JP2013105102A - Eyepiece - Google Patents

Eyepiece Download PDF

Info

Publication number
JP2013105102A
JP2013105102A JP2011250017A JP2011250017A JP2013105102A JP 2013105102 A JP2013105102 A JP 2013105102A JP 2011250017 A JP2011250017 A JP 2011250017A JP 2011250017 A JP2011250017 A JP 2011250017A JP 2013105102 A JP2013105102 A JP 2013105102A
Authority
JP
Japan
Prior art keywords
lens group
lens
eyepiece
conditional expression
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011250017A
Other languages
Japanese (ja)
Other versions
JP5853622B2 (en
Inventor
Motohisa Mori
元壽 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011250017A priority Critical patent/JP5853622B2/en
Publication of JP2013105102A publication Critical patent/JP2013105102A/en
Application granted granted Critical
Publication of JP5853622B2 publication Critical patent/JP5853622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Viewfinders (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eyepiece whose visibility can be adjusted and in which various aberrations such as a spherical aberration and a coma aberration are satisfactorily corrected.SOLUTION: An eyepiece comprises, in the order from an observation object side: a first lens group G1 having negative refractive power; a second lens group G2 having positive refractive power: and a third lens group G3 having negative refractive power. The second lens group G2 includes at least one aspherical surface, and by moving the second lens group G2 along an optical axis, visibility can be adjusted. The eyepiece satisfies conditional expressions (1): 0.25<d2/TL<0.50 and (2): 0.3<f2/f<0.6, where d2 is a movement distance of the second lens group G2 on the optical axis during the visibility adjustment, TL is a total thickness of the eyepiece (a distance on the optical axis from an optical surface of the first lens group G1 nearest to the observation object side to an optical surface of the third lens group G3 nearest to an eye point side), f2 is a focal distance of the second lens group G2, and f is a focal distance of the eyepiece at -1 [m].

Description

本発明は、正立系を介して観察する接眼レンズに関する。   The present invention relates to an eyepiece lens that is observed through an erecting system.

近年、視度調整が可能な接眼レンズが提案されている(例えば、特許文献1を参照)。   In recent years, eyepiece lenses capable of diopter adjustment have been proposed (see, for example, Patent Document 1).

特許第3850421号公報Japanese Patent No. 3850421

しかしながら、従来の接眼レンズに対して、視度調整範囲内でより良好な収差の確保が
望まれていた。
However, it has been desired to secure better aberrations within the diopter adjustment range compared to conventional eyepieces.

本発明は、このような問題に鑑みてなされたものであり、視度調整範囲内で諸収差が良
好に補正された接眼レンズを提供することを目的とする。
The present invention has been made in view of such a problem, and an object thereof is to provide an eyepiece in which various aberrations are favorably corrected within a diopter adjustment range.

このような目的を達成するため、本発明に係る接眼レンズは、観察物体側から順に並ん
だ、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折
力を有する第3レンズ群とを有し、前記第2レンズ群は少なくとも1つの非球面を有し、
前記第2レンズ群を光軸に沿って移動させることにより視度調整が可能であり、以下の条
件式を満足する。
In order to achieve such an object, an eyepiece according to the present invention includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative lens arrayed in order from the observation object side. A third lens group having a refractive power of at least one, and the second lens group has at least one aspheric surface,
Diopter adjustment is possible by moving the second lens group along the optical axis, and the following conditional expression is satisfied.

0.25 < d2/TL < 0.50
0.3 < f2/f < 0.6
但し、
d2:前記第2レンズ群の視度調整時の光軸上での移動距離、
TL:前記接眼レンズの総厚(前記第1レンズ群の最も観察物体側の光学面から前記第
3レンズ群の最もアイポイント側の光学面までの光軸上の距離)、
f2:前記第2レンズ群の焦点距離、
f:−1[m-1]時の前記接眼レンズの焦点距離。
0.25 <d2 / TL <0.50
0.3 <f2 / f <0.6
However,
d2: a movement distance on the optical axis at the time of diopter adjustment of the second lens group,
TL: total thickness of the eyepiece lens (distance on the optical axis from the optical surface closest to the observation object of the first lens group to the optical surface closest to the eye point of the third lens group),
f2: focal length of the second lens group,
f: Focal length of the eyepiece at -1 [m -1 ].

本発明に係る接眼レンズは、前記第1レンズ群と前記第2レンズ群とは、それぞれ単レ
ンズから構成され、以下の条件式を満足することが好ましい。
In the eyepiece according to the present invention, it is preferable that the first lens group and the second lens group are each composed of a single lens and satisfy the following conditional expression.

20.00 < ν2−ν1
但し、
ν1:前記第1レンズ群を構成する前記単レンズのd線を基準とするアッベ数、
ν2:前記第2レンズ群を構成する前記単レンズのd線を基準とするアッベ数。
20.00 <ν2-ν1
However,
ν1: Abbe number based on the d-line of the single lens constituting the first lens group,
ν2: Abbe number based on the d-line of the single lens constituting the second lens group.

本発明に係る接眼レンズは、前記第3レンズ群の最もアイポイント側に位置するレンズ
の形状因子をS3としたとき、以下の条件式を満足することが好ましい。
The eyepiece according to the present invention preferably satisfies the following conditional expression when the shape factor of the lens located closest to the eye point in the third lens group is S3.

3.00 < S3 < 6.00
但し、
S3=(Rs+Re)/(Rs−Re)で定義され、
Rs:前記第3レンズ群の最もアイポイント側に位置するレンズの観察物体側の面の曲
率半径、
Re:前記第3レンズ群の最もアイポイント側に位置するレンズのアイポイント側の面
の曲率半径。
3.00 <S3 <6.00
However,
S3 = (Rs + Re) / (Rs−Re)
Rs: radius of curvature of the surface of the third lens group located closest to the eye point on the observation object side surface;
Re: The radius of curvature of the eye point side surface of the lens located closest to the eye point side of the third lens group.

本発明に係る接眼レンズは、以下の条件式を満足することが好ましい。   The eyepiece according to the present invention preferably satisfies the following conditional expression.

0.00 < d3/TL < 0.25
但し、
d3:前記第3レンズ群の光軸上の厚み。
0.00 <d3 / TL <0.25
However,
d3: the thickness of the third lens group on the optical axis.

本発明によれば、視度調整範囲内で諸収差が良好に補正された接眼レンズを提供するこ
とができる。
According to the present invention, it is possible to provide an eyepiece in which various aberrations are favorably corrected within the diopter adjustment range.

