JP2013107779A - Sintered body and method for manufacturing the same - Google Patents

Sintered body and method for manufacturing the same Download PDF

Info

Publication number
JP2013107779A
JP2013107779A JP2011251616A JP2011251616A JP2013107779A JP 2013107779 A JP2013107779 A JP 2013107779A JP 2011251616 A JP2011251616 A JP 2011251616A JP 2011251616 A JP2011251616 A JP 2011251616A JP 2013107779 A JP2013107779 A JP 2013107779A
Authority
JP
Japan
Prior art keywords
metal oxide
sintered body
composite metal
compound
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011251616A
Other languages
Japanese (ja)
Inventor
Yuki Ito
優基 伊藤
Kazuki Nishimo
和希 西面
Yuji Isotani
祐二 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011251616A priority Critical patent/JP2013107779A/en
Publication of JP2013107779A publication Critical patent/JP2013107779A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered body having excellent lithium ion conductivity and a method for manufacturing the same.SOLUTION: The sintered body comprises a garnet type complex metal oxide containing Li, La and Zr and having lithium ion conductivity, and has a relative density in the range of 94-98%, wherein voids have a maximum length in the range of 1 to <100 nm. The sintered body can be manufactured through a step of subjecting a mixed raw material prepared by mixing an Li compound, an La compound and a Zr compound to primary firing to obtain a complex metal oxide powder, and a step of subjecting the complex metal oxide powder to secondary firing by spark plasma sintering.

Description

本発明は、焼結体及びその製造方法に関する。   The present invention relates to a sintered body and a method for producing the same.

近年、リチウムイオン二次電池において、リチウムイオンを伝導させるための媒体として、液状の電解液に代えてリチウムイオン伝導性を備える固体電解質が注目されている。   In recent years, in lithium ion secondary batteries, solid electrolytes having lithium ion conductivity have attracted attention as a medium for conducting lithium ions, instead of a liquid electrolyte.

前記リチウムイオン伝導性を備える固体電解質は、電解液の漏洩がなく、リチウムデンドライドの成長を抑制することにより、電池内部での短絡を防ぐことができる等の利点がある。   The solid electrolyte having lithium ion conductivity has advantages such as no leakage of the electrolyte and prevention of short circuit inside the battery by suppressing the growth of lithium dendride.

前記リチウムイオン伝導性を備える固体電解質として、化学式LiLaZr12で表わされるガーネット型複合金属酸化物からなる焼結体が知られている(例えば特許文献1及び2参照)。前記焼結体は、炭酸リチウムと水酸化ランタンと酸化ジルコニウムとを混合して一次焼成し、複合金属酸化物粉末を得た後に、該複合金属酸化物粉末をプレス成形することにより予備成形体を作製し、該予備成形体を坩堝に収容して、1125〜1230℃の範囲の温度で、30〜50時間の範囲の時間、二次焼成することにより製造することができる。前記製造方法により得られた焼結体は、化学式LiLaZr12で表わされるガーネット型複合金属酸化物の理論密度(5.116g/cm)に対して92%の相対密度を備えている。 As a solid electrolyte having lithium ion conductivity, a sintered body made of a garnet-type composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12 is known (see, for example, Patent Documents 1 and 2). The sintered body is obtained by mixing lithium carbonate, lanthanum hydroxide and zirconium oxide and performing primary firing to obtain a composite metal oxide powder, and then pressing the composite metal oxide powder to form a preform. The preform can be produced by being subjected to secondary firing at a temperature in the range of 1125 to 1230 ° C. for a time in the range of 30 to 50 hours. The sintered body obtained by the manufacturing method has a relative density of 92% with respect to the theoretical density (5.116 g / cm 3 ) of the garnet-type composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12. I have.

特開2010−45019号公報JP 2010-45019 A 特開2011−51855号公報JP 2011-51855 A

しかしながら、従来の製造方法で得られた焼結体は、十分なリチウムイオン伝導性を得ることができないという不都合がある。   However, the sintered body obtained by the conventional manufacturing method has a disadvantage that sufficient lithium ion conductivity cannot be obtained.

本発明は、かかる不都合を解消して、優れたリチウムイオン伝導性を備える焼結体及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a sintered body having excellent lithium ion conductivity and a method for manufacturing the same, which eliminates such disadvantages.

本発明者らは、前記従来の製造方法で得られた焼結体において、十分なリチウムイオン伝導性を得ることができない理由について鋭意検討した結果、100nm以上5μm以下の範囲の最大長を有する空隙が存在することにより、抵抗が大きくなることを知見した。   As a result of intensive studies on the reason why sufficient lithium ion conductivity cannot be obtained in the sintered body obtained by the conventional manufacturing method, the present inventors have found that voids having a maximum length in the range of 100 nm to 5 μm. It has been found that the resistance increases due to the presence of.

前記焼結体において、前記空隙としては、前記予備成形体を構成する前記複合金属酸化物粉末の粒子間に存在した空隙が、二次焼成を行った後も、そのまま或いは圧縮された状態で残留したものと、二次焼成の際に、該予備成形体に含有されるリチウムが揮発し、気泡として生成したものとがある。   In the sintered body, as the voids, the voids existing between the particles of the composite metal oxide powder constituting the preform are left as they are or after being subjected to secondary firing. In some cases, the lithium contained in the preform is volatilized and formed as bubbles during the secondary firing.

前者の空隙は、前記二次焼成において、前記複合金属酸化物粉末の粒子間の焼結速度が遅いことにより、該粒子間に存在した空隙が消滅することなく、そのまま或いは圧縮された状態で結晶粒界に残留したものと考えられる。一方、後者の空隙は、緻密な焼結体を得ようとして、前記二次焼成において、前記予備成形体が高温下で長時間熱処理されることにより、該予備成形体に含有されるリチウムが揮発し、結晶粒内に気泡として生成したものであると考えられる。   In the secondary firing, the former voids are crystallized as they are or in a compressed state without disappearance of voids existing between the particles of the composite metal oxide powder due to a slow sintering speed. It is thought that it remained in the grain boundary. On the other hand, the latter voids cause the lithium contained in the preform to be volatilized by subjecting the preform to a heat treatment at a high temperature for a long time in the secondary firing in order to obtain a dense sintered body. However, it is considered that the bubbles are generated as bubbles in the crystal grains.

本発明は、前記知見に基づいてなされたものであり、前記目的を達成するために、Li,La及びZrを含有し、リチウムイオン伝導性を備えるガーネット型複合金属酸化物からなる焼結体であって、94〜98%の範囲の相対密度を備えるとともに、空隙が1nm以上かつ100nm未満の範囲の最大長を有することを特徴とする。   The present invention has been made based on the above findings, and in order to achieve the above object, the present invention is a sintered body comprising Li, La and Zr, and comprising a garnet-type composite metal oxide having lithium ion conductivity. And having a relative density in the range of 94 to 98%, and the voids have a maximum length in the range of 1 nm or more and less than 100 nm.

本発明の焼結体は、前記範囲の相対密度を備えるとともに、空隙が前記範囲の最大長を有することにより、優れたリチウムイオン伝導性を得ることができる。   The sintered body of the present invention can have excellent lithium ion conductivity because it has a relative density in the above range and the voids have the maximum length in the above range.

前記相対密度が94%未満の焼結体は、十分なリチウムイオン伝導性を得ることができない。前記相対密度が98%を超える焼結体は、製造が困難である。また、前記空隙が1nm未満の最大長を有する焼結体は、製造が困難である。前記空隙が100nm以上の最大長を有する焼結体は、十分なリチウムイオン伝導性を得ることができない。   A sintered body having a relative density of less than 94% cannot obtain sufficient lithium ion conductivity. A sintered body having a relative density exceeding 98% is difficult to manufacture. In addition, it is difficult to produce a sintered body having the maximum gap of less than 1 nm. A sintered body in which the voids have a maximum length of 100 nm or more cannot obtain sufficient lithium ion conductivity.

本発明の焼結体は、好ましくは基本組成が化学式LiLaZr12で表わされるガーネット型複合金属酸化物からなる。 The sintered body of the present invention preferably comprises a garnet-type composite metal oxide having a basic composition represented by the chemical formula Li 7 La 3 Zr 2 O 12 .

また、本発明の焼結体は、前記Laの一部をSr,Baからなる群から選択される1種の金属に置換した焼結体であってもよく、前記Zrの一部を、Nb,Ta,Sb,Biからなる群から選択される1種の金属に置換した焼結体であってもよい。   The sintered body of the present invention may be a sintered body in which a part of La is replaced with one kind of metal selected from the group consisting of Sr and Ba. , Ta, Sb, Bi may be used as a sintered body substituted with one metal selected from the group consisting of.

本発明の焼結体は、Li化合物とLa化合物とZr化合物とを混合した混合原料を一次焼成し、粉末状の複合金属酸化物粉末を得る工程と、該複合金属酸化物粉末に対して、放電プラズマ焼結により二次焼成する工程とにより、有利に製造することができる。   In the sintered body of the present invention, a mixed raw material in which a Li compound, a La compound, and a Zr compound are mixed is primarily fired to obtain a powdered composite metal oxide powder, and for the composite metal oxide powder, It can be advantageously produced by a secondary firing process by spark plasma sintering.

