JP2013105976A - Electrical storage device module - Google Patents

Electrical storage device module Download PDF

Info

Publication number
JP2013105976A
JP2013105976A JP2011250454A JP2011250454A JP2013105976A JP 2013105976 A JP2013105976 A JP 2013105976A JP 2011250454 A JP2011250454 A JP 2011250454A JP 2011250454 A JP2011250454 A JP 2011250454A JP 2013105976 A JP2013105976 A JP 2013105976A
Authority
JP
Japan
Prior art keywords
cell
conductive material
device module
storage device
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011250454A
Other languages
Japanese (ja)
Inventor
Hideyuki Kubo
英之 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2011250454A priority Critical patent/JP2013105976A/en
Publication of JP2013105976A publication Critical patent/JP2013105976A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrical storage device module which has small electrical resistance in a connection part, is excellent in electrode heat generation suppression and output characteristic improvement effect, and has small size and high productivity.SOLUTION: In an electrical storage device module comprising a plurality of storage cells 1, the storage cells 1 are connected one another by contacting and sandwiching a conductive material 4 between cell terminals 2 and 3 of the adjacent storage cells 1.

Description

本発明は、複数の蓄電セルを接続させてなる蓄電デバイスモジュールに関する。   The present invention relates to a power storage device module formed by connecting a plurality of power storage cells.

電気二重層キャパシタやリチウムイオンキャパシタ、リチウムイオン電池といった蓄電デバイスは、必要に応じて複数個の蓄電セルを接続してモジュール化して用いられる。   A power storage device such as an electric double layer capacitor, a lithium ion capacitor, or a lithium ion battery is used as a module by connecting a plurality of power storage cells as necessary.

特許文献1は、複数個のセルのモジュール化において、隣接するセルの電極間をつなぐ接続部は、板状に形成される電極同士を重ね合わせると共に、これらの板圧間をリベット結合に加えてレーザー溶接、TIG溶接、スポット溶接により溶着することで接続部の電気抵抗を低減させ、高出力密度となることを特徴としている。   In Patent Document 1, in the modularization of a plurality of cells, the connection part that connects the electrodes of adjacent cells overlaps the electrodes formed in a plate shape, and adds these plate pressures to the rivet connection. By welding by laser welding, TIG welding, or spot welding, the electrical resistance of the connecting portion is reduced, and a high output density is achieved.

特許文献2は、複数個のセルの引出電極をL字形状に成型して重ね合わせた後、ブラインドリベットにて引き出し電極同士を固着すると共に、YAGレーザーによる溶接を行うことで電気的に低抵抗に接続可能であることを特徴としている。   According to Patent Document 2, the lead electrodes of a plurality of cells are formed in an L shape and overlapped, and then the lead electrodes are fixed together with a blind rivet and welded with a YAG laser to electrically reduce resistance. It is possible to connect to.

特許文献1においては、隣接するセルの電極間をつなぐ際に、セルの厚みが大きい場合には電極長さを長くし、その先端で接続する必要がある。このためにモジュール寸法が大型になってしまう問題点がある。更に、電極の厚みが小さいものでは、高い溶接精度が必要となり、品質不良が懸念される。   In Patent Document 1, when connecting the electrodes of adjacent cells, if the thickness of the cell is large, it is necessary to increase the electrode length and connect at the tip. For this reason, there is a problem that the module size becomes large. Furthermore, when the thickness of the electrode is small, high welding accuracy is required, and there is a concern about poor quality.

また、特許文献1、特許文献2、いずれにおいても隣接するセルの電極間を接続する際に、リベットによる機械締結と溶接を分けて行う必要がある。更に電極間を1つずつ接続していかなければならず、このため接続時間はセル数に大きく影響される。加えて特許文献2では端子をL字形状に成形する工程も追加される。これらのため、接続工程に多大な時間が必要となり、生産性の低さが問題点としてある。   Further, in both Patent Document 1 and Patent Document 2, when connecting electrodes of adjacent cells, it is necessary to separately perform mechanical fastening by rivets and welding. Furthermore, the electrodes must be connected one by one, and the connection time is greatly affected by the number of cells. In addition, Patent Document 2 also includes a step of forming the terminal into an L shape. For these reasons, much time is required for the connection process, and low productivity is a problem.

