JP2013107955A - Resin composition for producing construction material - Google Patents

Resin composition for producing construction material Download PDF

Info

Publication number
JP2013107955A
JP2013107955A JP2011252536A JP2011252536A JP2013107955A JP 2013107955 A JP2013107955 A JP 2013107955A JP 2011252536 A JP2011252536 A JP 2011252536A JP 2011252536 A JP2011252536 A JP 2011252536A JP 2013107955 A JP2013107955 A JP 2013107955A
Authority
JP
Japan
Prior art keywords
resin composition
weight
flame retardant
building material
polyethylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252536A
Other languages
Japanese (ja)
Inventor
Wen-Zhong Lin
文仲 林
文生 ▲呉▼
Wen-Sheng Wu
Chia-Hsien Chang
嘉顯 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEALEA ENTERPRISE CO Ltd
LEALEA ENTPR CO Ltd
Original Assignee
LEALEA ENTERPRISE CO Ltd
LEALEA ENTPR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEALEA ENTERPRISE CO Ltd, LEALEA ENTPR CO Ltd filed Critical LEALEA ENTERPRISE CO Ltd
Priority to JP2011252536A priority Critical patent/JP2013107955A/en
Publication of JP2013107955A publication Critical patent/JP2013107955A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for producing recyclable environment-friendly construction materials having excellent mechanical strength and texture similar to that of natural wood materials.SOLUTION: The resin composition for producing construction materials includes: a thermoplastic resin mixture containing polyamide and polyethylene terephthalate; a compatibilizer to compatibilize the polyamide with the polyethylene terephthalate; and wood materials. A content of the polyamide and that of the polyethylene terephthalate are respectively 40-60 mass% based on the weight of the thermoplastic resin mixture.

Description

本発明は、建材製造用の樹脂組成物に関し、特に、リサイクルできる上、環境に優しい建材製造用の樹脂組成物に関する。   The present invention relates to a resin composition for manufacturing building materials, and more particularly to a resin composition for manufacturing building materials that can be recycled and is environmentally friendly.

従来より、建材のコストを削減するため、原木から必要な寸法に切り出した素材の代わりに、複数の安価な木質板を積層して成った複合板材を建材として採用している。また、板材の表面に天然木材に近い質感を持つ合板を貼り付けることにより、建材をより良い質感にすることもできる。しかし、このような複合板材は接着剤により複数の木質板を貼り合わせて成ったものなので、ホルムアルデヒドなどの人体に有害な揮発性有機化合物を発散する虞がある上、リサイクルもできないという欠点があるため、徐々に市場から淘汰されている。   Conventionally, in order to reduce the cost of building materials, instead of a material cut out from a raw wood to a necessary size, a composite plate material formed by laminating a plurality of inexpensive wooden boards is adopted as a building material. In addition, by attaching a plywood having a texture close to natural wood to the surface of the plate material, the building material can be made to have a better texture. However, since such a composite plate material is formed by laminating a plurality of wooden boards with an adhesive, there is a risk that volatile organic compounds harmful to the human body such as formaldehyde may be emitted and cannot be recycled. Because of this, it is gradually being deceived from the market.

地球資源を再利用し天然木材への依存を減らすために、汎用プラスチックを基材として、着色や仕上げ加工を通じて表面に木目模様が付けられる建材や、汎用プラスチックと木質材料を混ぜ合わせて成る樹脂組成物、いわゆる木材・プラスチック複合材(Wood−Plastic Composite、略して「WPC」)も開発されている。また、汎用プラスチックを利用することにより建材の物性も向上させることもできる。   In order to reuse earth resources and reduce dependence on natural wood, building materials that use a general-purpose plastic as a base material and have a grain pattern on the surface through coloring and finishing, and a resin composition made by mixing general-purpose plastic and wood materials A so-called wood-plastic composite (WPC) has also been developed. Moreover, the physical property of building materials can also be improved by utilizing a general-purpose plastic.

WPCに使われている汎用プラスチック基材はポリプロピレン(PP)、硬質ポリ塩化ビニル(PVC)及びポリエチレン(PE)が用いられており、PVCは、加工性や製品の多様性に優れ、しかも発泡しやすいので軽量化も可能である。しかし、PVC製品からの塩素イオンの析出が問題になるので、欧米などの先進国ではPVCを含む製品の輸入が拒否されている。一方、PP、PEで製作したWPCには、値段も安く材料も入手しやすいだけでなく、機械的強度が優れるなどの利点がある。しかし、PP、PEは結晶性材料であるため、材料自体の光沢によりWPC製品にプラスチック感を与えてしまい、たとえ印刷で木目模様のプリント合板を形成したり、或いは木質材料の割合を向上させたりしても(50重量%以上)、天然木材に近い質感を持つWPC製品の製作はやはり難しい。   Polypropylene (PP), hard polyvinyl chloride (PVC) and polyethylene (PE) are used as general-purpose plastic substrates used in WPC. PVC is excellent in processability and product diversity, and foams. Since it is easy, it can also be reduced in weight. However, since precipitation of chloride ions from PVC products becomes a problem, imports of products containing PVC are refused in developed countries such as Europe and the United States. On the other hand, WPC made of PP and PE has advantages such as low cost and easy material acquisition, as well as excellent mechanical strength. However, since PP and PE are crystalline materials, the gloss of the material itself gives a plastic feel to the WPC product, so even if printing forms a plywood with a wood grain pattern, or improves the percentage of wood material Even so (50% by weight or more), it is still difficult to produce WPC products with a texture similar to natural wood.

前記のような従来の複合建材の問題点に鑑み、本発明は、機械的強度に優れ、且つ天然木材に近い質感を持ち、リサイクル可能で、環境にも優しい建材を製造するための樹脂組成物を提供することを目的とする。   In view of the problems of the conventional composite building materials as described above, the present invention provides a resin composition for producing a building material that has excellent mechanical strength, has a texture close to natural wood, is recyclable, and is environmentally friendly. The purpose is to provide.