本発明の製造方法では、まず、Li化合物とLa化合物とZr化合物とを混合して混合原料を得る。このとき、前記化学式の前記La又は前記Zrの一部を他の金属で置換した焼結体を得ようとする場合には、Li化合物とLa化合物とZr化合物とに加えて該他の金属を含有する化合物とを混合して混合原料を得る。   In the production method of the present invention, first, a Li compound, a La compound, and a Zr compound are mixed to obtain a mixed raw material. At this time, in order to obtain a sintered body in which a part of La or Zr in the chemical formula is replaced with another metal, in addition to the Li compound, La compound and Zr compound, the other metal is added. A mixed raw material is obtained by mixing the contained compound.

次に、得られた混合原料を一次焼成することにより、Li,La及びZrを含有し、ガーネット型複合金属酸化物からなる粉末を得る。   Next, the obtained mixed raw material is primarily fired to obtain a powder containing Li, La and Zr and made of a garnet-type composite metal oxide.

次に、得られた複合金属酸化物粉末に対して、放電プラズマ焼結による二次焼成により、前記焼結体を得る。前記放電プラズマ焼結(SPS:Spark Plasma Sintering)は、前記複合金属酸化物粉末に対して、加圧した状態で電流をパルス印加することにより、該複合金属酸化物粉末を焼成温度にまで加熱して焼成させるものである。   Next, the sintered body is obtained by secondary firing by discharge plasma sintering for the obtained composite metal oxide powder. In the spark plasma sintering (SPS), the composite metal oxide powder is heated to a firing temperature by applying a pulse of current to the composite metal oxide powder in a pressurized state. Is fired.

本発明の製造方法では、前記放電プラズマ焼結による二次焼成により、前記複合金属酸化物粉末を自己発熱させて、焼成温度まで急速に昇温することができるとともに、焼成温度での焼成時間を短縮することができる。したがって、本発明の製造方法によれば、焼成温度までの昇温時間と、焼成温度での保持時間とを短縮することができる結果、前記複合金属酸化物粉末に含有されるリチウムの揮発を抑制することができる。   In the production method of the present invention, the composite metal oxide powder is self-heated by secondary firing by the discharge plasma sintering, and can be rapidly heated to the firing temperature, and the firing time at the firing temperature is increased. It can be shortened. Therefore, according to the production method of the present invention, it is possible to shorten the temperature rising time up to the firing temperature and the holding time at the firing temperature, thereby suppressing the volatilization of lithium contained in the composite metal oxide powder. can do.

さらに、本発明の製造方法では、前記放電プラズマ焼結による二次焼成において、前記複合金属酸化物粉末に対して、圧力を付与した状態で電流をパルス印加する。この結果、前記電流のパルス印加により、前記複合金属酸化物粉末の粒子間の焼結が促進されるとともに、前記圧力により、前記複合金属酸化物粉末の粒子間に存在した空隙を押しつぶすことができ、得られた焼結体の結晶粒界に生じる空隙の数を少なくするか、或いは、該空隙の最大長を小さくすることができる。さらに、前記複合金属酸化物粉末に含有されるリチウムが揮発して気泡が生成した場合であっても、該気泡を前記圧力により押しつぶし、該気泡による前記空隙の数を少なくするか、或いは、前記空隙の最大長を小さくすることができる。   Further, in the production method of the present invention, in the secondary firing by the discharge plasma sintering, a current is pulsed in a state where pressure is applied to the composite metal oxide powder. As a result, the pulse application of the current promotes the sintering between the particles of the composite metal oxide powder, and the pressure allows the gaps between the particles of the composite metal oxide powder to be crushed. The number of voids generated at the crystal grain boundaries of the obtained sintered body can be reduced, or the maximum length of the voids can be reduced. Further, even when lithium contained in the composite metal oxide powder volatilizes and bubbles are generated, the bubbles are crushed by the pressure to reduce the number of voids due to the bubbles, or The maximum length of the gap can be reduced.

以上により、本発明の製造方法によれば、94〜98%の範囲の相対密度を備えるとともに、空隙が1nm以上かつ100nm未満の範囲の最大長を有し、優れたリチウムイオン伝導性を備える焼結体を得ることができる。   As described above, according to the production method of the present invention, a sintered body having a relative density in the range of 94 to 98%, a void having a maximum length in the range of 1 nm or more and less than 100 nm, and excellent lithium ion conductivity. A ligation can be obtained.

また、本発明の製造方法において、前記混合原料を一次焼成する際に、Al,Al(OH),SiO,ケイ酸の群から選択される1種以上の化合物を焼結助剤として用いることにより、さらに緻密な焼結体を得ることができる。 In the production method of the present invention, when the mixed raw material is primarily fired, one or more compounds selected from the group consisting of Al 2 O 3 , Al (OH) 3 , SiO 2 , and silicic acid are used as sintering aids. By using it as an agent, a denser sintered body can be obtained.

本実施形態の製造方法に用いる放電プラズマ焼結装置を示すシステム構成図。The system block diagram which shows the discharge plasma sintering apparatus used for the manufacturing method of this embodiment. 実施例1で得られた試料の外観を示す画像。2 is an image showing the appearance of the sample obtained in Example 1. FIG. 実施例1で得られた試料の破断面を示すSEM画像。2 is an SEM image showing a fracture surface of a sample obtained in Example 1. FIG. 実施例2で得られた試料の破断面を示すSEM画像。4 is an SEM image showing a fracture surface of a sample obtained in Example 2. FIG. 実施例3で得られた試料の破断面を示すSEM画像。4 is an SEM image showing a fracture surface of a sample obtained in Example 3. FIG. 比較例1で得られた試料の外観を示す画像。The image which shows the external appearance of the sample obtained by the comparative example 1. 比較例1で得られた試料の破断面を示すSEM画像。3 is an SEM image showing a fracture surface of a sample obtained in Comparative Example 1. FIG. 比較例2で得られた試料の破断面を示すSEM画像。4 is an SEM image showing a fracture surface of a sample obtained in Comparative Example 2. FIG. 実施例4で得られた試料の破断面を示すSEM画像。4 is an SEM image showing a fracture surface of a sample obtained in Example 4. FIG.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

本実施形態の焼結体は、Li,La及びZrを含有し、リチウムイオン伝導性を備えるガーネット型複合金属酸化物からなる焼結体であり、94〜98%の範囲の相対密度を備えるとともに、空隙が1nm以上かつ100nm未満の範囲の最大長を有するものである。   The sintered body of the present embodiment is a sintered body made of a garnet-type composite metal oxide containing Li, La, and Zr and having lithium ion conductivity, and has a relative density in the range of 94 to 98%. The void has a maximum length in the range of 1 nm or more and less than 100 nm.

本実施形態の焼結体は、基本組成が化学式LiLaZr12で表わされる焼結体であり、前記Laの一部をSr,Baからなる群から選択される1種の金属に置換してもよく、前記Zrの一部を、Nb,Ta,Sb,Biからなる群から選択される1種の金属に置換してもよい。 The sintered body of the present embodiment is a sintered body whose basic composition is represented by the chemical formula Li 7 La 3 Zr 2 O 12 , and one kind of metal selected from the group consisting of Sr and Ba with a part of La A part of Zr may be replaced with one metal selected from the group consisting of Nb, Ta, Sb and Bi.

本実施形態の焼結体は、前記範囲の相対密度を備えるとともに、空隙が前記範囲の最大長を有することにより、優れたリチウムイオン伝導性を得ることができる。   The sintered body of the present embodiment can have excellent lithium ion conductivity because it has a relative density in the above range and the voids have the maximum length in the above range.

本実施形態の焼結体は、例えば次の方法により製造することができる。まず、Li化合物とLa化合物とZr化合物とを、ボールミル、ミキサー等の粉砕・混合機器を用いて粉砕、混合し、得られた混合原料を、大気雰囲気下、850〜950℃の範囲の温度で、5〜7時間の範囲の時間、仮焼する。このとき、前記化学式の前記La又は前記Zrの一部を他の金属で置換した焼結体を得ようとする場合には、Li化合物とLa化合物とZr化合物とに加えて該他の金属を含有する化合物とを混合して混合原料を得る。   The sintered body of the present embodiment can be manufactured, for example, by the following method. First, a Li compound, a La compound, and a Zr compound are pulverized and mixed using a pulverizing / mixing device such as a ball mill or a mixer, and the resulting mixed raw material is heated at a temperature in the range of 850 to 950 ° C. And calcining for a time in the range of 5 to 7 hours. At this time, in order to obtain a sintered body in which a part of La or Zr in the chemical formula is replaced with another metal, in addition to the Li compound, La compound and Zr compound, the other metal is added. A mixed raw material is obtained by mixing the contained compound.

また、このとき、前記混合原料における混合比の精度を向上するために、Li化合物、La化合物、Zr化合物のそれぞれを別々に脱水等の前処理を行った後に混合することにしてもよく、或いは前処理せずに混合することにしてもよい。   At this time, in order to improve the accuracy of the mixing ratio in the mixed raw material, each of the Li compound, La compound, and Zr compound may be separately mixed after pretreatment such as dehydration, or You may decide to mix, without pre-processing.

