
JP2007210878A (en) * 2006-01-12 2007-08-23 Nitto Denko Corp Hydrogen generation agent composition
US20070283623A1 (en) * 2006-06-08 2007-12-13 Hydrogen Discoveries, Inc. Compartmentalized Hydrogen Fueling System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275441A (en) * 2005-03-30 2006-10-12 Japan Organo Co Ltd Hydrogen gas-containing ice and its making method, and fresh food preserving method
WO2007055146A1 (en) * 2005-11-10 2007-05-18 Hiromaito Co., Ltd. Hydrogen-generating agent and use thereof
US20080292541A1 (en) * 2005-11-10 2008-11-27 Hiromaito Co. Ltd. Hydrogen Generating Agent and Use Thereof
JP2007175699A (en) * 2005-12-02 2007-07-12 Chugoku Electric Manufacture Co Ltd System for producing electrolytic seawater ice, apparatus for producing electrolytic seawater, ice-making apparatus, method for producing electrolytic seawater ice, and method for preserving fresh fish
JP2007210878A (en) * 2006-01-12 2007-08-23 Nitto Denko Corp Hydrogen generation agent composition
US20070283623A1 (en) * 2006-06-08 2007-12-13 Hydrogen Discoveries, Inc. Compartmentalized Hydrogen Fueling System

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082305A1 (en) * 2015-11-10 2017-05-18 江藤酸素株式会社 Hydrogen-containing ice and method for manufacturing same
JPWO2017082305A1 (en) * 2015-11-10 2018-10-11 江藤酸素株式会社 Hydrogen-containing ice and method for producing the same
KR101641098B1 (en) * 2016-01-26 2016-08-01 주식회사 에이치티시 apparatus for manufacturing an hydrogen storage ice

Similar Documents

Publication Publication Date Title
US6520837B2 (en) Method and apparatus for ultrafine grinding and/or mixing of solid particles
CN105722788B (en) Synthesize amorphous silica powder and its manufacture method
CN102652109A (en) Synthetic amorphous silica powder and method for producing same
JP2013013400A5 (en)
CN103249674A (en) Synthetic amorphous silica powder and method for producing same
CN102656117B (en) Synthesis amorphous silicon di-oxide powder and manufacture method thereof
CN102250582B (en) Method for preparing submicron polycrystalline diamond abrasive with narrow particle size distribution
CN103079764B (en) Method for regenerating ceria-based abrasive
JP6665118B2 (en) Method for producing powder product
CN102666384A (en) Synthetic amorphous silica powder
JP2014144410A (en) Apparatus for producing fine powder
JP2008019115A (en) Method for producing silicon fine particle
AU2015216114A1 (en) Nickel powder production method
JP2013108659A (en) Method for producing hydrogen-containing ice
JP2007073686A (en) Polishing method of semiconductor wafer
CN105722785A (en) Silicon material a for hydrogen gas production, silicon material b for hydrogen gas production, method for producing silicon material a for hydrogen gas production, method for producing silicon material b for hydrogen gas production, method for producing hydrogen gas, and device for producing hydrogen gas
KR101072845B1 (en) Manufacturing method of cerium oxide powder using ultrasonic spray pyrolysis method
JP2011011307A (en) Recycling method and recycling apparatus of slurry for use in wafer polishing
JP2006205071A (en) Dissolution method of granules
JP5375813B2 (en) Method for producing alkali metal hydrogen carbonate
JP5313950B2 (en) SOLID HYDROGEN FUEL AND METHOD FOR PRODUCING THE SAME AND METHOD FOR USING THE SAME
WO2019172140A1 (en) Ultrafine-bubble generation agent including high-co2-content ice
JP2000288914A (en) Feeding device and feeding method of semiconductor manufacturing abrasive
WO2022154014A1 (en) Porous spherical silica and method for producing same
JP4539047B2 (en) Method for producing alkali metal hydrogen carbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915