JP2013105684A - Method for manufacturing ceramic heater and method for manufacturing glow plug - Google Patents

Method for manufacturing ceramic heater and method for manufacturing glow plug Download PDF

Info

Publication number
JP2013105684A
JP2013105684A JP2011250174A JP2011250174A JP2013105684A JP 2013105684 A JP2013105684 A JP 2013105684A JP 2011250174 A JP2011250174 A JP 2011250174A JP 2011250174 A JP2011250174 A JP 2011250174A JP 2013105684 A JP2013105684 A JP 2013105684A
Authority
JP
Japan
Prior art keywords
molded body
semi
bent
unfired
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011250174A
Other languages
Japanese (ja)
Other versions
JP5837401B2 (en
Inventor
Yutaka Sekiguchi
豊 関口
Yoshihito Igai
良仁 猪飼
Takeshi Mitsuoka
健 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011250174A priority Critical patent/JP5837401B2/en
Publication of JP2013105684A publication Critical patent/JP2013105684A/en
Application granted granted Critical
Publication of JP5837401B2 publication Critical patent/JP5837401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramic heater with good durability having an insulation base and a heating element resistor embedded in the insulation base, and a method for manufacturing a glow plug having the ceramic heater.SOLUTION: A method comprises: a semi-molded body forming step of forming a first molded body 30 serving as a part of an insulation base 10 by baking and the semi-molded body 34 having an unbaked heating element resistor 33 serving as a heating element resistor 11 by baking; and a second molded body forming step of molding a second molded body 35 integrally with the semi-molded body 34, serving as a residue of the insulation base 10 by baking. A part of an unbaked bent-back part 32 of the unbaked heating element resistor 33 is embedded in the first molded body 30, while the residue projects from the first molded body 30. In the semi-molded body forming step, the semi-molded body 34 is formed so that a rear side height HH2 projecting from the first molded body 30 is lower than a rear side depth HD2 embedded in the first molded body 30, at least at a rear side boundary 57 between the unbaked bent-back part 32 and a molded body rear side part 55.

Description

本発明は、絶縁性セラミックからなる絶縁基体と、この絶縁基体内に埋設され、導電性セラミックからなる発熱抵抗体とを備えるセラミックヒータの製造方法及びセラミックヒータを有するグロープラグの製造方法に関する。   The present invention relates to a method for manufacturing a ceramic heater including an insulating base made of an insulating ceramic, and a heating resistor embedded in the insulating base and made of a conductive ceramic, and a method for manufacturing a glow plug having a ceramic heater.

従来より、絶縁性セラミックからなる絶縁基体と、この絶縁基体内に埋設され導電性セラミックからなる発熱抵抗体とを備えるセラミックヒータの製造方法として、種々の方法が提案されている。例えば特許文献1には、導電性セラミック粉末およびバインダを含む通電部用混合物を用いて通電部用成形体を作製する工程と、通電部用成形体を金型内に保持し、絶縁性セラミック粉末およびバインダを含む基体用混合物を上述の金型内に充填することにより、通電部用成形体を基体用混合物で覆った素子成形体を作製する工程と、素子成形体を焼成する工程と、を備えた製造方法が開示されている。まず、素子成形体を作製するに当たっては、対向配置した一対の金型を用いて、まず通電部用成形体を成形する。その後、基体成形用の第1の金型部材の内面に、通電部用成形体をその一方側の面が接するように配置する。続いて、他方側に配置された基体成形用の第2の金型部材の内面と、通電部用成形体の他方側の表面との間(キャビティ)に、基体用混合物を充填して絶縁基体の一部(概略半分)となる成形体(以下、第1基体成形体)を射出成形する。次いで、基体成形用の第1の金型部材を基体成形用の第3の金型部材と交換し、この第3の金型部材の内面と、通電部用成形体の一方側の表面及び第1基体成形体からなる面との間(キャビティ)に、基体用混合物を射出して、素子成形体を得る手順が開示されている。   Conventionally, various methods have been proposed as a method of manufacturing a ceramic heater including an insulating base made of an insulating ceramic and a heating resistor made of a conductive ceramic embedded in the insulating base. For example, in Patent Document 1, a process for producing a current-carrying part molded body using a mixture for a current-carrying part containing a conductive ceramic powder and a binder, and the current-carrying part molded body are held in a mold to produce an insulating ceramic powder. And filling the substrate mixture containing the binder into the above-mentioned mold to produce an element molded body in which the molded part for the current-carrying part is covered with the substrate mixture, and firing the element molded body. A manufacturing method is provided. First, when producing an element molded body, a current-carrying part molded body is first molded using a pair of opposed molds. Thereafter, the current-carrying part molded body is disposed on the inner surface of the first mold member for base molding so that the surface on one side thereof is in contact therewith. Subsequently, the substrate mixture is filled between the inner surface (cavity) of the second mold member for molding the substrate disposed on the other side and the other surface of the molded part for the current-carrying part, thereby insulating substrate. A molded body (hereinafter referred to as a first base molded body) to be a part of (a half of) is injection molded. Next, the first mold member for base molding is replaced with a third mold member for base molding, and the inner surface of the third mold member, the surface on one side of the molded part for the current-carrying part, and the first A procedure is disclosed in which an element molded body is obtained by injecting a substrate mixture into a space (cavity) composed of a single substrate molded body.

WO2009/057596WO2009 / 057596

特許文献1に記載の製造方法では、焼成により発熱抵抗体となる通電部用成形体、及び、焼成により絶縁基体の一部となる第1基体成形体を成形した後、次いで素子成形体を得るにあたり、焼成により絶縁基体の残部となる成形体(以下、第2基体成形体)を成形するため、基体用混合物を先端方向または基端方向に向けて射出する。すると、射出された基体用混合物は、通電部用成形体及び第1基体成形体に接しつつ、先端側または基端側へと移動して、通電部用成形体のうちのU字状の曲げ返し部に届き、これを乗り越えて進行する。   In the manufacturing method described in Patent Document 1, an element molded body is obtained after molding a current-carrying part molded body that becomes a heating resistor by firing, and a first base body molded body that becomes a part of an insulating substrate by firing. In this case, in order to form a molded body (hereinafter referred to as a second base molded body) that becomes the remainder of the insulating base body by firing, the base mixture is injected toward the distal end direction or the proximal end direction. Then, the injected base mixture moves to the distal end side or the base end side while being in contact with the current-carrying part molded body and the first base body molded body, and the U-shaped bending of the current-carrying part molded body is performed. It reaches the return section and proceeds over this.

しかしながら、図13に示すように、通電部用成形体92の曲げ返し部91のうち、第1基体成形体90から突出した部分93の形状は、断面半円形状であり、突出部分93と第1基体成形体90との境界において、突出部分93と第1基体成形体90とがなす角が90度とされている。このため、進行してきた基体用混合物が、通電部用成形体92の曲げ返し部91を乗り越える前あるいは乗り越えた後における曲げ返し部91近傍の第1基体成形体90と第2基体成形体94の界面95において、空隙96が生じたまま互いに十分密着しない場合があった。このため、これを焼成したセラミックヒータの絶縁基体のうち、発熱抵抗体の曲げ返し部付近において、図14に示すように、焼成前に第1基体成形体と第2基体成形体との界面であった部位にスリット状に延びる空隙や列状に並ぶ空隙が形成されて、セラミックヒータの耐久性が悪くなるおそれがあった。   However, as shown in FIG. 13, the shape of the portion 93 protruding from the first base molded body 90 in the bent-back portion 91 of the current-carrying part molded body 92 is semicircular in cross section, At the boundary with the one-base molded body 90, the angle formed by the protruding portion 93 and the first base-molded body 90 is 90 degrees. For this reason, before the substrate mixture which has progressed gets over the bent-back portion 91 of the current-carrying part molded body 92 or after it gets over, the first substrate-formed body 90 and the second substrate-formed body 94 in the vicinity of the bent-back portion 91. In some cases, the interface 95 does not sufficiently adhere to each other with the void 96 formed. For this reason, among the insulating bases of the ceramic heater that has been fired, in the vicinity of the bent portion of the heating resistor, as shown in FIG. 14, at the interface between the first base body and the second base body before firing. There was a possibility that gaps extending like slits or gaps arranged in a row were formed at the site, and the durability of the ceramic heater deteriorated.

本発明は、かかる現状に鑑みてなされたものであって、絶縁性セラミックからなる絶縁基体と、この絶縁基体内に埋設され導電性セラミックからなる発熱抵抗体とを備え、耐久性の良好なセラミックヒータの製造方法、及びこのようなセラミックヒータを有するグロープラグの製造方法を提供することを目的とする。   The present invention has been made in view of the present situation, and includes an insulating base made of an insulating ceramic, and a heat generating resistor made of a conductive ceramic embedded in the insulating base, and having a good durability. It is an object of the present invention to provide a method for manufacturing a heater and a method for manufacturing a glow plug having such a ceramic heater.