前記Li化合物として、例えば、LiOH、水酸化リチウム水和物、LiCO、LiNO、CHCOOLi等を挙げることができる。前記La化合物として、例えば、LaCO、La(OH)、La(CO、La(NO、La(CHCOO)等を挙げることができる。前記Zr化合物として、例えば、ZrO、ZrO(NO、ZrO(CHCOO)、Zr(OH)CO・ZrOを挙げることができる。 Examples of the Li compound include LiOH, lithium hydroxide hydrate, Li 2 CO 3 , LiNO 3 , and CH 3 COOLi. Examples of the La compound include La 2 CO 3 , La (OH) 3 , La 2 (CO 3 ) 3 , La (NO 3 ) 3 , La (CHCOO) 3 and the like. Examples of the Zr compound include ZrO 2 , ZrO (NO 3 ) 2 , ZrO (CHCOO) 2 , and Zr (OH) 2 CO 3 .ZrO 2 .

また、前記化学式の前記Laの一部を置換する金属、又は前記Zrの一部を置換する金属の化合物として、例えば、酸化物、水酸化物,炭酸塩、硝酸塩等を挙げることができる。   Examples of the metal compound that substitutes a part of La in the chemical formula or the metal compound that substitutes a part of Zr include oxides, hydroxides, carbonates, nitrates, and the like.

次に、仮焼した原料を、酸素を含有する雰囲気下、例えば大気雰囲気下で、1000〜1100℃の範囲の温度で、5〜7時間の範囲の時間、一次焼成することにより、Li,La及びZrを含有し、ガーネット型複合金属酸化物からなる粉末を得る。このとき、得られた複合金属酸化物粉末が1〜50μmの範囲の粒径を備えるように、該複合金属酸化物粉末をボールミル、ミキサー等の粉砕機器を用いて粉砕することにしてもよい。   Next, the calcined raw material is subjected to primary firing in an oxygen-containing atmosphere, for example, an air atmosphere at a temperature in the range of 1000 to 1100 ° C. for a time in the range of 5 to 7 hours. And Zr, and a powder composed of a garnet-type composite metal oxide is obtained. At this time, you may decide to grind | pulverize this composite metal oxide powder using grinding | pulverization apparatuses, such as a ball mill and a mixer, so that the obtained composite metal oxide powder may be provided with the particle size of the range of 1-50 micrometers.

次に、得られた前記複合金属酸化物粉末を、放電プラズマ焼結(SPS:Spark Plasma Sintering)により二次焼成する。   Next, the obtained composite metal oxide powder is secondarily fired by spark plasma sintering (SPS).

ここで、前記放電プラズマ焼結を行う放電プラズマ焼結装置について説明する。図1に示す放電プラズマ焼結装置1は、水冷式真空チャンバー2内に、焼結ダイ3と、互いに対向する一対のパンチ4,5と、パンチ4,5を通して電流をパルス印加する電極6,7とを備えており、粉末状の材料を焼結ダイ3に装入し、該材料をパンチ4,5で加圧した状態で、電流をパルス印加することにより、該材料を加熱し、焼成することができる。   Here, a discharge plasma sintering apparatus for performing the discharge plasma sintering will be described. A discharge plasma sintering apparatus 1 shown in FIG. 1 includes a sintering die 3, a pair of punches 4 and 5 opposed to each other, and electrodes 6 for applying a current through the punches 4 and 5 in a water-cooled vacuum chamber 2. 7, the powdered material is charged into the sintering die 3, and the material is heated and fired by applying a pulse of current while the material is pressurized with the punches 4 and 5. can do.

焼結ダイ3は、電気伝導性材料又は電気絶縁性材料からなるものを使用することができる。前記電気伝導性材料としては、黒鉛、グラッシーカーボン(登録商標)等の炭素材料、モリブデン、タングステン等の高融点金属等が挙げられる。前記電気絶縁材料としては、アルミナ、ジルコニア等が挙げられる。   As the sintering die 3, one made of an electrically conductive material or an electrically insulating material can be used. Examples of the electrically conductive material include carbon materials such as graphite and glassy carbon (registered trademark), refractory metals such as molybdenum and tungsten, and the like. Examples of the electrical insulating material include alumina and zirconia.

パンチ4,5は、電気伝導性材料からなり、それぞれ電極6,7に電気的かつ機械的に接続され、加圧機構8により駆動される。電極6,7は、電源9に電気的に接続されている。そして、加圧機構8及び電源9は、制御装置10により制御される。   The punches 4 and 5 are made of an electrically conductive material, are electrically and mechanically connected to the electrodes 6 and 7, respectively, and are driven by the pressurizing mechanism 8. The electrodes 6 and 7 are electrically connected to the power source 9. The pressurizing mechanism 8 and the power source 9 are controlled by the control device 10.

制御装置10は、パンチ4,5の位置を計測する位置計測機構11と、真空チャンバー2内の雰囲気を制御する雰囲気制御機構12と、真空チャンバー2を冷却する冷却機構13と、焼結ダイ3に取り付けられ、焼結ダイ3に装入された材料の温度を計測する熱電対(図示せず)に接続された温度計測機構14とを備えている。   The control device 10 includes a position measurement mechanism 11 that measures the positions of the punches 4 and 5, an atmosphere control mechanism 12 that controls the atmosphere in the vacuum chamber 2, a cooling mechanism 13 that cools the vacuum chamber 2, and a sintering die 3. And a temperature measuring mechanism 14 connected to a thermocouple (not shown) for measuring the temperature of the material charged in the sintering die 3.

雰囲気制御機構12は、真空チャンバー2内の雰囲気を、真空雰囲気、アルゴン雰囲気、又は大気雰囲気とすることができる。真空チャンバー2内の雰囲気は、焼成の際には、焼結ダイ3の酸化を抑制するために、真空雰囲気又はアルゴン雰囲気とすることが好ましい。   The atmosphere control mechanism 12 can set the atmosphere in the vacuum chamber 2 to a vacuum atmosphere, an argon atmosphere, or an air atmosphere. The atmosphere in the vacuum chamber 2 is preferably a vacuum atmosphere or an argon atmosphere in order to suppress oxidation of the sintered die 3 during firing.

本実施形態では、放電プラズマ焼結装置1において、まず、前記複合金属酸化物粉末を焼結ダイ3に装入する(複合金属酸化物粉末W)。真空チャンバー2内を10〜100Paの範囲の圧力の真空雰囲気下にする。次に、焼結ダイ3に装入された複合金属酸化物粉末Wを、パンチ4,5で20〜50MPaの範囲の圧力で加圧した状態で、500〜20000Aの範囲の直流電流を200〜400Hzの範囲の周期でパルス印加する。このとき、前記熱電対により計測される温度が800℃以下では10〜100℃/分の範囲の昇温速度で昇温させ、800℃に達した以降は1〜20℃/分の範囲の昇温速度で昇温させる。そして、焼結ダイ3に装入された複合金属酸化物粉末Wを、前記範囲の圧力で加圧した状態で、1100〜1250℃の範囲の焼成温度で5〜30分の範囲の時間保持することにより、二次焼成を行い、焼結体を得る。   In this embodiment, in the discharge plasma sintering apparatus 1, first, the composite metal oxide powder is charged into the sintering die 3 (composite metal oxide powder W). The inside of the vacuum chamber 2 is brought into a vacuum atmosphere having a pressure in the range of 10 to 100 Pa. Next, in a state where the mixed metal oxide powder W charged in the sintering die 3 is pressed with a punch 4 and 5 at a pressure in the range of 20 to 50 MPa, a direct current in the range of 500 to 20000 A is set to 200 to Pulses are applied with a period in the range of 400 Hz. At this time, when the temperature measured by the thermocouple is 800 ° C. or lower, the temperature is increased at a rate of temperature increase of 10 to 100 ° C./min. The temperature is raised at a temperature rate. The composite metal oxide powder W charged in the sintering die 3 is held at a firing temperature in the range of 1100 to 1250 ° C. for a time in the range of 5 to 30 minutes in a state of being pressurized at the pressure in the above range. Thus, secondary firing is performed to obtain a sintered body.

次に、前記パルス印加及び前記加圧を停止し、冷却機構13により真空チャンバー2を冷却するか、又は自然放冷することにより、得られた焼結体を室温まで冷却することにより、本実施形態の焼結体を得ることができる。   Next, the pulse application and the pressurization are stopped, and the vacuum chamber 2 is cooled by the cooling mechanism 13 or naturally cooled, thereby cooling the obtained sintered body to room temperature. A sintered body in the form can be obtained.

