JP2013107784A - Non-doped white fluorescent synthetic silica glass - Google Patents

Non-doped white fluorescent synthetic silica glass Download PDF

Info

Publication number
JP2013107784A
JP2013107784A JP2011252452A JP2011252452A JP2013107784A JP 2013107784 A JP2013107784 A JP 2013107784A JP 2011252452 A JP2011252452 A JP 2011252452A JP 2011252452 A JP2011252452 A JP 2011252452A JP 2013107784 A JP2013107784 A JP 2013107784A
Authority
JP
Japan
Prior art keywords
fluorescence
silica glass
wavelength
synthetic silica
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252452A
Other languages
Japanese (ja)
Inventor
Kyoichi Inagi
恭一 稲木
Toru Segawa
徹 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2011252452A priority Critical patent/JP2013107784A/en
Publication of JP2013107784A publication Critical patent/JP2013107784A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-doped white fluorescent synthetic silica glass which emits white fluorescence upon irradiation with ultraviolet radiation, without doping carbon, Cu or a phosphor.SOLUTION: The synthetic silica glass has an OH group content of ≤1 ppm, a chlorine content of ≤30 ppm, a viscosity (logη) at 1,280°C of ≥12.2 P, a Cu content of ≤1 ppm and a C content of ≤100 ppm, and emits ≥1 s delayed fluorescence in the visible light region upon irradiation with ultraviolet radiation, wherein the fluorescence emitted upon irradiation with ultraviolet radiation is white fluorescence.

Description

本発明は、可視光より短波長の光を照射したときに発生する白色蛍光を利用したノンドープ白色蛍光シリカガラスに係り、特にシリカガラスランプ、シリカガラス光学冶具、シリカガラスファイバー、シリカガラスマイクロチップ、太陽光発電、波長変換レーザなど入射光の波長を可視光に変換する光学的特徴を有効に利用するノンドープ白色蛍光合成シリカガラスに関する。   The present invention relates to a non-doped white fluorescent silica glass utilizing white fluorescence generated when irradiated with light having a shorter wavelength than visible light, particularly a silica glass lamp, a silica glass optical jig, a silica glass fiber, a silica glass microchip, The present invention relates to a non-doped white fluorescent synthetic silica glass that effectively utilizes an optical feature that converts the wavelength of incident light into visible light, such as solar power generation and wavelength conversion laser.

従来のシリカガラス製品は、一般的な低圧水銀ランプからの紫外線照射によって可視光領域の蛍光を発生することが知られている。しかしながら、可視光領域の蛍光は天然シリカガラスでは波長が400nmの場合や、合成シリカガラスでは蛍光が殆ど発生しない場合が多かった。また、蛍光の強度も非常に弱く、可視光領域に蛍光を変換する効率は非常に小さかった。   It is known that conventional silica glass products generate fluorescence in the visible light region when irradiated with ultraviolet rays from a general low-pressure mercury lamp. However, the fluorescence in the visible light region is often generated when natural silica glass has a wavelength of 400 nm or when synthetic silica glass is used. Also, the intensity of fluorescence was very weak, and the efficiency of converting fluorescence into the visible light region was very small.

例えば、特許文献1では、250nm以下の光を250〜450nmの長波長に変換することが提案されているが、可視光領域の光への変換ではないために用途が限られてしまっていた。シリカガラスから発生する蛍光は、波長が長くても600nmまでで、600nm以上の蛍光を発生することは非常に難しかった。このため、シリカガラスの蛍光を利用した白色光への変換は非常に難しかった。   For example, Patent Document 1 proposes converting light of 250 nm or less into a long wavelength of 250 to 450 nm, but its use is limited because it is not conversion into light in the visible light region. Fluorescence generated from silica glass has a wavelength of up to 600 nm even when the wavelength is long, and it is very difficult to generate fluorescence of 600 nm or more. For this reason, conversion into white light using the fluorescence of silica glass was very difficult.

LED(Light Emitting Diode)などでは、赤、青、緑を組み合わせて白色を作り出す手法もあるが、最近は白色LEDが開発されている。白色LEDは、青色LEDの表面に青色光で刺激すると黄色を発生する変換物質で覆うことで白色LEDとすることなどが行われている。   In LED (Light Emitting Diode) and the like, there is a method of creating white by combining red, blue, and green, but recently, a white LED has been developed. The white LED is made into a white LED by covering the surface of the blue LED with a conversion substance that generates yellow when stimulated with blue light.