特開2003-272966号公報Japanese Patent Laid-Open No. 2003-272966 特開2010-232573号公報JP 2010-232573 A

本発明は、上記従来技術の問題点に鑑みてなされたものであり、接続部における電気抵抗が小さく、電極発熱抑制及び出力特性向上効果に優れるとともに、小型でかつ生産性の高い蓄電デバイスモジュールを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has a small electrical resistance device module with low electrical resistance at the connecting portion, excellent electrode heat generation suppression and output characteristics improvement effect, and is small and highly productive. The purpose is to provide.

上記課題を解決する本発明の蓄電デバイスモジュールは、複数の蓄電セルを備える蓄電デバイスモジュールであって、隣接する蓄電セルのセル端子の間に導電材を接触挟持させて蓄電セル同士を接続させることを特徴とする。   An electricity storage device module of the present invention that solves the above problem is an electricity storage device module comprising a plurality of electricity storage cells, wherein the electricity storage cells are connected by interposing a conductive material between the cell terminals of adjacent electricity storage cells. It is characterized by.

また、本発明の蓄電デバイスモジュールを製造する方法は、複数の蓄電セルを備える蓄電デバイスモジュールを製造する方法であって、複数の蓄電セルのセル端子の位置が揃うように整列させて重ね合わせる工程と、隣接する蓄電セルのセル端子の間に導電材を配置する工程と、セル端子と配置した導電材とを接触させて蓄電セル同士を接続させる工程、とを含むことを特徴とする。   Further, the method for producing the electricity storage device module of the present invention is a method for producing an electricity storage device module comprising a plurality of electricity storage cells, wherein the cell terminals of the plurality of electricity storage cells are aligned and overlapped. And a step of disposing a conductive material between cell terminals of adjacent power storage cells, and a step of bringing the cell terminals into contact with the disposed conductive material to connect the power storage cells to each other.

本発明の蓄電デバイスモジュールでは、接続部における電気抵抗が小さく、電極発熱抑制及び出力特性向上が図られる。さらに、また、モジュール寸法がセルの厚みに影響されないために小型化が実現でき、生産性も高い。   In the electricity storage device module of the present invention, the electrical resistance in the connecting portion is small, and the electrode heat generation is suppressed and the output characteristics are improved. Furthermore, since the module dimensions are not affected by the cell thickness, downsizing can be realized and the productivity is high.

本発明の蓄電デバイスモジュールを構成する蓄電セルの一例を示す正面外観図である。It is a front external view which shows an example of the electrical storage cell which comprises the electrical storage device module of this invention. 本発明の第一の実施形態に係る蓄電デバイスモジュールのタブ端子を水平に切断し上から見た断面図である。It is sectional drawing which cut | disconnected the tab terminal of the electrical storage device module which concerns on 1st embodiment of this invention horizontally, and was seen from the top. 本発明の第一の実施形態に係る蓄電デバイスモジュールの側面図である。It is a side view of the electrical storage device module which concerns on 1st embodiment of this invention. 平板状導電材を使用した場合を説明する図である。It is a figure explaining the case where a flat conductive material is used. 線接触となる表面形状を有する導電材を使用した場合を説明する図である。It is a figure explaining the case where the electrically conductive material which has the surface shape used as line contact is used. 本発明の第二の実施形態に係る蓄電デバイスモジュールのタブ端子を水平に切断し上から見た断面図である。It is sectional drawing which cut | disconnected the tab terminal of the electrical storage device module which concerns on 2nd embodiment of this invention horizontally, and was seen from the top.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の蓄電デバイスモジュールを構成する蓄電セルの一例(単セル1)を示す正面外観図である。一定の厚みを有する矩形状の単セル1は、セル端子として上部の所定位置に平板状の正極タブ端子2および負極タブ端子3を有している。蓄電セルの具体的なものとしては、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン電池、等が挙げられる。   FIG. 1 is a front external view showing an example (single cell 1) of a power storage cell constituting the power storage device module of the present invention. A rectangular unit cell 1 having a certain thickness has a plate-like positive electrode tab terminal 2 and a negative electrode tab terminal 3 at predetermined positions in the upper part as cell terminals. Specific examples of the storage cell include an electric double layer capacitor, a lithium ion capacitor, and a lithium ion battery.

