JP2013103975A - Phosphorus-containing phenol resin and production method thereof, the resin composition, cured product - Google Patents

Phosphorus-containing phenol resin and production method thereof, the resin composition, cured product Download PDF

Info

Publication number
JP2013103975A
JP2013103975A JP2011247988A JP2011247988A JP2013103975A JP 2013103975 A JP2013103975 A JP 2013103975A JP 2011247988 A JP2011247988 A JP 2011247988A JP 2011247988 A JP2011247988 A JP 2011247988A JP 2013103975 A JP2013103975 A JP 2013103975A
Authority
JP
Japan
Prior art keywords
phosphorus
resin
containing phenol
epoxy resin
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011247988A
Other languages
Japanese (ja)
Other versions
JP5917098B2 (en
Inventor
Yoko Morita
陽子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2011247988A priority Critical patent/JP5917098B2/en
Priority to KR1020120125234A priority patent/KR101954455B1/en
Priority to TW101141519A priority patent/TWI543997B/en
Priority to CN201210447557.0A priority patent/CN103102471B/en
Publication of JP2013103975A publication Critical patent/JP2013103975A/en
Application granted granted Critical
Publication of JP5917098B2 publication Critical patent/JP5917098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high quality flame-retardant phosphorus-containing phenol resin suitable for a prepreg, a copper-clad laminate used for electronic circuit board; a film material, sealing material, molding material, casting material, adhesive and electric insulation coating material used for electronic parts; a composite requiring flame retardancy; and powder coating material, or the like, while reducing cost; and provide the phenol resin composition.SOLUTION: This phosphorus-containing phenol resin is obtained by reacting phosphorus-containing compounds (B) essentially containing a phosphorus-containing phenol compound (b) expressed by general formula (1) and two or more functional phosphorus-free phenol compounds (c), with an epoxy resin (a) having ≥1.8 epoxy groups in average in a molecule, through two step reaction stages, where the first step reaction stage includes a precursor reaction of reacting the epoxy resin (a) with the phosphorus-containing compounds (B). In formula, A represents a 6-20C arylene group and/or triyl group; γ denotes 0 or 1; Rand Rare each represents a 1-6C hydrocarbon group which may be the same or different from each other, or may form a ring together with the phosphorus atom.

Description

本発明は、難燃性を有するリン含有フェノール樹脂及びその製造方法、該リン含有フェノール樹脂を含む硬化性樹脂組成物、その硬化物に関するものである。 The present invention relates to a phosphorus-containing phenol resin having flame retardancy, a method for producing the same, a curable resin composition containing the phosphorus-containing phenol resin, and a cured product thereof.

フェノール樹脂は、その優れた耐熱性、接着性、機械特性、電気的特性等を利用し、各種基材の成型材料や摩擦材用結合剤、研削材用結合剤、木材用接着剤、鋳型用結合剤、積層材用結合剤、コーティング剤、エポキシ樹脂硬化剤等として幅広く使用されている。 Phenolic resins utilize their excellent heat resistance, adhesiveness, mechanical properties, electrical properties, etc., and are used as molding materials for various substrates, binders for friction materials, binders for abrasives, adhesives for wood, and molds. Widely used as binders, laminate binders, coating agents, epoxy resin curing agents and the like.

特に、積層材として電気・電子機器に使用される場合には、火災時の燃焼防止と発煙の制御をするため、難燃性の付与が強く要求されている。積層板用樹脂の難燃化方法として、従来は、臭素系難燃剤、窒素系難燃剤とリン系難燃剤の単独または組み合わせ、前記難燃剤の単独または組み合わせに無機系難燃助剤を併用する難燃システムが主流であった。しかし、近年環境問題から臭素系難燃剤の使用が敬遠されつつある。また、添加型リン系難燃剤として赤リンを使用した場合は安全性が不十分であり、リン酸系化合物を使用する場合は硬化物表面にブリードアウトする問題があった。また、リン酸エステル類を使用すると、はんだ耐熱性、耐溶剤性が低下してしまう問題があった。そのため、これら添加型難燃剤を使用する事なく難燃性が得られる、非ハロゲン系反応型難燃剤の開発が求められている。 In particular, when used in electrical and electronic equipment as a laminated material, it is strongly required to impart flame retardancy in order to prevent combustion in a fire and control smoke generation. Conventionally, as a flame retardant method for resin for laminates, brominated flame retardants, nitrogen flame retardants and phosphorus flame retardants alone or in combination, and inorganic flame retardant aids are used in combination with the flame retardant alone or in combination. Flame retardant systems were mainstream. However, in recent years, the use of brominated flame retardants has been avoided due to environmental problems. In addition, when red phosphorus is used as the additive type phosphorus flame retardant, safety is insufficient, and when a phosphoric acid compound is used, there is a problem of bleeding out on the surface of the cured product. Further, when phosphoric acid esters are used, there is a problem that solder heat resistance and solvent resistance are lowered. Therefore, development of a non-halogen reaction type flame retardant that can obtain flame retardancy without using these additive type flame retardants is required.

一方、エポキシ樹脂の硬化剤としても前記同様の問題点がある。例えば、2−ジフェニルホスフィニルヒドロキノン(北興化学工業株式会社製 商品名PPQ)や10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製 商品名HCA−HQ)等のリン含有フェノール化合物を使用した場合は難燃性の高いエポキシ樹脂硬化物が得られるが、これらのリン含有フェノール化合物は溶剤溶解性やエポキシ樹脂との相溶性が悪く、硬化剤として単独使用した場合、エポキシ樹脂ワニス中に溶解せずに沈降してしまうため、積層材用途等では実用性に乏しい。この問題を解決するために、特許文献1,2では、分散性を考慮して予めエポキシ樹脂とリン含有フェノール化合物を反応させる一段階目の反応を行い、その一部をリン含有エポキシ樹脂とする開示がある。しかし、接着性が低い等の問題があり、また、ワニスの溶剤に高沸点溶剤を用いる等、樹脂の溶剤溶解性も十分に満足できる程度ではない。特許文献3にはエポキシ樹脂との相溶性を改善したリン含有フェノール樹脂の提案もあるが、沸点の高いシクロヘキサノンを反応溶剤として使用しているため、積層板の製造工程で溶剤を完全に除去することが困難であり、エポキシ樹脂硬化物の接着性や耐熱信頼性等が悪くなる恐れがある。 On the other hand, the epoxy resin curing agent has the same problems as described above. For example, 2-diphenylphosphinyl hydroquinone (trade name PPQ manufactured by Hokuko Chemical Co., Ltd.) or 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (Sanko Stock Co., Ltd.) When a phosphorus-containing phenolic compound such as the product name HCA-HQ) manufactured by the company is used, a highly flame-retardant epoxy resin cured product is obtained. These phosphorus-containing phenolic compounds are soluble in solvents and compatible with epoxy resins. However, when used alone as a curing agent, it settles without dissolving in the epoxy resin varnish, so that it is not practical for use as a laminated material. In order to solve this problem, in Patent Documents 1 and 2, in consideration of dispersibility, a first-stage reaction in which an epoxy resin and a phosphorus-containing phenol compound are reacted in advance is performed, and a part of the reaction is made a phosphorus-containing epoxy resin. There is disclosure. However, there are problems such as low adhesion, and the solvent solubility of the resin is not sufficiently satisfactory, such as using a high boiling point solvent as the solvent for the varnish. Patent Document 3 also proposes a phosphorus-containing phenolic resin with improved compatibility with an epoxy resin. However, since cyclohexanone having a high boiling point is used as a reaction solvent, the solvent is completely removed in the production process of the laminate. This is difficult, and there is a risk that the adhesiveness and heat resistance reliability of the cured epoxy resin will deteriorate.

特開平8−188638JP-A-8-188638 特開2000−256537JP 2000-256537 A 特開2003−40969JP2003-40969A

本発明の目的は、添加型難燃剤を用いずに難燃性を付与する事が可能であり、しかも各種有機溶剤への溶解性が良く、封止材、成形材、積層板、注型材、接着剤、絶縁塗料等に適したリン含有フェノール樹脂及びその製造方法を提供し、該リン含有フェノール樹脂を含む樹脂組成物を硬化させることにより、難燃性、耐熱信頼性、接着性に優れた硬化物を提供するものである。 The object of the present invention is to provide flame retardancy without using an additive-type flame retardant, and also has good solubility in various organic solvents, sealing materials, molding materials, laminates, casting materials, Provided a phosphorus-containing phenolic resin suitable for adhesives, insulating paints and the like and a method for producing the same, and cured a resin composition containing the phosphorus-containing phenolic resin, thereby providing excellent flame retardancy, heat resistance reliability, and adhesiveness. A cured product is provided.

すなわち本発明は、
(1)一分子中に平均1.8個以上のエポキシ基を持つエポキシ樹脂(a)に、一般式(1)で示すリン含有フェノール化合物(b)を必須として含有するリン含有化合物類(B)、及び二官能以上のリン非含有フェノール化合物類(c)、を二段階の反応工程で反応させて得られるリン含有フェノール樹脂であって、一段階目の反応工程でエポキシ樹脂(a)とリン含有化合物類(B)とを反応させる前駆反応を含むこと特徴とするリン含有フェノール樹脂の製造方法。
That is, the present invention
(1) Phosphorus-containing compounds (B) containing, as an essential component, a phosphorus-containing phenol compound (b) represented by the general formula (1) in an epoxy resin (a) having an average of 1.8 or more epoxy groups in one molecule ), And a phosphorus-containing phenolic compound (c) having two or more functional groups, which are obtained by reacting in a two-step reaction process, the epoxy resin (a) and The manufacturing method of the phosphorus containing phenol resin characterized by including the precursor reaction which makes phosphorus containing compounds (B) react.

Figure 2013103975
(式中Aは炭素数6から20のアリーレン基及び/またはトリイル基を表す。式中γは0または1を表し、R及びRは炭素数1から6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。)
Figure 2013103975
(In the formula, A represents an arylene group and / or triyl group having 6 to 20 carbon atoms. In the formula, γ represents 0 or 1, R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and are the same. Or may be different, and may be cyclic with a phosphorus atom.)

(2)前記一段階目の反応工程で、エポキシ樹脂(a)のエポキシ基1molに対してリン含有フェノール化合物(b)のフェノール性水酸基が0.3molから1.5molである上記(1)記載のリン含有フェノール樹脂の製造方法。 (2) The said (1) description whose phenolic hydroxyl group of phosphorus containing phenolic compound (b) is 0.3 mol to 1.5 mol with respect to 1 mol of epoxy groups of an epoxy resin (a) at the said 1st reaction process. Of producing a phosphorus-containing phenolic resin.

(3)前記一段階目の反応工程で使用するリン含有フェノール化合物(b)が、リン含有フェノール樹脂の製造に使用する全てのリン含有フェノール化合物(b)の50%から100%である上記(1)または(2)記載のリン含有フェノール樹脂の製造方法。 (3) The phosphorus-containing phenol compound (b) used in the first-stage reaction step is 50% to 100% of all the phosphorus-containing phenol compounds (b) used in the production of the phosphorus-containing phenol resin ( The manufacturing method of the phosphorus containing phenol resin of 1) or (2) description.

(4)前記一段階目の反応工程でのエポキシ樹脂(a)のエポキシ基の反応率が30%から95%である上記(1)から(3)のいずれか1項に記載のリン含有フェノール樹脂の製造方法。 (4) The phosphorus-containing phenol according to any one of (1) to (3), wherein a reaction rate of an epoxy group of the epoxy resin (a) in the first-stage reaction step is 30% to 95%. Manufacturing method of resin.

(5)前記一段階目の反応工程終了後に、二段階目の反応として二官能以上のリン非含有フェノール化合物(c)を反応させて得られるリン含有フェノール樹脂であって、エポキシ樹脂(a)のエポキシ基1molに対してリン含有フェノール化合物(b)及びリン非含有フェノール化合物(c)の合計のフェノール性水酸基が1.5molから4.5molである上記(1)から(4)のいずれか1項に記載のリン含有フェノール樹脂の製造方法。 (5) A phosphorus-containing phenol resin obtained by reacting a bifunctional or higher phosphorus-free phenol compound (c) as a second-stage reaction after completion of the first-stage reaction step, the epoxy resin (a) Any of (1) to (4) above, wherein the total phenolic hydroxyl group of the phosphorus-containing phenol compound (b) and the phosphorus-free phenol compound (c) is 1.5 mol to 4.5 mol with respect to 1 mol of the epoxy group of 2. A method for producing a phosphorus-containing phenol resin according to item 1.