その態様は、絶縁性セラミックからなり、軸線に沿って延びる形状を有する絶縁基体と、この絶縁基体内に埋設され、導電性セラミックからなる発熱抵抗体であって、上記絶縁基体の先端部内に配置され、上記軸線に沿う軸線方向のうち先端方向に曲げ返し部を向けたU字状をなし、通電により発熱する発熱部、及び、この発熱部の両端から、上記軸線方向のうち上記先端方向とは逆の基端方向に向けて延びるリード部を有する発熱抵抗体と、を備えるセラミックヒータの製造方法であって、第1絶縁性セラミック粉末を含み、焼成により上記絶縁基体の一部となる第1成形体、及び、導電性セラミック粉末を含み、焼成により上記発熱部となる未焼成発熱部であって、焼成により上記曲げ返し部となる未焼成曲げ返し部を含む未焼成発熱部を有し、焼成により上記発熱抵抗体となる未焼成発熱抵抗体、を有する半成形体を成形する半成形体成形工程と、射出成形法により、上記先端方向または上記基端方向に向けて、第2絶縁性セラミック粉末を含む第2基体用混合物を射出して、焼成により上記絶縁基体の残部となる第2成形体を、上記半成形体と一体に成形する第2成形体成形工程と、を備え、上記半成形体は、上記未焼成発熱抵抗体のうち、少なくとも上記未焼成発熱部の上記未焼成曲げ返し部が、その伸延方向全体に亘って、一部が上記第1成形体中に埋められる一方、残部が上記第1成形体から突出した形態をなしており、上記半成形体の上記第1成形体のうち、上記未焼成曲げ返し部よりも曲げ返しの半径方向の内側に位置する部位を成形体内側部とし、上記未焼成曲げ返し部よりも上記半径方向の外側に位置する部位を成形体外側部とし、成形体内側部及び成形体外側部のうち、上記第2成形体成形工程において、射出された上記第2基体用混合物が先に届く部位を成形体前側部とし、上記第2基体用混合物が前記未焼成曲げ返し部を乗り越えた後に届く部位を成形体後側部とし、上記未焼成曲げ返し部と上記成形体後側部との後側境界において、上記未焼成曲げ返し部の上記第1成形体中に埋められた深さを後側深さ、上記第1成形体から突出した突出高さを後側高さとしたとき、上記半成形体成形工程は、少なくとも、上記後側高さが上記後側深さよりも小さい形態に、上記半成形体を成形するセラミックヒータの製造方法である。   The aspect includes an insulating base made of an insulating ceramic and having a shape extending along the axis, and a heating resistor embedded in the insulating base and made of a conductive ceramic, which is disposed in the tip of the insulating base. A U-shape with the bent back portion facing the tip direction in the axial direction along the axis, the heat generating portion that generates heat by energization, and the tip direction in the axial direction from both ends of the heat generating portion. Is a heat generating resistor having a lead portion extending in the opposite proximal direction, and a method for manufacturing a ceramic heater, comprising a first insulating ceramic powder and becoming a part of the insulating substrate by firing. 1. An unfired heat generating part including a green body and an unfired heat generating part that includes the conductive ceramic powder and becomes the heat generating part when fired, and includes an unfired bent part that becomes the bent back part when fired And a semi-molded body molding step for molding a half-molded body having an unfired heating resistor that becomes the above-described heating resistor by firing, and an injection molding method toward the distal direction or the proximal direction. A second molded body molding step of injecting a mixture for the second substrate containing two insulating ceramic powders and molding the second molded body that becomes the remainder of the insulating substrate by firing integrally with the semi-molded body; The semi-molded body includes at least the unsintered bent portion of the unsintered heat generating portion of the unsintered heat generating resistor over the entire extending direction thereof, and a part of the unsintered heat-generating part is in the first molded body. On the other hand, the remaining portion has a shape protruding from the first molded body, and is located on the inner side in the radial direction of bending than the unfired bent-back portion of the first molded body of the semi-molded body. The part to be used is the inner part of the molded body, and the unfired A portion located on the outer side in the radial direction from the turnover portion is a molded body outer portion, and the second base body injected in the second molded body molding step of the molded body inner portion and the molded body outer portion. The part that the mixture reaches first is the front side of the molded body, the part that the mixture for the second substrate reaches after the unfired bent part is the rear side of the molded body, and the unfired bent part and the molded body At the rear boundary with the rear side portion, the depth buried in the first molded body of the unfired bent-back portion is the rear side depth, and the protruding height protruding from the first molded body is the rear side height. In this case, the half-molded body molding step is a method for manufacturing a ceramic heater for molding the half-molded body in a form in which at least the rear side height is smaller than the rear side depth.

このセラミックヒータの製造方法では、半成形体成形工程で、半成形体を成形した後、第2成形体成形工程において、第2絶縁性セラミック粉末を含む第2基体用混合物を、先端方向または基端方向に向けて射出する。すると、射出された第2基体用混合物は、半成形体に接しつつ、先端側または基端側へと移動して、半成形体の未焼成曲げ返し部に届き、これを乗り越えて進行する。この第2基体用混合物は、移動の間に若干冷えるが、これと共に密着性も若干下がる。その上、未焼成曲げ返し部を乗り越える前と乗り越えた後を比較すると、乗り越えた後の方が、第2基体用混合物が回り込んで密着する形となり、圧力も掛かりにくい。このため、未焼成曲げ返し部を乗り越えた後の方が、第2基体用混合物が密着しにくい条件となり易い。   In this method of manufacturing a ceramic heater, after forming a semi-molded body in the semi-molded body molding step, in the second molded body molding step, the mixture for the second substrate containing the second insulating ceramic powder is changed in the distal direction or the base. Inject toward the end. Then, the injected mixture for the second substrate moves to the front end side or the base end side while in contact with the semi-molded body, reaches the unfired bent-back portion of the semi-molded body, and proceeds over this. The mixture for the second substrate cools slightly during the movement, but the adhesion decreases slightly with this. In addition, when comparing before and after overcoming the unfired bent-back portion, the mixture for the second base turns around and comes into close contact after overcoming, and pressure is not easily applied. For this reason, the condition after overcoming the unfired bent-back portion is likely to be a condition in which the second base mixture is less likely to adhere.

そこで、本製造方法では、半成形体成形工程で、半成形体を少なくとも後側高さが後側深さよりも小さい形態に成形してある。これにより、第2成形体成形工程において、第2基体用混合物が、未焼成曲げ返し部を乗り越えた際に、第1成形体の成形体後側部と未焼成曲げ返し部との境界付近において、第1成形体と第2成形体とを互いに密着させ、互いに隙間なく一体化させることができる。このため、焼成後のセラミックヒータの絶縁基体のうち発熱抵抗体の曲げ返し部付近において、第1成形体と第2成形体との界面に隙間が生じていたことに起因する、スリット状に延びる空隙や列状に並ぶ空隙が形成されることが抑制され、耐久性の高いセラミックヒータを製造できる。   Therefore, in this manufacturing method, in the semi-molded body molding step, the semi-molded body is molded into a form in which at least the rear side height is smaller than the rear side depth. Thereby, in the second molded body molding step, when the mixture for the second substrate gets over the unfired bent-back portion, in the vicinity of the boundary between the molded body rear side portion of the first molded body and the unfired bent-back portion. The first molded body and the second molded body can be brought into close contact with each other and can be integrated with no gap therebetween. For this reason, in the insulating base body of the ceramic heater after firing, in the vicinity of the bent portion of the heating resistor, a gap is formed at the interface between the first molded body and the second molded body. Formation of voids and voids arranged in a row is suppressed, and a highly durable ceramic heater can be manufactured.

なお、「セラミックヒータ」としては、例えば、グロープラグに用いるセラミックヒータや、ガスセンサのセンサ部を加熱するのに用いるセラミックヒータなどが挙げられる。
また、「軸線に沿って延びる形状を有する絶縁基体」の形態としては、例えば、円柱状、楕円柱状、長円柱状、四角柱などの多角柱状などが挙げられる。但し、一部にくびれ部分や径大部分を有するものであっても良い。
Examples of the “ceramic heater” include a ceramic heater used for a glow plug and a ceramic heater used for heating a sensor portion of a gas sensor.
In addition, examples of the form of the “insulating base body having a shape extending along the axis” include polygonal column shapes such as a columnar shape, an elliptical column shape, a long columnar shape, and a quadrangular column. However, it may have a constricted part or a large diameter part.

なお、半成形体成形工程で成形する半成形体の第1成形体及び未焼成発熱抵抗体の成形手法は、射出成形法を用いても良いし、それ以外の手法、例えば、粉末プレス、スリップキャスティングなどを用いても良い。
また、半成形体のうち、第1成形体と未焼成発熱抵抗体の成形順序は、第1成形体を先に成形し、次いで、未焼成発熱抵抗体を成形しても良いし、これとは逆に、未焼成発熱抵抗体を先に成形し、次いで、第1成形体を成形しても良い。
また、半成形体のうちの第1成形体を構成する第1絶縁性セラミック粉末と第2成形体を構成する第2絶縁性セラミック粉末とは、同一の粉末を用いても良いし、製法や成分が異なる粉末を用いても良い。
In addition, the molding method of the first molded body of the half-molded body and the unheated heating resistor molded in the semi-molded body molding step may be an injection molding method, or other methods such as powder press, slip Casting or the like may be used.
Further, among the semi-molded bodies, the molding order of the first molded body and the unsintered heating resistor may be that the first molded body is molded first, and then the unsintered heating resistor is molded. Conversely, the unfired heating resistor may be molded first, and then the first molded body may be molded.
In addition, the first insulating ceramic powder constituting the first molded body and the second insulating ceramic powder constituting the second molded body of the semi-molded body may be the same powder, You may use the powder from which a component differs.