図2は、本発明の第一の実施形態に係る蓄電デバイスモジュールのタブ端子を水平に切断し上から見た断面図であり、図3は、その側面図である。   FIG. 2 is a cross-sectional view of the tab terminal of the electricity storage device module according to the first embodiment of the present invention cut horizontally and seen from above, and FIG. 3 is a side view thereof.

図2、3に示される蓄電デバイスモジュールは、リチウムイオンキャパシタを蓄電セルとして用いたものであり、複数の矩形状の単セル1が、端子の位置が揃うように同じ向きに整列させて重ね合わされており、隣接する端子の間に導電材4を配置し、互いの接触面同士が接触するように導電材4を接触狭持させ、セル同士を接続している。蓄電デバイスモジュールを構成する単セル1の数に特に制限は無く、必要に応じた数を組み合わせることができる。本実施形態においては、セル端子に相当する、アルミニウム材料からなる正極タブ端子2およびニッケルメッキされた銅材料からなる負極タブ端子3の全ての隣接端子間に導電材4を狭持させた並列接続としている。隣接するセル端子の間に導電材を接触狭持させているため、セル端子と導電材との接触面積を大きくすることができ、したがってセル端子間の通電面積を大きくすることができるため、接続部における電気抵抗を低減することができ、電極発熱抑制及び出力特性向上効果が得られる。また、セル端子と導電材との接触を確実にしてセル端子間の導通を確保するために、固定具5によって、正極タブ端子2同士および負極タブ端子3同士をひとまとめに結束させているが、セル端子間の導通を確保する方法はこれに限らず、導電性接着剤を用いてセル端子と導電材とを接着する方法を用いることもできる。導電性接着剤としては、銀粉、銅粉、カーボンファイバーなどの導電性材料を混合したエポキシ接着剤、ポリイミド接着剤などを用いることができる。   The power storage device module shown in FIGS. 2 and 3 uses a lithium ion capacitor as a power storage cell, and a plurality of rectangular single cells 1 are stacked in the same direction so that the terminals are aligned. The conductive material 4 is disposed between adjacent terminals, and the conductive material 4 is held in contact so that the contact surfaces are in contact with each other, thereby connecting the cells. There is no restriction | limiting in particular in the number of the single cells 1 which comprise an electrical storage device module, The number as needed can be combined. In this embodiment, a parallel connection in which a conductive material 4 is sandwiched between all adjacent terminals of a positive electrode tab terminal 2 made of an aluminum material and a negative electrode tab terminal 3 made of a nickel-plated copper material, which corresponds to a cell terminal. It is said. Since the conductive material is held in contact between adjacent cell terminals, the contact area between the cell terminal and the conductive material can be increased, and thus the current-carrying area between the cell terminals can be increased. The electrical resistance at the portion can be reduced, and the effect of suppressing electrode heat generation and improving the output characteristics can be obtained. Further, in order to ensure the contact between the cell terminals and the conductive material and ensure the conduction between the cell terminals, the fixing tab 5 binds the positive electrode tab terminals 2 and the negative electrode tab terminals 3 together. The method of ensuring the conduction between the cell terminals is not limited to this, and a method of bonding the cell terminals and the conductive material using a conductive adhesive can also be used. As the conductive adhesive, an epoxy adhesive mixed with a conductive material such as silver powder, copper powder, or carbon fiber, a polyimide adhesive, or the like can be used.

導電材4は、セル端子間の導通を確保することができる導電材料からなり、金属材料や導電性プラスチック等を使用することができる。金属材料としては、アルミニウム、銅、銀、金、白金、タングステン、ニッケル、スズおよび亜鉛を挙げることができる。また、導電性プラスチックとしては、ポリアセチレンおよびポリチオフェンが挙げられる。   The conductive material 4 is made of a conductive material that can ensure conduction between the cell terminals, and a metal material, conductive plastic, or the like can be used. Examples of the metal material include aluminum, copper, silver, gold, platinum, tungsten, nickel, tin, and zinc. Examples of the conductive plastic include polyacetylene and polythiophene.