第1実施例に係る接眼レンズの構成図である。It is a block diagram of the eyepiece which concerns on 1st Example. 第1実施例に係る接眼レンズの諸収差図(球面収差、非点収差、コマ収差及び歪曲収差)であり、(a)は視度−1.0[m-1]時の諸収差図、(b)は視度−4.0[m-1]時の諸収差図、(c)は視度+7.9[m-1]時の諸収差図を示す。FIG. 6 is a diagram illustrating various aberrations (spherical aberration, astigmatism, coma aberration, and distortion aberration) of the eyepiece according to the first example, and (a) is a diagram illustrating various aberrations at a diopter −1.0 [m −1 ]; (B) shows various aberrations when the diopter is −4.0 [m −1 ], and (c) shows various aberrations when the diopter is +7.9 [m −1 ]. 第2実施例に係る接眼レンズの構成図である。It is a block diagram of the eyepiece which concerns on 2nd Example. 第2実施例に係る接眼レンズの諸収差図(球面収差、非点収差、コマ収差及び歪曲収差)であり、(a)は視度−1.0[m-1]時の諸収差図、(b)は視度−3.4[m-1]時の諸収差図、(c)は視度+3.0[m-1]時の諸収差図を示す。FIG. 6 is various aberration diagrams (spherical aberration, astigmatism, coma aberration and distortion aberration) of the eyepiece according to the second example, and (a) is various aberration diagrams at a diopter −1.0 [m −1 ]; (B) shows various aberration diagrams when the diopter is -3.4 [m -1 ], and (c) shows various aberration diagrams when the diopter is +3.0 [m -1 ]. 第3実施例に係る接眼レンズの構成図である。It is a block diagram of the eyepiece which concerns on 3rd Example. 第3実施例に係る接眼レンズの諸収差図(球面収差、非点収差、コマ収差及び歪曲収差)であり、(a)は視度−1.0[m-1]時の諸収差図、(b)は視度−4.3[m-1]時の諸収差図、(c)は視度+3.9[m-1]時の諸収差図を示す。FIG. 6 is various aberration diagrams (spherical aberration, astigmatism, coma aberration and distortion aberration) of the eyepiece according to the third example, and (a) is various aberration diagrams at a diopter −1.0 [m −1 ]; (B) shows various aberration diagrams when the diopter is −4.3 [m −1 ], and (c) shows various aberration diagrams when the diopter is +3.9 [m −1 ].

以下、本実施形態について、図面を参照しながら説明する。本実施形態に係る接眼レン
ズは、図1に示すように、観察物体側から順に並んだ、負の屈折力を有する第1レンズ群
G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3
とを有し、第2レンズ群G2は少なくとも1つの非球面を有し、第2レンズ群G2を光軸
に沿って移動させることにより視度調整が可能であり、次の条件式(1),(2)を満足
するように構成した。
Hereinafter, the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the eyepiece according to this embodiment includes a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, arranged in order from the observation object side, Third lens group G3 having negative refractive power
The second lens group G2 has at least one aspheric surface, and diopter adjustment is possible by moving the second lens group G2 along the optical axis. The following conditional expression (1) , (2) is satisfied.

0.25 < d2/TL < 0.50 …(1)
0.3 < f2/f < 0.6 …(2)
但し、
d2:第2レンズ群G2の視度調整時の光軸上での移動距離、
TL:接眼レンズの総厚(第1レンズ群G1の最も観察物体側の光学面から第3レンズ
群G3の最もアイポイント側の光学面までの光軸上の距離)、
f2:第2レンズ群G2の焦点距離、
f:−1[m-1]時の接眼レンズの焦点距離。
0.25 <d2 / TL <0.50 (1)
0.3 <f2 / f <0.6 (2)
However,
d2: movement distance on the optical axis at the time of diopter adjustment of the second lens group G2,
TL: total thickness of the eyepiece lens (distance on the optical axis from the optical surface closest to the observation object of the first lens group G1 to the optical surface closest to the eye point of the third lens group G3),
f2: focal length of the second lens group G2,
f: The focal length of the eyepiece when -1 [m -1 ].

条件式(1)は、視度調整に伴う第2レンズ群G2の光軸上での総移動距離と、接眼レ
ンズの総厚との比を規定するものである。条件式(1)を満足するように視度調整時の第
2レンズ群G2の移動量を設定すれば、第2レンズ群G2の屈折力を弱くすることが可能
になり、視度調整に伴う収差変動、特に球面収差やコマ収差の変動を小さくすることがで
きる。条件式(1)の下限値を下回ると、視度調整を行うために第2レンズ群G2の屈折
力を強くする必要があり、第2レンズ群G2の移動による球面収差やコマ収差の変動が大
きくなる。条件式(1)の上限値を上回ると、第2レンズ群G2の移動による収差変動は
抑えられるが、視度調整を行うためには第2レンズ群G2の移動量を増やす必要があり、
接眼レンズが大型化して実用性が損なわれる。
Conditional expression (1) prescribes the ratio of the total movement distance on the optical axis of the second lens group G2 accompanying diopter adjustment to the total thickness of the eyepiece. If the movement amount of the second lens group G2 at the time of diopter adjustment is set so as to satisfy the conditional expression (1), it becomes possible to weaken the refractive power of the second lens group G2, which is accompanied by diopter adjustment. It is possible to reduce aberration fluctuation, particularly fluctuation of spherical aberration and coma aberration. If the lower limit of conditional expression (1) is not reached, it is necessary to increase the refractive power of the second lens group G2 in order to adjust the diopter, and the spherical aberration and coma change due to the movement of the second lens group G2. growing. If the upper limit of conditional expression (1) is exceeded, fluctuations in aberration due to movement of the second lens group G2 can be suppressed, but in order to perform diopter adjustment, it is necessary to increase the amount of movement of the second lens group G2.
The eyepiece becomes larger and its practicality is impaired.

上記効果を確実なものとするために、条件式(1)の上限値を0.45とすることが好
ましい。
In order to secure the above effect, it is preferable to set the upper limit of conditional expression (1) to 0.45.

条件式(2)は、第2レンズ群G2の屈折力を規定するものである。条件式(1)を満
足しつつ、条件式(2)を満足することにより、視度調整範囲内で良好な収差(特に、球
面収差、コマ収差)を得ることができる。条件式(2)の下限値を下回ると、第2レンズ
群G2の屈折力が強くなりすぎて、視度調整に伴い第1レンズ群G1と第2レンズ群G2
との間隔が広がると、特に球面収差が過剰補正になる。条件式(2)の上限値を上回ると
、第2レンズ群G2の移動による収差変動は抑えられるが、視度調整に伴う第2レンズ群
G2の必要移動量が大きくなり、実用性が損なわれる。
Conditional expression (2) defines the refractive power of the second lens group G2. Satisfying conditional expression (2) while satisfying conditional expression (1) makes it possible to obtain good aberrations (particularly spherical aberration and coma aberration) within the diopter adjustment range. If the lower limit value of conditional expression (2) is not reached, the refractive power of the second lens group G2 becomes too strong, and the first lens group G1 and the second lens group G2 are accompanied by diopter adjustment.
When the distance between the two is widened, particularly the spherical aberration is overcorrected. If the upper limit value of conditional expression (2) is exceeded, fluctuations in aberration due to movement of the second lens group G2 can be suppressed, but the required movement amount of the second lens group G2 accompanying diopter adjustment increases, impairing practicality. .