更に、上述のセラミックヒータの製造方法であって、前記第2成形体成形工程は、前記半成形体の基端を通り、先端に向けて、前記第2基体用混合物を射出して、前記第2成形体を成形するセラミックヒータの製造方法とすると良い。   Further, in the above-described method for manufacturing a ceramic heater, the second molded body molding step includes injecting the second substrate mixture toward the distal end through the base end of the semi-molded body, and It is good to use the manufacturing method of the ceramic heater which shape | molds 2 molded object.

第2成形体成形工程では、高温とされた第2基体用混合物を射出するので、この第2基体用混合物が半成形体に接することにより、半成形体の第1成形体及び未焼成発熱抵抗体の表面の一部が溶ける場合がある。特に、未焼成発熱抵抗体の未焼成曲げ返し部付近でこれが起きると、焼成後の発熱抵抗体の性能が低下するおそれがある。一方、射出された第2基体用混合物は、軸線方向に比較的長い距離を移動する。このため、射出直後は高温であった第2基体用混合物は、この移動の間に若干冷えて射出直後に比べて低温となる。   In the second molded body molding step, the mixture for the second substrate that has been heated to a high temperature is injected, so that the first molded body of the semi-molded body and the unfired heating resistance are brought into contact with the semi-molded body. Part of the body surface may melt. In particular, if this occurs in the vicinity of the unfired bent-back portion of the unfired heating resistor, the performance of the fired heating resistor may be degraded. On the other hand, the injected second substrate mixture moves a relatively long distance in the axial direction. For this reason, the mixture for the second substrate, which was at a high temperature immediately after the injection, is slightly cooled during this movement and becomes a lower temperature than immediately after the injection.

そこで、このセラミックヒータの製造方法では、第2成形体成形工程において、半成形体の基端を通り、先端に向けて第2基体用混合物を射出している。これにより、先端側では、第2基体用混合物が比較的低温となるので、半成形体のうち、未焼成発熱抵抗体の未焼成曲げ返し部及びこの付近の第1成形体の表面が溶けだすおそれを小さくできる。従って、焼成後のセラミックヒータの性能の低下を抑制できる。   Therefore, in this ceramic heater manufacturing method, in the second molded body molding step, the second base mixture is injected toward the distal end through the proximal end of the semi-molded body. Thereby, since the mixture for the second substrate becomes relatively low temperature at the tip side, the unfired bent-back portion of the unfired heating resistor and the surface of the first formed body in the vicinity thereof melt out of the semi-formed body. The fear can be reduced. Accordingly, it is possible to suppress a decrease in the performance of the ceramic heater after firing.

更に、上述のセラミックヒータの製造方法であって、前記未焼成曲げ返し部と前記成形体前側部との前側境界において、上記未焼成曲げ返し部の前記第1成形体中に埋められた深さを前側深さ、上記第1成形体から突出した突出高さを前側高さとしたとき、前記半成形体成形工程は、上記前側高さが上記前側深さよりも小さい形態に、上記半成形体を成形するセラミックヒータの製造方法とすると良い。   Furthermore, in the method for manufacturing the ceramic heater described above, the depth of the unfired bent-back portion embedded in the first molded body at the front boundary between the unfired bent-back portion and the molded body front side portion. Is the front depth, and the protruding height protruding from the first molded body is the front height, the half molded body molding step is to form the half molded body in a form in which the front side height is smaller than the front side depth. A method of manufacturing a ceramic heater to be molded is preferable.

このセラミックヒータの製造方法では、半成形体成形工程で、未焼成曲げ返し部のうち、前側高さが前側深さよりも小さい形態に、半成形体を成形する。前側高さを前側深さよりも小さくすることにより、第2成形体成形工程において、射出された第2基体用混合物が、より容易に未焼成曲げ返し部を乗り越えることができる。このため、未焼成曲げ返し部付近で隣り合う第1成形体と第2成形体との界面に隙間が生じるのをさらに抑制でき、より耐久性の高いセラミックヒータを製造できる。   In this method of manufacturing a ceramic heater, in the semi-molded body molding step, the semi-molded body is molded into a form in which the front side height is smaller than the front side depth among the unfired bent-back portions. By making the front side height smaller than the front side depth, the injected second substrate mixture can more easily get over the unfired bent-back portion in the second molded body forming step. For this reason, it is possible to further suppress the formation of a gap at the interface between the first molded body and the second molded body adjacent to each other in the vicinity of the unfired bent-back portion, and it is possible to manufacture a more durable ceramic heater.

他の態様は、絶縁性セラミックからなり、軸線に沿って延びる形状を有する絶縁基体と、この絶縁基体内に埋設され、導電性セラミックからなる発熱抵抗体であって、上記絶縁基体の先端部内に配置され、上記軸線に沿う軸線方向のうち先端方向に曲げ返し部を向
けたU字状をなし、通電により発熱する発熱部、及び、この発熱部の両端から、上記軸線方向のうち上記先端方向とは逆の基端方向に向けて延びるリード部を有する発熱抵抗体と、を備えるグロープラグ用のセラミックヒータを有するグロープラグの製造方法であって、上記のいずれかに記載のセラミックヒータの製造方法により、上記セラミックヒータを製造するヒータ製造工程と、上記セラミックヒータを用いて、上記グロープラグを組み立てるプラグ組立工程と、を備えるグロープラグの製造方法である。
Another aspect is an insulating base made of an insulating ceramic and having a shape extending along the axis, and a heating resistor embedded in the insulating base and made of a conductive ceramic, and is formed in the tip of the insulating base. A U-shape which is arranged and has a U-shape with a bent-back portion facing the tip direction in the axial direction along the axis, and the tip direction in the axial direction from both ends of the heat generation portion and the heat generation portion A glow plug manufacturing method comprising a glow plug ceramic heater comprising: a heating resistor having a lead portion extending in a direction opposite to the base end of the glow plug, wherein the ceramic heater is manufactured according to any one of the above The method includes a heater manufacturing process for manufacturing the ceramic heater, and a plug assembly process for assembling the glow plug using the ceramic heater. It is a Ropuragu method of manufacturing.

このブロープラグの製造方法では、ヒータ製造工程で得た耐久性の高いセラミックヒータを用いてグロープラグを製造するので、グロープラグにおいても、耐久性を高くすることができる。   In this blow plug manufacturing method, since the glow plug is manufactured using the highly durable ceramic heater obtained in the heater manufacturing process, the durability of the glow plug can be increased.

実施形態に係るグロープラグの縦断面図である。It is a longitudinal cross-sectional view of the glow plug which concerns on embodiment. 実施形態に係るセラミックヒータの縦断面図である。It is a longitudinal cross-sectional view of the ceramic heater which concerns on embodiment. 実施形態に係るセラミックヒータの図2と直交する方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the direction orthogonal to FIG. 2 of the ceramic heater which concerns on embodiment. 実施形態に係り、半成形体成形工程で成形された半成形体のうち、先端部分の斜視図である。It is a perspective view of the front-end | tip part among the semi-molded bodies shape | molded by the semi-molded body shaping | molding process according to embodiment. 実施形態に係るセラミックヒータの製造方法の半成形体成形工程のうち、第1成形体の成形手順を説明する説明図である。It is explanatory drawing explaining the shaping | molding procedure of a 1st molded object among the semi-molded object shaping | molding processes of the manufacturing method of the ceramic heater which concerns on embodiment. 実施形態に係るセラミックヒータの製造方法の半成形体成形工程のうち、未焼成発熱抵抗体の成形手順を説明する説明図である。It is explanatory drawing explaining the shaping | molding procedure of a non-baking exothermic resistor among the semi-molded body shaping | molding processes of the manufacturing method of the ceramic heater which concerns on embodiment. 実施形態に係り、半成形体成形工程で成形された半成形体のうち、先端部分の縦断面図である。It is a longitudinal cross-sectional view of the front-end | tip part among the semi-molded bodies shape | molded by the semi-molded body shaping | molding process according to embodiment. 実施形態に係り、半成形体の縦断面を含む斜視図である。1 is a perspective view including a longitudinal section of a semi-molded product according to an embodiment. 実施形態に係るセラミックヒータの製造方法のうち、第2成形体成形工程を説明する説明図である。It is explanatory drawing explaining the 2nd molded object formation process among the manufacturing methods of the ceramic heater which concerns on embodiment. 実施形態に係るセラミックヒータの製造方法のうち、第2成形体成形工程での第2基体用混合物の進行を説明する説明図である。It is explanatory drawing explaining progress of the mixture for 2nd base | substrates in the 2nd molded object formation process among the manufacturing methods of the ceramic heater which concerns on embodiment. 実施形態に係る焼成前のセラミックヒータの縦断面図である。It is a longitudinal cross-sectional view of the ceramic heater before baking which concerns on embodiment. 実施形態に係る焼成前のセラミックヒータのうち、先端部分の縦断面図である。It is a longitudinal cross-sectional view of the front-end | tip part among the ceramic heaters before baking which concerns on embodiment. 従来技術に係り、通電部用成形体及び第1基体成形体の縦断面を含む斜視図である。FIG. 6 is a perspective view including a longitudinal section of a current-carrying part molded body and a first base body molded body according to a conventional technique. 従来技術に係るセラミックヒータの縦断面図である。It is a longitudinal cross-sectional view of the ceramic heater which concerns on a prior art.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態に係るセラミックヒータ2を用いたグロープラグ1の縦断面図を示す。
本実施形態に係るグロープラグ1は、図1に示すように、その軸線AXに沿う軸線方向HJのうち先端方向HS(図1において下方)に、通電により発熱するセラミックヒータ2を有する。
また、このセラミックヒータ2の基端側の部位を保持する筒状の主体金具3を有する。
この主体金具3は、自身の先端方向HSに位置し、セラミックヒータ2を保持するヒータ保持部材4と、このヒータ保持部材4の基端方向HKに位置する主体金具本体5とから構成されている。
このうち主体金具本体5は、軸線AXに沿って基端部5kから先端部5sまで延びる筒状をなしている。主体金具本体5の基端部5kには、六角断面形状の工具係合部5eが形成されている。また、主体金具本体5のうち、工具係合部5eよりも先端側の外周には、取付用のねじ部5fが形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal sectional view of a glow plug 1 using a ceramic heater 2 according to the present embodiment.
As shown in FIG. 1, the glow plug 1 according to the present embodiment includes a ceramic heater 2 that generates heat by energization in the tip end direction HS (downward in FIG. 1) in the axial direction HJ along the axis AX.
In addition, it has a cylindrical metal shell 3 that holds the proximal end portion of the ceramic heater 2.
The metal shell 3 is composed of a heater holding member 4 that holds the ceramic heater 2 and is located in the distal direction HS of the metal shell 3 and a metal shell body 5 that is located in the proximal direction HK of the heater holding member 4. .
Among these, the metal shell main body 5 has a cylindrical shape extending from the base end portion 5k to the tip end portion 5s along the axis AX. A tool engagement portion 5 e having a hexagonal cross-sectional shape is formed at the base end portion 5 k of the metal shell main body 5. Further, in the metal shell body 5, a mounting screw portion 5 f is formed on the outer periphery on the tip side of the tool engaging portion 5 e.