蓄電セル本体(単セル1)は外装材で被覆されており、図1に示されるように、そのセル端子(正極タブ端子2、負極タブ端子3)は蓄電セルの厚さ方向に直交する方向に蓄電セル本体から外装材の外に突出している。ここで、セル端子の接触面とは、隣接するセル端子に面する面であり、外装材から突出している部分全体を指す。セル端子は導電材料で形成されており、接触面全体が導電性を有する。導電材4は、セル端子間の導通を確保して電気抵抗が十分小さくなる大きさのものであればよいが、セル端子の接触面と導電材との接触面積は、セル端子の接触面面積の80%以上が好ましく、より好ましくは90%以上、さらには100%であることが好ましい。セル端子の接触面に接触する導電材は、セル端子からはみ出していてもよいが、導電材の小型化、蓄電デバイスモジュールの小型化のためには、導電材がセル端子の接触面と略同一の接触面を有していることが望ましい。ここで略同一とは、セル端子や導電材の製造上の公差や組み付け時の公差を考慮して、導電材の接触面面積がセル端子の接触面面積の95〜105%であることをいう。これにより、隣接するセル端子の電極面積のほぼすべてを接触面積として利用できるため、接続部における電気抵抗がさらに低減され、優れた電極発熱抑制及び出力特性向上効果が得られる。   The storage cell body (single cell 1) is covered with an exterior material, and as shown in FIG. 1, the cell terminals (positive tab terminal 2, negative tab terminal 3) are orthogonal to the thickness direction of the storage cell. It protrudes out of the exterior material from the storage cell body. Here, the contact surface of the cell terminal is a surface facing the adjacent cell terminal, and indicates the entire portion protruding from the exterior material. The cell terminal is made of a conductive material, and the entire contact surface has conductivity. The conductive material 4 may be of a size that ensures electrical conduction between the cell terminals and the electrical resistance is sufficiently small. However, the contact area between the contact surface of the cell terminal and the conductive material is the contact surface area of the cell terminal. Is preferably 80% or more, more preferably 90% or more, and even more preferably 100%. The conductive material that contacts the contact surface of the cell terminal may protrude from the cell terminal. However, in order to reduce the size of the conductive material and the storage device module, the conductive material is substantially the same as the contact surface of the cell terminal. It is desirable to have the contact surface. Here, “substantially the same” means that the contact surface area of the conductive material is 95 to 105% of the contact surface area of the cell terminal in consideration of the manufacturing tolerance of the cell terminal and the conductive material and the tolerance at the time of assembly. . Thereby, since almost all of the electrode area of the adjacent cell terminal can be used as the contact area, the electrical resistance at the connection portion is further reduced, and an excellent electrode heat generation suppression and output characteristic improvement effect can be obtained.

導電材4の厚さは、隣接する蓄電セルの蓄電セル本体同士が当接された状態において隣接するセル端子の対向面間の距離と略等しい。導電材の厚さは、セル端子の対向面間の距離に等しいことが好ましいが、作業性を考慮するとやや小さい方が好ましいため略等しいとした。固定具を使用する場合、セル端子間に導電材を配置するための隙間が必要である。また、接着剤を使用する場合、接着剤層のための隙間が必要である。導電材の厚さは、セル端子の対向面間の距離の90〜100%、さらに95〜100%とすることができる。   The thickness of the conductive material 4 is substantially equal to the distance between the opposing surfaces of the adjacent cell terminals in a state where the storage cell bodies of the adjacent storage cells are in contact with each other. The thickness of the conductive material is preferably equal to the distance between the opposing surfaces of the cell terminals, but is preferably substantially the same because it is preferably slightly smaller in consideration of workability. When a fixture is used, a gap for arranging the conductive material between the cell terminals is necessary. Moreover, when using an adhesive agent, the clearance gap for an adhesive bond layer is required. The thickness of the conductive material can be 90 to 100%, further 95 to 100% of the distance between the opposing surfaces of the cell terminals.