また、特許文献2では、シリカガラスにCuをドープして、蛍光を発生させることが提案されているが、Cuをシリカガラス中に30〜1000ppmもドープする必要があり、シリカガラスが着色してしまったり、発生する蛍光が白色ではなかった。また特許文献3では、シリカゲル中に炭素を0.05〜0.5重量%を含有させた蛍光シリカゲルが提案されているが、炭素を含有させることにより、ガラス自体が黒く着色してしまったり、また形状がシリカガラスと粒子状のものでしかなかった。   In Patent Document 2, it is proposed that the silica glass is doped with Cu to generate fluorescence, but it is necessary to dope Cu to the silica glass as much as 30 to 1000 ppm, and the silica glass is colored. The fluorescence generated was not white. Further, in Patent Document 3, a fluorescent silica gel containing 0.05 to 0.5% by weight of carbon in silica gel has been proposed, but by containing carbon, the glass itself is colored black, The shape was only silica glass and particles.

特開2009−154090JP 2009-154090 A 特開2005−272243JP-A-2005-272243 特開2003−155478JP2003-155478A

こうした現状に鑑み、本発明者等は、シリカガラスの遅延蛍光発生のメカニズムについて鋭意研究を重ねた結果、シリカガラス中に200nm〜180nmの波長域に最低励起三重項励起準位のSiSiSi結合を効率的に形成させて300nm以下の紫外線を吸収させれば、最低励起一重項励起準位への逆項間交差後に可視光領域の600nm以上の波長領域にも蛍光が発生することを発見したのである。   In view of the present situation, the present inventors have conducted extensive research on the mechanism of delayed fluorescence generation of silica glass, and as a result, the SiSiSi bond having the lowest excited triplet excitation level in the silica glass in the wavelength region of 200 nm to 180 nm is efficiently obtained. It was discovered that if ultraviolet light having a wavelength of 300 nm or less is absorbed and the ultraviolet light having a wavelength of 300 nm or less is absorbed, fluorescence is also generated in the wavelength region of 600 nm or more in the visible light region after the crossing of the inverse terms to the lowest excitation singlet excitation level. .

また、この長波長の蛍光は炭素、Cu又は燐光物質などをドープしていないために着色しておらず、また形状的には非常に安定で、紫外線の照射による劣化もなく、また温度変化に対しても安定である。   In addition, this long wavelength fluorescence is not colored because it is not doped with carbon, Cu or phosphor, etc., is very stable in shape, is not deteriorated by irradiation with ultraviolet rays, and changes in temperature. It is also stable.

本発明は、上記従来技術の問題点に鑑みなされたもので、炭素、Cu又は燐光物質をドープすることなく、紫外線を照射したときの蛍光が白色蛍光であるノンドープ白色蛍光合成シリカガラスを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and provides a non-doped white fluorescent synthetic silica glass whose fluorescence when irradiated with ultraviolet rays is white fluorescence without doping carbon, Cu or phosphorescent substances. For the purpose.

本発明に係るノンドープ白色蛍光合成シリカガラスは、OH基含有量が1ppm以下であり、塩素の含有量が30ppm以下で、1280℃での粘度(Logη)が12.2poise以上であり、Cuの含有量が1ppm以下、Cの含有量が100ppm以下であり、紫外線を照射することで可視光領域に1秒以上の遅延蛍光を発生する合成シリカガラスであって、紫外線を照射したときの蛍光が白色蛍光であることを特徴とする。遅延蛍光の寿命は、1秒以上であり、例えば1秒〜10数秒程度と非常に長く、遅延蛍光の発生を目視で観察することが可能である。   The non-doped white fluorescent synthetic silica glass according to the present invention has an OH group content of 1 ppm or less, a chlorine content of 30 ppm or less, a viscosity at 1280 ° C. (Log η) of 12.2 poise or more, and a Cu content. A synthetic silica glass having an amount of 1 ppm or less and a C content of 100 ppm or less and generating a delayed fluorescence of 1 second or more in the visible light region when irradiated with ultraviolet rays, and the fluorescence when irradiated with ultraviolet rays is white It is characterized by being fluorescent. The lifetime of delayed fluorescence is 1 second or longer, and is very long, for example, about 1 to 10 seconds, and the occurrence of delayed fluorescence can be visually observed.

また、前記紫外線が、160nmから400nmの波長であるのが好ましい。   Further, it is preferable that the ultraviolet light has a wavelength of 160 nm to 400 nm.

特に、前記紫外線が、低圧水銀ランプの254nm若しくは185nmの波長、ArFエキシマレーザの193nmの波長、又はXeエキシマランプの172nmの波長であるのが好適である。   In particular, it is preferable that the ultraviolet light has a wavelength of 254 nm or 185 nm of a low-pressure mercury lamp, a wavelength of 193 nm of an ArF excimer laser, or a wavelength of 172 nm of an Xe excimer lamp.