この主体金具本体5の内側には、その基端方向HKから、セラミックヒータ2に電力を供給するための棒状の金属端子軸6が、絶縁ブッシュ7を介して主体金具本体5と電気的に絶縁した状態で配置されている。   Inside the metal shell body 5, a rod-shaped metal terminal shaft 6 for supplying electric power to the ceramic heater 2 from the base end direction HK is electrically insulated from the metal shell body 5 via an insulating bush 7. It is arranged in the state.

ヒータ保持部材4は、筒状をなし、その基端部4kが主体金具本体5の先端部5sに溶接されている。このヒータ保持部材4には、前述のセラミックヒータ2の基端側の部位が挿入され固定されている。具体的には、セラミックヒータ2は、先端部2s及び基端部2kがそれぞれヒータ保持部材4から突出するようにして、ヒータ保持部材4内に圧入されて、これに保持されている。   The heater holding member 4 has a cylindrical shape, and a base end portion 4 k is welded to a tip end portion 5 s of the metal shell main body 5. The heater holding member 4 is inserted and fixed at the base end side portion of the ceramic heater 2 described above. Specifically, the ceramic heater 2 is press-fitted into and held by the heater holding member 4 such that the distal end portion 2s and the base end portion 2k protrude from the heater holding member 4, respectively.

主体金具本体5に挿通された金属端子軸6の基端部6kは、主体金具本体5よりも基端方向HKに突出して配置されている。そして、この基端部6kには、前述の絶縁ブッシュ7を介して端子金具8が取り付けられている。
一方、金属端子軸6の先端部6sは、筒状の接続リング9に挿入されて、これに溶接されている。また、この接続リング9には、他方でセラミックヒータ2の基端部2kが圧入され、基端部2kに設けられた一方の電極部18(図1では不図示。図2を参照)が、接続リング9に電気的に接続されている。これにより、セラミックヒータ2の一方の電極部18と、金属端子軸6とが電気的に接続されている。なお、セラミックヒータ2のもう一方の電極部19(図1では不図示。図2を参照)は、セラミックヒータ2を保持するヒータ保持部材4、従って、主体金具3に電気的に接続されている。
The base end portion 6k of the metal terminal shaft 6 inserted through the metal shell main body 5 is disposed so as to protrude from the metal shell main body 5 in the base end direction HK. A terminal fitting 8 is attached to the base end 6k via the insulating bush 7 described above.
On the other hand, the tip portion 6s of the metal terminal shaft 6 is inserted into a cylindrical connection ring 9 and welded thereto. The connecting ring 9 is press-fitted with the base end 2k of the ceramic heater 2 on the other side, and one electrode portion 18 (not shown in FIG. 1; see FIG. 2) provided on the base end 2k, It is electrically connected to the connection ring 9. Thereby, one electrode part 18 of the ceramic heater 2 and the metal terminal shaft 6 are electrically connected. The other electrode portion 19 (not shown in FIG. 1; see FIG. 2) of the ceramic heater 2 is electrically connected to the heater holding member 4 that holds the ceramic heater 2, and thus the metal shell 3. .

次に、本実施形態に係るセラミックヒータ2について説明する。図2及び図3に、セラミックヒータ2の縦断面図を示す。
セラミックヒータ2は、図2及び図3に示すように、軸線AXに沿って基端部2kから先端部2sまで延びる円柱状をなす。そして、このセラミックヒータ2は、外形が円柱状をなす絶縁基体10の中に、通電によって発熱する発熱抵抗体11が埋設されたものである。
Next, the ceramic heater 2 according to this embodiment will be described. 2 and 3 are longitudinal sectional views of the ceramic heater 2.
As shown in FIGS. 2 and 3, the ceramic heater 2 has a columnar shape extending from the base end 2k to the front end 2s along the axis AX. The ceramic heater 2 is formed by embedding a heating resistor 11 that generates heat when energized in an insulating substrate 10 whose outer shape is cylindrical.

このうち絶縁基体10は、絶縁性セラミック(具体的には、窒化珪素質セラミック)からなる。この絶縁基体10は、セラミックヒータ2の基端部2kに対応した基端部10kから、セラミックヒータ2の先端部2sに対応した先端部10sまで、軸線AX方向に延びている。なお、先端部2sは、円柱角部がR面取りされている。   Of these, the insulating base 10 is made of an insulating ceramic (specifically, a silicon nitride ceramic). The insulating base 10 extends in the axis AX direction from a base end 10 k corresponding to the base end 2 k of the ceramic heater 2 to a tip 10 s corresponding to the tip 2 s of the ceramic heater 2. The tip 2s has a rounded chamfer at the cylindrical corner.

絶縁基体10に埋設された発熱抵抗体11は、発熱部12と、これに繋がる一対のリード部14,15とから一体的に構成されている。この発熱抵抗体11は、導電性セラミック(具体的には、導電成分として炭化タングステンを含有する窒化珪素質セラミック)から形成されている。   The heat generating resistor 11 embedded in the insulating base 10 is integrally formed of a heat generating portion 12 and a pair of lead portions 14 and 15 connected to the heat generating portion 12. The heating resistor 11 is made of a conductive ceramic (specifically, a silicon nitride ceramic containing tungsten carbide as a conductive component).

このうち発熱部12は、絶縁基体10の先端部10s内に配置され、曲げ返し部13を軸線AXに沿う軸線方向HJのうち先端方向HSに向けたU字状をなしており、通電により発熱する部分となる。
また、一対のリード部14,15は、発熱部12の両端12a,12bから、軸線方向HJのうち先端方向HSとは逆の基端方向HKに向けて、互いに平行に延びている。
発熱抵抗体11の一方のリード部14は、絶縁基体10の基端部10k付近に位置し、絶縁基体10の外周面10gに露出して、接続リング9と電気的に接続する電極部18を有している。また、他方のリード部15は、電極部18よりもやや先端方向HSに位置し、絶縁基体10の外周面10gに露出して、ヒータ保持部材4と電気的に接続する電極部19を有している。また、電極部18,19は、それぞれ軸線AXから見て、軸線方向HJに直交し且つリード部14,15が並ぶ並び方向HNの外側に向けて延びている(図
2参照)。なお、図2と直交する方向から見た図3では、電極部18,19の記載を省略している。
Among them, the heat generating portion 12 is disposed in the distal end portion 10s of the insulating base 10, and has a U-shape in which the bent-back portion 13 is directed toward the distal end direction HS in the axial direction HJ along the axis AX. It becomes a part to do.
The pair of lead portions 14 and 15 extend in parallel with each other from both ends 12a and 12b of the heat generating portion 12 toward the proximal direction HK opposite to the distal direction HS in the axial direction HJ.
One lead portion 14 of the heating resistor 11 is located in the vicinity of the base end portion 10 k of the insulating base 10, is exposed to the outer peripheral surface 10 g of the insulating base 10, and has an electrode portion 18 electrically connected to the connection ring 9. Have. The other lead portion 15 has an electrode portion 19 that is located slightly in the tip direction HS from the electrode portion 18, is exposed on the outer peripheral surface 10 g of the insulating base 10, and is electrically connected to the heater holding member 4. ing. Moreover, the electrode parts 18 and 19 are extended toward the outer side of the arrangement direction HN in which the lead parts 14 and 15 are arranged in a direction orthogonal to the axial direction HJ when viewed from the axis AX (see FIG. 2). In addition, in FIG. 3 seen from the direction orthogonal to FIG. 2, description of the electrode parts 18 and 19 is abbreviate | omitted.