本実施形態で使用している固定具5としては、例えば結束バンドのように張力をかけられる部材であれば、材質・種類を問わないが、具体的には、ステンレススチールバンド、インシュロック(絶縁固定具)等が挙げられる。また、ボルトなどの締付具を使用することもできる。その場合、例えば、導電材で接続されたセル端子群の一方端と他方端それぞれの外側から平板を当接させ、平板同士をボルトで締め付けるようにして固定する。この際、平板かボルトの少なくとも一方が絶縁材料からなるか、端のセル端子と平板との間にゴム板などの絶縁材を挟む必要がある。端のセル端子と平板との間に絶縁材を挟む場合、並列するセル端子群に共通の平板を使用することができる。このように、固定具でセル端子と導電材との接触面に荷重を均一に加えることで、隣接するセルの電極間の導通をさらに確実にすることができる。   The fixture 5 used in the present embodiment is not limited to any material and type as long as it is a member that can be tensioned, such as a binding band. Specifically, a stainless steel band, an insulation lock (insulation fixing) Etc.). Also, a fastening tool such as a bolt can be used. In this case, for example, the flat plates are brought into contact with each other from the outside of one end and the other end of the cell terminal group connected by the conductive material, and the flat plates are fixed by being tightened with bolts. At this time, it is necessary that at least one of the flat plate and the bolt is made of an insulating material, or an insulating material such as a rubber plate is sandwiched between the end cell terminal and the flat plate. When an insulating material is sandwiched between the end cell terminal and the flat plate, a common flat plate can be used for the parallel cell terminal groups. Thus, by applying a load uniformly to the contact surface between the cell terminal and the conductive material with the fixture, it is possible to further ensure conduction between the electrodes of the adjacent cells.

また、本発明においては、導電材のセル端子との接触面を、セル端子と線接触または点接触となるような表面形状とすることによって、セル端子間の電気抵抗をさらに低減することができる。線接触の場合、接触線に直交する断面における頂角が鋭角であることが好ましく、さらに好ましくは20〜70°である。また、点接触の場合、接触点を通り接触面に直交する断面における最小頂角が鋭角であることが好ましく、さらに好ましくは20〜70°である。その一例を図4(a)〜(c)及び図5(a)〜(c)に示す(図面中の寸法の数字の単位はmm)。幅60mm×長さ30mm×厚さ5mmの平板状の銅製導電材6(図4(b)、(c))と幅60mm×長さ26mm×厚さ0.2mmのアルミタブ端子7とを重ね合わせた状態で(図4(a))、100Nの面加重を加えて2.0Aの電流を流した場合、電気抵抗は4.3mΩであった。これに対して、幅方向の断面において底辺5mmの正三角形状の突起(頂角60°)が表面に連続し、その頂点が長さ方向に直線状に伸びた表面形状を有する銅製導電材8(図5(b)、(c))を、同じアルミタブ端子7と重ね合わせて両者が線接触となる状態で(図5(a))、同じように100Nの面加重を加えて2.0Aの電流を流した場合、電気抵抗は0.2mΩとなり、大幅に電気抵抗を低減することができた。   Further, in the present invention, the electrical resistance between the cell terminals can be further reduced by making the contact surface of the conductive material with the cell terminals into a surface shape that makes line contact or point contact with the cell terminals. . In the case of line contact, the apex angle in the cross section perpendicular to the contact line is preferably an acute angle, more preferably 20 to 70 °. In the case of point contact, the minimum apex angle in a cross section passing through the contact point and orthogonal to the contact surface is preferably an acute angle, more preferably 20 to 70 °. An example thereof is shown in FIGS. 4A to 4C and FIGS. 5A to 5C (units of numerical figures of dimensions in the drawings are mm). A flat copper conductive material 6 (FIGS. 4B and 4C) having a width of 60 mm, a length of 30 mm, and a thickness of 5 mm and an aluminum tab terminal 7 having a width of 60 mm, a length of 26 mm, and a thickness of 0.2 mm are superimposed. In this state (FIG. 4A), when a surface load of 100 N was applied and a current of 2.0 A was applied, the electric resistance was 4.3 mΩ. On the other hand, in the cross section in the width direction, a copper conductive material 8 having a surface shape in which a regular triangular protrusion (vertical angle 60 °) having a base of 5 mm is continuous with the surface and the apex thereof linearly extends in the length direction. (FIGS. 5B and 5C) are overlapped with the same aluminum tab terminal 7 so that they are in line contact with each other (FIG. 5A). The electric resistance was 0.2 mΩ when this current was passed, and the electric resistance could be greatly reduced.

図6は、本発明の第二の実施形態に係る蓄電デバイスモジュールのタブ端子を水平に切断し上から見た断面図である。   FIG. 6 is a cross-sectional view of the tab terminal of the electricity storage device module according to the second embodiment of the present invention cut horizontally and viewed from above.