前記遅延蛍光としては、波長460nmにピークをもつ酸素欠損による蛍光であるのが好適である。   The delayed fluorescence is preferably fluorescence due to oxygen deficiency having a peak at a wavelength of 460 nm.

前記遅延蛍光が、波長460nmの蛍光と波長600nm以上の遅延蛍光で発生する白色蛍光であり、前記白色蛍光のCIE色度図における色度座標が、xが0.2以上0.4以下、yが0.2以上0.4以下であるのがさらに好ましい。   The delayed fluorescence is white fluorescence generated by fluorescence having a wavelength of 460 nm and delayed fluorescence having a wavelength of 600 nm or more, and the chromaticity coordinate in the CIE chromaticity diagram of the white fluorescence has x of 0.2 or more and 0.4 or less, y Is more preferably 0.2 or more and 0.4 or less.

本発明によれば、炭素、Cu又は燐光物質をドープすることなく、紫外線を照射することで可視光領域に1秒以上の白色の遅延蛍光を発生するノンドープ白色蛍光合成シリカガラスを提供することができるという著大な効果を奏する。   According to the present invention, it is possible to provide a non-doped white fluorescent synthetic silica glass that generates white delayed fluorescence of 1 second or more in the visible light region by irradiating ultraviolet rays without doping carbon, Cu or phosphor. There is a great effect that you can.

蛍光強度と蛍光波長(nm)の関係を示すグラフである。It is a graph which shows the relationship between fluorescence intensity and fluorescence wavelength (nm). 図1に示したグラフの蛍光波長550nm〜700nm部分を拡大したグラフである。It is the graph which expanded the fluorescence wavelength 550nm -700nm part of the graph shown in FIG. 実施例1の色度座標のグラフである。2 is a graph of chromaticity coordinates of Example 1. 比較例1の色度座標のグラフである。5 is a graph of chromaticity coordinates of Comparative Example 1. 比較例2の色度座標のグラフである。10 is a graph of chromaticity coordinates of Comparative Example 2.

以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術的思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.

本発明のノンドープ白色蛍光合成シリカガラスは、波長300nm以下にSiSiSi結合の吸収を有する合成シリカガラス、特にシリカガラスに300nm以下の紫外線を照射し、可視光領域の600nm以上の波長領域に蛍光を発生させ、この長波長の蛍光を利用して白色光を生み出し、人類の生活に必要な白色光を電気などの媒体を介在しないで有効に生み出すものである。   The non-doped white fluorescent synthetic silica glass of the present invention is a synthetic silica glass having absorption of SiSiSi bond at a wavelength of 300 nm or less, particularly, silica glass is irradiated with ultraviolet light of 300 nm or less, and generates fluorescence in a wavelength region of 600 nm or more in the visible light region. The long-wavelength fluorescence is used to generate white light, and the white light necessary for human life is effectively generated without the use of a medium such as electricity.

本発明のシリカガラスにおいて、OH基含有量は1ppm以下であり、0.5ppm以下がより好ましい。また、塩素の含有量は30ppm以下であり、10ppmがより好ましい。Cuの含有量は、1ppm以下であり、0.5ppm以下がより好ましい。Cの含有量は、100ppm以下であり、50ppm以下がより好ましい。   In the silica glass of the present invention, the OH group content is 1 ppm or less, and more preferably 0.5 ppm or less. Further, the chlorine content is 30 ppm or less, and more preferably 10 ppm. The Cu content is 1 ppm or less, and more preferably 0.5 ppm or less. The C content is 100 ppm or less, and more preferably 50 ppm or less.

本発明のシリカガラスは高耐熱性合成シリカガラスであって、1280℃での粘度(Logη)が12.2poise以上であり、12.3poise以上が好ましい。   The silica glass of the present invention is a high heat-resistant synthetic silica glass, and has a viscosity (Log η) at 1280 ° C. of 12.2 poise or more, preferably 12.3 poise or more.

特に、本発明のシリカガラス中には燐光発生する物質を含有させていないし、またシリカガラスそのものであることから、いろいろな形状にすることが可能である。   In particular, the silica glass of the present invention does not contain a phosphorescent substance, and since it is the silica glass itself, it can be formed into various shapes.

例えば、ファイバー状に延伸したり、研磨して薄膜にしたり、またはプリズムやレンズ、球状の製品を提供することが可能となる。   For example, it can be drawn into a fiber shape, polished into a thin film, or a prism, lens, or spherical product can be provided.