(6)上記(1)から(5)のいずれか1項に記載の製造方法によって得られた事を特徴とするリン含有フェノール樹脂。 (6) A phosphorus-containing phenol resin obtained by the production method according to any one of (1) to (5) above.

(7)上記(6)に記載のリン含有フェノール樹脂を含む事を特徴とするリン含有フェノール樹脂組成物。 (7) A phosphorus-containing phenol resin composition comprising the phosphorus-containing phenol resin according to (6) above.

(8)上記(7)に記載のリン含有フェノール樹脂組成物を硬化させた硬化物。 (8) Hardened | cured material which hardened the phosphorus containing phenol resin composition as described in said (7).

本発明によれば、一分子中に平均1.8個以上のエポキシ基を持つエポキシ樹脂(a)と一般式(1)で示すリン含有フェノール化合物(b)を必須として含有するリン含有化合物類(B)、とを一段階目で反応させ、二段階目にリン非含有フェノール化合物(c)を反応させる事により、各種有機溶剤への溶解性が具備されたリン含有フェノール樹脂を容易に製造できる。 According to the present invention, phosphorus-containing compounds containing as an essential component an epoxy resin (a) having an average of 1.8 or more epoxy groups in one molecule and a phosphorus-containing phenol compound (b) represented by the general formula (1) (B) is reacted in the first stage, and in the second stage, the phosphorus-free phenol compound (c) is reacted to easily produce a phosphorus-containing phenol resin having solubility in various organic solvents. it can.

本発明のリン含有フェノール樹脂の製造方法は、原料として一分子中に平均1.8個以上のエポキシ基を持つエポキシ樹脂(a)及び一般式(1)で示すリン含有フェノール化合物(b)を必須として含有するリン含有化合物類(B)、さらに二官能以上のリン非含有フェノール化合物(c)を必須とし、エポキシ樹脂(a)とリン含有化合物類(B)とを一段階目で反応させる前駆反応を含み、二段階目にリン非含有フェノール(c)を必須成分とするフェノール化合物類を反応させる二段階の反応工程を有する。 The production method of the phosphorus-containing phenol resin of the present invention comprises, as a raw material, an epoxy resin (a) having an average of 1.8 or more epoxy groups in one molecule and a phosphorus-containing phenol compound (b) represented by the general formula (1). The phosphorus-containing compounds (B) contained as essential and the phosphorus-free phenol compound (c) having two or more functions are essential, and the epoxy resin (a) and the phosphorus-containing compounds (B) are reacted in the first stage. Including the precursor reaction, the second stage has a two-stage reaction process in which phenol compounds containing phosphorus-free phenol (c) as an essential component are reacted.

原料として用いられるエポキシ樹脂(a)としては、エポトート YD−128、エポトート YD−8125(新日鐵化学株式会社製 BPA型エポキシ樹脂)、エポトート YDF−170、エポトート YDF−8170(新日鐵化学株式会社製 BPF型エポキシ樹脂)、YSLV−80XY(新日鐵化学株式会社製 テトラメチルビスフェノールF型エポキシ樹脂)、エポトート YDC−1312(ヒドロキノン型エポキシ樹脂)、jER YX4000H(三菱化学株式会社製 ビフェニル型エポキシ樹脂)、エポトート YDPN―638(新日鐵株式会社製 フェノールノボラック型エポキシ樹脂)、エポトート YDCN−701(新日鐵化学株式会社製 クレゾールノボラック型エポキシ樹脂)、エポトート ZX−1201(新日鐵化学株式会社製 ビスフェノールフルオレン型エポキシ樹脂)、TX−0710(新日鐵化学株式会社製 ビスフェノールS型エポキシ樹脂)、エピクロン EXA−1515(大日本化学工業株式会社製 ビスフェノールS型エポキシ樹脂)、NC−3000(日本化薬株式会社製 ビフェニルアラルキルフェノール型エポキシ樹脂)、エポトート ZX−1355、エポトート ZX−1711(新日鐵化学株式会社製 ナフタレンジオール型エポキシ樹脂)、エポトート ESN−155(新日鐵化学株式会社製 β−ナフトールアラルキル型エポキシ樹脂)、エポトート ESN−355、エポトート ESN−375(新日鐵化学株式会社製 ジナフトールアラルキル型エポキシ樹脂)、エポトート ESN475V、エポトート ESN−485(新日鐵化学株式会社製 α−ナフトールアラルキル型エポキシ樹脂)、EPPN−501H(日本化薬株式会社製 トリスフェニルメタン型エポキシ樹脂)、スミエポキシ TMH−574(住友化学株式会社製 トリスフェニルメタン型エポキシ樹脂)等の多価フェノール樹脂のフェノール化合物とエピハロヒドリンとから製造されるエポキシ樹脂、エポトート YH−434、(新日鐵化学株式会社製 ジアミノジフェニルメタンテトラグリシジルアミン)等のアミン化合物とエピハロヒドリンとから製造されるエポキシ樹脂、jER 630(三菱化学株式会社製 アミノフェノール型エポキシ樹脂)、エポトート FX−289B、エポトート FX−305、TX−0932A(新日鐵化学株式会社製 リン含有エポキシ樹脂)等のエポキシ樹脂をリン含有フェノール化合物等の変性剤と反応して得られるリン含有エポキシ樹脂、YSLV−120TE(新日鐵化学株式会社製 ビスチオエーテル型エポキシ樹脂)、エポトート ZX−1684(新日鐵化学株式会社製 レゾルシノール型エポキシ樹脂)、デナコール EX−201(ナガセケムテックス株式会社製 レゾルシノール型エポキシ樹脂)、エピクロン HP−7200H(DIC株式会社製 ジシクロペンタジエン型エポキシ樹脂)、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂、TX−0929、TX−0934(新日鐵化学株式会社製 アルキレングリコール型エポキシ樹脂)等が挙げられるが、これらに限定されるものではない。また、これらのエポキシ樹脂は単独で使用しても2種類以上を併用して使用してもよい。 Examples of the epoxy resin (a) used as a raw material include Epototo YD-128, Epototo YD-8125 (BPA type epoxy resin manufactured by Nippon Steel Chemical Co., Ltd.), Epototo YDF-170, Epototo YDF-8170 (Nippon Steel Chemical Co., Ltd.) BPF type epoxy resin made by company), YSLV-80XY (tetramethylbisphenol F type epoxy resin made by Nippon Steel Chemical Co., Ltd.), Epototo YDC-1312 (hydroquinone type epoxy resin), jER YX4000H (Mitsubishi Chemical Corporation biphenyl type epoxy) Resin), Epototo YDPN-638 (Phenol Novolak type epoxy resin manufactured by Nippon Steel Corp.), Epotot YDCN-701 (Cresol Novolak type epoxy resin manufactured by Nippon Steel Chemical Co., Ltd.), Epototo ZX-1201 ( Nippon Steel Chemical Co., Ltd. bisphenol fluorene type epoxy resin), TX-0710 (Nippon Steel Chemical Co., Ltd. bisphenol S type epoxy resin), Epicron EXA-1515 (Dainippon Chemical Industry Co., Ltd. bisphenol S type epoxy resin), NC-3000 (Nippon Kayaku Co., Ltd. biphenyl aralkyl phenol type epoxy resin), Epototo ZX-1355, Epototo ZX-1711 (Nippon Chemical Co., Ltd. naphthalenediol type epoxy resin), Epototo ESN-155 (Nippon Steel) Β-naphthol aralkyl type epoxy resin manufactured by Chemical Co., Ltd.), Epototo ESN-355, Epototo ESN-375 (manufactured by Nippon Steel Chemical Co., Ltd., dinaphthol aralkyl type epoxy resin), Epototo ESN475V, Epototo ES N-485 (Nippon Steel Chemical Co., Ltd. α-naphthol aralkyl type epoxy resin), EPPN-501H (Nippon Kayaku Co., Ltd. trisphenyl methane type epoxy resin), Sumiepoxy TMH-574 (Sumitomo Chemical Co., Ltd. trisphenyl) An epoxy compound produced from a phenol compound of a polyhydric phenol resin such as a methane type epoxy resin) and an epihalohydrin, Epototo YH-434 (Nippon Steel Chemical Co., Ltd. diaminodiphenylmethane tetraglycidylamine) and an amine compound and an epihalohydrin Epoxy resin produced from JER 630 (Aminophenol type epoxy resin manufactured by Mitsubishi Chemical Corporation), Epototo FX-289B, Epotot FX-305, TX-0932A (Phosphorus-containing epoxy resin manufactured by Nippon Steel Chemical Co., Ltd.) A phosphorus-containing epoxy resin obtained by reacting an epoxy resin such as a phosphorus-containing phenol compound with a modifier such as YSLV-120TE (Bisthioether type epoxy resin manufactured by Nippon Steel Chemical Co., Ltd.), Epototo ZX-1684 (Nippon Steel) Resorcinol type epoxy resin manufactured by Chemical Co., Ltd.), Denacol EX-201 (resorcinol type epoxy resin manufactured by Nagase ChemteX Corporation), Epiklon HP-7200H (dicyclopentadiene type epoxy resin manufactured by DIC Corporation), urethane-modified epoxy resin, oxazolidone Examples thereof include, but are not limited to, ring-containing epoxy resins, TX-0929, TX-0934 (alkylene glycol type epoxy resin manufactured by Nippon Steel Chemical Co., Ltd.), and the like. These epoxy resins may be used alone or in combination of two or more.

リン含有フェノール化合物(b)としては、一般式(2)で表される構造である。例えば、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製 商品名HCA−HQ)、10−(1,4−ジオキシナフタレン)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、ジフェニルホスフィニルヒドロキノン(北興化学工業株式会社製 商品名PPQ)、ジフェニルホスフェニル−1,4−ジオキシナフタリン、1,4−シクロオクチレンホスフィニル−1,4−フェニルジオール(日本化学工業株式会社製 商品名CPHO−HQ)、1,5−シクロオクチレンホスフィニル−1,4−フェニルジオール(日本化学工業株式会社製 商品名CPHO−HQ)等のリン含有フェノール化合物を挙げる事ができるが、これらに限定されるものではない。また、これらのリン含有フェノール化合物は2種類以上を併用して使用する事もできる。 The phosphorus-containing phenol compound (b) has a structure represented by the general formula (2). For example, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA-HQ manufactured by Sanko Co., Ltd.), 10- (1,4-dioxynaphthalene ) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphinyl hydroquinone (trade name PPQ, manufactured by Hokuko Chemical Co., Ltd.), diphenylphosphenyl-1,4-dioxynaphthalene, 1,4 -Cyclooctylenephosphinyl-1,4-phenyldiol (trade name CPHO-HQ manufactured by Nippon Chemical Industry Co., Ltd.), 1,5-cyclooctylenephosphinyl-1,4-phenyldiol (Nippon Chemical Industry Co., Ltd.) Examples include phosphorus-containing phenolic compounds such as the company name CPHO-HQ), but are limited to these. Not intended to be. These phosphorus-containing phenol compounds can be used in combination of two or more.

Figure 2013103975
(式中Aは炭素数6から20のアリーレン基及び/またはトリイル基を表す。式中γは0または1を表し、R及びRは炭素数1から6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。)
Figure 2013103975
(In the formula, A represents an arylene group and / or triyl group having 6 to 20 carbon atoms. In the formula, γ represents 0 or 1, R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and are the same. Or may be different, and may be cyclic with a phosphorus atom.)