次に、本実施形態に係るセラミックヒータ2及びグロープラグ1の製造方法について説明する。
まず、半成形体成形工程について図4〜図8を参照して説明する。図4は、半成形体成形工程で成形される半成形体34のうち、先端部分の斜視図である。この工程では、焼成により絶縁基体10の一部となる第1成形体30、及び、焼成により発熱抵抗体11となる未焼成発熱抵抗体33を有する半成形体34を成形する。このうち、第1成形体30は、第1絶縁性セラミック粉末(主として窒化珪素質セラミック粉末)及び第1バインダを混合した第1基体用混合物KK1からなる。また、未焼成発熱抵抗体33は、導電性セラミック粉末(導電成分として炭化タングステン粉末を含有する窒化珪素質セラミック粉末)及び第2バインダを混合した発熱体用混合物KHからなる。
Next, a method for manufacturing the ceramic heater 2 and the glow plug 1 according to this embodiment will be described.
First, the semi-molded body molding process will be described with reference to FIGS. FIG. 4 is a perspective view of the tip portion of the half-molded body 34 molded in the half-molded body molding step. In this step, a semi-molded body 34 having a first molded body 30 that becomes a part of the insulating substrate 10 by firing and an unfired heating resistor 33 that becomes the heating resistor 11 by firing is molded. Among these, the 1st molded object 30 consists of the 1st base material mixture KK1 which mixed the 1st insulating ceramic powder (mainly silicon nitride ceramic powder) and the 1st binder. The non-fired heating resistor 33 is composed of a heating element mixture KH in which conductive ceramic powder (silicon nitride ceramic powder containing tungsten carbide powder as a conductive component) and a second binder are mixed.

未焼成発熱抵抗体33は、焼成により発熱部12となる未焼成発熱部31、未焼成発熱部31の両端から延びて、焼成後にリード部14,15となる未焼成リード部36,37を有する。このうち、未焼成発熱部31は、焼成により曲げ返し部13となる未焼成曲げ返し部32を含む。また、未焼成曲げ返し部32は、その伸延方向HEに沿って、U字状をなしている。   The non-fired heating resistor 33 includes an unfired heat generating portion 31 that becomes the heat generating portion 12 by firing, and unfired lead portions 36 and 37 that extend from both ends of the unfired heat generating portion 31 and become the lead portions 14 and 15 after firing. . Among these, the unfired heat generating portion 31 includes an unfired bent-back portion 32 that becomes the bent-back portion 13 by firing. In addition, the unfired bent-back portion 32 has a U shape along the extending direction HE.

次いで、半成型体成形工程のうち、第1成形体30と未焼成発熱抵抗体33の成形手順について説明する。まず、図5のように、第1成形体30を成形するための2つの金型40,41を上下に組み合わせることにより、2つの金型40,41の間にキャビティCAを構成する。また、下側の金型41のうち、キャビティCAの先端側GSには、充填口42、ゲート43、及び、これらを結び第1基体用混合物KK1の通り道となる射出路SAを形成してある。次いで、図示しない射出装置を用いて、第1基体用混合物KK1を加熱して流動体とした上で、充填口42からキャビティCAに向けて射出する。このようにして射出成形法によって、第1成形体30を成形する。   Next, in the semi-molded body molding step, the molding procedure of the first molded body 30 and the unfired heating resistor 33 will be described. First, as shown in FIG. 5, the cavity CA is formed between the two molds 40, 41 by combining the two molds 40, 41 for molding the first molded body 30 up and down. Further, in the lower mold 41, the front end GS of the cavity CA is formed with a filling port 42, a gate 43, and an injection path SA that connects these and serves as a passage for the first substrate mixture KK1. . Next, using a not-shown injection device, the first substrate mixture KK1 is heated to form a fluid, and then injected from the filling port 42 toward the cavity CA. Thus, the 1st molded object 30 is shape | molded by the injection molding method.

次に、図6のように、下側の金型41に第1成形体30を残したままとして、第1成形体30を成形型の一部として用いる一方、上側の金型40を未焼成発熱抵抗体33の上側の形態に対応した凹部を設けた別の金型44に交換する。これにより、第1成形体30と金型44との間にキャビティCBを構成する。また、上側の金型44のうち、キャビティCBの基端側GKには、充填口45、ゲート46、及び、これらを結び発熱体用混合物KHの通り道となる射出路SBを形成してある。次いで、図示しない射出装置を用いて、発熱体用混合物KHを加熱して流動体とした上で、充填口45からキャビティCBに向けて射出する。このようにして射出成形法によって、第1成形体30と一体に未焼成発熱抵抗体33を成形して、半成形体34を形成する。   Next, as shown in FIG. 6, the first molded body 30 is used as a part of the mold while the first molded body 30 is left in the lower mold 41, while the upper mold 40 is not fired. It replaces | exchanges for another metal mold | die 44 provided with the recessed part corresponding to the form of the upper side of the heating resistor 33. FIG. Thereby, a cavity CB is formed between the first molded body 30 and the mold 44. Further, in the upper mold 44, the base end side GK of the cavity CB is formed with a filling port 45, a gate 46, and an injection path SB that connects these and serves as a passage for the heating element mixture KH. Next, using a not-shown injection device, the heating element mixture KH is heated to form a fluid, and then injected from the filling port 45 toward the cavity CB. In this manner, the non-fired heating resistor 33 is molded integrally with the first molded body 30 by the injection molding method to form the semi-molded body 34.

図7は、半成形体34の先端部分の縦断面図である。また、図8は、この断面を含めた斜視図である。ここで、未焼成発熱部31の未焼成曲げ返し部32は、その伸延方向HE全体に亘って、一部が第1成形体30中に埋められる一方、残部が第1成形体30から突出した形態になっている。そして、第1成形体30のうち、未焼成曲げ返し部32よりも曲げ返しの半径方向HRの内側RI(図7中、右側)に位置する部位を成形体内側部52、半径方向HRの外側RO(図7中、左側)に位置する部位を成形体外側部55としたとき、成形体内側部52が、第2成形体成形工程(後述する)において、射出された第2基体用混合物KK2(後述する)が先に届く成形体前側部52となる。また、成形体外側部55が、第2成形体成形工程において、第2基体用混合物KK2が未焼成曲げ返し部32の乗り越えた後に届く成形体後側部55となる。ここで、未焼成曲げ返し部32のうち、成形体前側部52(成形体内側部)との前側境界54(内側境界)において、第1成
形体30中に埋められた深さを前側深さHD1、第1成形体30から突出した突出高さを前側高さHH1とする。また、成形体後側部55(成形体外側部)との後側境界57(外側境界)において、第1成形体30中に埋められた深さを後側深さHD2、第1成形体30から突出した突出高さを後側高さHH2とする。このとき、半成形体34は、前側高さHH1が前側深さHD1よりも小さく、また、後側高さHH2が後側深さHD2よりも小さくされている。さらに、後側高さHH2が前側高さHH1より小さくされている。
FIG. 7 is a longitudinal sectional view of the tip portion of the semi-molded product 34. FIG. 8 is a perspective view including this cross section. Here, the unfired bent-back portion 32 of the unfired heat generating portion 31 is partially embedded in the first molded body 30 over the entire extending direction HE, while the remaining portion protrudes from the first molded body 30. It is in form. And the site | part located in the inner side RI (right side in FIG. 7) of the radial direction HR of bending back from the unfired bending-back part 32 among the 1st molded objects 30 is the outer side of the molded body inner part 52 and radial direction HR. When the portion located on the RO (left side in FIG. 7) is the molded body outer portion 55, the molded body inner portion 52 is injected in the second molded body molding step (described later). (To be described later) becomes the molded body front side portion 52 that reaches first. Further, the outer side portion 55 of the molded body becomes the rear side portion 55 of the molded body that is reached after the second base mixture KK2 gets over the unfired bent-back portion 32 in the second molded body molding step. Here, in the unfired bent-back portion 32, the depth buried in the first molded body 30 is defined as the front depth at the front boundary 54 (inner boundary) with the molded body front side portion 52 (molded body inner portion). Let HD1 and the protrusion height which protruded from the 1st molded object 30 be front side height HH1. In addition, at the rear boundary 57 (outer boundary) with the rear side portion 55 (outer portion of the molded body), the depth buried in the first molded body 30 is defined as the rear depth HD2 and the first molded body 30. Let the protrusion height which protruded from the back side height HH2 be. At this time, the semi-molded body 34 has a front height HH1 smaller than the front depth HD1 and a rear height HH2 smaller than the rear depth HD2. Further, the rear height HH2 is smaller than the front height HH1.

次に、第2成形体成形工程について、図9〜図12を参照して説明する。この工程では、焼成により絶縁基体10の残部となる第2成形体35を、上述の半成形体34と一体に成形する。また、第2成形体35は、第2絶縁性セラミック粉末(主として窒化珪素質セラミック粉末)及び第3バインダを混合した第2基体用混合物KK2からなる。
なお、本実施形態では、第1基体用混合物KK1と第2基体用混合物KK2は、同じ成分の絶縁性セラミック粉末及びバインダで構成されている。即ち、第1絶縁性セラミック粉末と第2絶縁性セラミック粉末、第1バインダと第3バインダは、それぞれ同じ成分で構成されている。
Next, a 2nd molded object shaping | molding process is demonstrated with reference to FIGS. In this step, the second molded body 35 that becomes the remainder of the insulating base 10 by firing is molded integrally with the above-described semi-molded body 34. The second compact 35 is made of a second base mixture KK2 in which a second insulating ceramic powder (mainly silicon nitride ceramic powder) and a third binder are mixed.
In the present embodiment, the first substrate mixture KK1 and the second substrate mixture KK2 are composed of insulating ceramic powder and binder having the same components. That is, the first insulating ceramic powder and the second insulating ceramic powder, and the first binder and the third binder are composed of the same components.