シリカガラス中の最低励起三重項励起準位のSiSiSiの結合は、波長300nm以下の波長190nm近傍に吸収を持つことが分かっている。また、最低励起一重項励起準位は波長300nm以下の波長240nm近傍に吸収を持つことが分かっている。この最低励起一重項励起準位は、波長460nmに蛍光を発生させることもわかっている。   It has been found that the SiSiSi bond at the lowest excited triplet excited level in silica glass has absorption in the vicinity of a wavelength of 190 nm or less with a wavelength of 300 nm or less. Further, it has been found that the lowest excitation singlet excitation level has absorption in the vicinity of a wavelength of 240 nm, which is 300 nm or less. This lowest excited singlet excitation level is also known to generate fluorescence at a wavelength of 460 nm.

シリカガラス中に最低励起三重項励起準位、最低励起一重項励起準位の両方の準位を含有することで、600nm以上の長波長に蛍光は発生する。今までのシリカガラスでは最低励起一重項励起準位のみが形成されていただけで、遅延蛍光現象は確認されておらず、通常の蛍光のみが検出されていた。   By including both the lowest excited triplet excited level and the lowest excited singlet excited level in the silica glass, fluorescence is generated at a long wavelength of 600 nm or more. In conventional silica glass, only the lowest excited singlet excited level has been formed, the delayed fluorescence phenomenon has not been confirmed, and only normal fluorescence has been detected.

しかしながら、シリカガラス中のSiSiSi結合をさらに増加させると、紫外線を照射させることにより励起された電子が、最低励起三重項励起準位のSiSiSi結合に一次トラップされ、その後蛍光を発生するために600nm以上の長波長に蛍光が発生することになる。600nm以上の長波長の蛍光は、入射した300nm以下の紫外線のパワーに見合った蛍光が発生することになる。このため、300nm以下の紫外線をシリカガラスによって効率よく波長を可視光に領域に変換することが可能となる。   However, when the SiSiSi bond in the silica glass is further increased, electrons excited by irradiation with ultraviolet light are primarily trapped in the SiSiSi bond at the lowest excited triplet excited level, and then generate a fluorescence of 600 nm or more. Fluorescence is generated at a long wavelength. Fluorescence having a long wavelength of 600 nm or more generates fluorescence commensurate with the power of incident ultraviolet light of 300 nm or less. For this reason, it becomes possible to efficiently convert the wavelength of ultraviolet light of 300 nm or less into a visible light region by silica glass.

また、一般的な有機LED材料では遅延蛍光を発生するときに、熱が放出されてしまうためにエネルギーがロスし、変換効率が悪くなってしまう。このため交換効率を良くするためには、材料を液体窒素などで冷却するなどの処理が必要であったが、該発明のシリカガラスでは熱を放出することがないので、室温でも十分な変換効率を得ることが可能である。   Moreover, in general organic LED material, when delayed fluorescence is generated, heat is released, so that energy is lost and conversion efficiency is deteriorated. For this reason, in order to improve the exchange efficiency, a treatment such as cooling the material with liquid nitrogen or the like was necessary. However, since the silica glass of the present invention does not release heat, sufficient conversion efficiency even at room temperature. It is possible to obtain

また、300nm以下の紫外線はシリカガラスで吸収されてしまうので、完全に紫外線を可視光に変換できるメリットがある。600nm以上の長波長の蛍光とは、(i)エネルギーを受けた電子が一重項励起電子のもっともエネルギーレベルの高いところへ移る。 (ii)一重項励起電子が直接基底状態に戻るのではなく、いったんエネルギーレベルの低い三重項励起電子に移る。(iii)三重項励起電子から基底状態に戻る。(iv)このとき発生するのが600nm以上の長波長の蛍光である。   Further, since ultraviolet rays of 300 nm or less are absorbed by silica glass, there is an advantage that ultraviolet rays can be completely converted into visible light. With long wavelength fluorescence of 600 nm or more, (i) electrons that have received energy move to a place where the singlet excited electrons have the highest energy level. (ii) Singlet excited electrons do not directly return to the ground state, but once move to triplet excited electrons having a low energy level. (iii) Return to ground state from triplet excited electrons. (iv) Long-wavelength fluorescence of 600 nm or longer is generated at this time.

シリカガラス中に三重項励起電子準位のSiSiSi結合を多く形成させることにより、また併せて一重項励起電子準位の吸収を240nmに形成させることで、常温でも遅延蛍光を観察することが可能となった。よって、今まで有機LED材料では常温ではなしえなかった波長変換を、この遅延蛍光現象を用いることによって可能となったのである。   By forming many triplet excited electron level SiSiSi bonds in silica glass and also forming singlet excited electron level absorption at 240 nm, delayed fluorescence can be observed even at room temperature. became. Therefore, wavelength conversion, which could not be achieved at room temperature with organic LED materials until now, has become possible by using this delayed fluorescence phenomenon.