また、これらのリン含有フェノール化合物(b)は9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製 商品名HCA)やジフェニルホスフィン等のリン原子に直結した活性水素基を有するリン化合物と、1,4−ベンゾキノンや1,4−ナフトキノン等のキノン類との反応で得る事ができる。HCA−HQについては特開昭60−126293、HCA−NQについては特開昭61−236787、PPQについてはzh.Obshch.Khim,42(11),第2415−2418頁(1972)に合成方法が示されている。   Further, these phosphorus-containing phenol compounds (b) were directly connected to phosphorus atoms such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA manufactured by Sanko Co., Ltd.) and diphenylphosphine. It can be obtained by a reaction between a phosphorus compound having an active hydrogen group and quinones such as 1,4-benzoquinone and 1,4-naphthoquinone. For HCA-HQ, see JP-A-60-126293, for HCA-NQ, JP-A-61-2236787, and for PPQ, zh. Obshch. Khim, 42 (11), pages 2415-2418 (1972) shows a synthesis method.

本発明のリン含有フェノール樹脂の製造で使用するリン含有化合物類(B)としては、HCAやジフェニルホスフィン等のリン化合物1.0molに対して1,4−ベンゾキノンや1,4−ナフトキノン等のキノン類を0.2molから1.0molの範囲で反応させる事が好ましく、0.5molから1.0molの範囲がより好ましく、0.8molから1.0molの範囲がさらに好ましい。0.5molより少ないとリン含有フェノール化合物(b)の生成量が少なくなるため硬化物の架橋密度が低下し、物性が悪くなる恐れがある。また、1.0molを超えると未反応のキノンが残存してしまうため、好ましくない。また、キノン類を1.0mol未満で反応することにより前記リン含有フェノール化合物(b)に、前記HCAやジフェニルホスフィン等のリン化合物を配合することができる。 The phosphorus-containing compounds (B) used in the production of the phosphorus-containing phenol resin of the present invention include quinones such as 1,4-benzoquinone and 1,4-naphthoquinone with respect to 1.0 mol of phosphorus compounds such as HCA and diphenylphosphine. Is preferably reacted in the range of 0.2 mol to 1.0 mol, more preferably in the range of 0.5 mol to 1.0 mol, and still more preferably in the range of 0.8 mol to 1.0 mol. If the amount is less than 0.5 mol, the amount of phosphorus-containing phenol compound (b) produced is reduced, so that the crosslink density of the cured product is lowered and the physical properties may be deteriorated. Moreover, since unreacted quinone will remain | survive when it exceeds 1.0 mol, it is not preferable. Moreover, phosphorus compounds, such as said HCA and diphenylphosphine, can be mix | blended with the said phosphorus containing phenol compound (b) by reacting quinones at less than 1.0 mol.

リン非含有フェノール化合物(c)としては一分子中に2個以上のフェノール性水酸基を有する化合物であり、カテコール、レゾルシノール、ヒドロキノン等のヒドロキシベンゼン類、ナフトール類、ビフェノール類、トリスフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ショウノール BRG−555(昭和電工株式会社製 フェノールノボラック樹脂)、クレゾールノボラック樹脂、アルキルフェノールノボラック樹脂、アラルキルフェノールノボラック樹脂、トリアジン環含有フェノールノボラック樹脂、ビフェニルアラルキルフェノール樹脂、レヂトップ TPM−100(群栄化学工業株式会社製 トリスヒドロキシフェニルメタン型ノボラック樹脂)、アラルキルナフタレンジオール樹脂等の多価フェノール類等が挙げられるが、これらに限定されるものではない。また、これらのリン非含有フェノール化合物は2種類以上を併用して使用する事ができる。 The phosphorus-free phenol compound (c) is a compound having two or more phenolic hydroxyl groups in one molecule, such as hydroxybenzenes such as catechol, resorcinol, hydroquinone, naphthols, biphenols, trisphenols, bisphenol A. , Bisphenol F, bisphenol S, shounol BRG-555 (Phenol novolac resin, manufactured by Showa Denko KK), cresol novolac resin, alkylphenol novolac resin, aralkylphenol novolac resin, triazine ring-containing phenol novolak resin, biphenyl aralkyl phenol resin, resin top TPM -100 (trishydroxyphenyl methane type novolak resin manufactured by Gunei Chemical Industry Co., Ltd.), aralkyl naphthalene diol resin, etc. Lumpur, etc., and the like, but not limited thereto. Moreover, these phosphorus-free phenol compounds can be used in combination of two or more.

本発明では、一段階目の反応工程でエポキシ樹脂(a)とリン含有化合物類(B)とを反応させることを前駆反応と称するが、前駆反応を必ずしも完結させる必要はなく、一段階目の反応を途中で停止させて二段階目の反応工程に進むことができる。一段階目の反応で未反応のリン含有化合物類(B)は、二段階目の反応工程でエポキシ樹脂(a)との反応で消費されるが、更には未反応成分として残存する場合がある。前駆反応は、本発明のリン含有フェノール樹脂の溶剤溶解性を発現する量の前駆反応体を生成することを目的とするものであり、リン含有フェノール樹脂中に残存するリン含有化合物(B)の含有率は溶剤溶解性等に悪影響を及ぼさない範囲で許容される。   In the present invention, the reaction of the epoxy resin (a) and the phosphorus-containing compound (B) in the first step reaction process is referred to as a precursor reaction, but the precursor reaction does not necessarily have to be completed. The reaction can be stopped halfway to proceed to the second stage reaction step. The unreacted phosphorus-containing compounds (B) in the first-stage reaction are consumed by the reaction with the epoxy resin (a) in the second-stage reaction process, but may further remain as unreacted components. . The precursor reaction is intended to produce a precursor reactant in an amount that expresses the solvent solubility of the phosphorus-containing phenol resin of the present invention, and the phosphorus-containing compound (B) remaining in the phosphorus-containing phenol resin remains. The content is allowed as long as the solvent solubility is not adversely affected.

本発明のリン含有フェノール樹脂を製造する際の一段階目の反応工程では、エポキシ樹脂(a)のエポキシ基1molに対してリン含有フェノール化合物(b)に含有されるフェノール性水酸基を0.3molから1.5molの範囲となる様に使用する事が好ましく、0.5molから1.1molがより好ましく、リン含有フェノール化合物(b)が0.3molより少ないと硬化物の難燃性が不十分となり、1.5mol超えて使用すると未反応リン含有フェノール化合物(b)の残存量が多くなり、溶剤溶解性が悪くなる恐れがある。また、フェノール性水酸基のモル比が1モルの近傍では得られる樹脂の分子量が高くなって増粘したりゲル化する恐れがあり、この場合には前駆反応を完結せずエポキシ樹脂(a)とリン含有フェノール化合物(b)とを部分反応させた状態で反応を停止させ、二段階目の反応に進めることが望ましい。 In the first stage reaction process when producing the phosphorus-containing phenol resin of the present invention, 0.3 mol of the phenolic hydroxyl group contained in the phosphorus-containing phenol compound (b) is 1 mol of the epoxy group of the epoxy resin (a). To 1.5 mol, preferably 0.5 mol to 1.1 mol, and if the phosphorus-containing phenol compound (b) is less than 0.3 mol, the cured product has insufficient flame retardancy. When the amount exceeds 1.5 mol, the residual amount of the unreacted phosphorus-containing phenol compound (b) increases, and the solvent solubility may be deteriorated. Further, when the molar ratio of the phenolic hydroxyl group is close to 1 mol, the resulting resin has a high molecular weight, which may cause thickening or gelation. In this case, the precursor reaction is not completed and the epoxy resin (a) It is desirable to stop the reaction in a state in which the phosphorus-containing phenol compound (b) is partially reacted and proceed to the second stage reaction.

また、前記一段階目の反応工程で使用するリン含有化合物類(B)は、本発明のリン含有フェノール樹脂の製造に使用する全てのリン含有化合物類(B)の50%から100%の範囲となる様に使用する事が好ましく、80%から100%がより好ましい。一段階目の反応工程で使用するリン含有化合物類(B)が50%より少ないと得られるリン含有フェノール樹脂中にリン含有フェノール化合物(b)が多く残存して溶剤溶解性が悪くなってしまう。 The phosphorus-containing compounds (B) used in the first-stage reaction step are in the range of 50% to 100% of all the phosphorus-containing compounds (B) used for the production of the phosphorus-containing phenol resin of the present invention. It is preferable to use so that it becomes, and 80% to 100% is more preferable. If the phosphorus-containing compound (B) used in the first reaction step is less than 50%, a large amount of the phosphorus-containing phenol compound (b) remains in the obtained phosphorus-containing phenol resin, resulting in poor solvent solubility. .

前記一段階目の反応工程では、エポキシ樹脂(a)のエポキシ基の30%から95%、より好ましくは35%から95%を反応させる事が好ましい。エポキシ基の反応率がこの範囲以外では得られる樹脂の分子量が高くなってゲル化したり、リン含有フェノール化合物(b))の残存量が多くなって溶剤溶解性が悪くなってしまう。 In the first stage reaction step, it is preferable to react 30% to 95%, more preferably 35% to 95% of the epoxy group of the epoxy resin (a). If the reaction rate of the epoxy group is outside this range, the resulting resin has a high molecular weight, resulting in gelation, and the residual amount of the phosphorus-containing phenol compound (b) increases, resulting in poor solvent solubility.

前記エポキシ基の反応率は、JIS K7236記載の方法によって反応物のエポキシ当量を測定し、反応に使用したエポキシ基数を求める事で算出できる。 The reaction rate of the epoxy group can be calculated by measuring the epoxy equivalent of the reaction product by the method described in JIS K7236 and determining the number of epoxy groups used in the reaction.

前記一段階目の反応工程は無溶剤でも、溶剤中でも行うことができるが、溶剤中で行う場合は、非プロトン性溶剤中で行うことが好ましく、例えば、プロピレングリコールモノメチルエーテル(PGM)、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジオキサン、ジアルキルエーテル、グリコールエーテル、2−ブトキシエタノール等が挙げられる。これらの反応溶剤は単独で、あるいは2種類以上を同時に使用してもよい。これらの反応溶剤の使用量は一段階目の反応工程での反応物全重量中の50%以下が好ましい。 The first stage reaction step can be carried out in a solvent-free or solvent-like manner, but when carried out in a solvent, it is preferably carried out in an aprotic solvent, such as propylene glycol monomethyl ether (PGM), propylene glycol. Examples thereof include monomethyl ether acetate (PMA), dioxane, dialkyl ether, glycol ether, 2-butoxyethanol and the like. These reaction solvents may be used alone or in combination of two or more. The amount of these reaction solvents used is preferably 50% or less of the total weight of the reaction product in the first stage reaction step.

前記一段階目の反応工程の反応温度は100℃から200℃、さらには140℃から160℃が好ましく、100℃以下では反応の進行が著しく遅く、200℃以上ではエポキシ樹脂が一部分解してしまう恐れがある。また、反応時間は1時間から4時間が好ましい。 The reaction temperature of the first-stage reaction step is preferably 100 ° C. to 200 ° C., more preferably 140 ° C. to 160 ° C., and the reaction proceeds remarkably slowly below 100 ° C., and the epoxy resin partially decomposes above 200 ° C. There is a fear. The reaction time is preferably 1 to 4 hours.

前記一段階目の反応工程では、反応を促進するために反応触媒を使用する事ができる。使用できる触媒としては、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン類、n−ブチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムヨージド等の四級ホスホニウム塩類、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類、テトラメチルアンモニウムクロリド、テトラエチルアンモニウブロミド等の四級アンモニウム塩類、トリエチルアミン、ベンジルジメチルアミン等の三級アミン類が挙げられる。これら触媒の使用量は、エポキシ樹脂全量に対して0.01%から1%の範囲が好ましく、0.05%から0.5%がさらに好ましい。 In the first reaction step, a reaction catalyst can be used to promote the reaction. Catalysts that can be used include phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, quaternary phosphonium salts such as n-butyltriphenylphosphonium bromide and ethyltriphenylphosphonium iodide, 2-ethyl- Examples include imidazoles such as 4-methylimidazole and 2-phenylimidazole, quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide, and tertiary amines such as triethylamine and benzyldimethylamine. The amount of these catalysts used is preferably in the range of 0.01% to 1%, more preferably 0.05% to 0.5%, based on the total amount of the epoxy resin.