上記効果を確実なものとするために、条件式(2)の下限値を0.34とすることがよ
り好ましい。
In order to secure the above effect, it is more preferable to set the lower limit of conditional expression (2) to 0.34.

そして、条件式(1),(2)を満たしつつ、第2レンズ群G2に非球面を配置するこ
とにより、視度調整時の球面収差およびコマ収差の変動を小さくすることができる。特に
、非球面は、第2レンズ群G2の最も観察物体側に配置されることが望ましい。この構成
により、視度調整に伴い第1レンズ群G1と第2レンズ群G2のレンズ間隔が変化した際
の収差変動(球面収差やコマ収差等)を最も効果的に補正できる。
Then, by satisfying the conditional expressions (1) and (2) and disposing an aspheric surface in the second lens group G2, fluctuations in spherical aberration and coma during diopter adjustment can be reduced. In particular, it is desirable that the aspherical surface is disposed on the most observation object side of the second lens group G2. With this configuration, it is possible to most effectively correct aberration fluctuations (spherical aberration, coma aberration, etc.) when the lens interval between the first lens group G1 and the second lens group G2 changes with diopter adjustment.

本実施形態に係る接眼レンズは、第1レンズ群G1と第2レンズ群G2とが、それぞれ
単レンズから構成され、次の条件式(3)を満足することが望ましい。
In the eyepiece according to the present embodiment, it is desirable that the first lens group G1 and the second lens group G2 are each composed of a single lens and satisfy the following conditional expression (3).

20.00 < ν2−ν1 …(3)
但し、
ν1:第1レンズ群G1を構成する前記単レンズのd線(波長587.56nm)を基準とする
アッベ数、
ν2:第2レンズ群G2を構成する前記単レンズのd線(波長587.56nm)を基準とする
アッベ数。
20.00 <ν2-ν1 (3)
However,
ν1: Abbe number based on the d-line (wavelength 587.56 nm) of the single lens constituting the first lens group G1,
ν2: Abbe number based on the d-line (wavelength 587.56 nm) of the single lens constituting the second lens group G2.

条件式(3)は、視度調整範囲内で良好な収差性能を確保するためのものである。条件
式(3)の下限値を下回ると、視度調整範囲内における倍率色収差が大きくなり、色にじ
みが生じる。
Conditional expression (3) is for ensuring good aberration performance within the diopter adjustment range. If the lower limit value of conditional expression (3) is not reached, lateral chromatic aberration in the diopter adjustment range becomes large and color blurring occurs.

上記効果を確実なものとするために、条件式(3)の下限値を25.00とすることが
より好ましい。
In order to secure the above effect, it is more preferable to set the lower limit of conditional expression (3) to 25.00.

本実施形態に係る接眼レンズは、第3レンズ群G3の最もアイポイント側に位置するレ
ンズの形状因子をS3としたとき、次の条件式(4)を満足することが好ましい。
The eyepiece according to the present embodiment preferably satisfies the following conditional expression (4), where S3 is the shape factor of the lens located closest to the eye point in the third lens group G3.

3.00<S3<6.00 …(4)
但し、
S3=(Rs+Re)/(Rs−Re)で定義され、
Rs:第3レンズ群G3の最もアイポイント側に位置するレンズの観察物体側の面の曲
率半径、
Re:第3レンズ群G3の最もアイポイント側に位置するレンズのアイポイント側の面
の曲率半径。
3.00 <S3 <6.00 (4)
However,
S3 = (Rs + Re) / (Rs−Re)
Rs: radius of curvature of the surface on the observation object side of the lens located closest to the eye point of the third lens group G3,
Re: the radius of curvature of the eye point side surface of the lens located closest to the eye point side of the third lens group G3.

条件式(4)は、第3レンズ群G3の最もアイポイント側に位置するレンズの形状を規
定するものである。条件式(4)を満足することにより、長いアイレリーフを確保しつつ
、第2レンズ群G2を用いて視度調整したときの視度調整範囲内で良好な球面収差とコマ
収差を確保することができる。条件値(4)の下限値を下回ると、長いアイレリーフの確
保が困難になり、視度調整範囲内での球面収差とコマ収差の変動が大きくなり、収差性能
が劣化する。条件値(4)の上限値を下回ると、第3レンズ群G3の最もアイポイント側
に位置するレンズの曲率半径がきつくなり、外光が反射して目に入りやすくなるため、好
ましくない。
Conditional expression (4) defines the shape of the lens located closest to the eye point of the third lens group G3. By satisfying conditional expression (4), it is possible to ensure good spherical aberration and coma aberration within the diopter adjustment range when diopter adjustment is performed using the second lens group G2, while ensuring a long eye relief. Can do. If the lower limit value of the condition value (4) is not reached, it is difficult to secure a long eye relief, and the spherical aberration and coma variation within the diopter adjustment range become large, and the aberration performance deteriorates. If the value is below the upper limit of the condition value (4), the radius of curvature of the lens located closest to the eye point in the third lens group G3 becomes so tight that external light is reflected and easily enters the eye, which is not preferable.

本実施形態に係る接眼レンズは、次の条件式(5)を満足することが望ましい。   The eyepiece according to this embodiment desirably satisfies the following conditional expression (5).

0.00 < d3/TL < 0.25 …(5)
但し、
d3:第3レンズ群G3の光軸上の厚み。
0.00 <d3 / TL <0.25 (5)
However,
d3: Thickness on the optical axis of the third lens group G3.

条件式(5)は、第3レンズ群G3の光軸上での厚みを規定するものである。視度調整
に伴う、第1レンズ群G1、第2レンズ群G2から第3レンズ群G3に入射する周辺光束
の第3レンズ群G3への入射角変動は非常に大きい。そのため、条件式(5)の上限値を
上回るように第3レンズ群G3の厚みを増すと、入射角変動による倍率色収差の変動も大
きくなり、好ましくない。条件式(5)を満足することにより、倍率色収差を良好に補正
することができる。
Conditional expression (5) defines the thickness of the third lens group G3 on the optical axis. The variation in the incident angle of the peripheral light beam incident on the third lens group G3 from the first lens group G1 and the second lens group G2 with the diopter adjustment is very large. Therefore, if the thickness of the third lens group G3 is increased so as to exceed the upper limit value of the conditional expression (5), the change in lateral chromatic aberration due to the change in incident angle increases, which is not preferable. By satisfying conditional expression (5), the lateral chromatic aberration can be satisfactorily corrected.

上記効果を確実なものとするために、条件式(5)の下限値を0.05とすることがよ
り好ましい。
In order to secure the above effect, it is more preferable to set the lower limit of conditional expression (5) to 0.05.