また、本発明は、寸法安定性が良好な建材を製造するための樹脂組成物の提供を更なる目的とする。   Moreover, this invention makes it the further objective to provide the resin composition for manufacturing the building material with favorable dimensional stability.

前記目的を達成するため、本発明によれば、ポリアミドとポリエチレンテレフタラートとを含有している熱可塑性樹脂混合物と、前記ポリアミドと前記ポリエチレンテレフタラートとを相溶化するための相溶化剤と、木質材料とを含み、前記ポリアミド及び前記ポリエチレンテレフタラートは、それぞれ前記熱可塑性樹脂混合物の重量を基準に40重量%〜60重量%含まれている建材製造用の樹脂組成物が提供される。   In order to achieve the above object, according to the present invention, a thermoplastic resin mixture containing polyamide and polyethylene terephthalate, a compatibilizing agent for compatibilizing the polyamide and polyethylene terephthalate, and wood The resin composition for manufacturing a building material is provided, wherein the polyamide and the polyethylene terephthalate are contained in an amount of 40 wt% to 60 wt% based on the weight of the thermoplastic resin mixture.

本発明の建材製造用の樹脂組成物は、相溶化剤でポリアミドとポリエチレンテレフタラートとを相溶化させて主原料として含有するため、これにより製造された建材は、機械的強度に優れ、リサイクル可能で、環境に優しく、寸法安定性が良好であるなどの利点がある。また、ポリアミド及びポリエチレンテレフタラートは、プラスチック感がPP、PEほど顕著ではない材料であるため、木質材料を樹脂組成物に添加すれば、有効的に天然木材に近い質感を持たせる建材も製造できる。   Since the resin composition for manufacturing building materials of the present invention contains polyamide and polyethylene terephthalate as compatibilizers as main raw materials, the building materials manufactured thereby have excellent mechanical strength and can be recycled. In addition, there are advantages such as being environmentally friendly and having good dimensional stability. Polyamide and polyethylene terephthalate are materials that are not as prominent as plastics and PP, so if woody materials are added to the resin composition, building materials that effectively have a texture similar to natural wood can be produced. .

本発明に係る建材製造用の樹脂組成物の実施例に使用される二軸押出機の模式図である。It is a schematic diagram of the twin-screw extruder used for the Example of the resin composition for building material manufacture which concerns on this invention. 本発明に係る建材製造用の樹脂組成物の実施例に使用される二軸押出機及びプロファイル押出ダイの模式図であり、建材製造用の樹脂組成物と着色料とを共押出して、建材を成形することを説明する図である。It is a schematic diagram of the twin screw extruder and profile extrusion die used in the examples of the resin composition for building material production according to the present invention, and co-extruded the resin composition for building material production and the colorant, It is a figure explaining shaping | molding. 本発明に係る建材製造用の樹脂組成物からなる建材の斜視図である。It is a perspective view of the building material which consists of a resin composition for building material manufacture concerning this invention.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

本発明に係る建材製造用の樹脂組成物は、熱可塑性樹脂混合物と、相溶化剤と、木質材料とを含有している。   The resin composition for manufacturing a building material according to the present invention contains a thermoplastic resin mixture, a compatibilizing agent, and a wood material.

熱可塑性樹脂混合物は、リサイクル可能なポリアミド(Nylon)とポリエチレンテレフタラート(PET)とを含有している。ポリアミドは、耐衝撃強度に優れるが、引張強度、曲げ強度、及び寸法安定性がやや劣る。ポリエチレンテレフタラートは寸法安定性、引張強度及び曲げ強度に優れるが、耐衝撃強度がよくない。本発明の発明者は、研究を重ねて、ポリアミドとポリエチレンテレフタラートとを含有する熱可塑性樹脂混合物を使用して製造された建材が引張強度、曲げ強度、寸法安定性など一般建材に要求される性能を満足でき、さらに、耐衝撃強度が予測以上に上がることを発見した。また、言うまでもないが、ポリアミドとポリエチレンテレフタラートの割合を調整することにより得られる熱可塑性樹脂混合物の物性も変わる。したがって、建材に要求される機械的強度や寸法安定性などを、更にコスト面をも考量すると、熱可塑性樹脂混合物において、ポリアミドが40重量%〜60重量%、ポリエチレンテレフタラートが40重量%〜60重量%含まれることが好ましい。   The thermoplastic resin mixture contains recyclable polyamide (Nylon) and polyethylene terephthalate (PET). Polyamide is excellent in impact strength, but is slightly inferior in tensile strength, bending strength, and dimensional stability. Polyethylene terephthalate is excellent in dimensional stability, tensile strength and bending strength, but has poor impact strength. The inventor of the present invention has been researched, and building materials manufactured using a thermoplastic resin mixture containing polyamide and polyethylene terephthalate are required for general building materials such as tensile strength, bending strength, and dimensional stability. It was discovered that the performance can be satisfied and the impact strength is higher than expected. Needless to say, the physical properties of the thermoplastic resin mixture obtained by adjusting the ratio of polyamide and polyethylene terephthalate also change. Therefore, considering the mechanical strength and dimensional stability required for the building materials and further considering the cost, in the thermoplastic resin mixture, polyamide is 40 wt% to 60 wt%, and polyethylene terephthalate is 40 wt% to 60 wt%. It is preferable to be contained by weight%.