本実施形態の製造方法では、前記二次焼成において、前記放電プラズマ焼結を行うことにより、前記複合金属酸化物粉末を自己発熱させて、焼成温度まで急速に昇温することができるとともに、焼成温度での焼成時間を短縮することができる。したがって、本実施形態の製造方法によれば、焼成温度までの昇温時間と、焼成温度での保持時間とを短縮することができる結果、前記複合金属酸化物粉末に含有されるリチウムの揮発を抑制することができる。   In the manufacturing method of the present embodiment, by performing the discharge plasma sintering in the secondary firing, the composite metal oxide powder can be self-heated and rapidly heated up to a firing temperature, and fired. The firing time at temperature can be shortened. Therefore, according to the manufacturing method of the present embodiment, the temperature rise time up to the firing temperature and the holding time at the firing temperature can be shortened, and as a result, the volatilization of lithium contained in the composite metal oxide powder can be reduced. Can be suppressed.

さらに、本実施形態の製造方法では、前記放電プラズマ焼結による二次焼成において、前記複合金属酸化物粉末に対して、圧力を付与した状態で電流をパルス印加する。この結果、前記電流のパルス印加により、前記複合金属酸化物粉末の粒子間の焼結が促進されるとともに、前記圧力により、該粒子間に存在した空隙を押しつぶすことができ、得られた焼結体の結晶粒界に生じる空隙の数を少なくするか、或いは、該空隙の最大長を小さくすることができる。さらに、前記複合金属酸化物粉末に含有されるリチウムが揮発して気泡が生成した場合であっても、該気泡を前記圧力により押しつぶし、該気泡による前記空隙の数を少なくするか、或いは、前記空隙の最大長を小さくすることができる。   Furthermore, in the manufacturing method of this embodiment, in the secondary firing by the discharge plasma sintering, a current is pulsed in a state where pressure is applied to the composite metal oxide powder. As a result, sintering between the particles of the composite metal oxide powder is promoted by applying the pulse of the current, and voids existing between the particles can be crushed by the pressure. The number of voids generated in the crystal grain boundaries of the body can be reduced, or the maximum length of the voids can be reduced. Further, even when lithium contained in the composite metal oxide powder volatilizes and bubbles are generated, the bubbles are crushed by the pressure to reduce the number of voids due to the bubbles, or The maximum length of the gap can be reduced.

また、本実施形態の製造方法において、前記混合原料を一次焼成する際に、Al,Al(OH)等のAl含有化合物や、SiO,ケイ酸等のSi含有化合物をを焼結助剤として用いることにより、さらに緻密な焼結体を得ることができる。 In the manufacturing method of the present embodiment, when the mixed raw material is subjected to primary firing, an Al-containing compound such as Al 2 O 3 and Al (OH) 3 and a Si-containing compound such as SiO 2 and silicic acid are baked. By using it as a binder, a denser sintered body can be obtained.

次に、本発明の実施例を示す。   Next, examples of the present invention will be described.

〔実施例1〕
本実施例では、まず、水酸化リチウム一水和物(関東化学株式会社製)を、圧力500Paの真空雰囲気下、350℃の温度で6時間加熱し、脱水処理することにより、水酸化リチウム無水物を得た。また、酸化ランタン(関東化学株式会社製)を、大気雰囲気下、950℃の温度で24時間加熱することにより、脱水及び脱炭酸処理した。
[Example 1]
In this example, lithium hydroxide monohydrate (manufactured by Kanto Chemical Co., Inc.) was first heated in a vacuum atmosphere at a pressure of 500 Pa at a temperature of 350 ° C. for 6 hours to perform dehydration treatment. I got a thing. Further, lanthanum oxide (manufactured by Kanto Chemical Co., Ltd.) was dehydrated and decarboxylated by heating at 950 ° C. for 24 hours in an air atmosphere.

次に、得られた水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化ジルコニウム(関東化学株式会社製)とを、Li:La:Zr=7.7:3:2のモル比となるように調製して、遊星型ボールミル(商品名:premium line P-7、フリッチュジャパン株式会社製)を用いて、360rpmの回転数で3時間粉砕混合し、混合原料を得た。   Next, the obtained lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, and zirconium oxide (manufactured by Kanto Chemical Co., Ltd.) were mixed in a molar ratio of Li: La: Zr = 7.7: 3: 2. The mixture was pulverized and mixed for 3 hours at 360 rpm using a planetary ball mill (trade name: premium line P-7, manufactured by Fritsch Japan Co., Ltd.) to obtain a mixed raw material.

次に、前記混合原料をアルミナ製坩堝に収容し、大気雰囲気下、1050℃の温度で6時間保持して、一次焼成することにより、Li,La及びZrを含有し、ガーネット型複合金属酸化物からなる粉末を得た。   Next, the mixed raw material is placed in an alumina crucible, and held in an air atmosphere at a temperature of 1050 ° C. for 6 hours, followed by primary firing to contain Li, La, and Zr, and a garnet-type composite metal oxide A powder consisting of

前記一次焼成で得られた複合金属酸化物粉末について、X線回折装置(商品名:D8 ADVANCE、Bruker AXS社製)を用いて、X線回折測定を行ったところ、化学式Li7+xLaZr12+x/2(x=0〜0.3)で表わされ、正方晶のガーネット型構造からなる複合金属酸化物であることが確認できた。 The composite metal oxide powder obtained by the primary firing was subjected to X-ray diffraction measurement using an X-ray diffractometer (trade name: D8 ADVANCE, manufactured by Bruker AXS). Chemical formula Li 7 + x La 3 Zr 2 It was represented by O 12 + x / 2 (x = 0 to 0.3), and was confirmed to be a complex metal oxide having a tetragonal garnet structure.

次に、得られた複合金属酸化物粉末について、放電プラズマ焼結装置1(商品名SPS−3.20S、SPSシンテックス株式会社製)を用いて、放電プラズマ焼結(SPS:Spark Plasma Sintering)により二次焼成した。まず、得られた複合金属酸化物粉末10gを、内径が20mmの黒鉛製焼結ダイ3に装入し(複合金属酸化物粉末W)、真空チャンバー2内を圧力20Paの真空雰囲気にした。次に、焼結ダイ3に装入された複合金属酸化物粉末Wを、パンチ4,5で20MPaの圧力で加圧した状態で、900〜1000Aの範囲の直流電流をパルス印加することにより、100℃/分の昇温速度で昇温させた。そして、800℃の温度に達した後、焼結ダイ3に装入された複合金属酸化物粉末Wを、前記加圧を継続した状態で、900〜1050Aの範囲の直流電流をパルス印加することにより、5℃/分の昇温速度で昇温させた後、1150℃の温度で10分間保持することにより、二次焼成を行い、焼結体を得た。   Next, the obtained composite metal oxide powder is subjected to discharge plasma sintering (SPS: Spark Plasma Sintering) using a discharge plasma sintering apparatus 1 (trade name SPS-3.20S, manufactured by SPS Syntex Corporation). Was subjected to secondary firing. First, 10 g of the obtained composite metal oxide powder was placed in a graphite sintered die 3 having an inner diameter of 20 mm (composite metal oxide powder W), and the vacuum chamber 2 was evacuated to a pressure of 20 Pa. Next, in a state where the composite metal oxide powder W charged in the sintering die 3 is pressed at a pressure of 20 MPa with the punches 4 and 5, by applying a direct current in the range of 900 to 1000A, The temperature was raised at a rate of temperature increase of 100 ° C./min. Then, after reaching a temperature of 800 ° C., the composite metal oxide powder W charged in the sintering die 3 is pulsed with a direct current in the range of 900 to 1050 A in a state where the pressurization is continued. Then, the temperature was increased at a rate of temperature increase of 5 ° C./min, and then held at a temperature of 1150 ° C. for 10 minutes to perform secondary firing to obtain a sintered body.

前記パルス印加は、いずれも、300Hzの周期で、12回連続でパルス印加し2回分の時間休止することを1サイクルとして、繰り返し行った。   The pulse application was repeated with one cycle consisting of applying 12 pulses continuously at a frequency of 300 Hz and pausing for two times.

次に、前記パルス印加及び前記加圧を停止し、自然放冷して、得られた焼結体を室温まで冷却し、本実施例の焼結体を得た。   Next, the pulse application and the pressurization were stopped, the mixture was allowed to cool naturally, and the obtained sintered body was cooled to room temperature to obtain a sintered body of this example.

次に、本実施例で得られた焼結体を、ダイヤモンドカッタにて、700〜800μmの範囲の厚さに切断し、シリコンカーバイド製の耐水ペーパにて表面を研磨することにより、厚さ500μmの円盤状試料を作製した。   Next, the sintered body obtained in this example was cut to a thickness in the range of 700 to 800 μm with a diamond cutter, and the surface was polished with water-resistant paper made of silicon carbide to obtain a thickness of 500 μm. A disc-shaped sample was prepared.

図2に、本実施例で得られた試料の外観を示す画像を示す。図2から、本実施例で得られた試料は、透明性を備えることから、光を透過する性質を備えていることが明らかである。このことから、本実施例で得られた試料は、光を散乱させるような結晶粒界及び空隙が非常に少なく、高度に緻密化されているものと考えられる。   In FIG. 2, the image which shows the external appearance of the sample obtained by the present Example is shown. From FIG. 2, it is clear that the sample obtained in this example has the property of transmitting light because it has transparency. From this, it can be considered that the sample obtained in this example has very few crystal grain boundaries and voids that scatter light and is highly densified.