本実施形態に係る接眼レンズは、第1レンズ群G1及び第3レンズ群G3にも非球面を
導入することが望ましい。第1レンズ群G1に非球面を導入することにより、歪曲収差の
補正が容易になる。また、第3レンズ群G3に非球面を導入することにより、第2レンズ
群G2に導入した場合と同様の効果、すなわち視度調整範囲での球面収差、コマ収差の補
正が容易になる。
In the eyepiece according to this embodiment, it is desirable to introduce aspherical surfaces into the first lens group G1 and the third lens group G3. By introducing an aspherical surface to the first lens group G1, it becomes easy to correct distortion. Further, by introducing an aspherical surface into the third lens group G3, it is possible to easily correct effects similar to those introduced into the second lens group G2, that is, correction of spherical aberration and coma in the diopter adjustment range.

以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜
表3を示すが、これらは第1実施例〜第3実施例における各諸元の表である。
Hereinafter, each example according to the present embodiment will be described with reference to the drawings. Below, Table 1
Table 3 is shown, and these are tables of specifications in the first to third embodiments.

表中の[全体諸元]において、Yは観察物体高を、TLはレンズ全長を示す。   In [Overall specifications] in the table, Y represents the observation object height, and TL represents the total lens length.

表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った観察物体側から
の光学面の順序を、Rは各光学面の曲率半径を、Dは各光学面から次の光学面(又は像面
)までの光軸上の距離である面間隔を、ndはレンズの材質のd線(波長587.56nm)に対
する屈折率を、νdはレンズの材質のd線(波長587.56nm)を基準とするアッベ数を、(
可変)は可変の面間隔を、曲率半径Rの欄の「∞」は平面を、E.Pはアイポイントを示
す。レンズ面が非球面である場合には面番号に*印を付し、曲率半径Rの欄には近軸曲率
半径を示す。
In [Lens Specifications] in the table, the surface number indicates the order of the optical surfaces from the observation object side along the light traveling direction, R indicates the radius of curvature of each optical surface, D indicates the following from each optical surface: The distance between the surfaces on the optical axis to the optical surface (or image surface), nd is the refractive index with respect to the d-line (wavelength 587.56 nm) of the lens material, and νd is the d-line (wavelength 587.56 nm) of the lens material. ) To the Abbe number based on (
(Variable) is a variable surface interval, “∞” in the field of curvature radius R is a plane, P indicates an eye point. When the lens surface is an aspherical surface, the surface number is marked with *, and the column of curvature radius R indicates the paraxial curvature radius.

表中の[非球面データ]は、[レンズ諸元]に示した非球面について、その形状を次式
(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位
置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円
錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば
、1.234E-05=1.234×10-5である。
[Aspherical data] in the table shows the shape of the aspherical surface shown in [Lens Specification] by the following equation (a). X (y) is the distance along the optical axis direction from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y, R is the radius of curvature of the reference sphere (paraxial radius of curvature), and κ is Ai represents the i-th aspherical coefficient. “E-n” indicates “× 10 −n ”. For example, 1.234E-05 = 1.234 × 10 −5 .

X(y)=y2/[R×{1+(1−κ×y2/R21/2}]
+A4×y4+A6×y6+A8×y8 …(a)
X (y) = y 2 / [R × {1+ (1−κ × y 2 / R 2 ) 1/2 }]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 (a)

表中の[可変面間隔データ]において、fは接眼レンズの焦点距離を、Diは第i面の
可変の面間隔を示す。
In [Variable surface interval data] in the table, f indicates the focal length of the eyepiece, and Di indicates the variable surface interval of the i-th surface.

表中の[レンズ群データ]において、Gは群番号、群初面は各群の最も観察物体側の面
番号を、群焦点距離は各群の焦点距離を示す。
In [Lens Group Data] in the table, G represents the group number, the first group surface represents the surface number of each group closest to the observation object, and the group focal length represents the focal length of each group.

表中の[条件式]において、上記の条件式(1)〜(5)に対応する値を示す。   In [Conditional Expression] in the table, values corresponding to the conditional expressions (1) to (5) are shown.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、そ
の他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例
縮小しても同等の光学性能が得られるので、これに限られるものではない。単位は「mm」
に限定されることなく、他の適当な単位を用いることが可能である。
Hereinafter, in all the specification values, “mm” is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Unit is `` mm ''
Without being limited to, other suitable units can be used.

視度の単位は「m-1」である。視度X「m-1」とは、接眼レンズによる像がアイポイン
トから光軸上に1/X[m(メートル)]の位置にできる状態を示す(但し、符号は、像
が接眼レンズより観察者側にできた時を正とする)。
The unit of diopter is “m −1 ”. Diopter X “m −1 ” indicates a state in which an image by the eyepiece can be formed at a position of 1 / X [m (meter)] on the optical axis from the eye point (however, the sign is the image from the eyepiece. The time when it is made on the observer side is positive).

ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。   The description of the table so far is common to all the embodiments, and the description below is omitted.

(第1実施例)
第1実施例について、図1、図2及び表1を用いて説明する。図1は、第1実施例の接
眼レンズに係るレンズ構成図(視度−1[m-1]時)を示したものである。なお、図中で
は正立系Pについて展開した状態で示しているが、実際にはペンタプリズム等の正立系を
想定している。
(First embodiment)
A first embodiment will be described with reference to FIGS. 1 and 2 and Table 1. FIG. FIG. 1 is a lens configuration diagram (when the diopter is −1 [m −1 ]) according to the eyepiece of the first example. Although the erecting system P is shown in a developed state in the drawing, an erecting system such as a pentaprism is actually assumed.

図1に示すように、第1実施例に係る接眼レンズは、観察物体側から順に並んだ、負の
屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折
力を有する第3レンズ群G3とからなり、第2レンズ群G2は非球面を有し(第5面、第
6面)、第2レンズ群G2を光軸に沿って移動させることにより視度調整を行うように構
成されている。
As shown in FIG. 1, the eyepiece according to the first example includes a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power, which are arranged in order from the observation object side. And the third lens group G3 having negative refractive power, the second lens group G2 has an aspherical surface (fifth surface, sixth surface), and moves the second lens group G2 along the optical axis. Thus, the diopter adjustment is performed.

第1レンズ群G1は、観察物体側に凸面を向けた負メニスカスレンズL1を有する。第
2レンズ群G2は、両凸レンズL2を有する。第3レンズ群G3は、観察物体側に凸面を
向けた負メニスカスレンズL3を有する。
The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the observation object side. The second lens group G2 has a biconvex lens L2. The third lens group G3 includes a negative meniscus lens L3 having a convex surface directed toward the observation object side.

本実施例では、図1に示すように、焦点面F上の像を、正立系Pを介して正立像とした
後に、3つのレンズ群G1〜G3で構成した第1実施例の接眼レンズにより拡大し、観察
者がアイポイントE.Pで観察するようになっている。そして、第2レンズ群G2を光軸
に沿って移動させることにより、視度調整が可能である。
In the present embodiment, as shown in FIG. 1, the eyepiece of the first embodiment is configured by three lens groups G1 to G3 after the image on the focal plane F is converted into an erect image through the erect system P. And the observer moves the eyepoint E.E. Observe with P. The diopter can be adjusted by moving the second lens group G2 along the optical axis.