ポリアミドとポリエチレンテレフタラートとは、全く異なる材料であるので、これらの相溶性を向上させ、それぞれの結晶化速度のバランスを取り、更によりよい寸法安定性をもたらすように、本発明に係る熱可塑性樹脂組成物は相溶化剤を含有している。相溶化剤は、単エポキシ基を有することが好ましく、エポキシシラン樹脂または脂環式エポキシ樹脂であることがより好ましい。ここで特筆すべきは、相溶化剤の種類や混合比を調整することにより、ポリアミドとポリエチレンテレフタラートとの接着力及び得られた建材の機械的強度を改善することができることである。相溶化剤は、建材に要求される機械的強度や寸法安定性などを備えるため、熱可塑性樹脂混合物の重量を基準に1重量%〜6重量%含まれることが好ましい。   Since polyamide and polyethylene terephthalate are completely different materials, the thermoplastics according to the present invention are designed to improve their compatibility, balance their crystallization rates, and provide better dimensional stability. The resin composition contains a compatibilizing agent. The compatibilizer preferably has a single epoxy group, more preferably an epoxy silane resin or an alicyclic epoxy resin. What should be noted here is that the adhesive strength between polyamide and polyethylene terephthalate and the mechanical strength of the resulting building material can be improved by adjusting the type and mixing ratio of the compatibilizer. The compatibilizer is preferably contained in an amount of 1 to 6% by weight based on the weight of the thermoplastic resin mixture in order to provide mechanical strength and dimensional stability required for the building material.

木質材料を添加することで、本発明に係る樹脂組成物は木材に近い質感を持つことができ、また、応力伝達が良好である木質材料を熱可塑性樹脂混合物内に均一的に分散させることにより強度を向上させることができる。木質材料は、建材に要求される機械的強度や寸法安定性などを備えるため、樹脂組成物の重量を基準に10重量%〜70重量%含まれることが好ましい。   By adding the woody material, the resin composition according to the present invention can have a texture close to that of wood, and by uniformly dispersing the woody material having good stress transmission in the thermoplastic resin mixture. Strength can be improved. The wood material preferably includes 10% by weight to 70% by weight based on the weight of the resin composition in order to provide mechanical strength and dimensional stability required for the building material.

また、建材としての安全性の考量から耐燃性が要求されるため、本発明の建材製造用の樹脂組成物はさらに難燃剤を含んでもよい。難燃剤は、窒素系難燃剤とリン系難燃剤と水酸系難燃剤とからなる群から選ばれることが好ましい。   Moreover, since flame resistance is requested | required from the consideration of the safety | security as a building material, the resin composition for building material manufacture of this invention may contain a flame retardant further. The flame retardant is preferably selected from the group consisting of a nitrogen flame retardant, a phosphorus flame retardant, and a hydroxyl flame retardant.

例えば窒素系難燃剤としては、メラミン重合体がよく知られており、ポリアミドの他にポリウレタンにも用いられることができる。また、メラミン重合体は、他の助剤がいらず、添加量も少なくて済むので、様々な重合体に適用でき、コスト面で有利である。また、メラミン重合体を建材に使用しても環境負荷が低いので、地球環境の保護にも役に立ち、長期的利益に寄与することもできる。   For example, as a nitrogen-based flame retardant, a melamine polymer is well known and can be used for polyurethane in addition to polyamide. In addition, the melamine polymer does not require any other auxiliary agent and can be added in a small amount, so that it can be applied to various polymers and is advantageous in terms of cost. Moreover, even if a melamine polymer is used as a building material, the environmental load is low, so that it is useful for protecting the global environment and can contribute to long-term benefits.

リン系難燃剤としては、ポリリン酸アンモニウム(APP)が挙げられる。APPはリンの含有量が高い白色化合物であるので、建材に用いる樹脂にAPPを添加しても着色に悪い影響を与えない。しかし、現に市販されているAPPは、高重合度であり、吸湿しやすい傾向があり、高温にも弱いなどの欠点があるので、応用範囲についてはメラミン重合体ほど広くない。また、リン系難燃剤としては、耐燃性及び可塑性を持つリン酸エステルも挙げられるが、リン酸エステルは主にPVCなどの加工温度が低い材料にしか応用されていない。なおリン系難燃剤としては、リン酸トリフェニル(TPP、例えば、Phosflex(登録商標)71B、Phosflex(登録商標)RDP)とリン酸クレジルジフェニル(例えば、Fyroflex(登録商標)BDP)なども挙げられる。   Examples of the phosphorus-based flame retardant include ammonium polyphosphate (APP). Since APP is a white compound having a high phosphorus content, even if APP is added to the resin used for the building material, coloring is not adversely affected. However, APP currently on the market has a high degree of polymerization, tends to absorb moisture, and has drawbacks such as being weak at high temperatures, so its application range is not as wide as that of melamine polymers. Examples of the phosphorus-based flame retardant include phosphoric acid esters having flame resistance and plasticity, but the phosphoric acid esters are mainly applied only to materials having a low processing temperature such as PVC. Examples of the phosphorus-based flame retardant include triphenyl phosphate (TPP, for example, Phosflex (registered trademark) 71B, Phosflex (registered trademark) RDP) and cresyl diphenyl phosphate (for example, Fyroflex (registered trademark) BDP). It is done.

水酸系難燃剤は無機系難燃剤であり、三酸化アンチモン(Sb)、水酸化マグネシウム(Mg(OH))、水酸化アルミニウム(Al(OH))などが挙げられ、値段が安いだけではなく、たとえ燃焼しても煙があまり出ない。その上、水酸系難燃剤は燃焼した際の生産物が主に水と二酸化炭素などの環境毒性のない物質であるので、環境に優しい。例えば水酸化アルミニウムを用いた難燃剤は、水酸化アルミニウムの熱分解温度に達する前に、より多くの熱量を吸収する必要があるので、水酸化アルミニウムを添加することで建材全体の比熱容量及び難燃性を向上させることができる。但し、水酸系難燃剤は添加量が多くなければ難燃性が発揮できず、それに熱可塑性樹脂との相容性の問題があるため、応用範囲が制限される。 Hydroxic flame retardants are inorganic flame retardants such as antimony trioxide (Sb 2 O 3 ), magnesium hydroxide (Mg (OH) 2 ), aluminum hydroxide (Al (OH) 3 ), etc. Not only is it cheap, but it doesn't emit much smoke even if it burns. In addition, the hydroxyl-based flame retardant is environmentally friendly because the products upon combustion are mainly non-environmental substances such as water and carbon dioxide. For example, flame retardants using aluminum hydroxide need to absorb more heat before reaching the thermal decomposition temperature of aluminum hydroxide, so adding aluminum hydroxide adds specific heat capacity and difficulty to the overall building material. Flammability can be improved. However, since the flame retardant of a hydroxyl group cannot exhibit flame retardancy unless it is added in a large amount and has a problem of compatibility with a thermoplastic resin, the application range is limited.