本発明のシリカガラスの場合には、蛍光の波長は460nmにピークをもつ波長と、600nm以上に遅延蛍光がふくまれるのが好ましく、遅延蛍光は数秒間も継続するものが好ましい。ただし、蛍光の波長はそれぞれの電位準位の吸収の波長によっても変わることがあり、360nm〜780nmの可視光領域に変化させることは可能である。   In the case of the silica glass of the present invention, it is preferable that the fluorescence wavelength includes a wavelength having a peak at 460 nm and delayed fluorescence including 600 nm or more, and the delayed fluorescence preferably lasts for several seconds. However, the fluorescence wavelength may vary depending on the absorption wavelength of each potential level, and can be changed to a visible light region of 360 nm to 780 nm.

この遅延蛍光は室温でも発生するために、今までの有機EL材料のように液体窒素などで冷却する必要がなく、またシリカガラスであるために、ファイバー形状や1m角以上の大きな基板も作成することが可能である。さらに、プリズムやレンズ形状、また球状の製品を作成することができるために、レーザ光を照射することが容易で、これによって効率よく波長を変換した460nmにピークをもつ可視光を得ることが可能である。   Since this delayed fluorescence is generated even at room temperature, it is not necessary to cool it with liquid nitrogen or the like as in the case of conventional organic EL materials, and because it is silica glass, a large substrate having a fiber shape or 1 m square or more is also produced. It is possible. In addition, because it is possible to create prisms, lens shapes, and spherical products, it is easy to irradiate laser light, which makes it possible to obtain visible light having a peak at 460 nm that has been efficiently converted in wavelength. It is.

こうした可視光の遅延蛍光により、燐光物質を含有しないシリカガラスでも可視光を発生することができるので、液晶テレビのバックライトや照明装置への応用が考えられる。 また、紫外線レーザを照射することで、可視光に波長を変化したレーザ光を発生させることも可能となる。   By virtue of such delayed fluorescence of visible light, visible light can be generated even in silica glass that does not contain a phosphorescent substance. Therefore, it can be applied to backlights of liquid crystal televisions and lighting devices. Further, by irradiating with an ultraviolet laser, it becomes possible to generate laser light having a wavelength changed to visible light.

更に、紫外線や宇宙線が存在する宇宙空間では、無尽蔵の紫外線や宇宙線を直接白色光に変換することができるので、従来のような電力設備を介さないで光を効率よく白色光に変換できるので、宇宙開発に非常に有効な素材となる。   Furthermore, in the space where ultraviolet rays and cosmic rays exist, infinite ultraviolet rays and cosmic rays can be directly converted into white light, so that light can be efficiently converted into white light without using conventional power equipment. So it becomes a very effective material for space development.

本発明のシリカガラスにおいて、最低励起三重項励起準位のSiSiSi結合を効率的に形成する方法は特に規定はしないが、例えば合成シリカガラススート母材にClを含有する化合物を反応させSi−Cl結合を形成した後に、このSi−Cl結合からClを還元雰囲気で引き抜くことで達成することができる。   In the silica glass of the present invention, the method for efficiently forming the SiSiSi bond of the lowest excited triplet excited level is not particularly defined. For example, a synthetic silica glass soot base material is reacted with a compound containing Cl to form Si-Cl. After forming the bond, it can be achieved by extracting Cl from the Si-Cl bond in a reducing atmosphere.

以下に実施例を挙げて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきものでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed as limiting.

(実施例1)
シリカガラススート母材を四塩化ケイ素(SiCl)ガスを水素と酸素の火炎の中で加水分解を起こして、ターゲット材に堆積させて作成した。次いで、このスート母材を有機ケイ素化合物のガス中で脱水し、水素雰囲気中で焼成した後、還元性雰囲気中で加熱後、真空炉中で1550℃でガラス化して、酸素欠損を有する合成シリカガラス母材を作成した。
Example 1
A silica glass soot base material was prepared by hydrolyzing silicon tetrachloride (SiCl 4 ) gas in a flame of hydrogen and oxygen and depositing it on the target material. Next, this soot base material is dehydrated in an organosilicon compound gas, baked in a hydrogen atmosphere, heated in a reducing atmosphere, and then vitrified at 1550 ° C. in a vacuum furnace to produce synthetic silica having oxygen deficiency. A glass base material was created.

(比較例1)
シリカガラススート母材を四塩化ケイ素SiCl4ガスを水素と酸素の火炎の中で加水分解を起こして、ターゲット材に堆積させて作成した。次いで、このスート母材を有機ケイ素化合物のガス中で脱水し、還元性雰囲気中で加熱後、真空炉中で1550℃でガラス化して、酸素欠損を有する合成シリカガラス母材を作成した。
(Comparative Example 1)
A silica glass soot base material was prepared by hydrolyzing silicon tetrachloride SiCl4 gas in a flame of hydrogen and oxygen and depositing it on the target material. Next, the soot base material was dehydrated in an organosilicon compound gas, heated in a reducing atmosphere, and then vitrified in a vacuum furnace at 1550 ° C. to prepare a synthetic silica glass base material having oxygen deficiency.