下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜9が、
図1に示す曲率半径R1〜R9の各光学面に対応している。第1実施例では、第5面、第
6面が非球面形状に形成されている。
Table 1 below shows the values of each item in the first example. The surface numbers 1 to 9 in Table 1 are
This corresponds to each optical surface having the curvature radii R1 to R9 shown in FIG. In the first embodiment, the fifth surface and the sixth surface are formed in an aspherical shape.

(表1)
[全体諸元]
Y 14.5
TL 19.5

[レンズ諸元]
面番号 R D nd νd
1 ∞ 5.0 1.00000
2 ∞ 71.5 1.51680 64.20
3 ∞ 1.0 1.00000
4 163.85834 1.5 1.58518 30.24
*5 18.32862 D5(可変) 1.00000
*6 13.33611 6.5 1.53460 56.27
7 -42.01906 D7(可変) 1.00000
8 26.10282 3.0 1.49108 57.57
9 14.55433 D9(可変) E.P

[非球面データ]
第5面
κ=0.2198,A4=-3.72746E-06,A6=1.36623E-08,A8=-2.26420E-10
第6面
κ=-0.1796,A4=-4.51921E-06,A6=-1.60155E-08,A8=-9.92454E-11

[可変面間隔データ]
f 61.64 56.06 45.52
視度 -4.03 -1.00 7.98
D5 1.00 2.50 7.50
D7 7.50 6.00 1.00
D9 20.00 20.00 20.00

[レンズ群データ]
群番号 群初面 群焦点距離
G1 4 -35.40
G2 6 19.74
G3 8 -73.25

[条件式]
条件式(1) d2/TL = 0.33
条件式(2) f2/f = 0.35
条件式(3) ν2−ν1 = 26.03
条件式(4) S3 = 3.52
条件式(5) d3/TL = 0.15
(Table 1)
[Overall specifications]
Y 14.5
TL 19.5

[Lens specifications]
Surface number R D nd νd
1 ∞ 5.0 1.00000
2 ∞ 71.5 1.51680 64.20
3 ∞ 1.0 1.00000
4 163.85834 1.5 1.58518 30.24
* 5 18.32862 D5 (variable) 1.00000
* 6 13.33611 6.5 1.53460 56.27
7 -42.01906 D7 (variable) 1.00000
8 26.10282 3.0 1.49108 57.57
9 14.55433 D9 (variable) EP

[Aspherical data]
5th surface κ = 0.2198, A4 = -3.72746E-06, A6 = 1.36623E-08, A8 = -2.26420E-10
6th surface κ = -0.1796, A4 = -4.51921E-06, A6 = -1.60155E-08, A8 = -9.92454E-11

[Variable surface interval data]
f 61.64 56.06 45.52
Diopter -4.03 -1.00 7.98
D5 1.00 2.50 7.50
D7 7.50 6.00 1.00
D9 20.00 20.00 20.00

[Lens group data]
Group number Group first surface Group focal length G1 4 -35.40
G2 6 19.74
G3 8 -73.25

[Conditional expression]
Conditional expression (1) d2 / TL = 0.33
Conditional expression (2) f2 / f = 0.35
Conditional expression (3) ν2-ν1 = 26.03
Conditional expression (4) S3 = 3.52
Conditional expression (5) d3 / TL = 0.15

表1に示す諸元の表から、第1実施例に係る接眼レンズは、条件式(1)〜(5)を満
たすことが分かる。
From the table of specifications shown in Table 1, it can be seen that the eyepiece according to the first example satisfies the conditional expressions (1) to (5).

図2は、第1実施例に係る接眼レンズの諸収差図(球面収差、非点収差、コマ収差及び
歪曲収差)であり、(a)は視度−1.0[m-1]時の諸収差図、(b)は視度−4.0
[m-1]時の諸収差図、(c)は視度+7.9[m-1]時の諸収差図を示す。
FIG. 2 is a diagram showing various aberrations (spherical aberration, astigmatism, coma aberration, and distortion aberration) of the eyepiece according to the first example, and (a) shows a diopter of −1.0 [m −1 ]. Various aberration diagrams, (b) Diopter -4.0
Various aberration diagrams at [m −1 ], (c) shows various aberration diagrams at a diopter +7.9 [m −1 ].

各収差図において、Y1は正立系Pへの光線の入射高さを、Y0は焦点面F上での物体
高を示す。非点収差図では、実線はサジタル像面を示し、破線はメリディオナル像面を示
す。コマ収差図では、「min」は角度単位の「分」を示す。球面収差図と非点収差図で
は、それぞれ横軸の単位は[m-1]であり、図中では「D」で表す。また、CはC線(波
長656.28nm)、Dはd線(波長587.56nm)、FはF線(波長486.13nm)、GはG線(波長
435.84nm)における収差曲線を示す。後述する各実施例の収差図においても、本実施例と
同様の記号を用いる。
In each aberration diagram, Y1 represents the incident height of the light beam to the erecting system P, and Y0 represents the object height on the focal plane F. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the coma aberration diagram, “min” indicates “minute” in angular units. In the spherical aberration diagram and the astigmatism diagram, the unit of the horizontal axis is [m −1 ], and is represented by “D” in the drawing. C is C line (wavelength 656.28 nm), D is d line (wavelength 587.56 nm), F is F line (wavelength 486.13 nm), G is G line (wavelength)
An aberration curve at 435.84 nm) is shown. In the aberration diagrams of each example described later, the same symbols as those in this example are used.

図2(a)〜(c)に示す各収差図から明らかなように、第1実施例に係る接眼レンズ
は、視度調整範囲内で諸収差が良好に補正され、優れた光学性能が確保されていることが
分かる。
As is apparent from the aberration diagrams shown in FIGS. 2A to 2C, the eyepiece according to the first example has various aberrations corrected well within the diopter adjustment range, and excellent optical performance is ensured. You can see that.

(第2実施例)
第2実施例について、図3、図4及び表2を用いて説明する。図3は、第2実施例の接
眼レンズに係るレンズ構成図(視度−1[m-1]時)を示したものである。なお、図中で
は正立系Pについて展開した状態で示しているが、実際にはペンタプリズム等の正立系を
想定している。
(Second embodiment)
The second embodiment will be described with reference to FIGS. 3 and 4 and Table 2. FIG. FIG. 3 is a lens configuration diagram (when the diopter is −1 [m −1 ]) according to the eyepiece of the second example. Although the erecting system P is shown in a developed state in the drawing, an erecting system such as a pentaprism is actually assumed.