難燃剤の含有量は、少なすぎると難燃効果が低下し、逆に多すぎると、コストが増加する。建材に要求される耐燃性を得るため、難燃剤は、熱可塑性樹脂混合物の重量を基準に0.1重量%〜1重量%含まれていることが好ましい。また、ハロゲン系難燃剤を使用することもできるが、不完全燃焼の際に煙が大量に出るので、人体及び環境に有害である。   If the content of the flame retardant is too small, the flame retardant effect is lowered. Conversely, if the content is too large, the cost increases. In order to obtain the flame resistance required for building materials, the flame retardant is preferably contained in an amount of 0.1 wt% to 1 wt% based on the weight of the thermoplastic resin mixture. A halogen-based flame retardant can also be used, but it is harmful to the human body and the environment because a large amount of smoke is emitted during incomplete combustion.

ポリアミドは、靱性を有する材料であり、これに対して、ポリエチレンテレフタラートは剛性を有する材料であるが低温下での耐衝撃強度がやや劣る。建材の耐衝撃強度及び低温下での特性(耐衝撃強度など)を向上させるため、変性剤を添加してもよい。ここで特筆すべきは、所定の耐衝撃強度などの機械的性質を得るためには、変性剤の種類或いは混合比も調整する必要があることである。本発明の好ましい実施形態においては、変性剤として無水マレイン酸グラフトエチレン-オクテンターポリマーを用い、建材に要求される強度を得るため、熱可塑性樹脂混合物の重量を基準に2重量%〜10重量%含まれていることが好ましい。   Polyamide is a material having toughness, whereas polyethylene terephthalate is a material having rigidity, but its impact strength at low temperatures is slightly inferior. A modifier may be added to improve the impact strength of the building material and the properties at low temperatures (impact strength, etc.). What should be noted here is that it is necessary to adjust the type or mixing ratio of the modifier in order to obtain a predetermined mechanical property such as impact strength. In a preferred embodiment of the present invention, maleic anhydride grafted ethylene-octene terpolymer is used as a modifier, and 2 wt% to 10 wt% based on the weight of the thermoplastic resin mixture in order to obtain the strength required for building materials. It is preferably included.

以下、製作例及び具体例を挙げて本発明の技術をより具体的に説明する。   Hereinafter, the technique of the present invention will be described more specifically with reference to production examples and specific examples.

下記の製作例及び具体例で使用した材料は以下の通りである。   The materials used in the following fabrication examples and specific examples are as follows.

ポリアミド:分子量が16000〜19000の範囲にあるNylon6(台湾、力鵬企業の廃棄布と廃棄糸の粉砕品)である。   Polyamide: Nylon 6 having a molecular weight in the range of 16000 to 19000 (a waste cloth and waste yarn pulverized product from Taiwan, a power company).

ポリエチレンテレフタラート:分子量が略200000のPET(台湾、力鵬企業の廃棄布と廃棄糸の粉砕品)である。   Polyethylene terephthalate: PET having a molecular weight of approximately 200,000 (a waste product and a pulverized product of waste yarn from Taiwan, a power company).

相溶化剤:下記一般式〔化1〕で表されるγ-(2,3-エポキシプロポキシ)プロピルトリメトキシシラン(中国、成都晨邦化工社製、KH-560)である。   Compatibilizer: γ- (2,3-epoxypropoxy) propyltrimethoxysilane represented by the following general formula [Chemical Formula 1] (KH-560, manufactured by Chengdu Luohua Chemical Co., Ltd., China).

Figure 2013107955
Figure 2013107955

木粉:天然木材を粉状に研磨したもので、粉の大きさは0.01mm〜0.05mmである。   Wood powder: natural wood polished into a powder, and the size of the powder is 0.01 mm to 0.05 mm.

変性剤:下記一般式〔化2〕で表される無水マレイン酸グラフトエチレン-オクテンターポリマーである。   Denaturant: A maleic anhydride grafted ethylene-octene terpolymer represented by the following general formula [Chemical Formula 2].

Figure 2013107955
Figure 2013107955

難燃剤:メラミン重合体である。   Flame retardant: Melamine polymer.

下記の製作例或いは具体例は以下の評価方法で評価する。   The following production examples or specific examples are evaluated by the following evaluation methods.

[引張強度試験]
表1に示した原料を二軸押出機に投入し、混練造粒した後、射出成形機によって試験片(ASTM D638 Type 1)を製作し、ASTM D638法に従い、該試験片の引張強度を求める。
[Tensile strength test]
After the raw materials shown in Table 1 are put into a twin screw extruder and kneaded and granulated, a test piece (ASTM D638 Type 1) is manufactured by an injection molding machine, and the tensile strength of the test piece is obtained according to the ASTM D638 method. .

[曲げ強度試験]
引張強度試験と同様の方法で試験片を製作し、ASTM D790法に従い曲げ強度を求める。
[Bending strength test]
A test piece is manufactured by the same method as the tensile strength test, and the bending strength is obtained according to the ASTM D790 method.

[曲げ弾性係数試験]
引張強度試験と同様の方法で試験片を製作し、ASTM D790に従い曲げ弾性係数を求める。曲げ弾性係数とは、弾性変化範囲内で、応力をひずみで割った値である。本実施例において、ひずみが0.3%である際の曲げ弾性係数を曲げ弾性係数とする。
[Bending elastic modulus test]
A test piece is manufactured by the same method as the tensile strength test, and the flexural modulus is obtained according to ASTM D790. The bending elastic modulus is a value obtained by dividing stress by strain within an elastic change range. In this embodiment, the bending elastic modulus when the strain is 0.3% is defined as the bending elastic modulus.