(比較例2)
シリカガラススート母材を四塩化ケイ素SiCl4ガスを水素と酸素の火炎の中で加水分解を起こして、ターゲット材に堆積させて作成した。次いで、このスート母材を真空炉中で1550℃加熱して、酸素欠損を有しない合成シリカガラス母材を作成した。
(Comparative Example 2)
A silica glass soot base material was prepared by hydrolyzing silicon tetrachloride SiCl4 gas in a flame of hydrogen and oxygen and depositing it on the target material. Next, this soot base material was heated at 1550 ° C. in a vacuum furnace to prepare a synthetic silica glass base material having no oxygen deficiency.

実施例1及び比較例1及び2のシリカガラスの200nm以下の透過率測定の結果を表1に示した。OH基含有量については、赤外分光光度計にて、2.7μmの赤外線の吸収スペクトルから測定を行った。Cl含有量については、蛍光X線分析にて測定を行った。粘度に関しては、ビームベンディング法によって測定を行った。   Table 1 shows the results of transmittance measurement of 200 nm or less of the silica glass of Example 1 and Comparative Examples 1 and 2. The OH group content was measured from an infrared absorption spectrum of 2.7 μm with an infrared spectrophotometer. The Cl content was measured by fluorescent X-ray analysis. The viscosity was measured by a beam bending method.

Figure 2013107784
Figure 2013107784

上記三種類の合成シリカガラスに対し、検出器側にUV350フィルターを入れて、254nmの紫外線を照射し、280nmで発生するSi−Siによる蛍光をカットして、350nmよりも長波長側の蛍光を測定した場合の蛍光強度と蛍光波長(nm)の関係を示すグラフを図1に示す。また、図1に示したグラフの蛍光波長550nm〜700nm部分を拡大したグラフを図2に示す。図1及び図2から、実施例1の合成シリカガラスでは、波長460nmに蛍光ピークを有し、波長600nm以上においても蛍光波長を有しており、波長460nmの蛍光と波長600nm以上の遅延蛍光で発生する白色蛍光であることがわかる。   For the above three types of synthetic silica glass, put a UV350 filter on the detector side, irradiate UV light at 254 nm, cut off fluorescence caused by Si-Si generated at 280 nm, and emit fluorescence at longer wavelength side than 350 nm. A graph showing the relationship between the fluorescence intensity and the fluorescence wavelength (nm) when measured is shown in FIG. Moreover, the graph which expanded the fluorescence wavelength 550nm -700nm part of the graph shown in FIG. 1 is shown in FIG. 1 and 2, the synthetic silica glass of Example 1 has a fluorescence peak at a wavelength of 460 nm, has a fluorescence wavelength at a wavelength of 600 nm or more, and has fluorescence at a wavelength of 460 nm and delayed fluorescence at a wavelength of 600 nm or more. It can be seen that the white fluorescence is generated.

上記三種類の合成シリカガラスに254nmの紫外線を照射した場合の遅延蛍光の状態を測定し、表2に示した。三重項励起電子準位と一重項励起電子準位を含有する実施例1及び比較例1のみに1秒と10秒レベルの460nmの蛍光が認められた。白色蛍光は実施例1のみに認められた。比較例2は、紫外線照射中は可視光に僅かに蛍光は認められたが、紫外線照射をやめるとすぐに蛍光は無くなってしまった。   The state of delayed fluorescence when the above three kinds of synthetic silica glasses were irradiated with ultraviolet rays of 254 nm was measured and shown in Table 2. Only in Example 1 and Comparative Example 1 containing triplet excited electron levels and singlet excited electron levels, fluorescence at 460 nm of 1 second and 10 second levels was observed. White fluorescence was observed only in Example 1. In Comparative Example 2, the fluorescence was slightly observed in the visible light during the ultraviolet irradiation, but the fluorescence disappeared as soon as the ultraviolet irradiation was stopped.

Figure 2013107784
Figure 2013107784

また、上記三種類の合成シリカガラス中の不純物の含有量について表3に示した。   In addition, Table 3 shows the content of impurities in the above three types of synthetic silica glass.

Figure 2013107784
Figure 2013107784

上記三種類の合成シリカガラスに254nmの紫外線を照射した場合の蛍光のチャートを表4に示した。   Table 4 shows fluorescence charts when the above three types of synthetic silica glass were irradiated with ultraviolet rays of 254 nm.