まず、図9に示すように、半成形体34を、下側の金型41上に配置し、これを第2成形体成形用の上側の金型47と組み合わせる。これにより、半成形体34と金型47との間にキャビティCCを構成する。また、上側の金型47のうち、キャビティCCの基端側GKには、充填口48、ゲート49、及び、これらを結び第2基体用混合物KK2の通り道となる射出路SCを形成してある。次いで、図示しない射出装置を用いて、第2基体用混合物KK2を加熱して流動体とした上で、充填口48からキャビティCCに向けて射出する。   First, as shown in FIG. 9, the half-molded body 34 is placed on the lower mold 41 and is combined with the upper mold 47 for molding the second molded body. As a result, a cavity CC is formed between the half-molded body 34 and the mold 47. In addition, in the upper die 47, the base end side GK of the cavity CC is formed with a filling port 48, a gate 49, and an injection path SC that connects these and serves as a passage for the second substrate mixture KK2. . Next, using a not-shown injection device, the second substrate mixture KK2 is heated to form a fluid, and then injected from the filling port 48 toward the cavity CC.

すると、図10に示すように、射出された第2基体用混合物KK2は、半成形体34に接しつつ、先端側GSに移動して、半成形体34の未焼成曲げ返し部32に届き、さらにこれを乗り越えて先端側GSに進行する。その際、半成形体34は、未焼成曲げ返し部32のうち、前側高さHH1が前側深さHD1よりも小さく、また、後側高さHH2が後側深さHD2よりも小さい形態になっている。このため、第2基体用混合物KK2が、未焼成曲げ返し部32を容易に乗り越えられると共に、乗り越えた際に、第1成形体30の成形体後側部55と未焼成曲げ返し部32との境界付近において、第1成形体30と第2成形体35とが互いに密着することができる。かくして、キャビティCC内に、第2基体用混合物KK2が充填され、第2成形体35が半成形体34と一体に成形されて、図11及び図12に示すような一体成形物60となる。この一体成形物60では、第1成形体30と第2成形体35は、その界面61,62で互いに密着し、一体化している。   Then, as shown in FIG. 10, the injected second substrate mixture KK2 moves to the tip side GS while in contact with the semi-formed body 34, and reaches the unfired bent-back portion 32 of the semi-formed body 34. Furthermore, it gets over this and advances to the front end side GS. At that time, the semi-molded body 34 has a configuration in which the front height HH1 is smaller than the front depth HD1 and the rear height HH2 is smaller than the rear depth HD2 in the unfired bent-back portion 32. ing. For this reason, the mixture KK2 for the second substrate can easily get over the unfired bent-back portion 32, and when it gets over, the molded body rear side portion 55 of the first molded body 30 and the unfired bent-back portion 32 In the vicinity of the boundary, the first molded body 30 and the second molded body 35 can be in close contact with each other. Thus, the cavity CC is filled with the second base mixture KK2, and the second molded body 35 is molded integrally with the semi-molded body 34 to form an integrally molded product 60 as shown in FIGS. In the integrally molded product 60, the first molded body 30 and the second molded body 35 are in close contact with each other at their interfaces 61 and 62 and integrated.

この後、半成形体34と第2成形体35からなる一体成形物60を、公知の焼成工程によって焼成することにより、セラミックヒータ2を製造する。   Then, the ceramic heater 2 is manufactured by baking the integrally molded product 60 which consists of the semi-molded body 34 and the 2nd molded object 35 by a well-known baking process.

さらに、このセラミックヒータ2とは別に、図1に示すグロープラグ1を構成する各部材(ヒータ保持部材4、主体金具本体5、金属端子軸6、など)を用意する。そして、公知のプラグ製造工程によって、これらの各部材を組み立てることにより、グロープラグ1が完成する。   Further, separately from the ceramic heater 2, members (heater holding member 4, metal shell body 5, metal terminal shaft 6, etc.) constituting the glow plug 1 shown in FIG. 1 are prepared. Then, the glow plug 1 is completed by assembling these members by a known plug manufacturing process.

以上で説明したように、本実施形態のセラミックヒータ2の製造方法では、半成形体成形工程において、後側高さHH2が後側深さHD2よりも小さい形態に、半成形体34を成形した。そして、第2成形体成形工程において、第2基体用混合物KK2を、先端方向HSまたは基端方向HKに向けて射出する。すると、射出された第2基体用混合物KK2は、半成形体34に接しつつ、先端側GSまたは基端側GKへと移動して、半成形体34の未焼成曲げ返し部32に届き、これを乗り越えて進行する。   As described above, in the method for manufacturing the ceramic heater 2 according to the present embodiment, in the semi-molded body molding step, the semi-molded body 34 is molded in a form in which the rear side height HH2 is smaller than the rear side depth HD2. . In the second molded body molding step, the second base mixture KK2 is injected toward the distal direction HS or the proximal direction HK. Then, the injected second substrate mixture KK2 moves to the front end side GS or the base end side GK while being in contact with the semi-formed body 34, and reaches the unfired bent-back portion 32 of the semi-formed body 34. Go ahead and proceed.

ここで、後側高さHH2が後側深さHD2よりも小さい形態に、半成形体34を成形してあることにより、第2成形体35となる第2基体用混合物KK2が、半成形体34の未焼成曲げ返し部32を乗り越えた際に、第1成形体30の成形体後側部55と未焼成曲げ返し部32との境界付近において、第1成形体30と第2成形体35とを互いに密着させ、一体化することができる。このため、焼成後のセラミックヒータ2は、絶縁基体10のうち発熱抵抗体11の曲げ返し部13付近において、第1成形体30と第2成形体35との界面61,62に隙間が生じていたことに起因するスリット状に延びる空隙や列状に並ぶ空隙が形成されることが抑制され、耐久性の高いセラミックヒータ2を製造できた。   Here, since the semi-molded body 34 is molded in a form in which the rear height HH2 is smaller than the rear depth HD2, the second base mixture KK2 to be the second molded body 35 is converted into a semi-molded body. 34, the first molded body 30 and the second molded body 35 are located in the vicinity of the boundary between the molded body rear side portion 55 of the first molded body 30 and the unfired bent-back section 32. And can be integrated with each other. For this reason, in the fired ceramic heater 2, there are gaps at the interfaces 61 and 62 between the first molded body 30 and the second molded body 35 in the vicinity of the bent-back portion 13 of the heating resistor 11 in the insulating substrate 10. The formation of slit-like voids and voids arranged in a row due to this was suppressed, and a highly durable ceramic heater 2 could be manufactured.

また、本実施形態では、半成形体成形工程で、半成形体34を成形した後、第2成形体成形工程において、半成形体34の基端34Kを通り、先端34Sに向けて第2基体用混合物KK2を射出する。すると、射出された第2基体用混合物KK2は、半成形体34に接しつつ、軸線方向HJに比較的長い距離を移動する。そして、この移動の間に若干冷えた第2基体用混合物KK2が、先端側GSの半成形体34の未焼成曲げ返し部32に届く。   In the present embodiment, after the semi-molded body 34 is molded in the semi-molded body molding step, the second base body passes through the base end 34K of the semi-molded body 34 and toward the tip 34S in the second molded body molding step. The mixture KK2 is injected. Then, the injected second substrate mixture KK2 moves in a relatively long distance in the axial direction HJ while being in contact with the semi-formed body 34. Then, the second substrate mixture KK2 slightly cooled during this movement reaches the unfired bent-back portion 32 of the semi-molded body 34 on the tip side GS.

このため、本実施形態の製造方法によれば、先端側GSでは、第2基体用混合物KK2が比較的低温となるので、半成形体34のうち、未焼成発熱抵抗体33の未焼成曲げ返し部32及びこの付近の第1成形体30の表面が溶けだすおそれを小さくできる。従って、焼成後のセラミックヒータ2の性能の低下を抑制できる。   For this reason, according to the manufacturing method of the present embodiment, the second base mixture KK2 becomes relatively low temperature at the distal end side GS, and therefore, the unfired bending resistance of the unfired heating resistor 33 in the semi-formed body 34 is reduced. The possibility that the surface of the part 32 and the first molded body 30 in the vicinity thereof melts can be reduced. Accordingly, it is possible to suppress a decrease in performance of the ceramic heater 2 after firing.