[耐衝撃強度試験]
引張強度試験と同様の方法でASTM D256規格の試験片を製作し、ASTM D256に従い耐衝撃強度を求める。
[Shock strength test]
A test piece of ASTM D256 standard is manufactured by the same method as the tensile strength test, and the impact resistance strength is obtained according to ASTM D256.

[熱変形温度試験]
引張強度試験と同様の方法で試験片を製作し、ASTM D648に従い熱変形温度を求める。即ち、該試験片の中心に1820kPaの荷重をかけ、2℃/分の条件で昇温し、該試験片の変形量が0.25mmとなる際の温度を熱変形温度として記録する。
[Heat deformation temperature test]
A test piece is manufactured by the same method as the tensile strength test, and the heat distortion temperature is obtained according to ASTM D648. That is, a load of 1820 kPa is applied to the center of the test piece, the temperature is raised at 2 ° C./min, and the temperature at which the deformation amount of the test piece becomes 0.25 mm is recorded as the thermal deformation temperature.

[線膨張係数試験]
引張強度試験と同様の方法で、直径5mmの円柱体である試験片を製作し、ASTM D696に従い線膨張係数を求める。即ち、−30℃〜30℃の間で、昇温1℃ごとに、該試験片の1cmごとの長度変化量を線膨張係数として記録する。
[Linear expansion coefficient test]
A test piece which is a cylindrical body having a diameter of 5 mm is manufactured by the same method as the tensile strength test, and the linear expansion coefficient is obtained according to ASTM D696. That is, the amount of change in length per 1 cm of the test piece is recorded as a linear expansion coefficient at a temperature increase of 1 ° C. between −30 ° C. and 30 ° C.

[防炎性試験]
台湾の経済部中央標準局が制定したCNS7614法に従い、試験片(29cm×19cm)を製作し、燃焼性試験機(45度法)で試験を行う。
[Flameproof test]
A test piece (29 cm × 19 cm) is manufactured according to the CNS7614 method established by the Taiwan Bureau of Economy, Central Standard Bureau, and tested with a flammability tester (45 degree method).

[釘保持力試験]
台湾の経済部中央標準局が制定したCNS6719法に従い、ボール盤で試験片の所定位置にガイドホール(直径1.8mm、深さ20mm)をあけ、アセトンにより錆除去した釘を釘打ち機で30mmにまで打ち込み、それから、該試験片を一週間以上恒温恒湿の箱体(温度20±2℃、相対湿度65±5%)に入れて含水率を調整し、釘を抜く際に引張試験機のクランプで釘を挟んで、2mm/分の平均速度で抜き出し、釘の抜き出す過程において引張試験機より測定された最大値を釘保持力として記録する。
[Nail retention test]
In accordance with the CNS 6719 method established by the Taiwan Bureau of Economy, Central Standard Bureau, drilled a guide hole (diameter 1.8 mm, depth 20 mm) at a predetermined position on the test piece with a drilling machine. Then, place the test piece in a box (temperature 20 ± 2 ° C., relative humidity 65 ± 5%) for one week or longer to adjust the moisture content, and when removing the nail, The nail is clamped and extracted at an average speed of 2 mm / min, and the maximum value measured by the tensile tester in the nail extraction process is recorded as the nail holding force.

[含水率試験]
台湾の経済部中央標準局が制定したCNS452含水率試験法に従い、試験片を製作して100〜105℃のオーブンに入れ、試験片の重量が固定するまで乾燥させ、該試験片の乾燥質量を得る。そして、試験片の乾燥前の質量から乾燥質量を減算して、さらにその差を乾燥質量で除算し、該試験片の含水率を得る。
[Moisture content test]
In accordance with the CNS452 moisture content test method established by the Taiwan Bureau of Economic Affairs Central Standard Bureau, test specimens were manufactured and placed in an oven at 100-105 ° C. and dried until the weight of the test specimens was fixed. obtain. Then, the dry mass is subtracted from the mass before drying of the test piece, and the difference is further divided by the dry mass to obtain the moisture content of the test piece.

<製作例1〜5>
表1に示した原料で試験片を製作し上記の引張強度試験、曲げ強度試験、曲げ弾性係数試験、耐耐衝撃強度試験及び熱変形温度試験を行い、その結果を表1に示す。そのうち、Nylon6の相対粘度は2.5で、PETの固有粘度は0.75d/Lgである。
<Production Examples 1-5>
Test pieces were produced from the raw materials shown in Table 1, and the above-described tensile strength test, bending strength test, bending elastic modulus test, impact resistance strength test, and thermal deformation temperature test were conducted. The results are shown in Table 1. Among them, Nylon 6 has a relative viscosity of 2.5 and PET has an intrinsic viscosity of 0.75 d / Lg.

Figure 2013107955
Figure 2013107955

phr(parts per hundreds of resin)とは、樹脂(熱可塑性樹脂混合物)に含まれる含有量を意味する。「−」は未添加を示す。   Phr (parts per hundreds of resin) means the content contained in a resin (thermoplastic resin mixture). “-” Indicates no addition.

表1に示したように、Nylon6及びPETを含有した試験片(製作例3〜5)と、Nylon6或いはPETのみを含有した試験片(製作例1又は2)とは、引張強度、曲げ強度、曲げ弾性係数及び熱変形温度の結果から見ると、いずれも一般建材に要求されている性能を満足しており、耐衝撃強度の結果から見ると、製作例3〜5の試験片は相溶化剤、難燃剤及び変性剤の添加により、それらの耐衝撃強度が製作例1及び2より遥かに優れていることが分かる。   As shown in Table 1, the test piece containing Nylon 6 and PET (Production Examples 3 to 5) and the test piece containing only Nylon 6 or PET (Production Example 1 or 2) have tensile strength, bending strength, From the results of bending elastic modulus and thermal deformation temperature, both satisfy the performance required for general building materials. From the results of impact strength, the test pieces of Production Examples 3 to 5 are compatibilizers. It can be seen that by adding the flame retardant and the modifier, their impact strength is far superior to Production Examples 1 and 2.