本発明のリン含有フェノール樹脂の製造方法は、エポキシ樹脂(a)とリン含有化合物類(B)とを反応させる一段階目の反応工程を行った後、二段階目の反応工程でリン非含有フェノール化合物(c)を必須成分とするフェノール化合物類を反応させる事によりリン含有フェノール樹脂を得る方法だが、エポキシ樹脂(a)のエポキシ基1molに対してリン含有フェノール化合物(b)及びリン非含有フェノール化合物(c)を合計した、本発明のリン含有フェノール樹脂の製造に使用する全フェノール化合物類のフェノール性水酸基が1.5molから4.5mol、より好ましくは1.7molから3.5mol、さらに好ましくは1.9molから2.5molとなる様にリン非含有フェノール化合物を使用する事が好ましい。1.5molより少ないと得られる樹脂の分子量が高くなってゲル化したり、溶剤溶解性が悪くなったり、硬化物のTgが極度に低くなったりする。また、4.5molを超えると硬化物の難燃性が不十分となってしまう。 In the method for producing a phosphorus-containing phenol resin of the present invention, after the first reaction step of reacting the epoxy resin (a) with the phosphorus-containing compound (B) is performed, phosphorus is not contained in the second reaction step. Although it is a method of obtaining a phosphorus-containing phenol resin by reacting phenolic compounds having a phenol compound (c) as an essential component, the phosphorus-containing phenol compound (b) and phosphorus-free are contained per 1 mol of the epoxy group of the epoxy resin (a). The phenolic hydroxyl group of all phenolic compounds used in the production of the phosphorus-containing phenolic resin of the present invention, totaled by the phenolic compound (c), is 1.5 mol to 4.5 mol, more preferably 1.7 mol to 3.5 mol, It is preferable to use a phosphorus-free phenol compound so that the amount is preferably from 1.9 mol to 2.5 mol. If the amount is less than 1.5 mol, the resulting resin has a high molecular weight, resulting in gelation, poor solvent solubility, or extremely low Tg of the cured product. Moreover, when it exceeds 4.5 mol, the flame retardance of hardened | cured material will become inadequate.

前記二段階目の反応工程では、一段階目の反応工程と同様の反応溶剤を使用することができ、単独で、あるいは2種類以上を同時に使用してもよい。また、反応溶剤の使用量は反応物全重量中の50%以下が好ましい。 In the second-stage reaction step, the same reaction solvent as in the first-stage reaction step can be used, and two or more types may be used simultaneously. The amount of reaction solvent used is preferably 50% or less of the total weight of the reaction product.

前記二段階目の反応工程では、一段階目の反応工程と同様の反応温度で行う事ができる。反応時間は、1時間以上であればよい。 In the second stage reaction step, the reaction can be carried out at the same reaction temperature as in the first stage reaction step. The reaction time may be one hour or longer.

前記二段階目の反応工程では、一段階目の反応工程と同様の反応触媒で行う事ができる。触媒の使用量は一段階目の反応工程での使用量を含め、エポキシ樹脂(a)の重量に対して0.01から10%の範囲が好ましい。 In the second stage reaction step, the same reaction catalyst as in the first stage reaction step can be used. The amount of the catalyst used is preferably in the range of 0.01 to 10% with respect to the weight of the epoxy resin (a), including the amount used in the first stage reaction step.

本発明の樹脂組成物には前記のリン含有フェノール樹脂を含むが、必要に応じて他の化合物を含んでもよい。例えばエポキシ樹脂組成物の場合、エポキシ樹脂、本発明のリン含有フェノール樹脂以外の硬化剤、硬化促進剤、充填剤等が挙げられる。 The resin composition of the present invention contains the above-described phosphorus-containing phenol resin, but may contain other compounds as necessary. For example, in the case of an epoxy resin composition, an epoxy resin, a curing agent other than the phosphorus-containing phenol resin of the present invention, a curing accelerator, a filler and the like can be mentioned.

前記エポキシ樹脂組成物に使用できるエポキシ樹脂としては、本発明のリン含有フェノール樹脂の合成に使用するエポキシ樹脂と同様の種類が挙げられるが、これらに限定されるものではない。また、これらのエポキシ樹脂は単独で使用しても2種類以上を併用して使用してもよい。 Examples of the epoxy resin that can be used in the epoxy resin composition include, but are not limited to, the same types as those used for the synthesis of the phosphorus-containing phenol resin of the present invention. These epoxy resins may be used alone or in combination of two or more.

本発明の樹脂組成物にエポキシ樹脂を使用した場合は、本発明のリン含有フェノール樹脂はエポキシ樹脂の硬化剤として作用する。本発明の樹脂組成物は、本発明のリン含有フェノール樹脂以外に硬化剤を併用することができる。例えば、前記の該リン含有フェノール樹脂の製造で使用するリン非含有フェノール化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジド類、イミダゾール化合物類及びその塩類、ジシアンジアミド、アミノ安息香酸エステル類、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタキシレンジアミン、イソホロンジアミン等の脂肪族アミン類、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノエチルベンゼン等の芳香族アミン類、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸等の酸無水物類等が挙げられ、公知慣用のエポキシ樹脂硬化剤を1種類以上併用しても構わない。本発明のリン含有フェノール樹脂を含むエポキシ樹脂硬化剤の使用量は、使用されるエポキシ樹脂中のエポキシ基1.0molに対して0.3molから1.5molの範囲が好ましく、0.4molから1.2molがさらに好ましい。また、本発明のリン含有フェノール樹脂と他のエポキシ樹脂硬化剤を併用する場合、リン含有フェノール樹脂は他のエポキシ樹脂硬化剤との合計量に対して重量比で20%以上、好ましくは30%以上、より好ましくは40%以上となるように使用する事が好ましい。リン含有フェノール樹脂が20%より少ないと硬化物の難燃性が不十分となり易い。 When an epoxy resin is used in the resin composition of the present invention, the phosphorus-containing phenol resin of the present invention acts as a curing agent for the epoxy resin. The resin composition of this invention can use a hardening | curing agent together with the phosphorus containing phenol resin of this invention. For example, a phosphorus-free phenol compound used in the production of the phosphorus-containing phenol resin, hydrazides such as adipic acid dihydrazide and sebacic acid dihydrazide, imidazole compounds and salts thereof, dicyandiamide, aminobenzoic acid esters, diethylenetriamine, Aliphatic amines such as ethylenetetramine, tetraethylenepentamine, metaxylenediamine and isophoronediamine, aromatic amines such as diaminodiphenylmethane, diaminodiphenylsulfone and diaminoethylbenzene, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride , Maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic anhydride, etc. Mentioned object, etc. is may be used in combination one or more epoxy resin curing agent conventionally known. The amount of the epoxy resin curing agent containing the phosphorus-containing phenol resin of the present invention is preferably in the range of 0.3 mol to 1.5 mol with respect to 1.0 mol of the epoxy group in the epoxy resin used, and 0.4 mol to 1 More preferably, 2 mol. Moreover, when using together the phosphorus containing phenol resin of this invention and another epoxy resin hardening | curing agent, phosphorus containing phenol resin is 20% or more by weight ratio with respect to the total amount with another epoxy resin hardening | curing agent, Preferably it is 30%. As mentioned above, it is preferable to use so that it may become 40% or more more preferably. If the phosphorus-containing phenol resin is less than 20%, the flame retardancy of the cured product tends to be insufficient.

また、流動性や粘度等を調整する場合には、本発明の樹脂組成物の物性を損ねない範囲で反応性稀釈剤を使用することが可能である。希釈剤は反応性希釈剤が好ましいが、非反応性希釈剤でも構わない。反応性希釈剤としては、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル等の単官能、レゾルシノールグリシジルエーテル、ネオペンチルグリコールグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル等の二官能、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等の多官能グリシジルエーテル類が挙げられる。非反応性希釈剤としては、ベンジルアルコール、ブチルジグリコール、パインオイル等が挙げられる。 Moreover, when adjusting fluidity | liquidity, a viscosity, etc., it is possible to use a reactive diluent in the range which does not impair the physical property of the resin composition of this invention. The diluent is preferably a reactive diluent, but may be a non-reactive diluent. As reactive diluent, monofunctional such as allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, bifunctional such as resorcinol glycidyl ether, neopentyl glycol glycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol And polyfunctional glycidyl ethers such as polyglycidyl ether, trimethylolpropane polyglycidyl ether, and pentaerythritol polyglycidyl ether. Non-reactive diluents include benzyl alcohol, butyl diglycol, pine oil and the like.

また、本発明の樹脂組成物には必要に応じて硬化促進剤を使用することが可能である。例えば、ホスフィン類、四級ホスホニウム塩類、三級アミン類、四級アンモニウム塩類、イミダゾール化合物類、三フッ化ホウ素錯体類、3−(3,4−ジクロロジフェニル)−1,1−ジメチルウレア、3−(4−クロロフェニル)−1,1−ジメチルウレア、3−フェニル−1,1−ジメチルウレア等が挙げられる。これら硬化促進剤は使用するエポキシ樹脂、併用するエポキシ樹脂硬化剤の種類、成形方法、硬化温度、要求特性によるが、エポキシ樹脂に対して重量比で0.01%から20%の範囲が好ましく、さらには0.1%から10%が好ましい。 Moreover, it is possible to use a hardening accelerator as needed for the resin composition of this invention. For example, phosphines, quaternary phosphonium salts, tertiary amines, quaternary ammonium salts, imidazole compounds, boron trifluoride complexes, 3- (3,4-dichlorodiphenyl) -1,1-dimethylurea, 3 -(4-Chlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea and the like. These curing accelerators depend on the epoxy resin to be used, the type of epoxy resin curing agent to be used together, the molding method, the curing temperature, and the required characteristics, but preferably in the range of 0.01% to 20% by weight with respect to the epoxy resin, Furthermore, 0.1% to 10% is preferable.

本発明の樹脂組成物は、特性を損ねない範囲で他の熱硬化性樹脂、熱可塑性樹脂を配合してもよい。例えばフェノール樹脂、アクリル樹脂、石油樹脂、インデン樹脂、クマロンインデン樹脂、フェノキシ樹脂、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリビニルホルマール等が挙げられるがこれらに限定されるものではない。 The resin composition of this invention may mix | blend another thermosetting resin and a thermoplastic resin in the range which does not impair a characteristic. For example, phenol resin, acrylic resin, petroleum resin, indene resin, coumarone indene resin, phenoxy resin, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyetherimide, polyethersulfone, polysulfone, polyetheretherketone, polyphenylene sulfide, Examples thereof include polyvinyl formal, but are not limited thereto.

本発明の樹脂組成物は、必要に応じて無機充填剤、有機充填剤を配合することができる。充填剤の例としては、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、水酸化アルミニウム、タルク、マイカ、炭酸カルシウム、ケイ酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、窒化ホウ素、炭素、炭素繊維、ガラス繊維、アルミナ繊維、シリカアルミナ繊維、炭化ケイ素繊維、ポリエステル繊維、セルロース繊維、アラミド繊維等が挙げられる。これら充填剤は樹脂組成物全体重量中の1%から70%が好ましい。 The resin composition of this invention can mix | blend an inorganic filler and an organic filler as needed. Examples of fillers include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, talc, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium carbonate, barium carbonate, barium sulfate, boron nitride, carbon , Carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, aramid fiber and the like. These fillers are preferably 1% to 70% of the total weight of the resin composition.

本発明の樹脂組成物は、さらに必要に応じてシランカップリング剤、酸化防止剤、離型剤、消泡剤、乳化剤、揺変性付与剤、平滑剤、難燃剤、顔料等の核種添加剤を配合することができる。これらの添加剤は樹脂組成物全重量中の0.01%から20%の範囲が好ましい。 The resin composition of the present invention further contains a nuclide additive such as a silane coupling agent, an antioxidant, a mold release agent, an antifoaming agent, an emulsifier, a thixotropic agent, a smoothing agent, a flame retardant, and a pigment as necessary. Can be blended. These additives are preferably in the range of 0.01% to 20% of the total weight of the resin composition.