本実施形態の蓄電デバイスモジュールは、第一の実施形態と同様にリチウムイオンキャパシタを蓄電セルとして用いたものであるが、図6に示すように、正極タブ端子2と負極タブ端子3とが交互になるように配列し、導電材4を隣接する端子間の一つおきに配置して直列接続としたものである。導電材4を配置しない端子間には、導電材4と同形状の絶縁材9を配置している。絶縁材9としては、ポリエチレンなどの樹脂材料、天然ゴム、陶器、等の絶縁材料からなるものを使用することができる。直列接続であるので、固定具5は、インシュロック等の絶縁して固定できるものを使用する。   The power storage device module of the present embodiment uses a lithium ion capacitor as a power storage cell as in the first embodiment. However, as shown in FIG. 6, the positive electrode tab terminals 2 and the negative electrode tab terminals 3 alternate. The conductive material 4 is arranged every other adjacent terminal to be connected in series. Between the terminals where the conductive material 4 is not disposed, an insulating material 9 having the same shape as the conductive material 4 is disposed. As the insulating material 9, a material made of an insulating material such as a resin material such as polyethylene, natural rubber, or earthenware can be used. Since they are connected in series, the fixture 5 is an insulation lock or the like that can be insulated and fixed.

上述のように、本発明の蓄電デバイスモジュールは、セル端子の間に導電材を接触挟持させて蓄電セル同士を接続させる構成をとっており、モジュール寸法がセルの厚みに影響されないために小型化が実現でき、蓄電セル同士の接続に多くの工程を要しないために生産性も高い。また、セル端子と導電材との接触面積を大きくとることができるので、セル間の接続部における電気抵抗が小さく、電極発熱抑制及び出力特性向上を図ることができる。   As described above, the power storage device module of the present invention has a configuration in which a conductive material is contacted between cell terminals to connect the power storage cells, and the module size is not affected by the thickness of the cell, so the size is reduced. Therefore, productivity is high because many processes are not required to connect the storage cells. Further, since the contact area between the cell terminal and the conductive material can be increased, the electrical resistance at the connection portion between the cells is small, so that the electrode heat generation can be suppressed and the output characteristics can be improved.

1 単セル
2 正極タブ端子
3 負極タブ端子
4 導電材
5 固定具
6 平板状導電材
7 アルミタブ端子
8 線接触表面の導電材
9 絶縁材
DESCRIPTION OF SYMBOLS 1 Single cell 2 Positive electrode tab terminal 3 Negative electrode tab terminal 4 Conductive material 5 Fixture 6 Flat plate-shaped conductive material 7 Aluminum tab terminal 8 Conductive material 9 of wire contact surface Insulation material

Claims (5)

複数の蓄電セルを備える蓄電デバイスモジュールであって、隣接する前記蓄電セルのセル端子の間に導電材を接触挟持させて前記蓄電セル同士を接続させることを特徴とする蓄電デバイスモジュール。   A power storage device module comprising a plurality of power storage cells, wherein the power storage cells are connected to each other by sandwiching a conductive material between cell terminals of the adjacent power storage cells. 前記蓄電セル同士の接続を固定するための固定具をさらに有する請求項1に記載の蓄電デバイスモジュール。   The electrical storage device module of Claim 1 which further has a fixing tool for fixing the connection of the said electrical storage cells. 前記導電材の前記セル端子との接触面は、前記セル端子と線接触または点接触となる表面形状を有している請求項1または2に記載の蓄電デバイスモジュール。   The electric storage device module according to claim 1, wherein a contact surface of the conductive material with the cell terminal has a surface shape that is a line contact or a point contact with the cell terminal. 隣接する前記蓄電セルの接続させない前記セル端子の間に絶縁材を挟持させる請求項1〜3のいずれか一項に記載の蓄電デバイスモジュール。   The power storage device module according to any one of claims 1 to 3, wherein an insulating material is sandwiched between the cell terminals that are not connected to the adjacent power storage cells. 複数の蓄電セルを備える蓄電デバイスモジュールを製造する方法であって、複数の蓄電セルのセル端子の位置が揃うように整列させて重ね合わせる工程と、隣接する前記蓄電セルの前記セル端子の間に導電材を配置する工程と、前記セル端子と配置した前記導電材とを接触させて前記蓄電セル同士を接続させる工程、とを含む方法。   A method of manufacturing a power storage device module including a plurality of power storage cells, wherein the cell terminals of a plurality of power storage cells are aligned and overlapped so that the positions of the cell terminals are aligned, and between the cell terminals of adjacent power storage cells A method comprising: arranging a conductive material; and bringing the cell terminals into contact with the arranged conductive material to connect the storage cells.
JP2011250454A 2011-11-16 2011-11-16 Electrical storage device module Pending JP2013105976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250454A JP2013105976A (en) 2011-11-16 2011-11-16 Electrical storage device module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250454A JP2013105976A (en) 2011-11-16 2011-11-16 Electrical storage device module