次に、本実施例で得られた試料について、乾燥重量及び体積を測定することにより、実測密度を算出した。そして、得られた実測密度を基に、化学式LiLaZr12で表わされるガーネット型複合金属酸化物の理論密度(5.116g/cm)に対する相対密度を算出したところ、94%であった。結果を表1に示す。 Next, the measured density was calculated by measuring the dry weight and volume of the sample obtained in this example. Based on the measured density obtained, the relative density with respect to the theoretical density (5.116 g / cm 3 ) of the garnet-type composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12 was calculated to be 94%. Met. The results are shown in Table 1.

次に、本実施例で得られた試料について、X線回折装置(商品名:D8 ADVANCE、Bruker AXS社製)を用いて、X線回折測定を行ったところ、化学式LiLaZr12で表わされ、正方晶と立方晶との混晶であるガーネット型構造からなる複合金属酸化物であることが確認できた。 Next, when X-ray diffraction measurement was performed on the sample obtained in this example using an X-ray diffractometer (trade name: D8 ADVANCE, manufactured by Bruker AXS), the chemical formula Li 7 La 3 Zr 2 O was obtained. 12 and was confirmed to be a composite metal oxide having a garnet structure that is a mixed crystal of tetragonal crystals and cubic crystals.

次に、本実施例で得られた試料について、次のようにして、リチウムイオン伝導率を求めた。まず、本実施例で得られた試料の両面に、スパッタリング装置(商品名:JFC‐1600 オートファインコータ、日本電子株式会社製)を用いて、Auを300秒間スパッタリングして、該試料の両面に薄膜状電極を作製した。次に、接触抵抗を低減するために、前記薄膜状電極の表面にCuメッシュを貼付した後に、該電極を有する試料を2極セルに装着した。そして、前記2極セルについて、インピーダンス測定器(商品名:1287型、Solartron社製)を用いて、周波数を0.1Hz〜1MHzの範囲、電圧振幅を20mVとしたときの交流抵抗値を測定し、測定値からリチウムイオン電導率を算出したところ、1.0×10−4S/cmであった。結果を表1に示す。 Next, the lithium ion conductivity of the sample obtained in this example was determined as follows. First, Au was sputtered on both surfaces of the sample obtained in this example for 300 seconds using a sputtering apparatus (trade name: JFC-1600 auto fine coater, manufactured by JEOL Ltd.). A thin film electrode was prepared. Next, in order to reduce contact resistance, a Cu mesh was attached to the surface of the thin film electrode, and then a sample having the electrode was attached to a bipolar cell. And about the said 2 pole cell, the alternating current resistance value when a frequency is set to the range of 0.1 Hz-1 MHz, and a voltage amplitude is 20 mV is measured using an impedance measuring device (Brand name: 1287 type, Solartron company make). When the lithium ion conductivity was calculated from the measured value, it was 1.0 × 10 −4 S / cm. The results are shown in Table 1.

次に、本実施例で得られた試料について、メノウ製乳棒を用いて圧砕し、得られた破断面を走査型電子顕微鏡(SEM)にて観察した。得られた画像を図3に示す。図3から、本実施例の試料は、最大長が100nmを超える空隙は存在せず、高度に緻密化されていることが明らかである。   Next, the sample obtained in this example was crushed using an agate pestle, and the obtained fracture surface was observed with a scanning electron microscope (SEM). The obtained image is shown in FIG. From FIG. 3, it is clear that the sample of this example is highly densified with no voids having a maximum length exceeding 100 nm.

〔実施例2〕
本実施例では、一次焼成により得られた複合金属酸化物粉末を、1170℃の温度で10分間保持して、放電プラズマ焼結による二次焼成を行った以外は、実施例1と全く同一にして、焼結体を作製した。そして、得られた焼結体から、実施例1と全く同一にして、試料を作製した。
[Example 2]
In this example, the composite metal oxide powder obtained by the primary firing was held at a temperature of 1170 ° C. for 10 minutes, and the secondary firing was performed by the discharge plasma sintering. Thus, a sintered body was produced. A sample was produced from the obtained sintered body in exactly the same manner as in Example 1.

次に、本実施例で得られた試料について、実施例1と全く同一にして、相対密度を算出したところ、95%であった。結果を表1に示す。   Next, regarding the sample obtained in this example, the relative density was calculated in the same manner as in Example 1, and it was 95%. The results are shown in Table 1.

次に、本実施例で得られた試料について、実施例1と全く同一にして、X線回折測定を行ったところ、立方晶のガーネット型構造からなる複合金属酸化物であることが確認できた。   Next, when the X-ray diffraction measurement was performed on the sample obtained in this example in exactly the same manner as in Example 1, it was confirmed that the sample was a composite metal oxide having a cubic garnet structure. .

次に、本実施例で得られた試料について、実施例1と全く同一にして、リチウムイオン伝導率を求めたところ、1.5×10−4S/cmであった。結果を表1に示す。 Next, for the sample obtained in this example, the lithium ion conductivity was determined exactly as in Example 1, and it was 1.5 × 10 −4 S / cm. The results are shown in Table 1.

次に、本実施例で得られた試料について、実施例1と全く同一にして、走査型電子顕微鏡にて観察した。得られた画像を図4に示す。図4から、本実施例の試料は、最大長が100nmを超える空隙は存在せず、高度に緻密化されていることが明らかである。   Next, the sample obtained in this example was observed with a scanning electron microscope in exactly the same manner as in Example 1. The obtained image is shown in FIG. From FIG. 4, it is clear that the sample of this example is highly densified with no voids having a maximum length exceeding 100 nm.

〔実施例3〕
本実施例では、一次焼成により得られた複合金属酸化物粉末を、1200℃の温度で10分間保持して、放電プラズマ焼結による二次焼成を行った以外は、実施例1と全く同一にして、焼結体を作製した。そして、得られた焼結体から、実施例1と全く同一にして、試料を作製した。
Example 3
In this example, the composite metal oxide powder obtained by the primary firing was held at a temperature of 1200 ° C. for 10 minutes, and the secondary firing was performed by discharge plasma sintering. Thus, a sintered body was produced. A sample was produced from the obtained sintered body in exactly the same manner as in Example 1.

次に、本実施例で得られた試料について、実施例1と全く同一にして、相対密度を算出したところ、97%であった。結果を表1に示す。   Next, regarding the sample obtained in this example, the relative density was calculated in the same manner as in Example 1, and it was 97%. The results are shown in Table 1.

次に、本実施例で得られた試料について、実施例1と全く同一にして、X線回折測定を行ったところ、立方晶のガーネット型構造からなる複合金属酸化物であることが確認できた。   Next, when the X-ray diffraction measurement was performed on the sample obtained in this example in exactly the same manner as in Example 1, it was confirmed that the sample was a composite metal oxide having a cubic garnet structure. .

次に、本実施例で得られた試料について、実施例1と全く同一にして、リチウムイオン伝導率を求めたところ、1.3×10−4S/cmであった。結果を表1に示す。 Next, for the sample obtained in this example, the lithium ion conductivity was determined exactly as in Example 1, and it was 1.3 × 10 −4 S / cm. The results are shown in Table 1.

次に、本実施例で得られた試料について、実施例1と全く同一にして、走査型電子顕微鏡にて観察した。得られた画像を図5に示す。図5から、本実施例の試料は、最大長が100nmを超える空隙は存在せず、高度に緻密化されていることが明らかである。   Next, the sample obtained in this example was observed with a scanning electron microscope in exactly the same manner as in Example 1. The obtained image is shown in FIG. From FIG. 5, it is clear that the sample of this example is highly densified with no voids having a maximum length exceeding 100 nm.

〔比較例1〕
本比較例では、実施例1と全く同一にして一次焼成を行い、複合金属酸化物粉末を得た。
[Comparative Example 1]
In this comparative example, primary firing was performed in exactly the same manner as in Example 1 to obtain a composite metal oxide powder.

次に、得られた複合金属酸化物粉末について、次のようにして、二次焼成を行った。まず、得られた複合金属酸化物粉末100gのうち10gを、ハンドプレス機の内径20mmのダイに装入し、255MPaの圧力で加圧することにより、予備成形体を作製した。   Next, the obtained composite metal oxide powder was subjected to secondary firing as follows. First, 10 g out of 100 g of the obtained composite metal oxide powder was charged into a die having an inner diameter of 20 mm of a hand press machine and pressurized at a pressure of 255 MPa to prepare a preform.

次に、残りの複合金属酸化物粉末90gをアルミナ製坩堝に収容するとともに、該複合金属酸化物粉末に得られた予備成形体を埋入させた。   Next, 90 g of the remaining composite metal oxide powder was placed in an alumina crucible, and the preform formed in the composite metal oxide powder was embedded.