本発明の樹脂組成物は、公知のフェノール樹脂組成物と同様の方法により成型、硬化して硬化物とすることができる。成型方法、硬化方法は公知のフェノール樹脂組成物と同様の方法をとることができ、本発明の樹脂組成物固有の方法は不要である。 The resin composition of the present invention can be molded and cured by the same method as known phenol resin compositions to obtain a cured product. The molding method and the curing method can be the same methods as those of known phenol resin compositions, and the method unique to the resin composition of the present invention is unnecessary.

本発明のエポキシ樹脂硬化物は、積層物、成型物、接着物、塗膜、フィルム等の形態をとることができる。 The cured epoxy resin of the present invention can take the form of a laminate, a molded product, an adhesive, a coating film, a film and the like.

本発明は、難燃性を有したリン含有フェノール樹脂であり、各種有機溶剤への溶解性が良好であるため作業性に優れており、尚且つ、エポキシ樹脂硬化物は接着性や耐熱信頼性が良好であり、電気電子部品に用いられる封止材、銅張り積層板、絶縁塗料、難燃塗料、絶縁難燃接着剤等の電気部品用材料として有用であることが判った。 The present invention is a phosphorus-containing phenolic resin having flame retardancy, and is excellent in workability because of its good solubility in various organic solvents, and the cured epoxy resin has adhesiveness and heat resistance reliability. It was found to be useful as a material for electrical parts such as sealing materials, copper-clad laminates, insulating paints, flame retardant paints, and insulation flame retardant adhesives used for electric and electronic parts.

次に本発明の実施例を示すが、本発明の範囲はこれら実施例に限定されるものではない。特に断りがない限り「部」は重量部を表し、「%」は重量%を表す。また、分析方法、測定方法は以下の通りである。 Examples of the present invention are shown below, but the scope of the present invention is not limited to these examples. Unless otherwise specified, “parts” represents parts by weight, and “%” represents% by weight. The analysis method and measurement method are as follows.

エポキシ当量:JIS K7236に準じた。
不揮発分:JIS K7235−1986
リン含有量:試料に硫酸、塩酸、過塩素酸を加え、加熱して湿式灰化し、全てのリン原子をオルトリン酸とした。硫酸酸性溶液中でメタバナジン酸塩及びモリブデン酸塩を反応させ、生じたリンバードモリブデン酸錯体の420nmにおける吸光度を測定し、予め作成した検量線により求めたリン原子含有量を重量%で表した。積層板のリン含有量は、積層板の樹脂分に対する含有量として表した。
水酸基当量:1,4−ジオキサンを溶剤に用い、1.5mol/L塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で失活させ、0.5mol/L水酸化カリウムを加えて、電位差滴定装置を用いて滴定した。
リン含有フェノール化合物(b)の残存量:高速液体クロマトフラフィーを用いて該当ピークのピーク面積を求め、予め作成した検量線より換算した。具体的には、本体(アジレント・テクノロジー株式会社製 Agilent1100シリーズ)にカラム(インタクト株式会社製 Cadenza CD−C18(150mm×4.6mm))を備え、カラム温度を40℃にした。溶離液はテトラヒドロフラン/アセトニトリル混合溶剤(1/1(体積比))に、溶離開始時は体積比で60:40となる様に水を混合し、溶離開始15分で20:80となる様に流速0.7ml/minでグラジエント分析を行った。検出器はUV検出器(280nm)を用いた。また、検量線は以下の方法で作成した。リン含有フェノール化合物(b)50mgをテトラヒドロフラン10mlに溶解して資料溶液を作製し、前記装置に試料溶液をそれぞれ0.1μl、0.5μl、1.0μlずつ注入し、前記分析条件で分析を行った。リン含有フェノール化合物(b)がHCA−HQの場合は保持時間4.9分、HCA−NQの場合は保持時間10.3分のピーク面積を求め、注入量と試料濃度から求めたリン含有フェノール化合物(b)量を縦軸、ピーク面積を横軸として3点プロットし、直線性が得られた。
Epoxy equivalent: Conforms to JIS K7236.
Nonvolatile content: JIS K7235-1986
Phosphorus content: Sulfuric acid, hydrochloric acid and perchloric acid were added to the sample and heated to wet ash to convert all phosphorus atoms to orthophosphoric acid. Metavanadate and molybdate were reacted in a sulfuric acid acidic solution, the absorbance at 420 nm of the resulting phosphobird molybdate complex was measured, and the phosphorus atom content determined by a previously prepared calibration curve was expressed in wt%. The phosphorus content of the laminate was expressed as the content relative to the resin content of the laminate.
Hydroxyl equivalent: 1,4-dioxane as a solvent, acetylation with 1.5 mol / L acetyl chloride, excess acetyl chloride is deactivated with water, 0.5 mol / L potassium hydroxide is added, and potential difference Titration was performed using a titrator.
Residual amount of phosphorus-containing phenol compound (b): The peak area of the corresponding peak was determined using high performance liquid chromatography and converted from a calibration curve prepared in advance. Specifically, a column (Cadenza CD-C18 (150 mm × 4.6 mm) manufactured by Intact Corporation) was provided in the main body (Agilent 1100 series manufactured by Agilent Technologies), and the column temperature was set to 40 ° C. The eluent is mixed with tetrahydrofuran / acetonitrile mixed solvent (1/1 (volume ratio)) at the start of elution so that the volume ratio is 60:40, and at the start of elution 15 minutes it becomes 20:80. Gradient analysis was performed at a flow rate of 0.7 ml / min. The detector used was a UV detector (280 nm). A calibration curve was prepared by the following method. A sample solution is prepared by dissolving 50 mg of a phosphorus-containing phenol compound (b) in 10 ml of tetrahydrofuran, and 0.1 μl, 0.5 μl, and 1.0 μl of the sample solution are injected into the apparatus, and the analysis is performed under the analysis conditions. It was. When the phosphorus-containing phenol compound (b) is HCA-HQ, the peak area of the retention time is 4.9 minutes, and when it is HCA-NQ, the peak area of the retention time is 10.3 minutes, and the phosphorus-containing phenol determined from the injection amount and the sample concentration Three points were plotted with the amount of compound (b) on the vertical axis and the peak area on the horizontal axis, and linearity was obtained.

ガラス転移温度(DSC):示差走査熱量測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 DSC6200)にて10℃/分の昇温条件で測定を行った時のDSC外挿値の温度で表した。
耐熱分解性(Td5%) TGA:示差熱−熱重量同時測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 TG/DTA6200)にて10℃/分の昇温条件で測定を行い、5%重量減少温度を表した。
銅箔剥離強さ及び層間剥離強さ:JIS C6481に準じた。
燃焼性:UL94(Underwriters Laboratories Inc.の安全認証規格)に準じた。5本の試験片について試験を行い、1回目と2回目の接炎(5本それぞれ2回ずつで計10回の接炎)後の有炎燃焼持続時間の合計時間を秒で表した。
各種溶剤に対する溶解性:得られたリン含有フェノール樹脂溶液に室温で溶剤を追加して攪拌を行い不揮発分50%と25%の時の外観を観察した。透明溶液のままであったものを○、やや白濁が見られたものを△、分離、沈降が見られたものを×で示した。
Glass transition temperature (DSC): Expressed by DSC extrapolated temperature when measured under a temperature rising condition of 10 ° C./min with a differential scanning calorimeter (EXSTAR 6000 DSC6200 manufactured by SII NanoTechnology Inc.) .
Thermal decomposition resistance (Td5%) TGA: Measured with 10 ° C / min temperature rise condition with differential thermal-thermogravimetric simultaneous measurement device (EXSTAR TG / DTA6200, manufactured by SII Nanotechnology Co., Ltd.), reduced by 5% Expressed temperature.
Copper foil peel strength and delamination strength: in accordance with JIS C6481.
Flammability: Conforms to UL94 (Underwriters Laboratories Inc. safety certification standard). Five test pieces were tested, and the total time of the flammable combustion duration after the first and second flame contact (two flames each twice for a total of 10 flames) was expressed in seconds.
Solubility in various solvents: A solvent was added to the obtained phosphorus-containing phenol resin solution at room temperature, followed by stirring, and the appearance when the nonvolatile content was 50% and 25% was observed. A transparent solution was indicated as ◯, a slight cloudiness was observed as Δ, and a separation and sedimentation was observed as ×.

実施例1
攪拌装置、温度計、冷却管、窒素ガス導入管を備えた4つ口のガラス製セパラブルフラスコ実験装置に、ビスフェノールF型エポキシ樹脂(新日鐵化学株式会社製 商品名YDF−170、エポキシ当量168.9g/eq.)84.5部を入れ、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製 商品名HCA−HQ、融点256℃、リン含有量9.6%、水酸基当量162g/eq.)121.7部及びプロピレングリコールモノメチルエーテルアセテート(PMA)59部を仕込んだ。この時YDF−170に対するHCA−HQの官能基比は1.5であった。これに触媒としてトリフェニルホスフィンを添加して160℃で2時間反応を行った。一段階目の反応終了後のエポキシ当量は4849g/eq.でありエポキシ基の反応率は92%であった。これにビスフェノールA(新日鐵化学株式会社製、水酸基当量114g/eq.)28.5部を加えて160℃でさらに3時間反応を行った。反応終了後、プロピレングリコールモノメチルエーテル(PGM)で希釈した。得られたリン含有フェノール樹脂は淡黄色透明で、不揮発分70%、固形分中のリン含有量は5.0%、水酸基当量は469g/eq.、HCA−HQ残存量は10.2%であった。表1に仕込み比率、一段階目の反応条件、樹脂の性状を示し、表5に各種溶剤に対する溶解性を示す。
Example 1
A four-necked glass separable flask experimental apparatus equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe was added to a bisphenol F type epoxy resin (trade name YDF-170, manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent). 168.9 g / eq.) 84.5 parts was added, and 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA-HQ manufactured by Sanko Co., Ltd.) Melting point 256 ° C., phosphorus content 9.6%, hydroxyl group equivalent 162 g / eq.) 121.7 parts and propylene glycol monomethyl ether acetate (PMA) 59 parts. At this time, the functional group ratio of HCA-HQ to YDF-170 was 1.5. Triphenylphosphine was added to this as a catalyst and reacted at 160 ° C. for 2 hours. The epoxy equivalent after completion of the first stage reaction was 4849 g / eq. The reaction rate of the epoxy group was 92%. 28.5 parts of bisphenol A (manufactured by Nippon Steel Chemical Co., Ltd., hydroxyl group equivalent: 114 g / eq.) Was added thereto, followed by further reaction at 160 ° C. for 3 hours. After completion of the reaction, the reaction mixture was diluted with propylene glycol monomethyl ether (PGM). The obtained phosphorus-containing phenol resin is light yellow and transparent, has a nonvolatile content of 70%, a phosphorus content in the solid content of 5.0%, and a hydroxyl group equivalent of 469 g / eq. The residual amount of HCA-HQ was 10.2%. Table 1 shows the charging ratio, the first-stage reaction conditions, and the properties of the resin, and Table 5 shows the solubility in various solvents.

実施例2
実施例1のHCA−HQを105.5部、PMAを83部とした以外は実施例1と同様の方法で一段階目の反応を行った。この時YDF−170に対するHCA−HQの官能基比は1.3、一段階目の反応終了後のエポキシ当量は2943g/eq.でありエポキシ基の反応率は87%であった。これにトリスヒドロキシフェニルメタン型ノボラック樹脂(群栄化学工業会社製 商品名レヂトップ TPM−100、水酸基当量97.5g/eq.)141.5部を加えて実施例1と同様に反応を行い、反応終了後にPGMで希釈した。得られたリン含有フェノール樹脂は赤色透明で、不揮発分70%、固形分中のリン含有量は3.1%、水酸基当量は207g/eq.、HCA−HQ残存量は10.6%であった。表1に仕込み比率、一段階目の反応条件、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Example 2
The first stage reaction was carried out in the same manner as in Example 1 except that 105.5 parts of HCA-HQ of Example 1 and 83 parts of PMA were used. At this time, the functional group ratio of HCA-HQ to YDF-170 was 1.3, and the epoxy equivalent after completion of the first stage reaction was 2943 g / eq. The reaction rate of the epoxy group was 87%. To this was added 141.5 parts of trishydroxyphenylmethane type novolak resin (trade name Resitop TPM-100, hydroxyl group equivalent 97.5 g / eq., Manufactured by Gunei Chemical Industry Co., Ltd.), and the reaction was carried out in the same manner as in Example 1. After completion, it was diluted with PGM. The obtained phosphorus-containing phenol resin is red and transparent, the non-volatile content is 70%, the phosphorus content in the solid content is 3.1%, and the hydroxyl group equivalent is 207 g / eq. The residual amount of HCA-HQ was 10.6%. Table 1 shows the charging ratio, first-stage reaction conditions, and resin properties, and Table 5 shows the solubility in various solvents.