Figure 2013107784
Figure 2013107784

また、上記三種類の合成シリカガラスに254nmの紫外線を照射した場合のCIE色度図における色度座標を表5に示すと共に、図3〜図5に色度座標のグラフを示した。色度座標は、浜松ホトニクス株式会社のマルチチャンネル分光器PMA−12を使用して、実施例1、比較例1及び2に低圧水銀ランプの254nmの紫外線を照射したときの蛍光で測定した。   The chromaticity coordinates in the CIE chromaticity diagram when the three types of synthetic silica glass were irradiated with ultraviolet rays of 254 nm are shown in Table 5, and the chromaticity coordinate graphs are shown in FIGS. The chromaticity coordinates were measured by fluorescence when irradiating UV light of 254 nm of a low-pressure mercury lamp on Example 1 and Comparative Examples 1 and 2 using a multichannel spectrometer PMA-12 manufactured by Hamamatsu Photonics.

Figure 2013107784
Figure 2013107784

さらに、低圧水銀ランプ(波長185nm)の紫外線を照射した場合、ArFエキシマレーザ(波長193nm)を照射した場合及びXeエキシマランプ(172nm)の光を照射した場合の目視での蛍光観察の結果について表6に示した。白色蛍光は実施例1のみに認められた。比較例1では、全ての場合で青色の蛍光が観察された。また、比較例2では、低圧水銀ランプ(波長185nm)の紫外線を照射した場合には、紫色蛍光となり、ArFエキシマレーザ(波長193nm)を照射した場合及びXeエキシマランプ(172nm)の光を照射した場合では、紫色から赤色となる蛍光が観察された。   Furthermore, the results of visual fluorescence observation when irradiated with ultraviolet light from a low-pressure mercury lamp (wavelength 185 nm), irradiated with ArF excimer laser (wavelength 193 nm), and irradiated with light from a Xe excimer lamp (172 nm) are shown. This is shown in FIG. White fluorescence was observed only in Example 1. In Comparative Example 1, blue fluorescence was observed in all cases. In Comparative Example 2, when ultraviolet light from a low-pressure mercury lamp (wavelength 185 nm) was irradiated, purple fluorescence was obtained, and when irradiated with an ArF excimer laser (wavelength 193 nm) and Xe excimer lamp (172 nm) was irradiated. In some cases, fluorescence from purple to red was observed.

Figure 2013107784
Figure 2013107784

Claims (5)

OH基含有量が1ppm以下であり、塩素の含有量が30ppm以下で、1280℃での粘度(Logη)が12.2poise以上であり、Cuの含有量が1ppm以下、Cの含有量が100ppm以下であり、紫外線を照射することで可視光領域に1秒以上の遅延蛍光を発生する合成シリカガラスであって、紫外線を照射したときの蛍光が白色蛍光であることを特徴とするノンドープ白色蛍光合成シリカガラス。   The OH group content is 1 ppm or less, the chlorine content is 30 ppm or less, the viscosity (Log η) at 1280 ° C. is 12.2 pise or more, the Cu content is 1 ppm or less, and the C content is 100 ppm or less. A synthetic silica glass that generates delayed fluorescence of 1 second or more in the visible light region when irradiated with ultraviolet rays, and the fluorescence when irradiated with ultraviolet rays is white fluorescence. Silica glass. 前記紫外線が、160nmから400nmの波長であることを特徴とする請求項1記載のノンドープ白色蛍光合成シリカガラス。   2. The non-doped white fluorescent synthetic silica glass according to claim 1, wherein the ultraviolet ray has a wavelength of 160 nm to 400 nm. 前記紫外線が、低圧水銀ランプの254nm若しくは185nmの波長、ArFエキシマレーザの193nmの波長、又はXeエキシマランプの172nmの波長であることを特徴とする請求項1又は2記載のノンドープ白色蛍光合成シリカガラス。   3. The non-doped white fluorescent synthetic silica glass according to claim 1, wherein the ultraviolet light has a wavelength of 254 nm or 185 nm of a low-pressure mercury lamp, a wavelength of 193 nm of an ArF excimer laser, or a wavelength of 172 nm of an Xe excimer lamp. . 前記蛍光が、波長460nmにピークをもつ酸素欠損による蛍光であることを特徴とする請求項1〜3いずれか1項記載のノンドープ白色蛍光合成シリカガラス。   The non-doped white fluorescent synthetic silica glass according to any one of claims 1 to 3, wherein the fluorescence is fluorescence due to oxygen deficiency having a peak at a wavelength of 460 nm. 前記蛍光が、波長460nmの蛍光と波長600nm以上の遅延蛍光で発生する白色蛍光であり、前記白色蛍光のCIE色度図における色度座標が、xが0.2以上0.4以下、yが0.2以上0.4以下であることを特徴とする請求項1〜4いずれか1記載のノンドープ白色蛍光合成シリカガラス。   The fluorescence is white fluorescence generated by fluorescence having a wavelength of 460 nm and delayed fluorescence having a wavelength of 600 nm or more, and the chromaticity coordinate in the CIE chromaticity diagram of the white fluorescence has an x of 0.2 or more and 0.4 or less, and y The non-doped white fluorescent synthetic silica glass according to any one of claims 1 to 4, which is 0.2 to 0.4.
JP2011252452A 2011-11-18 2011-11-18 Non-doped white fluorescent synthetic silica glass Pending JP2013107784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252452A JP2013107784A (en) 2011-11-18 2011-11-18 Non-doped white fluorescent synthetic silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252452A JP2013107784A (en) 2011-11-18 2011-11-18 Non-doped white fluorescent synthetic silica glass