<具体例1>建材製造用の樹脂組成物
図1は本実施例に使用される二軸押出機の模式図であり、上記製作例3に示すポリアミド、ポリエチレンテレフタラート、相溶化剤、難燃剤、変性剤の比に従い、それぞれをかみ合い型共回転型二軸押出機(ψ=30mm、L/D=43.2、株式会社神戸製鋼所製)1のホッパー11に投入し、上記原料が溶融セクション12で加熱溶融されて混合物になり、そして、木粉(即ち、木質材料を樹脂組成物の重量に対し35重量%含ませる)を圧縮混練セクション13に投入し、溶融セクション12からの原料と十分に圧縮混練させて、これを射出セクション14から射出させると建材製造用の樹脂組成物のペレットが得られる。本具体例において、二軸押出機1の回転速度は60rpm、溶融セクション12の稼動温度は220℃、圧縮混練セクション13の稼動温度は250℃、射出セクション14の稼動温度は240℃である。なおそれぞれの稼動温度に関しては、溶融セクション12の稼動温度は210℃〜230℃、圧縮混練セクション13の稼動温度は240℃〜260℃、射出セクション14の稼動温度は220℃〜260℃であることが好ましい。
<Specific Example 1> Resin Composition for Manufacturing Building Material FIG. 1 is a schematic view of a twin screw extruder used in this example. Polyamide, polyethylene terephthalate, compatibilizing agent, flame retardant shown in Production Example 3 above. In accordance with the ratio of the modifiers, each is put into a hopper 11 of a meshing co-rotating twin screw extruder (ψ = 30 mm, L / D = 43.2, manufactured by Kobe Steel Co., Ltd.) 1 and the above raw materials are melted. The mixture is heated and melted in section 12 to form a mixture, and wood flour (that is, containing 35% by weight of the wood material based on the weight of the resin composition) is charged into the compression kneading section 13 and the raw materials from the melting section 12 are mixed. When sufficiently compressed and kneaded and injected from the injection section 14, pellets of a resin composition for building material production are obtained. In this specific example, the rotational speed of the twin-screw extruder 1 is 60 rpm, the operating temperature of the melting section 12 is 220 ° C., the operating temperature of the compression kneading section 13 is 250 ° C., and the operating temperature of the injection section 14 is 240 ° C. Regarding the respective operation temperatures, the operation temperature of the melting section 12 is 210 ° C. to 230 ° C., the operation temperature of the compression kneading section 13 is 240 ° C. to 260 ° C., and the operation temperature of the injection section 14 is 220 ° C. to 260 ° C. Is preferred.

得られたペレットから二軸押出機により試験片を製造し、上記の引張強度試験、曲げ強度試験、曲げ係数試験、耐衝撃強度試験、熱変形温度試験、線膨張係数試験及び防炎性試験を行った結果、引張強度は57.5MPa、曲げ強度は95.0MPa、曲げ弾性係数は3450MPa、耐衝撃強度は8.5J/m、熱変形温度は80℃、線膨張係数は5〜7×10−5cm/cm/℃であり、防炎性についても防炎一級と判定された。 A test piece is manufactured from the obtained pellet by a twin screw extruder, and the above tensile strength test, bending strength test, bending modulus test, impact strength test, thermal deformation temperature test, linear expansion coefficient test and flameproofing test are performed. As a result, the tensile strength was 57.5 MPa, the bending strength was 95.0 MPa, the flexural modulus was 3450 MPa, the impact strength was 8.5 J / m, the thermal deformation temperature was 80 ° C., and the linear expansion coefficient was 5 to 7 × 10. It was −5 cm / cm / ° C., and the flameproofing property was also judged as the first flameproofing.

表1の製作例3及び具体例1の結果から見るに、木質材料を添加しても、樹脂組成物の機械的性質に悪い影響を与えない。また、線膨張係数と防炎性試験の結果からも、具体例1の樹脂組成物は、優れた耐燃性及び寸法安定性を備えることが分かった。   As can be seen from the results of Production Example 3 and Specific Example 1 in Table 1, the addition of wood material does not adversely affect the mechanical properties of the resin composition. Moreover, also from the result of the linear expansion coefficient and the flameproof test, it was found that the resin composition of Example 1 was provided with excellent flame resistance and dimensional stability.

<具体例2>本発明の樹脂組成物より製造された建材
図2は本実施例に使用される二軸押出機及びプロファイル押出ダイの模式図であり、建材製造用の樹脂組成物と着色料とを共押出して、建材を成形することを説明する図であり、図3は本発明に係る建材製造用の樹脂組成物からなる建材の斜視図である。具体例2では具体例1と同様の原料混合比及び製作方式を採用し、二軸押出機1は更に、射出セクション14に連結しているプロファイル押出ダイ15を備えている。上記原料を十分に圧縮混練した後、射出セクション14から射出し、プロファイル押出ダイ15により原料と着色料16とを共に押出し、建材2を一体成形した。建材2は、天然木材に近い質感に持ち、建材本体21、濃い色の着色料層22、寸法安定性と軽量性に寄与するための複数のホール23を有している。建材本体21の組成は具体例1と同様であり、第一表面211と、第一表面211と反対する第二表面212を有する。該着色料層22が第一表面211上に成形され、ホール23が建材本体21内に形成されている。
<Specific example 2> Building material manufactured from the resin composition of the present invention FIG. 2 is a schematic view of a twin screw extruder and profile extrusion die used in this example, and a resin composition and colorant for building material production FIG. 3 is a perspective view of a building material made of the resin composition for manufacturing building materials according to the present invention. In Example 2, the same raw material mixing ratio and production method as in Example 1 are adopted, and the twin-screw extruder 1 is further provided with a profile extrusion die 15 connected to the injection section 14. After sufficiently compressing and kneading the raw material, the raw material was injected from the injection section 14 and the raw material and the colorant 16 were extruded together by the profile extrusion die 15 to integrally form the building material 2. The building material 2 has a texture close to that of natural wood, and has a building material main body 21, a dark colorant layer 22, and a plurality of holes 23 that contribute to dimensional stability and lightness. The composition of the building material main body 21 is the same as that of the first specific example, and has the first surface 211 and the second surface 212 opposite to the first surface 211. The colorant layer 22 is formed on the first surface 211, and the hole 23 is formed in the building material main body 21.