図3に示すように、第2実施例に係る接眼レンズは、観察物体側から順に並んだ、負の
屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折
力を有する第3レンズ群G3とからなり、第2レンズ群G2は非球面を有し(第5面、第
6面)、第2レンズ群G2を光軸に沿って移動させることにより視度調整を行うように構
成されている。
As shown in FIG. 3, the eyepiece according to the second example includes a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power, which are arranged in order from the observation object side. And the third lens group G3 having negative refractive power, the second lens group G2 has an aspherical surface (fifth surface, sixth surface), and moves the second lens group G2 along the optical axis. Thus, the diopter adjustment is performed.

第1レンズ群G1は、両凹レンズL1を有する。第2レンズ群G2は、両凸レンズL2
を有する。第3レンズ群G3は、観察物体側に凸面を向けた負メニスカスレンズL3を有
する。
The first lens group G1 has a biconcave lens L1. The second lens group G2 includes a biconvex lens L2.
Have The third lens group G3 includes a negative meniscus lens L3 having a convex surface directed toward the observation object side.

本実施例では、図3に示すように、焦点面F上の像を、正立系Pを介して正立像とした
後に、3つのレンズ群G1〜G3で構成した第2実施例の接眼レンズにより拡大し、観察
者がアイポイントE.Pで観察するようになっている。そして、第2レンズ群G2を光軸
に沿って移動させることにより、視度調整が可能である。
In the present embodiment, as shown in FIG. 3, the eyepiece of the second embodiment is configured by three lens groups G1 to G3 after the image on the focal plane F is converted into an erect image through the erect system P. And the observer moves the eyepoint E.E. Observe with P. The diopter can be adjusted by moving the second lens group G2 along the optical axis.

下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜9が、
図3に示す曲率半径R1〜R9の各光学面に対応している。第2実施例では、第5面、第
6面が非球面形状に形成されている。
Table 2 below shows the values of each item in the second embodiment. The surface numbers 1 to 9 in Table 2 are
This corresponds to each optical surface having the curvature radii R1 to R9 shown in FIG. In the second embodiment, the fifth surface and the sixth surface are formed in an aspherical shape.

(表2)
[全体諸元]
Y 14.5
TL 19.5

[レンズ諸元]
面番号 R D nd νd
1 ∞ 5.0 1.00000
2 ∞ 71.5 1.51680 64.20
3 ∞ 1.0 1.00000
4 -174.05687 1.5 1.58518 30.24
*5 38.04339 D5(可変) 1.00000
*6 18.82955 6.5 1.53460 56.27
7 -50.40237 D7(可変) 1.00000
8 22.42965 4.0 1.49108 57.57
9 15.87495 D9(可変) E.P

[非球面データ]
第5面
κ=1.4580,A4=3.29859E-06,A6=-4.06074E-08,A8=1.34991E-10
第6面
κ=-0.0600,A4=-1.78130E-06,A6=-2.44444E-08,A8=1.61192E-11

[可変面間隔データ]
f 61.68 58.12 52.66
視度 -3.40 -1.00 3.00
D5 1.0 2.9 6.5
D7 6.5 4.6 1.0
D9 20.0 20.0 20.0

[レンズ群データ]
群番号 群初面 群焦点距離
G1 4 -53.21
G2 6 26.50
G3 8 -138.44

[条件式]
条件式(1) d2/TL = 0.28
条件式(2) f2/f = 0.45
条件式(3) ν2−ν1 = 26.03
条件式(4) S3 = 5.84
条件式(5) d3/TL = 0.20
(Table 2)
[Overall specifications]
Y 14.5
TL 19.5

[Lens specifications]
Surface number R D nd νd
1 ∞ 5.0 1.00000
2 ∞ 71.5 1.51680 64.20
3 ∞ 1.0 1.00000
4 -174.05687 1.5 1.58518 30.24
* 5 38.04339 D5 (variable) 1.00000
* 6 18.82955 6.5 1.53460 56.27
7 -50.40237 D7 (variable) 1.00000
8 22.42965 4.0 1.49108 57.57
9 15.87495 D9 (variable) EP

[Aspherical data]
5th surface κ = 1.4580, A4 = 3.29859E-06, A6 = -4.06074E-08, A8 = 1.34991E-10
6th surface κ = -0.0600, A4 = -1.78130E-06, A6 = -2.44444E-08, A8 = 1.61192E-11

[Variable surface interval data]
f 61.68 58.12 52.66
Diopter -3.40 -1.00 3.00
D5 1.0 2.9 6.5
D7 6.5 4.6 1.0
D9 20.0 20.0 20.0

[Lens group data]
Group number Group first surface Group focal length G1 4 -53.21
G2 6 26.50
G3 8 -138.44

[Conditional expression]
Conditional expression (1) d2 / TL = 0.28
Conditional expression (2) f2 / f = 0.45
Conditional expression (3) ν2-ν1 = 26.03
Conditional expression (4) S3 = 5.84
Conditional expression (5) d3 / TL = 0.20

表2に示す諸元の表から、第2実施例に係る接眼レンズは、条件式(1)〜(5)を満
たすことが分かる。
From the table of specifications shown in Table 2, it can be seen that the eyepiece according to the second example satisfies the conditional expressions (1) to (5).

図4は、第2実施例に係る接眼レンズの諸収差図(球面収差、非点収差、コマ収差及び
歪曲収差)であり、(a)は視度−1.0[m-1]時の諸収差図、(b)は視度−3.4
[m-1]時の諸収差図、(c)は視度+3.0[m-1]時の諸収差図を示す。
FIG. 4 is a diagram showing various aberrations (spherical aberration, astigmatism, coma aberration, and distortion aberration) of the eyepiece according to the second example, and (a) shows a diopter of −1.0 [m −1 ]. Various aberration diagrams, (b) is diopter-3.4.
Various aberration diagrams at [m −1 ], (c) shows various aberration diagrams at diopter +3.0 [m −1 ].

図4(a)〜(c)に示す各収差図から明らかなように、第2実施例に係る接眼レンズ
は、視度調整範囲内で諸収差が良好に補正され、優れた光学性能が確保されていることが
分かる。
As is apparent from the aberration diagrams shown in FIGS. 4A to 4C, the eyepiece according to the second example has various aberrations well corrected within the diopter adjustment range, and excellent optical performance is ensured. You can see that.

(第3実施例)
第3実施例について、図5、図6及び表3を用いて説明する。図5は、第3実施例の接
眼レンズに係るレンズ構成図(視度−1[m-1]時)を示したものである。なお、図中で
は正立系Pについて展開した状態で示しているが、実際にはペンタプリズム等の正立系を
想定している。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 5 and 6 and Table 3. FIG. FIG. 5 is a lens configuration diagram (when the diopter is −1 [m −1 ]) according to the eyepiece of the third example. Although the erecting system P is shown in a developed state in the drawing, an erecting system such as a pentaprism is actually assumed.