Publications (1)

Publication Number Publication Date
JP2013107784A true JP2013107784A (en) 2013-06-06

Family

ID=48704959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252452A Pending JP2013107784A (en) 2011-11-18 2011-11-18 Non-doped white fluorescent synthetic silica glass

Country Status (1)

Country Link
JP (1) JP2013107784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986336B2 (en) 2001-10-25 2015-03-24 Spiration, Inc. Apparatus and method for deployment of a bronchial obstruction device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050570A1 (en) * 2002-11-29 2004-06-17 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
JP2006182630A (en) * 2004-12-28 2006-07-13 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass with high heat resistance and synthetic silica glass article with high heat resistance
JP2012254904A (en) * 2011-06-09 2012-12-27 Shinetsu Quartz Prod Co Ltd Silica glass emitting delayed fluorescence, and ultraviolet sensor made of silica glass using delayed fluorescence

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050570A1 (en) * 2002-11-29 2004-06-17 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
JP2006182630A (en) * 2004-12-28 2006-07-13 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass with high heat resistance and synthetic silica glass article with high heat resistance
JP2012254904A (en) * 2011-06-09 2012-12-27 Shinetsu Quartz Prod Co Ltd Silica glass emitting delayed fluorescence, and ultraviolet sensor made of silica glass using delayed fluorescence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986336B2 (en) 2001-10-25 2015-03-24 Spiration, Inc. Apparatus and method for deployment of a bronchial obstruction device

Similar Documents

Publication Publication Date Title
JP6427721B1 (en) Stacked luminescence collector
US10584852B2 (en) Light source having solid-state laser irradiating single-crystal phosphor with specific composition
US7577318B2 (en) Wavelength conversion layers with embedded crystallites
Li et al. Low etendue yellow-green solid-state light generation by laser-pumped LuAG: Ce ceramic
Yang et al. Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery
JP2013519774A (en) Luminescent compound
Zang et al. Dy 3+ doped borate glasses for laser illumination
Rittisut et al. Bright white light emission from (Gd3+/Dy3+) dual doped transparent lithium aluminum borate glasses for W-LED application
CN103922584A (en) Transition metal ion co-doped ultraviolet-excited adjustable luminescent glass and preparation method thereof
CN107065066B (en) A kind of structure of more clad silica fibers
JP2013107784A (en) Non-doped white fluorescent synthetic silica glass
JP5770022B2 (en) Silica glass UV sensor using delayed fluorescence
EP3146014B1 (en) Source of broadband white light generated on oxide matrices highly doped with rare earth ions, excited by infrared radiation
Kwon et al. Fabrication of red-emitting CaAlSiN3: Eu2+ through phosphor-in-glass approach for application in rear combination lamp
JP5913690B2 (en) Silica glass generating delayed fluorescence
Shen et al. Synthesis of nano-colloidal silica particles and their effects on the luminescence properties of Eu2+-doped High silica glass
CN110360469B (en) Full spectrum laser device based on fluorophor
Zhang et al. White upconversion luminescence generation from Ho3+ singly doped chalcohalide glasses
Reddy et al. Inorganic Phosphors for Diode Pumped Solid-State Lighting Applications
Dang et al. The impacts from Sr4La (PO4) 3O: Ce3+, Tb3+, Mn2+ phosphor resulting in luminous flux of WLED devices
JP6184174B2 (en) Phosphor and method for producing the same
CN109752895B (en) Quartz nonlinear fluorescence luminescence method and application
JP4340755B2 (en) Transparent white fluorescent glass
Shultzman et al. Purcell-Enhanced UV Sources
Zhao et al. Theoretical and experimental research on Ce: YAG crystals for use in blue laser diode illumination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150430