実施例3
実施例1と同様な実験装置に、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製 商品名HCA、リン含有量14.2%)54.9部及び1,4−ナフトキノン(川崎化成工業株式会社製 水分量3.4%)39.4部、トルエン120部を入れ、75℃で30分間撹拌した後、系内の水分を除きながら110℃で90分間反応させHCA−NQを合成した。この時HCAと1,4−ナフトキノンのmol比はHCA1.00molに対して1,4−ナフトキノン0.98molであった。その後トルエンを還流除去し、YDF−170を84.5部、PMAを72部加えた。この時YDF−170に対するHCA−NQの官能基比は1.0であった。これに触媒としてトリフェニルホスフィンを加えて実施例1と同様の方法で一段階目の反応を行った。一段階目の反応終了後のエポキシ当量は604g/eq.でありエポキシ基の反応率は39%であった。これにビスフェノールF(本州化学工業株式会社製、水酸基当量100g/eq.)49.1部を加えて実施例1と同様に反応を行い、反応終了後にPGMで希釈した。得られたリン含有フェノール樹脂は濃褐色透明で、不揮発分70%、固形分中のリン含有量は3.4%、水酸基当量は458g/eq.、HCA−NQ残存量は7.0%であった。表1に仕込み比率、一段階目の反応条件、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Example 3
In the same experimental apparatus as in Example 1, 9,4.9-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA manufactured by Sanko Co., Ltd., phosphorus content 14.2%) 54.9 parts. And 1,4-naphthoquinone (Made by Kawasaki Chemical Co., Ltd., 3.4% moisture content) 39.4 parts, 120 parts toluene, stirred at 75 ° C. for 30 minutes, and then removed the water in the system at 110 ° C. The reaction was performed for 90 minutes to synthesize HCA-NQ. At this time, the molar ratio of HCA to 1,4-naphthoquinone was 0.98 mol of 1,4-naphthoquinone with respect to 1.00 mol of HCA. Thereafter, toluene was removed by refluxing, and 84.5 parts of YDF-170 and 72 parts of PMA were added. At this time, the functional group ratio of HCA-NQ to YDF-170 was 1.0. Triphenylphosphine was added as a catalyst to this, and the first stage reaction was carried out in the same manner as in Example 1. The epoxy equivalent after completion of the first stage reaction is 604 g / eq. The reaction rate of the epoxy group was 39%. 49.1 parts of bisphenol F (manufactured by Honshu Chemical Industry Co., Ltd., hydroxyl equivalent: 100 g / eq.) Was added thereto, and the reaction was carried out in the same manner as in Example 1, and diluted with PGM after completion of the reaction. The obtained phosphorus-containing phenol resin was dark brown and transparent, had a nonvolatile content of 70%, a phosphorus content in the solid content of 3.4%, and a hydroxyl group equivalent of 458 g / eq. The residual amount of HCA-NQ was 7.0%. Table 1 shows the charging ratio, first-stage reaction conditions, and resin properties, and Table 5 shows the solubility in various solvents.

実施例4
実施例3と同様にHCA60.5部、1,4−ナフトキノン43.5部、トルエン140部を仕込み、実施例3と同様の方法で反応させHCA−NQを合成した。この時HCAと1,4−ナフトキノンのmol比はHCA1.00molに対して1,4−ナフトキノン0.98molであった。トルエンを除いた後、YDF−170を84.5部加えた。この時YDF−170に対するHCA−NQの官能基比は1.1であった。これに触媒としてトリフェニルホスフィンを加えて実施例1と同様の方法で一段階目の反応を行った。一段階目の反応終了後のエポキシ当量は1151g/eq.でありエポキシ基の反応率は66%であった。これにBPFを44.6部加えて実施例1と同様に反応を行い、反応終了後にPGMで希釈した。得られたリン含有フェノール樹脂は濃褐色透明で、不揮発分70%、固形分中のリン含有量は3.7%、水酸基当量は464g/eq.、HCA−NQ残存量は5.9%であった。表1に仕込み比率、一段階目の反応条件、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Example 4
In the same manner as in Example 3, 60.5 parts of HCA, 43.5 parts of 1,4-naphthoquinone, and 140 parts of toluene were charged and reacted in the same manner as in Example 3 to synthesize HCA-NQ. At this time, the molar ratio of HCA to 1,4-naphthoquinone was 0.98 mol of 1,4-naphthoquinone with respect to 1.00 mol of HCA. After removing toluene, 84.5 parts of YDF-170 was added. At this time, the functional group ratio of HCA-NQ to YDF-170 was 1.1. Triphenylphosphine was added as a catalyst to this, and the first stage reaction was carried out in the same manner as in Example 1. The epoxy equivalent after completion of the first stage reaction is 1151 g / eq. The reaction rate of the epoxy group was 66%. 44.6 parts of BPF was added to this and reacted in the same manner as in Example 1, and diluted with PGM after the reaction was completed. The obtained phosphorus-containing phenol resin is dark brown and transparent, has a non-volatile content of 70%, a phosphorus content in the solid content of 3.7%, and a hydroxyl group equivalent of 464 g / eq. The residual amount of HCA-NQ was 5.9%. Table 1 shows the charging ratio, first-stage reaction conditions, and resin properties, and Table 5 shows the solubility in various solvents.

実施例5
実施例3と同様にHCA129.7部、1,4−ナフトキノン93.1部、トルエン300部を仕込み、実施例3と同様の方法で反応させHCA−NQを合成した。この時HCAと1,4−ナフトキノンのmol比はHCA1.00molに対して1,4−ナフトキノン0.98molであった。トルエンを除いた後、YDF−170を84.5部加えた。この時YDF−170に対するHCA−NQの官能基比は1.2であった。これに触媒としてトリフェニルホスフィンを加えて160℃で3時間反応を行った。一段階目の反応終了後のエポキシ当量は2750g/eq.でありエポキシ基の反応率は75%であった。これにBPFを40.0部加えて実施例1と同様に反応を行い、反応終了後にPGMで希釈した。得られたリン含有フェノール樹脂は濃褐色透明で、不揮発分70%、固形分中のリン含有量は5.3%、水酸基当量は319g/eq.、HCA−NQ残存量は6.8%であった。表1に仕込み比率、一段階目の反応条件、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Example 5
In the same manner as in Example 3, 129.7 parts of HCA, 93.1 parts of 1,4-naphthoquinone, and 300 parts of toluene were charged and reacted in the same manner as in Example 3 to synthesize HCA-NQ. At this time, the molar ratio of HCA to 1,4-naphthoquinone was 0.98 mol of 1,4-naphthoquinone with respect to 1.00 mol of HCA. After removing toluene, 84.5 parts of YDF-170 was added. At this time, the functional group ratio of HCA-NQ to YDF-170 was 1.2. Triphenylphosphine was added as a catalyst to this and reacted at 160 ° C. for 3 hours. The epoxy equivalent after completion of the first stage reaction is 2750 g / eq. The reaction rate of the epoxy group was 75%. 40.0 parts of BPF was added thereto and the reaction was carried out in the same manner as in Example 1, and diluted with PGM after the reaction was completed. The obtained phosphorus-containing phenol resin is dark brown and transparent, has a non-volatile content of 70%, a phosphorus content in the solid content of 5.3%, and a hydroxyl group equivalent of 319 g / eq. The residual amount of HCA-NQ was 6.8%. Table 1 shows the charging ratio, first-stage reaction conditions, and resin properties, and Table 5 shows the solubility in various solvents.

実施例6
実施例3と同様にHCA86.4部、1,4−ナフトキノン31.6、トルエン200部を仕込み、実施例3と同様の方法で反応させHCA−NQを合成した。この時HCAと1,4−ナフトキノンのmol比はHCA1.00molに対して1,4−ナフトキノン0.50molであった。トルエンを除いた後、フェノールノボラック型エポキシ樹脂(新日鐵化学株式会社製 商品名YDPN−638、エポキシ当量176g/eq.)を88.5部加えた。この時YDPN−638に対するHCA−NQの官能基比は0.4であった。これに触媒としてトリフェニルホスフィンを加えて実施例1と同様の方法で一段階目の反応を行った。一段階目の反応終了後のエポキシ当量は2065g/eq.でありエポキシ基の反応率は40%であった。これにTPM−100を114.3部加えて実施例1と同様に反応を行い、反応終了後にPGMで希釈した。得られたリン含有フェノール樹脂は濃褐色透明で、不揮発分70%、固形分中のリン含有量は3.8%、水酸基当量は252g/eq.、HCA−NQ残存量は0.8%であった。表1に仕込み比率、一段階目の反応条件、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Example 6
In the same manner as in Example 3, 86.4 parts of HCA, 31.6 of 1,4-naphthoquinone, and 200 parts of toluene were charged and reacted in the same manner as in Example 3 to synthesize HCA-NQ. At this time, the molar ratio of HCA to 1,4-naphthoquinone was 0.50 mol of 1,4-naphthoquinone with respect to 1.00 mol of HCA. After removing toluene, 88.5 parts of phenol novolac type epoxy resin (trade name YDPN-638, manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 176 g / eq.) Was added. At this time, the functional group ratio of HCA-NQ to YDPN-638 was 0.4. Triphenylphosphine was added as a catalyst to this, and the first stage reaction was carried out in the same manner as in Example 1. The epoxy equivalent after completion of the first stage reaction is 2065 g / eq. The reaction rate of the epoxy group was 40%. To this, 114.3 parts of TPM-100 was added, and the reaction was carried out in the same manner as in Example 1, and diluted with PGM after completion of the reaction. The obtained phosphorus-containing phenol resin was dark brown and transparent, had a nonvolatile content of 70%, a phosphorus content in the solid content of 3.8%, and a hydroxyl group equivalent of 252 g / eq. The residual amount of HCA-NQ was 0.8%. Table 1 shows the charging ratio, first-stage reaction conditions, and resin properties, and Table 5 shows the solubility in various solvents.

実施例7
実施例1で得られたリン含有フェノール樹脂にフェノールノボラック型エポキシ樹脂(新日鐵化学株式会社製 商品名YDPN−638、エポキシ当量176g/eq.)と硬化促進剤を表2に示す固形分量で配合し、樹脂組成物を得た。これをMEKに溶解して樹脂ワニスとした。得られたエポキシ樹脂ワニスをガラスクロス(WEA 116E106S136 日東紡績株式会社製 厚み0.1mm)に含浸し、150℃の熱風循環オーブン中で10分間乾燥してプリプレグを得た。得られたプリプレグ4枚と銅箔(3EC−III 三井金属鉱業株式会社製 厚み35μm)を重ね、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、0.5mm厚の積層板を得た。表2に配合比率と積層板評価結果を示す。
Example 7
To the phosphorus-containing phenol resin obtained in Example 1, a phenol novolac type epoxy resin (trade name YDPN-638 manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 176 g / eq.) And a curing accelerator in solid amounts shown in Table 2 The resin composition was obtained by blending. This was dissolved in MEK to obtain a resin varnish. The obtained epoxy resin varnish was impregnated into glass cloth (WEA 116E106S136, Nitto Boseki Co., Ltd., thickness 0.1 mm) and dried in a hot air circulating oven at 150 ° C. for 10 minutes to obtain a prepreg. The obtained 4 prepregs and copper foil (3EC-III, Mitsui Mining & Mining Co., Ltd., 35 μm thick) were stacked and vacuum-pressed at 2 MPa under a temperature condition of 130 ° C. × 15 minutes + 190 ° C. × 80 minutes, 0.5 mm thickness A laminate was obtained. Table 2 shows the blending ratio and the evaluation result of the laminate.