建材2に対して、上記の釘保持力試験及び含水率試験を行った結果、釘保持力は300Kgfで、含水率は1%以下であった。   As a result of performing the above-mentioned nail retention test and moisture content test on the building material 2, the nail retention force was 300 kgf and the moisture content was 1% or less.

ここで強調したいのは、従来PP、PEを使用して建材を製造する場合、木質材料の割合を50重量%以上に上げても建材を天然木材に近い質感に持たせることができなかった点である。しかし、本発明の具体例1によれば、木質材料の割合が35重量%である樹脂組成物によっても、天然木材に近い質感を持つ建材を製造することができる。   The point I want to emphasize here is that when PP and PE are used to manufacture building materials, it was not possible to give the building materials a texture close to that of natural wood even if the proportion of the wooden material was increased to 50% by weight or more. It is. However, according to Example 1 of the present invention, a building material having a texture close to that of natural wood can be produced even with a resin composition having a wood material ratio of 35% by weight.

上述のように、本発明に係る建材製造用の樹脂組成物によれば、天然木材に近い質感を持ち、強度(特に低温下での耐衝撃強度)が優れ、リサイクル可能で、環境に優しい利点がある上、寸法安定性が良好な建材を製造できる。   As described above, according to the resin composition for manufacturing building materials according to the present invention, it has a texture close to that of natural wood, has excellent strength (especially impact strength at low temperatures), is recyclable, and is environmentally friendly. In addition, building materials with good dimensional stability can be manufactured.

1 二軸押出機
11 ホッパー
12 溶融セクション
13 圧縮混練セクション
14 射出セクション
15 プロファイル押出ダイ
16 着色料
2 建材
21 建材本体
211 第一表面
212 第二表面
22 着色料層
23 ホール
1 Twin Screw Extruder 11 Hopper 12 Melting Section 13 Compression Kneading Section 14 Injection Section 15 Profile Extrusion Die 16 Colorant 2 Building Material 21 Building Material Body 211 First Surface 212 Second Surface 22 Colorant Layer 23 Hole

Claims (10)

ポリアミドとポリエチレンテレフタラートとを含有している熱可塑性樹脂混合物と、
前記ポリアミドと前記ポリエチレンテレフタラートとを相溶化するための相溶化剤と、
木質材料と、を含み、
前記ポリアミド及び前記ポリエチレンテレフタラートは、それぞれ前記熱可塑性樹脂混合物の重量を基準に40重量%〜60重量%含まれていることを特徴とする建材製造用の樹脂組成物。
A thermoplastic resin mixture containing polyamide and polyethylene terephthalate;
A compatibilizing agent for compatibilizing the polyamide and the polyethylene terephthalate;
Wood material, and
The polyamide and the polyethylene terephthalate are respectively contained in 40 wt% to 60 wt% based on the weight of the thermoplastic resin mixture.
前記相溶化剤は、前記熱可塑性樹脂混合物の重量を基準に1重量%〜6重量%含まれていることを特徴とする請求項1に記載の建材製造用の樹脂組成物。   The resin composition for manufacturing building materials according to claim 1, wherein the compatibilizing agent is contained in an amount of 1 to 6% by weight based on the weight of the thermoplastic resin mixture. 前記相溶化剤は、単エポキシ基を有することを特徴とする請求項1又は2に記載の建材製造用の樹脂組成物。   The resin composition for manufacturing a building material according to claim 1 or 2, wherein the compatibilizing agent has a single epoxy group. 前記相溶化剤は、エポキシシラン樹脂または脂環式エポキシ樹脂であることを特徴とする請求項1〜3のいずれか一項に記載の建材製造用の樹脂組成物。   The said compatibilizer is an epoxy silane resin or an alicyclic epoxy resin, The resin composition for building material manufacture as described in any one of Claims 1-3 characterized by the above-mentioned. 前記木質材料は、前記熱可塑性樹脂混合物の重量を基準に10重量%〜70重量%含まれていることを特徴とする請求項1〜請求項4のいずれか一項に記載の建材製造用の樹脂組成物。   The said woody material is 10 weight%-70 weight% is contained on the basis of the weight of the said thermoplastic resin mixture, The material for building materials manufacture as described in any one of Claims 1-4 characterized by the above-mentioned. Resin composition. 難燃剤を更に含むことを特徴とする請求項1〜請求項5のいずれか一項に記載の建材製造用の樹脂組成物。   The resin composition for producing building materials according to any one of claims 1 to 5, further comprising a flame retardant. 前記難燃剤は、前記熱可塑性樹脂混合物の重量を基準に0.1重量%〜1重量%含まれていることを特徴とする請求項6に記載の建材製造用の樹脂組成物。   The resin composition for manufacturing a building material according to claim 6, wherein the flame retardant is contained in an amount of 0.1 wt% to 1 wt% based on the weight of the thermoplastic resin mixture. 前記難燃剤は、窒素系難燃剤とリン系難燃剤と水酸系難燃剤とからなる群から選ばれたものであることを特徴とする請求項6又は7に記載の建材製造用の樹脂組成物。   The resin composition for manufacturing a building material according to claim 6 or 7, wherein the flame retardant is selected from the group consisting of a nitrogen-based flame retardant, a phosphorus-based flame retardant, and a hydroxyl-based flame retardant. object. 変性剤を更に含むことを特徴とする請求項1〜請求項8のいずれか一項に記載の建材製造用の樹脂組成物。   The resin composition for manufacturing building materials according to any one of claims 1 to 8, further comprising a modifier. 前記変性剤は、前記熱可塑性樹脂混合物の重量を基準に2重量%〜10重量%含まれていることを特徴とする請求項9に記載の建材製造用の樹脂組成物。   10. The resin composition for manufacturing a building material according to claim 9, wherein the modifier is contained in an amount of 2 wt% to 10 wt% based on the weight of the thermoplastic resin mixture.
JP2011252536A 2011-11-18 2011-11-18 Resin composition for producing construction material Pending JP2013107955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252536A JP2013107955A (en) 2011-11-18 2011-11-18 Resin composition for producing construction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252536A JP2013107955A (en) 2011-11-18 2011-11-18 Resin composition for producing construction material