図5に示すように、第3実施例に係る接眼レンズは、観察物体側から順に並んだ、負の
屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折
力を有する第3レンズ群G3とからなり、第2レンズ群G2は非球面を有し(第5面、第
6面)、第2レンズ群G2を光軸に沿って移動させることにより視度調整を行うように構
成されている。
As shown in FIG. 5, the eyepiece according to the third example includes a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power, which are arranged in order from the observation object side. And the third lens group G3 having negative refractive power, the second lens group G2 has an aspherical surface (fifth surface, sixth surface), and moves the second lens group G2 along the optical axis. Thus, the diopter adjustment is performed.

第1レンズ群G1は、両凹レンズL1を有する。第2レンズ群G2は、両凸レンズL2
を有する。第3レンズ群G3は、観察物体側に凸面を向けた負メニスカスレンズL3を有
する。
The first lens group G1 has a biconcave lens L1. The second lens group G2 includes a biconvex lens L2.
Have The third lens group G3 includes a negative meniscus lens L3 having a convex surface directed toward the observation object side.

本実施例では、図5に示すように、焦点面F上の像を、正立系Pを介して正立像とした
後に、3つのレンズ群G1〜G3で構成した第3実施例の接眼レンズにより拡大し、観察
者がアイポイントE.Pで観察するようになっている。そして、第2レンズ群G2を光軸
に沿って移動させることにより、視度調整が可能である。
In the present embodiment, as shown in FIG. 5, the eyepiece of the third embodiment configured by three lens groups G <b> 1 to G <b> 3 after the image on the focal plane F is converted into an erect image through the erect system P. And the observer moves the eyepoint E.E. Observe with P. The diopter can be adjusted by moving the second lens group G2 along the optical axis.

下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜9が、
図5に示す曲率半径R1〜R9の各光学面に対応している。第3実施例では、第5面、第
6面が非球面形状に形成されている。
Table 3 below shows values of various specifications in the third example. The surface numbers 1 to 9 in Table 3 are
This corresponds to each optical surface having the radii of curvature R1 to R9 shown in FIG. In the third embodiment, the fifth surface and the sixth surface are formed in an aspherical shape.

(表3)
[全体諸元]
Y 14.5
TL 19.5

[レンズ諸元]
面番号 R D nd νd
1 ∞ 5.0 1.00000
2 ∞ 71.5 1.51680 64.20
3 ∞ 1.0 1.00000
4 -120.00000 1.5 1.84666 23.78
*5 78.52696 D5(可変) 1.00000
*6 19.00000 6.5 1.53460 56.27
7 -44.02515 D7(可変) 1.00000
8 30.00000 2.0 1.49108 57.57
9 18.18745 D9(可変) E.P

[非球面データ]
第5面
κ=1.0000,A4=7.57095E-06,A6=-6.55407E-08,A8=2.11444E-10
第6面
κ=1.4573,A4=-3.24370E-05,A6=-7.60700E-08,A8=-2.81338E-10

[可変面間隔データ]
f 64.39 60.00 54.28
視度 -4.32 -1.03 3.98
D5 0.5 3.5 9.0
D7 9.0 6.0 0.5
D9 20.0 20.0 20.0

[レンズ群データ]
群番号 群初面 群焦点距離
G1 4 -55.86
G2 6 25.75
G3 8 -99.61

[条件式]
条件式(1) d2/TL = 0.43
条件式(2) f2/f = 0.43
条件式(3) ν2−ν1 = 32.49
条件式(4) S3 = 4.07
条件式(5) d3/TL = 0.10
(Table 3)
[Overall specifications]
Y 14.5
TL 19.5

[Lens specifications]
Surface number R D nd νd
1 ∞ 5.0 1.00000
2 ∞ 71.5 1.51680 64.20
3 ∞ 1.0 1.00000
4 -120.00000 1.5 1.84666 23.78
* 5 78.52696 D5 (variable) 1.00000
* 6 19.00000 6.5 1.53460 56.27
7 -44.02515 D7 (variable) 1.00000
8 30.00000 2.0 1.49108 57.57
9 18.18745 D9 (variable) EP

[Aspherical data]
5th surface κ = 1.0000, A4 = 7.57095E-06, A6 = -6.55407E-08, A8 = 2.11444E-10
6th surface κ = 1.4573, A4 = -3.24370E-05, A6 = -7.60700E-08, A8 = -2.81338E-10

[Variable surface interval data]
f 64.39 60.00 54.28
Diopter -4.32 -1.03 3.98
D5 0.5 3.5 9.0
D7 9.0 6.0 0.5
D9 20.0 20.0 20.0

[Lens group data]
Group number Group first surface Group focal length G1 4 -55.86
G2 6 25.75
G3 8 -99.61

[Conditional expression]
Conditional expression (1) d2 / TL = 0.43
Conditional expression (2) f2 / f = 0.43
Conditional expression (3) ν2-ν1 = 32.49
Conditional expression (4) S3 = 4.07
Conditional expression (5) d3 / TL = 0.10

表3に示す諸元の表から、第3実施例に係る接眼レンズは、条件式(1)〜(5)を満
たすことが分かる。
From the table of specifications shown in Table 3, it can be seen that the eyepiece according to the third example satisfies the conditional expressions (1) to (5).

図6は、第3実施例に係る接眼レンズの諸収差図(球面収差、非点収差、コマ収差及び
歪曲収差)であり、(a)は視度−1.0[m-1]時の諸収差図、(b)は視度−4.3
[m-1]時の諸収差図、(c)は視度+3.9[m-1]時の諸収差図を示す。
FIG. 6 is a diagram illustrating various aberrations (spherical aberration, astigmatism, coma aberration, and distortion aberration) of the eyepiece according to the third example. FIG. 6A illustrates a diopter of −1.0 [m −1 ]. Various aberration diagrams, (b) is diopter-4.3.
Various aberration diagrams at [m -1 ], (c) shows various aberration diagrams at a diopter +3.9 [m -1 ].

図6(a)〜(c)に示す各収差図から明らかなように、第3実施例に係る接眼レンズ
は、視度調整範囲内で諸収差が良好に補正され、優れた光学性能が確保されていることが
分かる。
As is apparent from the aberration diagrams shown in FIGS. 6A to 6C, the eyepiece according to the third example has various aberrations corrected well within the diopter adjustment range, and excellent optical performance is ensured. You can see that.

以上のような本発明によれば、球面収差やコマ収差など、視度調整範囲内で諸収差が良
好に補正された接眼レンズを提供することができる。
According to the present invention as described above, it is possible to provide an eyepiece in which various aberrations such as spherical aberration and coma are corrected well within a diopter adjustment range.