次に、アルミナ製坩堝に収容された複合金属酸化物粉末を、大気雰囲気下、5℃/分の昇温速度で昇温させ、600℃の温度に達した後に1℃/分の昇温速度で昇温させ、1170℃の温度で12時間保持することにより、二次焼成を行い、焼結体を得た。そして、得られた焼結体から、実施例1と全く同一にして、試料を作製した。   Next, the composite metal oxide powder housed in the alumina crucible is heated at a temperature rising rate of 5 ° C./min in the air atmosphere, and after reaching a temperature of 600 ° C., the temperature rising rate is 1 ° C./min. The mixture was heated at 1170 ° C. and held at a temperature of 1170 ° C. for 12 hours to perform secondary firing to obtain a sintered body. A sample was produced from the obtained sintered body in exactly the same manner as in Example 1.

図6に、本比較例で得られた試料の外観を示す画像を示す。図6から、本比較例で得られた試料は、白色を呈しており、光を透過する性質を備えていないことが明らかである。このことから、本比較例で得られた試料は、焼結体の結晶粒界に多数の空隙が存在し、緻密化されていないものと考えられる。   In FIG. 6, the image which shows the external appearance of the sample obtained by this comparative example is shown. From FIG. 6, it is clear that the sample obtained in this comparative example is white and does not have the property of transmitting light. From this, it is considered that the sample obtained in this comparative example has a large number of voids in the crystal grain boundary of the sintered body and is not densified.

次に、本比較例で得られた試料について、実施例1と全く同一にして、相対密度を算出したところ、79%であった。結果を表1に示す。   Next, regarding the sample obtained in this comparative example, the relative density was calculated in the same manner as in Example 1, and it was 79%. The results are shown in Table 1.

次に、本実施例で得られた試料について、実施例1と全く同一にして、X線回折測定を行ったところ、正方晶と立方晶の混晶であるガーネット型構造からなる複合金属酸化物であることが確認できた。   Next, the sample obtained in this example was subjected to X-ray diffraction measurement in exactly the same way as in Example 1. As a result, a composite metal oxide having a garnet structure that was a mixed crystal of tetragonal crystals and cubic crystals was obtained. It was confirmed that.

次に、本比較例で得られた試料について、実施例1と全く同一にして、リチウムイオン伝導率を求めたところ、1.2×10−5S/cmであった。結果を表1に示す。 Next, the lithium ion conductivity of the sample obtained in this comparative example was found to be exactly the same as in Example 1, and it was 1.2 × 10 −5 S / cm. The results are shown in Table 1.

次に、本比較例で得られた試料について、実施例1と全く同一にして、走査型電子顕微鏡にて観察した。得られた画像を図7に示す。図7から、本比較例の試料は、焼結が不十分で、最大長が100nmを超える空隙が多数存在し、緻密でないことが明らかである。   Next, the sample obtained in this comparative example was observed with a scanning electron microscope in exactly the same manner as in Example 1. The obtained image is shown in FIG. From FIG. 7, it is clear that the sample of this comparative example is not dense because the sintering is insufficient and there are many voids having a maximum length exceeding 100 nm.

〔比較例2〕
本比較例では、一次焼成により得られた複合金属酸化物粉末を、1170℃の温度で30時間保持して、二次焼成を行った以外は、比較例1と全く同一にして、焼結体を作製した。そして、得られた焼結体から、実施例1と全く同一にして、試料を作製した。
[Comparative Example 2]
In this comparative example, the composite metal oxide powder obtained by the primary firing was held at a temperature of 1170 ° C. for 30 hours, and was subjected to secondary firing, and was exactly the same as comparative example 1, Was made. A sample was produced from the obtained sintered body in exactly the same manner as in Example 1.

次に、本比較例で得られた試料について、実施例1と全く同一にして、相対密度を算出したところ、90%であった。結果を表1に示す。   Next, regarding the sample obtained in this comparative example, the relative density was calculated in exactly the same way as in Example 1, and it was 90%. The results are shown in Table 1.

次に、本比較例で得られた試料について、実施例1と全く同一にして、X線回折測定を行ったところ、立方晶のガーネット型構造からなる複合金属酸化物であることが確認できた。   Next, when the X-ray diffraction measurement was performed on the sample obtained in this comparative example in exactly the same manner as in Example 1, it was confirmed that the sample was a composite metal oxide having a cubic garnet structure. .

次に、本比較例で得られた試料について、実施例1と全く同一にして、リチウムイオン伝導率を求めたところ、7.4×10−5S/cmであった。結果を表1に示す。 Next, for the sample obtained in this comparative example, the lithium ion conductivity was determined in exactly the same manner as in Example 1, and it was 7.4 × 10 −5 S / cm. The results are shown in Table 1.

次に、本比較例で得られた試料について、実施例1と全く同一にして、走査型電子顕微鏡にて観察した。得られた画像を図8に示す。図8から、本比較例の試料は、結晶粒界に最大長が100nmを超える空隙は存在しないものの、長時間の焼結に伴ってLiが揮発したことにより生成したとみられる気泡状の空隙が結晶粒内に存在し、緻密でないことが明らかである。   Next, the sample obtained in this comparative example was observed with a scanning electron microscope in exactly the same manner as in Example 1. The obtained image is shown in FIG. From FIG. 8, the sample of this comparative example has no voids whose maximum length exceeds 100 nm at the crystal grain boundaries, but there are bubble-like voids that appear to have been generated by Li volatilization during long-time sintering. It is clear that it exists in the crystal grains and is not dense.

表1から、放電プラズマ焼結による二次焼成を行った実施例1〜3の試料は、放電プラズマ焼結を行っていない比較例1,2の試料と比較して、相対密度が大きく、緻密であることが明らかである。また、実施例1〜3の試料は、比較例1,2の試料と比較して、優れたイオン伝導性を備えることが明らかである。   From Table 1, the samples of Examples 1 to 3 that were subjected to secondary firing by spark plasma sintering had a higher relative density and were denser than the samples of Comparative Examples 1 and 2 that were not subjected to discharge plasma sintering. It is clear that Moreover, it is clear that the samples of Examples 1 to 3 have excellent ionic conductivity as compared with the samples of Comparative Examples 1 and 2.

〔実施例4〕
本実施例では、Li化合物とLa化合物とZr化合物との混合原料に、焼結助剤として、二酸化ケイ素と水酸化アルミニウムと添加した以外は、実施例2と全く同一にして、一次焼成及び放電プラズマ焼結による二次焼成を行った。二酸化ケイ素及び水酸化アルミニウムは、生成されるLiLaZr121molに対して、Si及びAlがそれぞれ0.1mol%となるように添加した。
Example 4
In this example, primary firing and discharge were performed in exactly the same manner as in Example 2 except that silicon dioxide and aluminum hydroxide were added as sintering aids to the mixed raw material of Li compound, La compound and Zr compound. Secondary firing by plasma sintering was performed. Silicon dioxide and aluminum hydroxide were added so that Si and Al might be 0.1 mol% with respect to 1 mol of Li 7 La 3 Zr 2 O 12 produced.

次に、本実施例で得られた試料について、実施例2と全く同一にして、相対密度を算出したところ、98%であった。結果を表2に示す。   Next, regarding the sample obtained in this example, the relative density was calculated in exactly the same way as in Example 2, and it was 98%. The results are shown in Table 2.

次に、本実施例で得られた試料について、実施例2と全く同一にして、X線回折測定を行ったところ、立方晶のガーネット型構造からなる複合金属酸化物であることが確認できた。   Next, when the X-ray diffraction measurement was performed on the sample obtained in this example in exactly the same manner as in Example 2, it was confirmed that the sample was a composite metal oxide having a cubic garnet structure. .

次に、本実施例で得られた試料について、実施例2と全く同一にして、リチウムイオン伝導率を求めたところ、1.8×10−4S/cmであった。結果を表2に示す。 Next, regarding the sample obtained in this example, the lithium ion conductivity was determined in exactly the same manner as in Example 2, and it was 1.8 × 10 −4 S / cm. The results are shown in Table 2.

次に、本実施例で得られた試料について、実施例2と全く同一にして、走査型電子顕微鏡にて観察した。得られた画像を図9に示す。図9から、本実施例の試料は、図3の実施例1の試料のSEM画像で観察された結晶粒界とみられる線が消失しており、実施例1と比較して、さらに緻密化されていることが明らかである。   Next, the sample obtained in this example was observed with a scanning electron microscope in exactly the same manner as in Example 2. The obtained image is shown in FIG. From FIG. 9, in the sample of this example, the line seen as the grain boundary observed in the SEM image of the sample of Example 1 in FIG. 3 disappears, and is further densified as compared with Example 1. It is clear that

〔実施例5〕
本実施例では、一次焼成により得られた粉末状の複合金属酸化物粉末を、1170℃の温度で20分間保持して、放電プラズマ焼結による二次焼成を行った以外は、実施例4と全く同一にして、焼結体を作製した。そして、得られた焼結体から、実施例2と全く同一にして、試料を作製した。
Example 5
In this example, the powdered composite metal oxide powder obtained by primary firing was held at a temperature of 1170 ° C. for 20 minutes and subjected to secondary firing by discharge plasma sintering. Sintered bodies were made exactly the same. A sample was prepared from the obtained sintered body in exactly the same manner as in Example 2.