実施例8
実施例7と同様に、実施例2で得られたリン含有フェノール樹脂及びp−アミノフェノール型エポキシ樹脂(三菱化学株式会社製 商品名jER 630、エポキシ当量105g/eq.)を用いてエポキシ樹脂硬化物を得た。表2に配合比率と積層板評価結果を示す。
Example 8
In the same manner as in Example 7, epoxy resin curing using the phosphorus-containing phenol resin and p-aminophenol type epoxy resin (trade name jER 630 manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 105 g / eq.) Obtained in Example 2 I got a thing. Table 2 shows the blending ratio and the evaluation result of the laminate.

実施例9
実施例7と同様に、実施例3で得られたリン含有フェノール樹脂及びYDPN−638を用いてエポキシ樹脂硬化物を得た。表2に配合比率と積層板評価結果を示す。
Example 9
In the same manner as in Example 7, a cured epoxy resin was obtained using the phosphorus-containing phenol resin and YDPN-638 obtained in Example 3. Table 2 shows the blending ratio and the evaluation result of the laminate.

実施例10
実施例7と同様に、実施例4で得られたリン含有フェノール樹脂及びYDPN−638を用いてエポキシ樹脂硬化物を得た。表2に配合比率と積層板評価結果を示す。
Example 10
Similarly to Example 7, a cured epoxy resin was obtained using the phosphorus-containing phenol resin obtained in Example 4 and YDPN-638. Table 2 shows the blending ratio and the evaluation result of the laminate.

実施例11
実施例7と同様に、実施例5で得られたリン含有フェノール樹脂及びフェノールノボラック樹脂(昭和電工株式会社製 商品名BRG−555 フェノール性水酸基当量105g/eq.)、クレゾールノボラック型エポキシ樹脂(新日鐵化学株式会社製 商品名YDCN−700−7、エポキシ当量209g/eq.)を用いてエポキシ樹脂硬化物を得た。表2に配合比率と積層板評価結果を示す。
Example 11
In the same manner as in Example 7, the phosphorus-containing phenol resin and phenol novolac resin obtained in Example 5 (trade name BRG-555 phenolic hydroxyl group equivalent of 105 g / eq. Manufactured by Showa Denko KK), cresol novolac epoxy resin (new) An epoxy resin cured product was obtained using a product name YDCN-700-7, epoxy equivalent 209 g / eq. Table 2 shows the blending ratio and the evaluation result of the laminate.

実施例12
実施例7と同様に、実施例6で得られたリン含有フェノール樹脂及びYDPN−638を用いてエポキシ樹脂硬化物を得た。表2に配合比率と積層板評価結果を示す。
Example 12
Similarly to Example 7, a cured epoxy resin was obtained using the phosphorus-containing phenol resin obtained in Example 6 and YDPN-638. Table 2 shows the blending ratio and the evaluation result of the laminate.

比較例1
実施例2と同じ配合量のYDF−170、HCA−HQ、TPM−100、PMAを一括で仕込み、触媒としてトリフェニルホスフィンを加えて160℃で5時間反応させた。これにPGM混合溶剤を加えて希釈し、不揮発分70%としたが、白色の固形が沈降した。これをDMFに溶解してHCA−NQの残存量を求めたところ、24.4%であった。表3に仕込み比率、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Comparative Example 1
YDF-170, HCA-HQ, TPM-100, and PMA having the same blending amount as in Example 2 were charged all at once, triphenylphosphine was added as a catalyst, and the reaction was performed at 160 ° C. for 5 hours. This was diluted by adding a PGM mixed solvent to a non-volatile content of 70%, but a white solid precipitated. This was dissolved in DMF to determine the residual amount of HCA-NQ, which was 24.4%. Table 3 shows the charging ratio and resin properties, and Table 5 shows the solubility in various solvents.

比較例2
実施例1のHCA−HQを137.9部、PMAを56部とした以外は実施例1と同様の方法で一段階目の反応を行った。この時YDF−170に対するHCA−HQの官能基比は1.7、一段階目の反応終了後のエポキシ当量は5421g/eq.でありエポキシ基の反応率は92%であった。これにBPFを15.0部加えて実施例1と同様に反応を行った。反応終了後にPGMで希釈し、不揮発分70%としたが、白色の固形が沈降した。これをDMFに溶解してHCA−NQの残存量を求めたところ、14.1%であった。表3に仕込み比率、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Comparative Example 2
The first stage reaction was carried out in the same manner as in Example 1 except that 137.9 parts of HCA-HQ of Example 1 and 56 parts of PMA were used. At this time, the functional group ratio of HCA-HQ to YDF-170 was 1.7, and the epoxy equivalent after completion of the first stage reaction was 5421 g / eq. The reaction rate of the epoxy group was 92%. 15.0 parts of BPF was added thereto, and the reaction was performed in the same manner as in Example 1. After completion of the reaction, it was diluted with PGM to a non-volatile content of 70%, but a white solid was precipitated. This was dissolved in DMF, and the residual amount of HCA-NQ was determined to be 14.1%. Table 3 shows the charging ratio and resin properties, and Table 5 shows the solubility in various solvents.

比較例3
実施例2と同様にHCA43.2部、1,4−ナフトキノン15.8部、トルエン100部を仕込んで実施例3と同様の方法で反応させHCA−NQを合成した。この時HCAと1,4−ナフトキノンのmol比はHCA1.00molに対して1,4−ナフトキノン0.5molであった。トルエンを除いた後、YDPN−638を88.5部、PMAを26部加えた。この時YDPN−638に対するHCA−NQの官能基比は0.2であった。これに触媒としてトリフェニルホスフィンを添加して実施例1と同様の方法で反応を行った。一段目の反応終了後のエポキシ当量は492g/eq.でありエポキシ基の反応率は20%であった。これにTPM−100を82.7部加えて実施例1と同様に反応を行い、反応終了後にPGMで希釈した。得られたリン含有フェノール樹脂は濃褐色透明で、不揮発分70%、固形分中のリン含有量は2.7%、水酸基当量は355g/eq.、HCA−NQの残存はなかった。表3に仕込み比率、樹脂の性状を、表5に各種溶剤に対する溶解性を示す。
Comparative Example 3
As in Example 2, 43.2 parts of HCA, 15.8 parts of 1,4-naphthoquinone and 100 parts of toluene were charged and reacted in the same manner as in Example 3 to synthesize HCA-NQ. At this time, the molar ratio of HCA to 1,4-naphthoquinone was 0.5 mol of 1,4-naphthoquinone with respect to 1.00 mol of HCA. After removing toluene, 88.5 parts YDPN-638 and 26 parts PMA were added. At this time, the functional group ratio of HCA-NQ to YDPN-638 was 0.2. To this, triphenylphosphine was added as a catalyst, and the reaction was carried out in the same manner as in Example 1. The epoxy equivalent after completion of the first stage reaction was 492 g / eq. The reaction rate of the epoxy group was 20%. To this was added 82.7 parts of TPM-100, and a reaction was carried out in the same manner as in Example 1. After completion of the reaction, it was diluted with PGM. The obtained phosphorus-containing phenol resin is dark brown and transparent, has a non-volatile content of 70%, a phosphorus content in the solid content of 2.7%, and a hydroxyl group equivalent of 355 g / eq. There was no remaining HCA-NQ. Table 3 shows the charging ratio and resin properties, and Table 5 shows the solubility in various solvents.

比較例4
比較例1で得られたリン含有フェノール樹脂にYDPN−638と硬化促進剤を表5に示す固形分量で配合し、樹脂組成物を得た。これをDMF/MEK混合溶剤に溶解して樹脂ワニスとした。これを実施例7と同様の方法で硬化させ、エポキシ樹脂硬化物を得た。表4に配合比率と積層板評価結果を示す。
Comparative Example 4
YDPN-638 and a curing accelerator were blended with the phosphorus-containing phenol resin obtained in Comparative Example 1 in solid amounts shown in Table 5 to obtain a resin composition. This was dissolved in a DMF / MEK mixed solvent to obtain a resin varnish. This was cured in the same manner as in Example 7 to obtain a cured epoxy resin. Table 4 shows the blending ratio and the evaluation result of the laminate.

比較例5
比較例4と同様に、比較例2で得られたリン含有フェノール樹脂及びYDPN−638を用いてエポキシ樹脂硬化物を得た。表4に配合比率と積層板評価結果を示す。
Comparative Example 5
Similarly to Comparative Example 4, an epoxy resin cured product was obtained using the phosphorus-containing phenol resin and YDPN-638 obtained in Comparative Example 2. Table 4 shows the blending ratio and the evaluation result of the laminate.

比較例6
実施例7と同様に、比較例3で得られたリン含有フェノール樹脂及びYDPN−638を用いてエポキシ樹脂硬化物を得た。表4に配合比率と積層板評価結果を示す。
Comparative Example 6
Similarly to Example 7, a cured epoxy resin was obtained using the phosphorus-containing phenol resin obtained in Comparative Example 3 and YDPN-638. Table 4 shows the blending ratio and the evaluation result of the laminate.

Figure 2013103975
Figure 2013103975

Figure 2013103975
Figure 2013103975

Figure 2013103975
Figure 2013103975

Figure 2013103975
Figure 2013103975

Figure 2013103975
Figure 2013103975

表1及び表5の実施例1から実施例6に示す様に、二段階の反応工程でエポキシ樹脂(a)及びリン含有フェノール化合物(b)、リン非含有フェノール化合物(c)を反応させる本発明のリン含有フェノール樹脂製造方法によって得られたリン含有フェノール樹脂は、二段階で反応させずに一括で反応させる製造方法によって得られた比較例1の樹脂と比べてリン含有フェノール化合物(b)の残存量が少なく、溶剤溶解性に優れる。また、一段階目の反応工程で、エポキシ樹脂(a)のエポキシ基1molに対してリン含有フェノール化合物(b)のフェノール性水酸基が1.7molとなる様に反応させた比較例2と比べ、実施例の様に0.3molから1.5molで反応させることによって溶剤溶解性に優れることが判る。 As shown in Example 1 to Example 6 in Table 1 and Table 5, the book in which the epoxy resin (a), the phosphorus-containing phenol compound (b), and the phosphorus-free phenol compound (c) are reacted in a two-step reaction process. The phosphorus-containing phenol resin obtained by the phosphorus-containing phenol resin production method of the invention is a phosphorus-containing phenol compound (b) as compared with the resin of Comparative Example 1 obtained by the production method in which the reaction is performed in a batch without reacting in two stages. The residual amount of is small, and the solvent solubility is excellent. Moreover, compared with the comparative example 2 made to react so that the phenolic hydroxyl group of a phosphorus containing phenolic compound (b) might be 1.7 mol with respect to 1 mol of epoxy groups of an epoxy resin (a) at the reaction process of the 1st step, It turns out that it is excellent in solvent solubility by making it react by 0.3 mol to 1.5 mol like an Example.

表2の実施例7から実施例12に示す様に、本発明のリン含有フェノール樹脂をエポキシ樹脂硬化剤として使用したエポキシ樹脂硬化物は、比較例1及び比較例2で得られたリン含有フェノール樹脂を硬化剤として使用した場合に比べて、耐熱性、耐熱分解性、接着性に優れる。また、比較例3で得られたリン含有フェノール樹脂を硬化剤として使用した場合と比べると、難燃性が優れる。 As shown in Example 7 to Example 12 in Table 2, the epoxy resin cured product using the phosphorus-containing phenol resin of the present invention as an epoxy resin curing agent was obtained by the phosphorus-containing phenol obtained in Comparative Example 1 and Comparative Example 2. Compared to the case where a resin is used as a curing agent, it is excellent in heat resistance, heat decomposition resistance, and adhesiveness. Moreover, compared with the case where the phosphorus containing phenol resin obtained by the comparative example 3 is used as a hardening | curing agent, a flame retardance is excellent.