本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明が
これに限定されるものではないことは言うまでもない。
In order to make the present invention easier to understand, the configuration requirements of the embodiment have been described, but it goes without saying that the present invention is not limited to this.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G1 First lens group G2 Second lens group G3 Third lens group

Claims (4)

観察物体側から順に並んだ、負の屈折力を有する第1レンズ群と、正の屈折力を有する
第2レンズ群と、負の屈折力を有する第3レンズ群とを有し、
前記第2レンズ群は少なくとも1つの非球面を有し、
前記第2レンズ群を光軸に沿って移動させることにより視度調整が可能であり、
以下の条件式を満足することを特徴とする接眼レンズ。
0.25 < d2/TL < 0.50
0.3 < f2/f < 0.6
但し、
d2:前記第2レンズ群の視度調整時の光軸上での移動距離、
TL:前記接眼レンズの総厚(前記第1レンズ群の最も観察物体側のレンズ面から前記
第3レンズ群の最もアイポイント側のレンズ面までの光軸上の距離)、
f2:前記第2レンズ群の焦点距離、
f:−1[m-1]時の前記接眼レンズの焦点距離。
A first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power, arranged in order from the observation object side;
The second lens group has at least one aspheric surface;
Diopter adjustment is possible by moving the second lens group along the optical axis,
An eyepiece that satisfies the following conditional expression:
0.25 <d2 / TL <0.50
0.3 <f2 / f <0.6
However,
d2: a movement distance on the optical axis at the time of diopter adjustment of the second lens group,
TL: the total thickness of the eyepiece lens (distance on the optical axis from the lens surface closest to the observation object of the first lens group to the lens surface closest to the eye point of the third lens group),
f2: focal length of the second lens group,
f: Focal length of the eyepiece at -1 [m -1 ].
前記第1レンズ群と前記第2レンズ群とは、それぞれ単レンズから構成され、
以下の条件式を満足することを特徴とする請求項1に記載の接眼レンズ。
20.00 < ν2−ν1
但し、
ν1:前記第1レンズ群を構成する前記単レンズのd線を基準とするアッベ数、
ν2:前記第2レンズ群を構成する前記単レンズのd線を基準とするアッベ数。
The first lens group and the second lens group are each composed of a single lens,
The eyepiece according to claim 1, wherein the following conditional expression is satisfied.
20.00 <ν2-ν1
However,
ν1: Abbe number based on the d-line of the single lens constituting the first lens group,
ν2: Abbe number based on the d-line of the single lens constituting the second lens group.
前記第3レンズ群の最もアイポイント側に位置するレンズの形状因子をS3としたとき
、以下の条件式を満足することを特徴とする請求項1または2に記載の接眼レンズ。
3 < S3 < 6
但し、
S3=(Rs+Re)/(Rs−Re)で定義され、
Rs:前記第3レンズ群の最もアイポイント側に位置するレンズの観察物体側の面の曲
率半径、
Re:前記第3レンズ群の最もアイポイント側に位置するレンズのアイポイント側の面
の曲率半径。
3. The eyepiece according to claim 1, wherein the following conditional expression is satisfied when a shape factor of a lens located closest to the eye point in the third lens group is S <b> 3.
3 <S3 <6
However,
S3 = (Rs + Re) / (Rs−Re)
Rs: radius of curvature of the surface of the third lens group located closest to the eye point on the observation object side surface;
Re: The radius of curvature of the eye point side surface of the lens located closest to the eye point side of the third lens group.
以下の条件式を満足することを特徴とする請求項1〜3のいずれか一項に記載の接眼レ
ンズ。
0.00 < d3/TL < 0.25
但し、
d3:前記第3レンズ群の光軸上の厚み。
The eyepiece according to claim 1, wherein the following conditional expression is satisfied.
0.00 <d3 / TL <0.25
However,
d3: the thickness of the third lens group on the optical axis.
JP2011250017A 2011-11-15 2011-11-15 Eyepiece Active JP5853622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250017A JP5853622B2 (en) 2011-11-15 2011-11-15 Eyepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250017A JP5853622B2 (en) 2011-11-15 2011-11-15 Eyepiece

Publications (2)

Publication Number Publication Date
JP2013105102A true JP2013105102A (en) 2013-05-30
JP5853622B2 JP5853622B2 (en) 2016-02-09

Family

ID=48624652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250017A Active JP5853622B2 (en) 2011-11-15 2011-11-15 Eyepiece

Country Status (1)

Country Link
JP (1) JP5853622B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191221A (en) * 1984-03-12 1985-09-28 Minolta Camera Co Ltd Eyepiece lens optical system
JPH11109259A (en) * 1997-10-03 1999-04-23 Nikon Corp Ocular lens system
JP2004258234A (en) * 2003-02-25 2004-09-16 Nikon Corp Eyepiece
US20050013011A1 (en) * 2003-07-18 2005-01-20 Nikon Corporation Eyepiece lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191221A (en) * 1984-03-12 1985-09-28 Minolta Camera Co Ltd Eyepiece lens optical system
US4593984A (en) * 1984-03-12 1986-06-10 Minolta Camera Kabushiki Kaisha Viewfinder lens system
JPH11109259A (en) * 1997-10-03 1999-04-23 Nikon Corp Ocular lens system
JP2004258234A (en) * 2003-02-25 2004-09-16 Nikon Corp Eyepiece
US20050013011A1 (en) * 2003-07-18 2005-01-20 Nikon Corporation Eyepiece lens
JP2005055874A (en) * 2003-07-18 2005-03-03 Nikon Corp Eyepiece lens

Also Published As

Publication number Publication date
JP5853622B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
US7411745B2 (en) Large-aperture-ratio internal focusing telephoto lens
JP5993604B2 (en) Infrared optical system
JP4756901B2 (en) Eyepiece lens and optical instrument using the same
JP3353355B2 (en) Eyepiece zoom lens system, and telescope and binoculars including the eyepiece zoom lens system
JPH0868953A (en) Eyepiece
JP4706953B2 (en) Eyepiece
JP5714350B2 (en) Viewfinder optical system
JPH11174345A (en) Wide visual field ocular
JP5305136B2 (en) Eyepiece
US8928986B2 (en) Ocular lens, ocular lens with additional lens, and optical device
JP2019215411A (en) Eyepiece optical system, electronic view finder, and imaging apparatus
JP2001066523A (en) Eyepiece lens
JP5377402B2 (en) Eyepiece lens and optical apparatus provided with the eyepiece lens
JPH0954259A (en) Eyepiece lens
JP4470374B2 (en) Eyepiece
US9551864B2 (en) Eyepiece lens and observation apparatus having the same
US9229215B2 (en) Ocular lens and optical apparatus
JP5853622B2 (en) Eyepiece
JPH11160631A (en) Wide visual field eyepiece
JP4747600B2 (en) Eyepiece attachment
JPH11316337A (en) Image-formation lens
JP5422214B2 (en) Eyepieces and optical equipment
JP6011163B2 (en) Eyepiece
JP5218903B2 (en) Eyepiece auxiliary optics
JPH0954258A (en) Eyepiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R150 Certificate of patent or registration of utility model

Ref document number: 5853622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250