次に、本実施例で得られた試料について、実施例2と全く同一にして、相対密度を算出したところ、96%であった。結果を表2に示す。   Next, regarding the sample obtained in this example, the relative density was calculated in the same manner as in Example 2, and it was 96%. The results are shown in Table 2.

次に、本実施例で得られた試料について、実施例2と全く同一にして、X線回折測定を行ったところ、立方晶のガーネット型構造からなる複合金属酸化物であることが確認できた。   Next, when the X-ray diffraction measurement was performed on the sample obtained in this example in exactly the same manner as in Example 2, it was confirmed that the sample was a composite metal oxide having a cubic garnet structure. .

次に、本実施例で得られた試料について、実施例2と全く同一にして、リチウムイオン伝導率を求めたところ、2.4×10−4S/cmであった。結果を表2に示す。 Next, the lithium ion conductivity of the sample obtained in this example was determined exactly as in Example 2, and found to be 2.4 × 10 −4 S / cm. The results are shown in Table 2.

表2から、焼結助剤を用いて一次焼成を行った実施例4の試料は、焼結助剤を用いずに一次焼成を行った実施例2の試料と比較して、さらに相対密度が大きく、より優れたイオン伝導性を備えることが明らかである。   From Table 2, the relative density of the sample of Example 4 that was subjected to primary firing using a sintering aid was higher than that of the sample of Example 2 that was subjected to primary firing without using a sintering aid. It is clear that it has a larger and better ionic conductivity.

また、表2から、焼結助剤を用いて一次焼成を行った後、1170℃の温度で20分間二次焼成を行った実施例5の試料は、焼結助剤を用いて一次焼成を行った後、1170℃の温度で10分間二次焼成を行った実施例4の試料と比較して、相対密度が僅かに小さいものの、さらに優れたイオン伝導性を備えることが明らかである。   Further, from Table 2, the sample of Example 5 which was subjected to the primary firing using the sintering aid and then subjected to the secondary firing at a temperature of 1170 ° C. for 20 minutes was subjected to the primary firing using the sintering aid. After being performed, it is clear that although the relative density is slightly smaller than that of the sample of Example 4 which has been subjected to secondary firing at a temperature of 1170 ° C. for 10 minutes, it has further superior ion conductivity.

Claims (4)

Li,La及びZrを含有し、リチウムイオン伝導性を備えるガーネット型複合金属酸化物からなる焼結体であり、
94〜98%の範囲の相対密度を備えるとともに、
空隙が1nm以上かつ100nm未満の範囲の最大長を有することを特徴とする焼結体。
A sintered body comprising a garnet-type composite metal oxide containing Li, La and Zr and having lithium ion conductivity,
With a relative density in the range of 94-98%,
A sintered body characterized in that the void has a maximum length in a range of 1 nm or more and less than 100 nm.
請求項1記載の焼結体において、
前記ガーネット型複合金属酸化物は、化学式LiLaZr12で表わされることを特徴とする焼結体。
The sintered body according to claim 1,
The garnet-type composite metal oxide is represented by a chemical formula Li 7 La 3 Zr 2 O 12 .
Li,La及びZrを含有し、リチウムイオン伝導性を備えるガーネット型複合金属酸化物からなり、94〜98%の範囲の相対密度を備えるとともに、空隙が1nm以上かつ100nm未満の範囲の最大長を有する焼結体の製造方法であって、
Li化合物とLa化合物とZr化合物とを混合した混合原料を一次焼成し、粉末状の複合金属酸化物粉末を得る工程と、
該複合金属酸化物粉末に対して、放電プラズマ焼結により二次焼成する工程とを備えることを特徴とする焼結体の製造方法。
It is composed of a garnet-type composite metal oxide containing Li, La and Zr and having lithium ion conductivity, and has a relative density in the range of 94 to 98%, and has a maximum length in the range of voids of 1 nm or more and less than 100 nm. A method for producing a sintered body comprising:
A primary firing of a mixed raw material in which a Li compound, a La compound, and a Zr compound are mixed to obtain a powdered composite metal oxide powder;
And a step of subjecting the composite metal oxide powder to secondary firing by spark plasma sintering.
請求項3記載の焼結体の製造方法において、
前記混合原料を一次焼成する際に、Al,Al(OH),SiO,ケイ酸からなる群から選択される1種以上の化合物を焼結助剤として用いることを特徴とする焼結体の製造方法。
In the manufacturing method of the sintered compact according to claim 3,
In the primary firing of the mixed raw material, one or more compounds selected from the group consisting of Al 2 O 3 , Al (OH) 3 , SiO 2 , and silicic acid are used as a sintering aid. A method for producing a sintered body.
JP2011251616A 2011-11-17 2011-11-17 Sintered body and method for manufacturing the same Pending JP2013107779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011251616A JP2013107779A (en) 2011-11-17 2011-11-17 Sintered body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251616A JP2013107779A (en) 2011-11-17 2011-11-17 Sintered body and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013107779A true JP2013107779A (en) 2013-06-06