本発明の製造方法によって得られたリン含有フェノール樹脂は、各種有機溶剤への溶解性が良いため、組成物配合の際に析出するといった問題が解決でき、作業性、硬化性、成型性に優れる上に、該リン含有フェノール樹脂を含む樹脂組成物は、添加型難燃剤を使用せずとも十分な難燃性を発現する事が可能である。 Since the phosphorus-containing phenol resin obtained by the production method of the present invention has good solubility in various organic solvents, it can solve the problem of precipitation when blended with the composition, and is excellent in workability, curability and moldability. Moreover, the resin composition containing the phosphorus-containing phenol resin can exhibit sufficient flame retardancy without using an additive-type flame retardant.

また本発明のリン含有フェノール樹脂をエポキシ樹脂等の硬化剤として使用した場合は、耐熱信頼性、接着性に優れた硬化物が得られる。 Moreover, when the phosphorus containing phenol resin of this invention is used as hardening | curing agents, such as an epoxy resin, the hardened | cured material excellent in heat-resistant reliability and adhesiveness is obtained.

Claims (8)

一分子中に平均1.8個以上のエポキシ基を持つエポキシ樹脂(a)に、一般式(1)で示すリン含有フェノール化合物(b)を必須として含有するリン含有化合物類(B)、及び二官能以上のリン非含有フェノール化合物類(c)、を二段階の反応工程で反応させて得られるリン含有フェノール樹脂であって、一段階目の反応工程でエポキシ樹脂(a)とリン含有化合物類(B)とを反応させる前駆反応を含むこと特徴とするリン含有フェノール樹脂の製造方法。
Figure 2013103975
(式中Aは炭素数6から20のアリーレン基及び/またはトリイル基を表す。式中γは0または1を表し、R及びRは炭素数1から6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。)
Phosphorus-containing compounds (B) containing, as an essential component, a phosphorus-containing phenol compound (b) represented by the general formula (1) in an epoxy resin (a) having an average of 1.8 or more epoxy groups in one molecule; and A phosphorus-containing phenol resin obtained by reacting a bifunctional or higher phosphorus-free phenol compound (c) in a two-step reaction step, wherein the epoxy resin (a) and the phosphorus-containing compound are obtained in the first step reaction step. The manufacturing method of the phosphorus containing phenol resin characterized by including the precursor reaction which makes class (B) react.
Figure 2013103975
(In the formula, A represents an arylene group and / or triyl group having 6 to 20 carbon atoms. In the formula, γ represents 0 or 1, R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and are the same. Or may be different, and may be cyclic with a phosphorus atom.)
前記一段階目の反応工程で、エポキシ樹脂(a)のエポキシ基1molに対してリン含有フェノール化合物(b)のフェノール性水酸基が0.3molから1.5molである請求項1記載のリン含有フェノール樹脂の製造方法。 The phosphorus-containing phenol according to claim 1, wherein the phenolic hydroxyl group of the phosphorus-containing phenol compound (b) is 0.3 mol to 1.5 mol with respect to 1 mol of the epoxy group of the epoxy resin (a) in the reaction step of the first stage. Manufacturing method of resin. 前記一段階目の反応工程で使用するリン含有フェノール化合物(b)が、リン含有フェノール樹脂の製造に使用する全てのリン含有フェノール化合物(b)の50%から100%である請求項1または請求項2記載のリン含有フェノール樹脂の製造方法。 The phosphorus-containing phenol compound (b) used in the first-stage reaction step is 50% to 100% of all the phosphorus-containing phenol compounds (b) used in the production of the phosphorus-containing phenol resin. Item 3. A process for producing a phosphorus-containing phenol resin according to Item 2. 前記一段階目の反応工程でのエポキシ樹脂(a)のエポキシ基の反応率が30%から95%である請求項1から請求項3のいずれか1項に記載のリン含有フェノール樹脂の製造方法。 The method for producing a phosphorus-containing phenol resin according to any one of claims 1 to 3, wherein a reaction rate of an epoxy group of the epoxy resin (a) in the first-stage reaction step is 30% to 95%. . 前記一段階目の反応工程終了後に、二段階目の反応として二官能以上のリン非含有フェノール化合物(c)を反応させて得られるリン含有フェノール樹脂であって、エポキシ樹脂(a)のエポキシ基1molに対してリン含有フェノール化合物(b)及びリン非含有フェノール化合物(c)の合計のフェノール性水酸基が1.5molから4.5molである請求項1から請求項4のいずれか1項に記載のリン含有フェノール樹脂の製造方法。 A phosphorus-containing phenol resin obtained by reacting a bifunctional or higher phosphorus-free phenol compound (c) as a second-stage reaction after completion of the first-stage reaction step, the epoxy group of the epoxy resin (a) 5. The total phenolic hydroxyl group of the phosphorus-containing phenol compound (b) and the phosphorus-free phenol compound (c) is 1.5 mol to 4.5 mol with respect to 1 mol. 5. Of producing a phosphorus-containing phenolic resin. 請求項1から請求項5のいずれか1項に記載の製造方法によって得られた事を特徴とするリン含有フェノール樹脂。 A phosphorus-containing phenol resin obtained by the production method according to any one of claims 1 to 5. 請求項6に記載のリン含有フェノール樹脂を含む事を特徴とするリン含有フェノール樹脂組成物。 A phosphorus-containing phenol resin composition comprising the phosphorus-containing phenol resin according to claim 6. 請求項7に記載のリン含有フェノール樹脂組成物を硬化させた硬化物。 A cured product obtained by curing the phosphorus-containing phenol resin composition according to claim 7.
JP2011247988A 2011-11-11 2011-11-11 Method for producing phosphorus-containing phenolic resin Active JP5917098B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011247988A JP5917098B2 (en) 2011-11-11 2011-11-11 Method for producing phosphorus-containing phenolic resin
KR1020120125234A KR101954455B1 (en) 2011-11-11 2012-11-07 Phosphorus-containing phenolic resin and the producing method, phenolic resin composition and cured product thereof
TW101141519A TWI543997B (en) 2011-11-11 2012-11-08 Phosphorus-containing phenolic resin and method for producing the same, the composition and cured object of the resin
CN201210447557.0A CN103102471B (en) 2011-11-11 2012-11-09 Phosphorus containing phenolic resin and its manufacture method, the resin combination, solidfied material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247988A JP5917098B2 (en) 2011-11-11 2011-11-11 Method for producing phosphorus-containing phenolic resin

Publications (2)

Publication Number Publication Date
JP2013103975A true JP2013103975A (en) 2013-05-30
JP5917098B2 JP5917098B2 (en) 2016-05-11

Family

ID=48310694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247988A Active JP5917098B2 (en) 2011-11-11 2011-11-11 Method for producing phosphorus-containing phenolic resin

Country Status (4)

Country Link
JP (1) JP5917098B2 (en)
KR (1) KR101954455B1 (en)
CN (1) CN103102471B (en)
TW (1) TWI543997B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623562B (en) * 2013-09-30 2018-05-11 新日鐵住金化學股份有限公司 Epoxy resin composition and cured product thereof
CN110951048A (en) * 2018-09-27 2020-04-03 日铁化学材料株式会社 Phosphorus-containing curing agent, epoxy resin composition, cured product, prepreg, and laminate
CN111806001A (en) * 2020-07-08 2020-10-23 山东金宝电子股份有限公司 Preparation method of dip-soldering-resistant high-flexibility CEM-1 copper-clad plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348420A (en) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, and multilayer printed wiring board
JP2003040969A (en) * 2001-07-26 2003-02-13 Toto Kasei Co Ltd Phosphorus-containing phenolic resin and epoxy resin composition using the same
JP2003277487A (en) * 2002-03-26 2003-10-02 Matsushita Electric Works Ltd Phosphorus-modified epoxy resin composition for printed circuit board and method for producing the same
WO2006059363A1 (en) * 2004-11-30 2006-06-08 Matsushita Electric Works, Ltd. Epoxy resin composition for prepreg, prepreg, and multilayered printed wiring board
JP2011162621A (en) * 2010-02-08 2011-08-25 Nippon Steel Chem Co Ltd Method for producing phosphorus-containing epoxy resin, epoxy resin composition, and cured product of the epoxy resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206019A (en) 2000-09-12 2002-07-26 Mitsui Chemicals Inc Phosphorus-containing epoxy resin, flame-retardant and highly heat-retardant epoxy resin composition using the resin, and laminate
JP5547386B2 (en) * 2008-09-25 2014-07-09 パナソニック株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed wiring board
JP5322286B2 (en) 2009-05-28 2013-10-23 新日鉄住金化学株式会社 Phosphorus-containing phenol resin, method for producing the resin, phosphorus-containing epoxy resin composition using the resin, and cured product of the composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348420A (en) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, and multilayer printed wiring board
JP2003040969A (en) * 2001-07-26 2003-02-13 Toto Kasei Co Ltd Phosphorus-containing phenolic resin and epoxy resin composition using the same
JP2003277487A (en) * 2002-03-26 2003-10-02 Matsushita Electric Works Ltd Phosphorus-modified epoxy resin composition for printed circuit board and method for producing the same
WO2006059363A1 (en) * 2004-11-30 2006-06-08 Matsushita Electric Works, Ltd. Epoxy resin composition for prepreg, prepreg, and multilayered printed wiring board
JP2011162621A (en) * 2010-02-08 2011-08-25 Nippon Steel Chem Co Ltd Method for producing phosphorus-containing epoxy resin, epoxy resin composition, and cured product of the epoxy resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623562B (en) * 2013-09-30 2018-05-11 新日鐵住金化學股份有限公司 Epoxy resin composition and cured product thereof
CN110951048A (en) * 2018-09-27 2020-04-03 日铁化学材料株式会社 Phosphorus-containing curing agent, epoxy resin composition, cured product, prepreg, and laminate
CN110951048B (en) * 2018-09-27 2023-09-29 日铁化学材料株式会社 Phosphorus-containing hardener, epoxy resin composition, cured product, prepreg, and laminate
CN111806001A (en) * 2020-07-08 2020-10-23 山东金宝电子股份有限公司 Preparation method of dip-soldering-resistant high-flexibility CEM-1 copper-clad plate

Also Published As

Publication number Publication date
JP5917098B2 (en) 2016-05-11
TWI543997B (en) 2016-08-01
TW201323468A (en) 2013-06-16
CN103102471B (en) 2018-01-09
CN103102471A (en) 2013-05-15
KR20130052518A (en) 2013-05-22
KR101954455B1 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
JP5633931B2 (en) Phosphorus-containing epoxy resin, resin composition, and cured product
TWI753136B (en) Phosphorus-containing phenolic compounds, phosphorus-containing epoxy resins, curable resin compositions thereof or epoxy resin compositions and cured products thereof
CN103724596B (en) Epoxy resin composition and cured product
KR102138386B1 (en) Phosphorus-containing epoxy resin, epoxy resin composition, and cured product thereof
JP2013067698A (en) New epoxy resin having phosphorus atom, epoxy resin composition and cured product thereof
JP5917098B2 (en) Method for producing phosphorus-containing phenolic resin
JP5153000B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2020015823A (en) Epoxy resin composition, prepreg, laminate, and printed wiring board
JP6596751B2 (en) Phosphorus-containing epoxy resin composition and cured product
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
JP5917227B2 (en) Method for producing phosphorus-containing epoxy resin
JP5719574B2 (en) Phosphorus-containing phenolic resin, resin composition and cured product
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
KR101844073B1 (en) Phosphorus-containing phenol resin, phenol resin compositions and cured products using same
JP6113454B2 (en) Epoxy resin composition and cured product
TW202012484A (en) Epoxy resin composition, prepreg, laminate, and printed wiring substrate
JP2012180511A (en) Phosphorous-containing epoxy resin, epoxy resin composition containing the resin, hardenable epoxy resin composition containing the resin, and hardened material obtained therefrom
JP2014108976A (en) Epoxy resin composition and cured article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250