また、本実施形態では、半成形体成形工程で、未焼成曲げ返し部32のうち、前側高さHH1が前側深さHD1よりも小さい形態に、半成形体34を成形してある。これにより、第2成形体成形工程で射出された第2基体用混合物KK2が、より容易に未焼成曲げ返し部32を乗り越えることができる。このため、未焼成曲げ返し部32付近で隣り合う第1成形体30と第2成形体35との界面61,62に隙間が生じるのをさらに抑制でき、より耐久性の高いセラミックヒータ2を製造できる。
なお、半成形体成形工程において、未焼成曲げ返し部32のうち、後側高さHH2が前側高さHH1と同等か前側高さHH1より小さい形態に、半成形体34を成形すると良い。このように成形することにより、前側よりも後側で密着しにくい第1成形体30と第2成形体35とを、後側でも互いに密着することができる。
In the present embodiment, in the semi-molded body molding step, the semi-molded body 34 is molded into a form in which the front height HH1 is smaller than the front depth HD1 in the unfired bent-back portion 32. Thereby, the mixture KK2 for the second base injected in the second molded body forming step can more easily get over the unfired bent-back portion 32. For this reason, it is possible to further suppress the generation of gaps at the interfaces 61 and 62 between the first molded body 30 and the second molded body 35 adjacent to each other in the vicinity of the unfired bent-back portion 32, and manufacture a ceramic heater 2 having higher durability. it can.
In the semi-molded body molding step, it is preferable to mold the semi-molded body 34 in a form in which the rear side height HH2 is equal to or smaller than the front side height HH1 in the unfired bent-back portion 32. By molding in this way, the first molded body 30 and the second molded body 35 that are less likely to adhere to the rear side than the front side can be brought into close contact with each other also on the rear side.

また、本実施形態に係るグロープラグ1の製造方法では、ヒータ製造工程で製造した、第1成形体30と第2成形体35との界面61,62での接合不良が生じにくく、耐久性の高いセラミックヒータ2を用いることができるので、グロープラグ1も、耐久性を高くすることができる。   Further, in the method for manufacturing the glow plug 1 according to the present embodiment, poor bonding at the interfaces 61 and 62 between the first molded body 30 and the second molded body 35 manufactured in the heater manufacturing process is unlikely to occur, and the durability is high. Since the high ceramic heater 2 can be used, the glow plug 1 can also have high durability.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、上述の実施形態では、セラミックヒータ2及び絶縁基体10の外形を円柱状としたが、この他に、楕円柱状、長円柱状、四角柱などの多角柱状などでも良く、一部にくびれ部分や径大部分を有するものであっても良い。
また、上述の実施形態では、第2成形体35のほか、半成形体34の第1成形体30及び未焼成発熱抵抗体33も射出成形法により、成形したが、半成形体34の第1成形体30及び未焼成発熱抵抗体33の成形方法は、粉末プレス、スリップキャスティングなどの射出成形法以外の成形手法を用いても良い。
また、上述の本実施形態では、半成形体成形工程において、まず、第1成形体30を成形した後、この第1成形体30に一体に未焼成発熱抵抗体33を成形して、半成形体34を形成した。しかし、これとは逆に、先に未焼成発熱抵抗体33を金型で成形しておき、これを別の金型に移した上で、この未焼成発熱抵抗体33と一体に第1成形体30を成形して、半成形体34を形成する手順を用いても良い。
また、上述の実施形態では、第1基体用混合物KK1及び第2基体用混合物KK2を共に、同じ絶縁性セラミック粉末(主として窒化珪素質セラミック粉末)及びバインダからなる構成とした。しかし、用いる絶縁性セラミック粉末は、同一の粉末を用いても良いし、製法や成分が異なる粉末を用いても良い。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. .
For example, in the above-described embodiment, the outer shape of the ceramic heater 2 and the insulating substrate 10 is a cylindrical shape. However, in addition to this, an elliptical column shape, a long column shape, a polygonal column shape such as a quadrangular column, or the like may be used. Or having a large diameter portion.
In the above-described embodiment, in addition to the second molded body 35, the first molded body 30 and the unfired heating resistor 33 of the semi-molded body 34 are molded by the injection molding method. As a molding method of the molded body 30 and the unfired heating resistor 33, a molding technique other than an injection molding method such as powder pressing or slip casting may be used.
In the above-described embodiment, in the semi-molded body molding step, the first molded body 30 is first molded, and then the unfired heating resistor 33 is molded integrally with the first molded body 30 to perform the semi-molding. A body 34 was formed. However, conversely, the unfired heating resistor 33 is first molded with a mold, transferred to another mold, and then integrally molded with the unfired heating resistor 33 in the first molding. A procedure for forming the body 30 and forming the semi-formed body 34 may be used.
In the above-described embodiment, the first base mixture KK1 and the second base mixture KK2 are both composed of the same insulating ceramic powder (mainly silicon nitride ceramic powder) and binder. However, as the insulating ceramic powder to be used, the same powder may be used, or powders having different manufacturing methods and components may be used.

AX 軸線
1 グロープラグ
2 セラミックヒータ
2k (セラミックヒータの)基端部
2s (セラミックヒータの)先端部
10 絶縁基体
10k (絶縁基体の)基端部
10s (絶縁基体の)先端部
HJ 軸線方向
HS 先端方向
HK 基端方向
HN 並び方向
11 発熱抵抗体
12 発熱部
13 曲げ返し部
14,15 リード部
30 第1成形体
31 未焼成発熱部
32 未焼成曲げ返し部
33 未焼成発熱抵抗体
34 半成形体
34K (半成形体の)基端
34S (半成形体の)先端
35 第2成形体
HE 伸延方向
KK1 第1基体用混合物
KK2 第2基体用混合物
KH 発熱体用混合物
GK 基端側
GS 先端側
HR (曲げ返しの)半径方向
RI (半径方向の)内側
RO (半径方向の)外側
52 成形体内側部(成形体前側部)
54 内側境界(前側境界)
55 成形体外側部(成形体後側部)
57 外側境界(後側境界)
HH1 前側高さ
HD1 前側深さ
HH2 後側高さ
HD2 後側深さ
60 一体成形物
AX Axis 1 Glow plug 2 Ceramic heater 2k (Ceramic heater) base end 2s (Ceramic heater) tip 10 Insulating base 10k (Insulating base) base 10s (Insulating base) tip HJ Axial direction HS Tip Direction HK Base end direction HN Alignment direction 11 Heating resistor 12 Heating part 13 Bending part 14, 15 Lead part 30 First molded body 31 Unsintered heating part 32 Unsintered bending part 33 Unsintered heating resistor 34 Semi-molded body 34K (Semi-molded body) Base end 34S (Semi-molded body) Tip 35 Second molded body HE Extension direction KK1 First substrate mixture KK2 Second substrate mixture KH Heating body mixture GK Base end side GS Tip side HR Radial direction RI (in the direction of bending) Inner RO (in the radial direction) Outer side 52 in the radial direction Inner part of the molded body (front side of the molded body)
54 Inner boundary (front boundary)
55 Molded body outer side (molded body rear side)
57 Outer boundary (rear boundary)
HH1 Front height HD1 Front depth HH2 Rear height HD2 Rear depth 60 Integral molded product

Claims (4)