Family

ID=48704955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251616A Pending JP2013107779A (en) 2011-11-17 2011-11-17 Sintered body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013107779A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038521A1 (en) * 2012-09-04 2014-03-13 日本碍子株式会社 Solid electrolyte ceramic material
JP2015048280A (en) * 2013-09-02 2015-03-16 日本碍子株式会社 Method for producing solid electrolyte ceramic material
JP2015185462A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Method for manufacturing solid electrolytic member for solid batteries
JP2015202998A (en) * 2014-04-16 2015-11-16 株式会社豊田自動織機 Garnet type oxide and production method thereof, and solid electrolyte for secondary battery and secondary battery using the same
WO2016017769A1 (en) * 2014-07-31 2016-02-04 国立研究開発法人産業技術総合研究所 Lithium-containing garnet crystal body, method for producing same, and all-solid-state lithium ion secondary battery
JP2016027563A (en) * 2014-07-02 2016-02-18 株式会社デンソー Solid electrolyte, lithium battery and lithium air battery
JP2016160160A (en) * 2015-03-04 2016-09-05 国立研究開発法人物質・材料研究機構 Oxide sintered body, production method therefor, solid electrolyte using the same and lithium ion battery using the same
JP2016526771A (en) * 2013-07-04 2016-09-05 コリア インスティテュート オブ インダストリアル テクノロジー Solid electrolyte for all-solid lithium secondary battery and method for producing the same
WO2016178321A1 (en) * 2015-05-07 2016-11-10 株式会社豊田自動織機 Structural body containing garnet-type ion conductor
JP2016535391A (en) * 2013-10-07 2016-11-10 クアンタムスケイプ コーポレイション Garnet material for Li secondary battery
WO2017018217A1 (en) * 2015-07-29 2017-02-02 セントラル硝子株式会社 Garnet-type oxide sintered body and method for producing same
EP3214623A4 (en) * 2014-10-31 2018-07-04 National Institute of Advanced Industrial Science and Technology Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
JP2018528916A (en) * 2015-07-21 2018-10-04 クアンタムスケイプ コーポレイション Processes and materials for casting and sintering green garnet thin films
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10361455B2 (en) 2016-01-27 2019-07-23 Quantumscape Corporation Annealed garnet electrolyte separators
US10422581B2 (en) 2015-04-16 2019-09-24 Quantumscape Corporation Lithium stuffed garnet setter plates for solid electrolyte fabrication
US10431806B2 (en) 2013-01-07 2019-10-01 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
CN111755733A (en) * 2019-03-28 2020-10-09 揖斐电株式会社 All-solid-state battery and method for manufacturing same
JP2021150140A (en) * 2020-03-18 2021-09-27 Jx金属株式会社 Method for manufacturing garnet type solid electrolyte sintered compact for all-solid lithium ion battery, and method for manufacturing all-solid lithium ion battery
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
US11450926B2 (en) 2016-05-13 2022-09-20 Quantumscape Battery, Inc. Solid electrolyte separator bonding agent
US11489193B2 (en) 2017-06-23 2022-11-01 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
EP3969429A4 (en) * 2019-05-17 2023-07-19 University of Maryland, College Park High temperature sintering systems and methods
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038521A1 (en) * 2012-09-04 2014-03-13 日本碍子株式会社 Solid electrolyte ceramic material
JPWO2014038521A1 (en) * 2012-09-04 2016-08-08 日本碍子株式会社 Solid electrolyte ceramic materials
US11158842B2 (en) 2013-01-07 2021-10-26 Quantumscape Battery, Inc. Thin film lithium conducting powder material deposition from flux
US11876208B2 (en) 2013-01-07 2024-01-16 Quantumscape Battery, Inc. Thin film lithium conducting powder material deposition from flux
US10431806B2 (en) 2013-01-07 2019-10-01 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
JP2016526771A (en) * 2013-07-04 2016-09-05 コリア インスティテュート オブ インダストリアル テクノロジー Solid electrolyte for all-solid lithium secondary battery and method for producing the same
JP2015048280A (en) * 2013-09-02 2015-03-16 日本碍子株式会社 Method for producing solid electrolyte ceramic material
US11171358B2 (en) 2013-10-07 2021-11-09 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10290895B2 (en) 2013-10-07 2019-05-14 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11600857B2 (en) 2013-10-07 2023-03-07 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
JP2016535391A (en) * 2013-10-07 2016-11-10 クアンタムスケイプ コーポレイション Garnet material for Li secondary battery
US11575153B2 (en) 2013-10-07 2023-02-07 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11367896B2 (en) 2013-10-07 2022-06-21 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11355779B2 (en) 2013-10-07 2022-06-07 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10431850B2 (en) 2013-10-07 2019-10-01 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11171357B2 (en) 2013-10-07 2021-11-09 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10439251B2 (en) 2013-10-07 2019-10-08 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11139503B2 (en) 2013-10-07 2021-10-05 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11658338B2 (en) 2013-10-07 2023-05-23 Quantumscape Battery, Inc. Garnet materials for li secondary batteries and methods of making and using garnet materials
US10305141B2 (en) 2013-10-07 2019-05-28 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
JP2019106378A (en) * 2013-10-07 2019-06-27 クアンタムスケイプ コーポレイション Garnet materials for lithium secondary batteries
US10347936B2 (en) 2013-10-07 2019-07-09 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10862161B2 (en) 2013-10-07 2020-12-08 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10840544B2 (en) 2013-10-07 2020-11-17 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10651502B2 (en) 2013-10-07 2020-05-12 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10403931B2 (en) 2013-10-07 2019-09-03 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
US10403932B2 (en) 2013-10-07 2019-09-03 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
JP2015185462A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Method for manufacturing solid electrolytic member for solid batteries
JP2015202998A (en) * 2014-04-16 2015-11-16 株式会社豊田自動織機 Garnet type oxide and production method thereof, and solid electrolyte for secondary battery and secondary battery using the same
JP2016027563A (en) * 2014-07-02 2016-02-18 株式会社デンソー Solid electrolyte, lithium battery and lithium air battery
CN107075722B (en) * 2014-07-31 2019-12-31 国立研究开发法人产业技术综合研究所 Lithium-containing garnet crystal, method for producing same, and all-solid-state lithium ion secondary battery
WO2016017769A1 (en) * 2014-07-31 2016-02-04 国立研究開発法人産業技術総合研究所 Lithium-containing garnet crystal body, method for producing same, and all-solid-state lithium ion secondary battery
JPWO2016017769A1 (en) * 2014-07-31 2017-06-22 国立研究開発法人産業技術総合研究所 Lithium-containing garnet crystal, method for producing the same, and all-solid-state lithium ion secondary battery
CN107075722A (en) * 2014-07-31 2017-08-18 国立研究开发法人产业技术综合研究所 Garnet crystal containing lithium and its manufacture method and all-solid-state lithium-ion secondary battery
EP3214623A4 (en) * 2014-10-31 2018-07-04 National Institute of Advanced Industrial Science and Technology Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
JP2016160160A (en) * 2015-03-04 2016-09-05 国立研究開発法人物質・材料研究機構 Oxide sintered body, production method therefor, solid electrolyte using the same and lithium ion battery using the same
US11592237B2 (en) 2015-04-16 2023-02-28 Quantumscape Battery, Inc. Lithium stuffed garnet setter plates for solid electrolyte fabrication
US11391514B2 (en) 2015-04-16 2022-07-19 Quantumscape Battery, Inc. Lithium stuffed garnet setter plates for solid electrolyte fabrication
US10563918B2 (en) 2015-04-16 2020-02-18 Quantumscape Corporation Lithium stuffed garnet setter plates for solid electrolyte fabrication
US10422581B2 (en) 2015-04-16 2019-09-24 Quantumscape Corporation Lithium stuffed garnet setter plates for solid electrolyte fabrication
US10746468B2 (en) 2015-04-16 2020-08-18 Quantumscape Corporation Lithium stuffed garnet setter plates for solid electrolyte fabrication
US10411296B2 (en) 2015-05-07 2019-09-10 Kabushiki Kaisha Toyota Jidoshokki Structural body containing garnet-type ionic conductor
WO2016178321A1 (en) * 2015-05-07 2016-11-10 株式会社豊田自動織機 Structural body containing garnet-type ion conductor
JPWO2016178321A1 (en) * 2015-05-07 2018-02-01 株式会社豊田自動織機 Structure containing garnet-type ion conductor
JP2018528916A (en) * 2015-07-21 2018-10-04 クアンタムスケイプ コーポレイション Processes and materials for casting and sintering green garnet thin films
JP2022116300A (en) * 2015-07-21 2022-08-09 クアンタムスケイプ バテリー, インク. Processes and materials for casting and sintering green garnet thin films
WO2017018217A1 (en) * 2015-07-29 2017-02-02 セントラル硝子株式会社 Garnet-type oxide sintered body and method for producing same
CN107848894A (en) * 2015-07-29 2018-03-27 中央硝子株式会社 Carbuncle type oxidate sintered body and its manufacture method
US10361452B2 (en) 2015-07-29 2019-07-23 Central Glass Company, Limited Garnet-type oxide sintered body and method for producing same
US11165096B2 (en) 2016-01-27 2021-11-02 Quantumscape Battery, Inc. Annealed garnet electrolycte separators
US10361455B2 (en) 2016-01-27 2019-07-23 Quantumscape Corporation Annealed garnet electrolyte separators
US10804564B2 (en) 2016-01-27 2020-10-13 Quantumscape Corporation Annealed garnet electrolyte separators
US11581576B2 (en) 2016-01-27 2023-02-14 Quantumscape Battery, Inc. Annealed garnet electrolyte separators
US11450926B2 (en) 2016-05-13 2022-09-20 Quantumscape Battery, Inc. Solid electrolyte separator bonding agent
US11881596B2 (en) 2016-05-13 2024-01-23 Quantumscape Battery, Inc. Solid electrolyte separator bonding agent
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
US11489193B2 (en) 2017-06-23 2022-11-01 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11901506B2 (en) 2017-06-23 2024-02-13 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
US11817551B2 (en) 2017-11-06 2023-11-14 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
CN111755733A (en) * 2019-03-28 2020-10-09 揖斐电株式会社 All-solid-state battery and method for manufacturing same
EP3969429A4 (en) * 2019-05-17 2023-07-19 University of Maryland, College Park High temperature sintering systems and methods
JP7365947B2 (en) 2020-03-18 2023-10-20 Jx金属株式会社 Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
JP2021150140A (en) * 2020-03-18 2021-09-27 Jx金属株式会社 Method for manufacturing garnet type solid electrolyte sintered compact for all-solid lithium ion battery, and method for manufacturing all-solid lithium ion battery

Similar Documents

Publication Publication Date Title
JP2013107779A (en) Sintered body and method for manufacturing the same
JP7137617B2 (en) Lithium-garnet solid electrolyte composites, tape products, and methods therefor
US7601403B2 (en) Preparation of dense nanostructured functional oxide materials with fine crystallite size by field activation sintering
JP7308814B2 (en) Ceramic powders, sintered bodies and batteries
JP2017188441A (en) Solid electrolyte for all-solid type lithium ion secondary battery, all-solid type lithium ion secondary battery using the same, and method for manufacturing solid electrolyte for all-solid type lithium ion secondary battery
US9812633B2 (en) Piezoelectric composition and method for producing same, piezoelectric element/non-lead piezoelectric element and method for producing same, ultrasonic probe and diagnostic imaging device
JP2007022854A (en) Potassium-sodium niobate based lead-free piezoelectric ceramic, and method for producing the same
JP2015204215A (en) Lithium ion-conducting solid electrolyte, manufacturing method thereof, and all-solid battery
JP2019006634A (en) Manufacturing method of solid electrolyte, and solid electrolyte
JPWO2009119098A1 (en) Spark plug and method of manufacturing spark plug
JP6695560B1 (en) Composite oxide powder, method for producing composite oxide powder, method for producing solid electrolyte body, and method for producing lithium ion secondary battery
JPWO2012157461A1 (en) Process for producing conductive mayenite compound
KR101546594B1 (en) Method for producing molybdenum target
JPWO2016084721A1 (en) Production method of transparent alumina sintered body
JP2017518253A (en) Translucent metal fluoride ceramic
US20150184281A1 (en) Method of manufacturing electrically conductive mayenite compound with high electron density
Li et al. Improved ferroelectric and piezoelectric properties of (Na 0. 5 K 0. 5) NbO3 ceramics via sintering in low oxygen partial pressure atmosphere and adding LiF
KR101516015B1 (en) Process for manufacturing an LTM perovskite product
JP6044552B2 (en) Tin oxide refractory and method for producing the same
TW202021182A (en) Electrolyte material for solid oxide fuel cell and method for producing the same and precursor thereof
WO2013051576A1 (en) Conductive mayenite compound sintered compact, sputtering target, and method for producing conductive mayenite compound sintered compact
JP7267154B2 (en) Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide
JP2021150140A (en) Method for manufacturing garnet type solid electrolyte sintered compact for all-solid lithium ion battery, and method for manufacturing all-solid lithium ion battery
KR101056948B1 (en) Metal oxide target for amorphous oxide film containing aluminum and its manufacturing method
WO2012157462A1 (en) Method for producing member containing conductive mayenite compound