Publications (1)

Publication Number Publication Date
JP2013105976A true JP2013105976A (en) 2013-05-30

Family

ID=48625289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250454A Pending JP2013105976A (en) 2011-11-16 2011-11-16 Electrical storage device module

Country Status (1)

Country Link
JP (1) JP2013105976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393597A (en) * 2018-05-09 2018-08-14 深圳市海目星激光智能装备股份有限公司 A kind of laser truncation electrode lug device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087135A (en) * 2002-08-22 2004-03-18 Fuji Photo Film Co Ltd Fixing structure of battery
JP2008204985A (en) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd Capacitor unit
JP2011066118A (en) * 2009-09-16 2011-03-31 Ud Trucks Corp Electricity accumulation device and module
DE102009052480A1 (en) * 2009-11-09 2011-05-12 Li-Tec Battery Gmbh Electric power cell and electric power unit
DE102010005017A1 (en) * 2010-01-19 2011-07-21 Li-Tec Battery GmbH, 01917 Electric power unit and spacer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087135A (en) * 2002-08-22 2004-03-18 Fuji Photo Film Co Ltd Fixing structure of battery
JP2008204985A (en) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd Capacitor unit
JP2011066118A (en) * 2009-09-16 2011-03-31 Ud Trucks Corp Electricity accumulation device and module
DE102009052480A1 (en) * 2009-11-09 2011-05-12 Li-Tec Battery Gmbh Electric power cell and electric power unit
DE102010005017A1 (en) * 2010-01-19 2011-07-21 Li-Tec Battery GmbH, 01917 Electric power unit and spacer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393597A (en) * 2018-05-09 2018-08-14 深圳市海目星激光智能装备股份有限公司 A kind of laser truncation electrode lug device
CN108393597B (en) * 2018-05-09 2024-03-19 海目星激光科技集团股份有限公司 Laser flat cutting tab device

Similar Documents

Publication Publication Date Title
KR100733709B1 (en) Electrode Connector Containing Plate and Battery Module Employed with the Same
US9318734B2 (en) Bimetal buss bar assembly
US9537125B2 (en) Battery module
EP2389699B1 (en) Single cell and power battery pack comprising the same
JP6038802B2 (en) Battery pack and prismatic secondary battery for use in the battery pack
JP6575557B2 (en) All-solid battery and method for producing all-solid battery
US10096865B2 (en) Secondary cell module
KR20080045305A (en) Method for connection of conductive member to device
US20150171404A1 (en) Battery module
EP2253037A2 (en) Method of electrically connecting cell terminals in a battery pack
CN102024976A (en) Electric connecting structure for storage battery of electric automobile
US20140363728A1 (en) Battery pack
WO2011111721A1 (en) Battery connecting tool and battery pack module using same
KR20100108853A (en) Rechargeable battery module
JP2006196222A (en) Battery cell assembly, battery pack structure, and its assembling method
CN202217732U (en) Battery connecting piece and battery pack
JP5558878B2 (en) Assembled battery, resistance welding method, and assembled battery manufacturing method
US20060040176A1 (en) Prismatic battery cells, batteries with prismatic battery cells and methods of making same
WO2011111722A1 (en) Battery connecting tool and battery pack module using same
US10673051B2 (en) Energy storage arrangement in particular for a motor vehicle, motor vehicle and method for producing an energy storage arrangement
JP2009187895A (en) Packed batteries, and battery pack
JP7288456B2 (en) secondary battery
JP2013105976A (en) Electrical storage device module
CN215646721U (en) Photovoltaic module
CN111052451A (en) Bus bar and battery laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105