Publications (1)

Publication Number Publication Date
JP2013107955A true JP2013107955A (en) 2013-06-06

Family

ID=48705071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252536A Pending JP2013107955A (en) 2011-11-18 2011-11-18 Resin composition for producing construction material

Country Status (1)

Country Link
JP (1) JP2013107955A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213256A (en) * 1985-03-20 1986-09-22 Toray Ind Inc Resin composition
JPS6245651A (en) * 1985-08-23 1987-02-27 Calp Corp Polyamide resin composition
JPH04249550A (en) * 1990-12-28 1992-09-04 Isuzu Motors Ltd Encapsulated flame retardant
JPH0559137A (en) * 1991-08-30 1993-03-09 Daicel Chem Ind Ltd New copolymer grafted with polycaprolactone
JPH09104010A (en) * 1995-08-07 1997-04-22 Nippon G Ii Plast Kk Ligneous resin composition
JP2001172486A (en) * 1999-12-20 2001-06-26 Kiyoshi Murakami Thermoplastic recycled blended plastic building material
JP2003026941A (en) * 2001-07-11 2003-01-29 Ajinomoto Co Inc Composition for composite lumber and composite lumber
JP2006241417A (en) * 2005-03-07 2006-09-14 Nippon A & L Kk Thermoplastic resin composition
JP2006274121A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Polyamide resin composition for welding
JP2010534756A (en) * 2007-07-28 2010-11-11 ケミスケ ファブリック ブデンヘイム ケージー Flame retardant polymer materials
JP3173344U (en) * 2011-11-18 2012-02-02 力麗企業股▲フン▼有限公司 Architectural plate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213256A (en) * 1985-03-20 1986-09-22 Toray Ind Inc Resin composition
JPS6245651A (en) * 1985-08-23 1987-02-27 Calp Corp Polyamide resin composition
JPH04249550A (en) * 1990-12-28 1992-09-04 Isuzu Motors Ltd Encapsulated flame retardant
JPH0559137A (en) * 1991-08-30 1993-03-09 Daicel Chem Ind Ltd New copolymer grafted with polycaprolactone
JPH09104010A (en) * 1995-08-07 1997-04-22 Nippon G Ii Plast Kk Ligneous resin composition
JP2001172486A (en) * 1999-12-20 2001-06-26 Kiyoshi Murakami Thermoplastic recycled blended plastic building material
JP2003026941A (en) * 2001-07-11 2003-01-29 Ajinomoto Co Inc Composition for composite lumber and composite lumber
JP2006241417A (en) * 2005-03-07 2006-09-14 Nippon A & L Kk Thermoplastic resin composition
JP2006274121A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Polyamide resin composition for welding
JP2010534756A (en) * 2007-07-28 2010-11-11 ケミスケ ファブリック ブデンヘイム ケージー Flame retardant polymer materials
JP3173344U (en) * 2011-11-18 2012-02-02 力麗企業股▲フン▼有限公司 Architectural plate

Similar Documents

Publication Publication Date Title
JP7305718B2 (en) Cellulose composite material containing wood pulp and process for producing same
CN102924940A (en) Anti-aging plastic wood composite material and preparation method thereof
US6758996B2 (en) Cellulose-reinforced thermoplastic composite and methods of making same
KR101322598B1 (en) Producting methode for Injection Composite Material Using Natural fiber particle
CN102015888B (en) Heat resistant polylactic acid compounds
CN102504562B (en) Flame-retardant smoke-suppression cabo powder based wood-plastic composite material and preparation method thereof
KR20110116888A (en) Eco friendly polypropylene-polylactic acid composites for automotive interiors
US20170121493A1 (en) Biomaterial Composite
CN105273375A (en) Lignocellulose reinforced biodegradable flame-retardant composite material
CN103709688A (en) PBS (polybuthylenesuccinate) fully biodegradable material as well as preparation method and application thereof
Altuntas et al. Investigation of the fire, thermal, and mechanical properties of zinc borate and synergic fire retardants on composites produced with PP-MDF wastes
KR100681333B1 (en) A wood plastic composites
KR101429743B1 (en) Recyclable Material for Engineering, Building and Farming and Method for Producing the Same
CN101469082B (en) Halogen-free flame-retardant wood-plastic composite material and preparation thereof
CN109852089A (en) A kind of high-performance wood-plastic composite material and preparation method thereof
Sozen et al. The effects of lignocellulosic fillers on mechanical, morphological and thermal properties of wood polymer composites
CN103224668B (en) A kind of polypropylene-base bamboo moulds the preparation method of foam composite material
KR101275451B1 (en) polylactic acid resin composition
CN101494988A (en) Microbial resistant composites
JP2013107955A (en) Resin composition for producing construction material
CN109486135A (en) One kind can be used in, the molding high performance PE T composite material and preparation method of low mould temperature rapid crystallization
CN103937066A (en) Flame-retardant bast fiber-plastic composite material, and preparation method thereof
TW201305274A (en) Eco-friendly construction material composition
CN109306097A (en) A kind of manufacturing method for the plastic film that can be degraded
JP2010001444A (en) Bio-composite material composition, bio-composite sheet containing the composition, automobile interior/exterior material using the same and method of manufacturing the sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140714