絶縁性セラミックからなり、軸線に沿って延びる形状を有する絶縁基体と、
この絶縁基体内に埋設され、導電性セラミックからなる発熱抵抗体であって、
上記絶縁基体の先端部内に配置され、上記軸線に沿う軸線方向のうち先端方向に曲げ返し部を向けたU字状をなし、通電により発熱する発熱部、及び、
この発熱部の両端から、上記軸線方向のうち上記先端方向とは逆の基端方向に向けて延びるリード部を有する
発熱抵抗体と、を備える
セラミックヒータの製造方法であって、
第1絶縁性セラミック粉末を含み、焼成により上記絶縁基体の一部となる第1成形体、及び、
導電性セラミック粉末を含み、焼成により上記発熱部となる未焼成発熱部であって、焼成により上記曲げ返し部となる未焼成曲げ返し部を含む未焼成発熱部を有し、焼成により上記発熱抵抗体となる未焼成発熱抵抗体、を有する
半成形体を成形する
半成形体成形工程と、
射出成形法により、上記先端方向または上記基端方向に向けて、第2絶縁性セラミック粉末を含む第2基体用混合物を射出して、焼成により上記絶縁基体の残部となる第2成形体を、上記半成形体と一体に成形する
第2成形体成形工程と、を備え、
上記半成形体は、
上記未焼成発熱抵抗体のうち、少なくとも上記未焼成発熱部の上記未焼成曲げ返し部が、その伸延方向全体に亘って、
一部が上記第1成形体中に埋められる一方、
残部が上記第1成形体から突出した形態をなしており、
上記半成形体の上記第1成形体のうち、
上記未焼成曲げ返し部よりも曲げ返しの半径方向の内側に位置する部位を成形体内側部とし、
上記未焼成曲げ返し部よりも上記半径方向の外側に位置する部位を成形体外側部とし、
上記成形体内側部及び上記成形体外側部のうち、
上記第2成形体成形工程において、射出された上記第2基体用混合物が先に届く部位を成形体前側部とし、
上記第2基体用混合物が前記未焼成曲げ返し部を乗り越えた後に届く部位を成形体後側部とし、
上記未焼成曲げ返し部と上記成形体後側部との後側境界において、上記未焼成曲げ返し部の上記第1成形体中に埋められた深さを後側深さ、上記第1成形体から突出した突出高さを後側高さとしたとき、
上記半成形体成形工程は、
少なくとも、上記後側高さが上記後側深さよりも小さい形態に、上記半成形体を成形する
セラミックヒータの製造方法。
An insulating base made of an insulating ceramic and having a shape extending along an axis;
A heating resistor embedded in the insulating substrate and made of a conductive ceramic,
A heating part that is disposed in the distal end portion of the insulating base and has a U-shape with the bent-back portion facing the distal end direction in the axial direction along the axis, and generates heat when energized; and
A heating resistor having a lead portion extending from both ends of the heat generating portion toward a base end direction opposite to the distal end direction in the axial direction,
A first molded body containing a first insulating ceramic powder and becoming a part of the insulating substrate by firing; and
An unsintered heat generating part that includes conductive ceramic powder and becomes the heat generating part when fired, and has an unsintered heat generating part including an unfired bent back part that becomes the bent back part when fired. A half-molded body molding step of molding a half-molded body having an unfired heating resistor to be a body,
By injection molding, the second base body containing the second insulating ceramic powder is injected toward the distal end direction or the base end direction, and the second molded body that becomes the remainder of the insulating base body by firing is obtained. A second molded body molding step of molding integrally with the semi-molded body,
The semi-molded body is
Among the unsintered heating resistors, at least the unsintered bent portion of the unsintered heating unit extends over the entire extending direction.
While a part is embedded in the first molded body,
The remaining portion has a form protruding from the first molded body,
Of the first molded body of the semi-molded body,
The part located inside the radial direction of bending than the unfired bending-back part is a molded body inner part,
A portion located outside the unfired bent-back portion in the radial direction is an outer portion of the molded body,
Of the molded body inner part and the molded body outer part,
In the second molded body molding step, the portion where the injected second base mixture reaches first is the front side of the molded body,
The portion that the mixture for the second substrate reaches after getting over the unfired bent-back portion is the rear side of the molded body,
At the rear boundary of the unfired bent-back portion and the rear side portion of the molded body, the depth buried in the first molded body of the unfired bent-back portion is defined as the rear depth, the first molded body. When the protruding height protruding from the rear side is
The semi-molded body molding step
A method for manufacturing a ceramic heater, wherein the semi-molded body is formed in a form in which at least the rear side height is smaller than the rear side depth.
請求項1に記載のセラミックヒータの製造方法であって、
前記第2成形体成形工程は、
前記半成形体の基端を通り、先端に向けて、前記第2基体用混合物を射出して、前記第2成形体を成形する
セラミックヒータの製造方法。
It is a manufacturing method of the ceramic heater according to claim 1,
The second molded body molding step includes:
A method for manufacturing a ceramic heater, wherein the second molded body is molded by injecting the second substrate mixture through the base end of the semi-molded body toward the distal end.
請求項1または請求項2に記載のセラミックヒータの製造方法であって、
前記未焼成曲げ返し部と前記成形体前側部との前側境界において、上記未焼成曲げ返し部の前記第1成形体中に埋められた深さを前側深さ、上記第1成形体から突出した突出高さを前側高さとしたとき、
前記半成形体成形工程は、
上記前側高さが上記前側深さよりも小さい形態に、上記半成形体を成形する
セラミックヒータの製造方法。
A method of manufacturing a ceramic heater according to claim 1 or 2,
At the front boundary between the unfired bent-back portion and the front side portion of the molded body, the depth buried in the first molded body of the unfired bent-back portion protruded from the first molded body. When the protruding height is the front height,
The semi-molded body molding step includes:
A method of manufacturing a ceramic heater, wherein the semi-molded body is formed in a form in which the front height is smaller than the front depth.
絶縁性セラミックからなり、軸線に沿って延びる形状を有する絶縁基体と、
この絶縁基体内に埋設され、導電性セラミックからなる発熱抵抗体であって、
上記絶縁基体の先端部内に配置され、上記軸線に沿う軸線方向のうち先端方向に曲げ返し部を向けたU字状をなし、通電により発熱する発熱部、及び、
この発熱部の両端から、上記軸線方向のうち上記先端方向とは逆の基端方向に向けて延びるリード部を有する
発熱抵抗体と、を備えるグロープラグ用のセラミックヒータを有する
グロープラグの製造方法であって、
請求項1〜請求項3のいずれか一項に記載のセラミックヒータの製造方法により、上記セラミックヒータを製造するヒータ製造工程と、
上記セラミックヒータを用いて、上記グロープラグを組み立てるプラグ組立工程と、
を備えるグロープラグの製造方法。
An insulating base made of an insulating ceramic and having a shape extending along an axis;
A heating resistor embedded in the insulating substrate and made of a conductive ceramic,
A heating part that is disposed in the distal end portion of the insulating base and has a U-shape with the bent-back portion facing the distal end direction in the axial direction along the axis, and generates heat when energized; and
A method of manufacturing a glow plug having a ceramic heater for a glow plug, comprising: a heating resistor having a lead portion extending from both ends of the heat generating portion toward a base end direction opposite to the distal end direction in the axial direction. Because
A heater manufacturing process for manufacturing the ceramic heater by the method for manufacturing a ceramic heater according to any one of claims 1 to 3,
A plug assembly process for assembling the glow plug using the ceramic heater;
A method for manufacturing a glow plug comprising:
JP2011250174A 2011-11-15 2011-11-15 Method for manufacturing ceramic heater and method for manufacturing glow plug Expired - Fee Related JP5837401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250174A JP5837401B2 (en) 2011-11-15 2011-11-15 Method for manufacturing ceramic heater and method for manufacturing glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250174A JP5837401B2 (en) 2011-11-15 2011-11-15 Method for manufacturing ceramic heater and method for manufacturing glow plug

Publications (2)

Publication Number Publication Date
JP2013105684A true JP2013105684A (en) 2013-05-30
JP5837401B2 JP5837401B2 (en) 2015-12-24

Family

ID=48625071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250174A Expired - Fee Related JP5837401B2 (en) 2011-11-15 2011-11-15 Method for manufacturing ceramic heater and method for manufacturing glow plug

Country Status (1)

Country Link
JP (1) JP5837401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755361A (en) * 2019-03-26 2020-10-09 日本碍子株式会社 Member for semiconductor manufacturing apparatus, method for manufacturing the same, and molding die

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168366A (en) * 1986-01-20 1987-07-24 富士写真フイルム株式会社 Molding die for molding junction of heater
JPH10278075A (en) * 1997-04-07 1998-10-20 Daisan Kanagata Seisakusho:Kk Mold for injection molding and molded form of the same
JP2003257594A (en) * 2002-02-27 2003-09-12 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater
JP2005135869A (en) * 2003-10-31 2005-05-26 Kyocera Corp Laminated sintered body, ceramic heater, gas sensor element, and method for manufacturing the laminated sintered body and the gas sensor element
WO2008123296A1 (en) * 2007-03-29 2008-10-16 Kyocera Corporation Ceramic heater, and its mold
WO2009057596A1 (en) * 2007-10-29 2009-05-07 Kyocera Corporation Process for producing conductor built-in ceramic
JP2010073417A (en) * 2008-09-17 2010-04-02 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, manufacturing method of glow plug, and ceramic heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168366A (en) * 1986-01-20 1987-07-24 富士写真フイルム株式会社 Molding die for molding junction of heater
JPH10278075A (en) * 1997-04-07 1998-10-20 Daisan Kanagata Seisakusho:Kk Mold for injection molding and molded form of the same
JP2003257594A (en) * 2002-02-27 2003-09-12 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater
JP2005135869A (en) * 2003-10-31 2005-05-26 Kyocera Corp Laminated sintered body, ceramic heater, gas sensor element, and method for manufacturing the laminated sintered body and the gas sensor element
WO2008123296A1 (en) * 2007-03-29 2008-10-16 Kyocera Corporation Ceramic heater, and its mold
WO2009057596A1 (en) * 2007-10-29 2009-05-07 Kyocera Corporation Process for producing conductor built-in ceramic
JP2010073417A (en) * 2008-09-17 2010-04-02 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, manufacturing method of glow plug, and ceramic heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755361A (en) * 2019-03-26 2020-10-09 日本碍子株式会社 Member for semiconductor manufacturing apparatus, method for manufacturing the same, and molding die

Also Published As

Publication number Publication date
JP5837401B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP4989719B2 (en) Ceramic heater and its mold
EP2570726B1 (en) Ceramic heater, method of producing the same, and glow plug using this ceramic heater
JP5215788B2 (en) Ceramic heater manufacturing method, glow plug manufacturing method, and ceramic heater
JP3924193B2 (en) Ceramic heater, glow plug using the same, and method for manufacturing ceramic heater
JP4555151B2 (en) Ceramic heater and glow plug equipped with the ceramic heater
JP5795029B2 (en) Ceramic heater, glow plug, ceramic heater manufacturing method, and glow plug manufacturing method
JP6140955B2 (en) Manufacturing method of ceramic heater
WO2010050380A1 (en) Ceramic heater
JP2001033037A (en) Ceramic heating rod, glow plug equipped with the same and manufacture of them
KR20080106339A (en) Multi-layer heating element
JP5837401B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP2015159094A (en) connection terminal
JP5837400B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
US20170074228A1 (en) Ceramic heater and glow plug
JP5844621B2 (en) Method for manufacturing ceramic heater, method for manufacturing glow plug, ceramic heater and glow plug
JP2003068433A (en) Manufacturing method of ceramic heater, and manufacturing method of glow plug
JP5227121B2 (en) Ceramic heater and method for manufacturing ceramic heater
EP3383130B1 (en) Heater and glow plug provided therewith
JP6513043B2 (en) Insert molded article and method of manufacturing the same
JP4139047B2 (en) Ceramic heater type glow plug and manufacturing method thereof
JP6342653B2 (en) Heater and glow plug equipped with the same
JP6105464B2 (en) Heater and glow plug equipped with the same
JP6512848B2 (en) Ceramic heater and glow plug
JP2011017504A (en) Glow plug
JP2011047641A (en) Glow plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees