JP2013103173A - Purification cylinder for exhaust gas including powdered substance - Google Patents

Purification cylinder for exhaust gas including powdered substance Download PDF

Info

Publication number
JP2013103173A
JP2013103173A JP2011248785A JP2011248785A JP2013103173A JP 2013103173 A JP2013103173 A JP 2013103173A JP 2011248785 A JP2011248785 A JP 2011248785A JP 2011248785 A JP2011248785 A JP 2011248785A JP 2013103173 A JP2013103173 A JP 2013103173A
Authority
JP
Japan
Prior art keywords
exhaust gas
purification cylinder
powdered
disk
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011248785A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
孝 島田
Noboru Takemasa
登 武政
Yoshio Yamashita
義雄 山下
Kenta Mizuno
健太 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2011248785A priority Critical patent/JP2013103173A/en
Publication of JP2013103173A publication Critical patent/JP2013103173A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a purification cylinder for exhaust gas including powdered substances discharged in a semiconductor manufacturing process etc., which removes hazardous components from the exhaust gas to purify the exhaust gas, traps the powdered substances within the purification cylinder and prevents a problem of pressure loss for a short time.SOLUTION: The purification cylinder for exhaust gas including the powdered substances includes an exhaust gas introduction port, a purifying agent filling part, a powdered substance trapping tool and a discharge port for purified gas. The powdered substance trapping tool includes: a disk having an outer peripheral edge coming into close contact with an inner wall face of the purification cylinder and including a hole; and an air permeable recessed container stored so that an upper end thereof is brought into close contact with an edge portion of the hole of the disk. A powdered substance trapping material is installed on the surface of the recessed container on the upstream side of a gas flow passage.

Description

本発明は、粉化物を含む排ガスの浄化筒に関する。さらに詳細には、半導体製造工程等から排出される粉化物を含む排ガスを、容易に浄化することが可能で、かつ粉化物についても浄化筒内で捕捉可能とした排ガスの浄化筒に関する。   The present invention relates to a purification cylinder for exhaust gas containing powdered material. More specifically, the present invention relates to an exhaust gas purification cylinder that can easily purify exhaust gas containing powdered substances discharged from a semiconductor manufacturing process and the like, and that can capture powdered substances in the purification cylinder.

半導体製造工業においては各種のガスが使用されており、水素化物ガスとしては、アルシン、ホスフィン、シラン、ジボラン、セレン化水素等が多量に使用されている。これらのガスは毒性を有するため、半導体製造工程等で使用された後、これらを含む排ガスは大気中に放出するに先立って浄化する必要がある。また、半導体製造工程から排出されるホスフィンを含む排ガス中には分解生成物である固体粒子状のリンが、シランを含む排ガス中には二酸化珪素が、セレン化水素を含む排ガス中にはセレンが多量に含まれるため、これらの排ガス処理にあたっては固体粒子であるリン、二酸化珪素あるいはセレンを除去し、かつ浄化筒内における圧力損失の上昇を抑えるように考慮しなければならない。また、粉化物の中には、大気中に放出できない環境や人体に悪影響を及ぼすものも存在するため、確実に除去する必要がある。   Various gases are used in the semiconductor manufacturing industry, and as hydride gas, arsine, phosphine, silane, diborane, hydrogen selenide and the like are used in large quantities. Since these gases are toxic, the exhaust gas containing them must be purified before being released into the atmosphere after being used in the semiconductor manufacturing process or the like. In addition, solid particulate phosphorus, which is a decomposition product, is contained in the exhaust gas containing phosphine discharged from the semiconductor manufacturing process, silicon dioxide is contained in the exhaust gas containing silane, and selenium is contained in the exhaust gas containing hydrogen selenide. Since they are contained in large quantities, these exhaust gas treatments must be considered so as to remove solid particles such as phosphorus, silicon dioxide, or selenium and to suppress an increase in pressure loss in the purification cylinder. In addition, some pulverized products have an adverse effect on the environment and human body that cannot be released into the atmosphere, and therefore must be reliably removed.

従来より、粉化物を含む排ガスを、乾式処理法を利用した浄化筒で処理する場合は、浄化筒内にフィルタを設置する等の対策が行なわれているが、粉化物が多い場合は圧力損失が短期間で大きくなるという問題があり、例えば特許文献1に記載されているような浄化筒が開発されている。この浄化筒は、浄化剤の充填部より上部で導入口より下部の位置に水平板がその外周縁が浄化筒の内壁面に密着するように設けられ、導入口から導入される有害ガスを該水平板の下部に流通させるための流通管が上方向から該水平板の中心部に貫通して設けられており、浄化筒の内壁面、該水平板の上面、及び該流通管の外側面により形成される環状形の空間が、有害ガスに含まれる粉化物の溜り部とされる浄化筒である。
特開2002−66232号公報
Conventionally, when exhaust gas containing pulverized material is treated with a purification cylinder using a dry treatment method, measures such as installing a filter in the clarification cylinder have been taken. However, a purification cylinder as described in Patent Document 1 has been developed. The purification cylinder is provided with a horizontal plate at a position above the purifier filling portion and below the inlet so that its outer peripheral edge is in close contact with the inner wall surface of the purification cylinder. A flow pipe for flowing through the lower part of the horizontal plate is provided penetrating from the upper direction to the center of the horizontal plate. The inner wall surface of the purification cylinder, the upper surface of the horizontal plate, and the outer surface of the flow pipe The formed annular space is a purification cylinder that serves as a reservoir for powdered substances contained in harmful gas.
JP 2002-66232 A

しかしながら、特許文献1に記載された浄化筒は、粉化物を自然落下させて捕捉する方法であり、浄化筒内で効率よく粉化物を捕捉できなかった。
従って、本発明が解決しようとする課題は、半導体製造工程等から排出される粉化物を含む排ガスの浄化筒において、排ガスから有害成分を除去して浄化するとともに、粉化物を浄化筒内部で捕捉し、かつ浄化筒内における圧力損失の上昇の問題を起こさない浄化筒を提供することである。
However, the purification cylinder described in Patent Document 1 is a method of trapping powdered products by naturally dropping them, and could not capture the powdered products efficiently in the purification cylinder.
Therefore, the problem to be solved by the present invention is to purify by removing harmful components from the exhaust gas and purifying the dust inside the purification cylinder in the purification cylinder of the exhaust gas containing powdered substances discharged from the semiconductor manufacturing process etc. The present invention also provides a purification cylinder that does not cause a problem of an increase in pressure loss in the purification cylinder.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、乾式処理法を利用した浄化筒において、外周縁が浄化筒の内壁面に密着し孔を有する円盤、及び該円盤の孔の縁部に上端部が密着するように収納した通気性の凹形状の容器を有し、該凹形状の容器のガス流路上流側の表面に粉化物捕捉材が設けられてなる粉化物捕捉具を、排ガス流路のいずれかの箇所に設けることにより、排ガスから有害成分を除去して浄化するとともに、効率よく粉化物を浄化筒内部で捕捉できることを見出し、本発明の排ガスの浄化筒に到達した。   As a result of intensive studies to solve these problems, the inventors of the present invention have, as a result, in a purification cylinder using a dry treatment method, a disk having an outer peripheral edge that is in close contact with the inner wall surface of the purification cylinder, and a hole in the disk. A powder trap having a breathable concave container housed so that the upper end is in close contact with the edge, and a powder trap material is provided on the upstream surface of the gas channel of the concave container Is provided in any part of the exhaust gas flow path to remove and purify harmful components from the exhaust gas and to efficiently capture the pulverized material inside the purification cylinder, and reach the exhaust gas purification cylinder of the present invention. did.

すなわち本発明は、排ガスの導入口、浄化剤の充填部、粉化物捕捉具、及び浄化されたガスの排出口を備えた粉化物を含む排ガスの浄化筒であって、粉化物捕捉具が、外周縁が浄化筒の内壁面に密着し孔を有する円盤、及び該円盤の孔の縁部に上端部が密着するように収納した通気性の凹形状の容器を有し、該凹形状の容器のガス流路上流側の表面に粉化物捕捉材が設けられてなるものであることを特徴とする粉化物を含む排ガスの浄化筒である。   That is, the present invention is an exhaust gas purification cylinder including an exhaust gas introduction port, a purifier filling portion, a powdered material capturing device, and a powdered material provided with a purified gas discharge port, wherein the powdered material capturing device includes: A disk having an outer peripheral edge in close contact with the inner wall surface of the purification cylinder and having a hole, and a breathable concave container stored so that an upper end thereof is in close contact with an edge of the hole of the disk, the concave container An exhaust gas purifying cylinder containing powdered material, characterized in that a powdered material capturing material is provided on the upstream surface of the gas flow path.

本発明の粉化物を含む排ガスの浄化筒により、半導体製造工程等から排出される排ガスから、有害成分を除去して浄化するとともに、効率よく粉化物を浄化筒内部で捕捉することができる。その結果、浄化筒内にフィルタを設置して粉化物を除去する浄化筒の欠点であった、短時間で圧力損失が大きくなるという問題の発生が防止できるようになった。   By the exhaust gas purification cylinder containing the powdered product of the present invention, harmful components can be removed and purified from the exhaust gas discharged from the semiconductor manufacturing process and the like, and the powdered product can be efficiently captured inside the purification cylinder. As a result, it has become possible to prevent the occurrence of the problem that the pressure loss increases in a short time, which is a disadvantage of the purification cylinder in which a filter is installed in the purification cylinder to remove powdered substances.

本発明は、半導体製造工程等から排出される粉化物を含む排ガスの浄化筒に適用される。
本発明における浄化対象ガスである排ガスとしては、粉化物を含む排ガスであれば特に制限されることがない。例えば、窒素、水素、アルゴン、ヘリウム等のベースガス中に、ホスフィンと固体粒子状のリンを含む排ガス、シラン、ジシラン、ジクロロシラン、トリクロロシラン等のシラン系ガスと固体粒子状の二酸化珪素を含む排ガス、セレン化水素と固体粒子状のセレンを含む排ガスのほか、前記ベースガス中に、アルシンと固体粒子状の砒素を含む排ガス、アンモニアと固体粒子状の塩化アンモニウムを含む排ガス等を例示することができる。
The present invention is applied to an exhaust gas purification cylinder containing powdered material discharged from a semiconductor manufacturing process or the like.
The exhaust gas that is the gas to be purified in the present invention is not particularly limited as long as it is an exhaust gas containing powdered material. For example, base gas such as nitrogen, hydrogen, argon or helium contains exhaust gas containing phosphine and solid particulate phosphorus, silane gas such as silane, disilane, dichlorosilane and trichlorosilane and solid particulate silicon dioxide. Exhaust gas, exhaust gas containing hydrogen selenide and solid particulate selenium, exhaust gas containing arsine and solid particulate arsenic in the base gas, exhaust gas containing ammonia and solid particulate ammonium chloride, etc. Can do.

以下、本発明の粉化物を含む排ガスの浄化筒について、図1〜図5に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。
尚、図1は、本発明の排ガスの浄化筒の一例を示す鉛直方向の構成図である。図2、図3は、本発明に使用される粉化物捕捉具の一例を示す鉛直方向の構成図である。また、図4、図5は、本発明に使用される粉化物捕捉具の一例を示す斜視図である。
Hereinafter, although the purification cylinder of the exhaust gas containing the pulverized product of the present invention will be described in detail with reference to FIGS. 1 to 5, the present invention is not limited thereto.
FIG. 1 is a vertical configuration diagram showing an example of an exhaust gas purification cylinder of the present invention. FIG. 2 and FIG. 3 are vertical configuration diagrams showing an example of the powdered material capturing tool used in the present invention. Moreover, FIG. 4, FIG. 5 is a perspective view which shows an example of the powdered material capture | acquisition tool used for this invention.

本発明の粉化物を含む排ガスの浄化筒は、図1に示すように、排ガスの導入口1、浄化剤の充填部2、粉化物捕捉具3、及び浄化されたガスの排出口4を備えた浄化筒であって、粉化物捕捉具3が、図2に示すように、外周縁5が浄化筒の内壁面5’(図1に記載)に密着し孔6を有する円盤7、及び円盤7の孔6の縁部8に上部端8’が密着するように収納した通気性の凹形状の容器9を有し、凹形状の容器9のガス流路上流側の表面に粉化物捕捉材10が設けられてなる浄化筒である。   As shown in FIG. 1, the exhaust gas purification cylinder containing the pulverized product of the present invention includes an exhaust gas introduction port 1, a purifier filling portion 2, a pulverized product trap 3, and a purified gas discharge port 4. As shown in FIG. 2, the dust trap 3 has a disc 7 having an outer peripheral edge 5 in close contact with the inner wall surface 5 '(shown in FIG. 1) and having a hole 6 as shown in FIG. 7 has a breathable concave container 9 accommodated so that the upper end 8 ′ is in close contact with the edge 8 of the hole 6, and the powder trapping material is disposed on the upstream surface of the gas channel of the concave container 9. 10 is a purification cylinder.

要するに本発明の浄化筒は、排ガスの導入口1からガスの排出口4までのガス流路のいずれかの箇所に、孔6を有する円盤7と、粉化物捕捉材10を表面に有し前記の孔6に隙間ない状態で収納された通気性の凹形状の容器9からなる粉化物捕捉具3が、浄化筒の内壁面と隙間なく設置された浄化筒である。図1の浄化筒は、粉化物捕捉具3が浄化剤の充填部2より下流側に設けられているが、粉化物捕捉具3は充填部2より上流側に設けることもできる。尚、本発明の浄化筒においては、通常は浄化剤の充填部2の下部に目皿11が設けられる。   In short, the purification cylinder of the present invention has a disk 7 having holes 6 and a powdered material capturing material 10 on the surface at any location in the gas flow path from the exhaust gas inlet 1 to the gas outlet 4. The pulverized product capturing tool 3 composed of a breathable concave container 9 accommodated in a state where there is no gap in the hole 6 is a purification cylinder installed without a gap from the inner wall surface of the purification cylinder. In the purification cylinder of FIG. 1, the powdered product capturing tool 3 is provided on the downstream side of the purifying agent filling unit 2, but the powdered product capturing tool 3 may be provided on the upstream side of the filling unit 2. In the purifying cylinder of the present invention, the eye plate 11 is usually provided below the purifying agent filling portion 2.

本発明の浄化筒において、円盤7の孔は1個であっても複数であってもよく、円盤の中心部、円盤の周辺部、またはこれらの両方の箇所に設けることができる。円盤7の外径は、実質的に浄化筒の内径と同等であり、浄化筒に設置したときに外周縁5が実質的に浄化筒の内壁面5’に密着し、排ガスが基盤5の外側を通過できない形態とされる。また、基盤5の厚みは、通常は1〜20mm程度である。
円盤7は通気性であっても非通気性であってもよく、また図3に示すように、円盤7のガス流路上流側の表面に粉化物捕捉材10を設けることができる。しかし、ガス通過面積を大きくするために、円盤7は通気性であることが好ましい。
In the purification cylinder of the present invention, the disk 7 may have one hole or a plurality of holes, and can be provided at the center of the disk, the periphery of the disk, or both of them. The outer diameter of the disk 7 is substantially the same as the inner diameter of the purification cylinder, and when installed on the purification cylinder, the outer peripheral edge 5 substantially contacts the inner wall surface 5 ′ of the purification cylinder, and the exhaust gas is outside the base 5. It is said that it cannot pass through. Moreover, the thickness of the base | substrate 5 is about 1-20 mm normally.
The disk 7 may be breathable or non-breathable, and as shown in FIG. 3, a powdered material capturing material 10 can be provided on the surface of the disk 7 on the upstream side of the gas flow path. However, in order to increase the gas passage area, the disk 7 is preferably breathable.

本発明の浄化筒において、通気性の凹形状の容器9は、円盤7の孔の箇所において排ガスが通過できない形態で、円盤7の孔と同数個設けられる。容器9の外形は、図4、図5においては円柱であるが、これに限定されることなく、角柱、凸の方向を下向きにした円錐台、角錐台、円錐、角錐、半球、またはこれらに類似する形状とすることができる。容器9の壁面における通気部の面積は、通常は壁面全体の30%以上、好ましくは50%以上、さらに好ましくは75%以上とされる。容器9の厚みは、通常は1〜20mm程度であり、ガス流路上流側の表面に、厚さ1〜20mm程度の粉化物捕捉材10が設けられる。粉化物捕捉材10は、通常は容器の内壁面の全面が被覆されるように設けられる。   In the purification cylinder of the present invention, the same number of breathable concave containers 9 as the holes of the disk 7 are provided in such a form that the exhaust gas cannot pass through the holes of the disk 7. The outer shape of the container 9 is a cylinder in FIGS. 4 and 5, but is not limited to this, and is not limited thereto, but a prism, a truncated cone with a convex direction downward, a truncated pyramid, a cone, a truncated pyramid, a hemisphere, Similar shapes can be used. The area of the ventilation part in the wall surface of the container 9 is usually 30% or more of the entire wall surface, preferably 50% or more, and more preferably 75% or more. The thickness of the container 9 is usually about 1 to 20 mm, and the powdered material capturing material 10 having a thickness of about 1 to 20 mm is provided on the surface on the upstream side of the gas flow path. The powdered material capturing material 10 is usually provided so that the entire inner wall surface of the container is covered.

本発明の浄化筒に使用される円盤7及び通気性の凹形状の容器9の材質としては、排ガスに対する耐腐食性を有し、粉化物捕捉材を支持することができるものであれば特に制限されることはなく、例えば、炭素鋼、マンガン鋼、クロム鋼、モリブデン鋼、ステンレス鋼等の金属材料のほか、セラミック材料、プラスチック材料等を使用することができる。但し、通気部は、通気性を確保するために、例えば、多孔質の金属、セラミック等、多数の通気孔がある形状とする必要がある。通気孔の大きさは、最小の通気孔であっても1mm以下の径を有する球体が通過し、最大の通気孔であっても5mm以上の径を有する球体が通過しない程度の大きさが好ましい。   The material of the disk 7 and the breathable concave container 9 used in the purification cylinder of the present invention is not particularly limited as long as it has corrosion resistance against exhaust gas and can support the powdered material capturing material. For example, in addition to metal materials such as carbon steel, manganese steel, chromium steel, molybdenum steel, and stainless steel, ceramic materials, plastic materials, and the like can be used. However, the ventilation portion needs to have a shape having a large number of ventilation holes, for example, porous metal, ceramic, etc., in order to ensure air permeability. The size of the vent hole is preferably such that a sphere having a diameter of 1 mm or less passes through even if it is the smallest vent hole, and a sphere having a diameter of 5 mm or more does not pass through even if it is the maximum vent hole. .

また、本発明の浄化筒に使用される粉化物捕捉材10の材質としては、排ガスに含まれる0.1mm以上の径を有する球体粉化物を容易に捕捉することができるものであれば特に制限されることはなく、例えば、ガラス繊維材、プラスチック繊維材、金属繊維材、多孔質材等を使用することができる。
尚、本発明の浄化筒に使用される円盤について、浄化筒の内壁の断面の形状が円形でない場合は、適宜その形状に一致した代替盤を用いることができる。例えば、浄化筒の内壁の断面の形状が正方形である場合、円盤の替わりに正方形の盤を使用することができる。このような使用についても本発明の実施に含まれるものである。
Further, the material of the powdered material capturing material 10 used in the purification cylinder of the present invention is not particularly limited as long as it can easily capture the spherical powdered material having a diameter of 0.1 mm or more contained in the exhaust gas. For example, a glass fiber material, a plastic fiber material, a metal fiber material, a porous material, etc. can be used.
In addition, about the disk used for the purification | cleaning cylinder of this invention, when the shape of the cross section of the inner wall of a purification | cleaning cylinder is not circular, the substitute disk corresponding to the shape can be used suitably. For example, when the shape of the cross section of the inner wall of the purification cylinder is a square, a square board can be used instead of a disk. Such use is also included in the practice of the present invention.

以上のような浄化筒においては、効率よく粉化物を粉化物捕捉具に捕捉するために、粉化物捕捉具におけるガス通気部(ガス通過部)の総面積は、通常は浄化筒の断面積(内径に相当する断面積)に対して、通常は2〜10倍の面積、好ましくは2.5〜5倍の面積となるように、凹形状の容器9の径、高さ、個数等が設定される。粉化物捕捉具におけるガス通気部の面積を浄化筒の断面積の2倍未満とした場合は、容器内の粉化物堆積部の容積が早く減少して粉化物の堆積が早まることにより、ガス通過部の面積が急激に減少し圧力損失上昇の要因となる。また、ガス通気部の面積を浄化筒の断面積の10倍を超えるようにした場合は、特に問題は発生しないが、浄化筒内部の寸法によって制限されるため、径及び高さは浄化筒の大きさに依存する。   In the purification cylinder as described above, in order to efficiently capture the pulverized product in the pulverized product capturing tool, the total area of the gas ventilation part (gas passage part) in the pulverized product capturing tool is usually the cross-sectional area ( The diameter, height, number, etc. of the concave container 9 are set so that the area is usually 2 to 10 times, preferably 2.5 to 5 times the area of the cross-sectional area corresponding to the inner diameter). Is done. When the area of the gas ventilation part in the powder trap is less than twice the cross-sectional area of the purification cylinder, the volume of the powder accumulation part in the container is reduced quickly, and the accumulation of powder is accelerated. The area of the part decreases rapidly, which causes an increase in pressure loss. In addition, when the area of the gas ventilation part exceeds 10 times the cross-sectional area of the purification cylinder, there is no particular problem, but the diameter and height are limited by the dimensions inside the purification cylinder, so the diameter and height are Depends on size.

本発明の浄化筒を使用する際は、半導体製造工程等の排ガス排出口、後工程のガス導入口、ブロワー等と配管で結合された後、半導体製造工程等から排ガスを供給することにより、排ガスの浄化及び粉化物の捕捉除去が行なわれる。本発明の浄化筒に供給される排ガスの量は、通常はガスの空筒線速度が0.1〜100cm/secとなるように設定される。排ガスに含まれる粉化物は、主に通気性の凹形状の容器9内部に堆積し、浄化剤が破過するかまたは粉化物の堆積により圧力損失が設定以上に大きくなったときに、排ガス処理ラインが未使用の浄化筒のラインと切替える等の処置が行なわれる。   When using the purification cylinder of the present invention, exhaust gas is discharged from the semiconductor manufacturing process etc. after being connected to the exhaust gas exhaust port of the semiconductor manufacturing process, the gas inlet of the post process, the blower, etc. by piping. Purification and capture and removal of powdered materials are performed. The amount of exhaust gas supplied to the purification cylinder of the present invention is usually set so that the gas cylinder velocity is 0.1 to 100 cm / sec. The pulverized material contained in the exhaust gas mainly accumulates in the inside of the air-permeable concave container 9, and the exhaust gas treatment is performed when the cleaning agent breaks through or the pressure loss becomes larger than the set value due to the accumulation of the pulverized material. For example, the line is switched to an unused purification cylinder line.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1]
(粉化物捕捉具の製作)
多数の孔(直径5mm)を有する厚さ2mmのSUS316L製の板を用いて、外径50mm、高さ65mmの凹状の筒に加工し、この筒を多数の孔(直径5mm)を有し直径110mmで中心部に直径50mmの孔を有する厚さ2mmのSUS316L製の円盤に垂直にして取付けた。さらに円盤の上面及び凹状の筒の内部に厚さ10mmのガラス繊維材を重ね合せて、図3に示すような粉化物捕捉具を製作した。
[Example 1]
(Production of powdered material catcher)
Using a 2 mm-thick SUS316L plate having a large number of holes (diameter 5 mm), it is processed into a concave cylinder having an outer diameter of 50 mm and a height of 65 mm, and this cylinder has a large number of holes (diameter 5 mm) and a diameter. It was attached perpendicularly to a 2 mm thick SUS316L disk having a diameter of 110 mm and a hole with a diameter of 50 mm in the center. Further, a glass fiber material having a thickness of 10 mm was superposed on the upper surface of the disk and the inside of the concave cylinder to produce a powdered material capturing tool as shown in FIG.

(浄化筒の製作)
内径110mm、高さ1000mmのSUS316L製の浄化筒に、浄化剤として、二酸化マンガン、酸化銅を主成分とする担体(日本パイオニクス(株)製、直径1.5mm、長さ3〜10mmの押し出し成型品)100重量部に対して、水酸化カリウムを30重量部担持させた浄化剤を調製して、充填長が500mmとなるように浄化筒に充填した。また、浄化剤の充填部の下部に、図1のように前記の粉化物捕捉具を設置した。尚、粉化物の捕集率を測定するために、浄化筒の下流側に粉化物を確実に捕捉するためのフィルタを設置した。
(Production of purification cylinder)
Extrusion molding of SUS316L made of SUS316L with an inner diameter of 110 mm and a height of 1000 mm, with a carrier mainly composed of manganese dioxide and copper oxide (made by Nippon Pionics Co., Ltd., diameter 1.5 mm, length 3-10 mm) Article) A purification agent carrying 30 parts by weight of potassium hydroxide with respect to 100 parts by weight was prepared and filled in a purification cylinder so that the filling length was 500 mm. Moreover, the said powdered material capture | acquisition tool was installed in the lower part of the filling part of a cleaning agent like FIG. In addition, in order to measure the collection rate of the powdered material, a filter for reliably capturing the powdered material was installed on the downstream side of the purification cylinder.

(粉化物の捕集率測定試験)
乾燥窒素中にSiOを1.0mg/L、SiHを1000ppm含む排ガスを、浄化剤の充填部における空筒線速度が5cm/secとなるように浄化筒の導入口から供給し、2時間後に浄化筒の下流側に設置したフィルタに付着した粉化物の量を測定した。その結果から、粉化物捕捉具により捕捉された粉化物の捕集率は、99.9%以上であることがわかった。尚、捕集率測定試験中に、浄化剤の充填部の出口ガスからSiHは検出されなかった。
(Powder collection rate measurement test)
An exhaust gas containing 1.0 mg / L of SiO 2 and 1000 ppm of SiH 4 in dry nitrogen is supplied from the inlet of the purification cylinder so that the empty tube linear velocity in the purification agent filling portion is 5 cm / sec. The amount of powdered material adhering to the filter installed downstream of the purification cylinder was measured. From the results, it was found that the collection rate of the powdered material captured by the powdered material capturing tool was 99.9% or more. During the collection rate measurement test, SiH 4 was not detected from the outlet gas of the purifier filling portion.

(浄化筒の圧力損失測定試験)
前記と同様にして、乾燥窒素中にSiOを1.0mg/L、SiHを1000ppm含む排ガスを、浄化剤の充填部における空筒線速度が5cm/secとなるように浄化筒の導入口から供給し、2時間後、4時間後、6時間後における浄化筒の圧力損失を測定した。その結果を表1に示す。尚、圧力損失測定試験中に、浄化剤の充填部の出口ガスからSiHは検出されなかった。
(Pressure loss measurement test of purification cylinder)
In the same manner as described above, an exhaust port containing 1.0 mg / L of SiO 2 and 1000 ppm of SiH 4 in dry nitrogen is introduced into the purifying cylinder so that the empty cylinder linear velocity at the purifying agent filling portion is 5 cm / sec. The pressure loss of the purification cylinder after 2 hours, 4 hours, and 6 hours was measured. The results are shown in Table 1. During the pressure loss measurement test, SiH 4 was not detected from the outlet gas at the purifier filling portion.

[実施例2〜4]
実施例1における粉化物の捕集率測定試験において、排ガスに含まれるSiOの含有量を各々2.0mg/L、3.0mg/L、4.0mg/Lに変えたほかは実施例1と同様にして粉化物の捕集率測定試験、及び浄化筒の圧力損失測定試験を行なった。その結果、粉化物捕捉具により捕捉された粉化物の捕集率は、いずれも99.9%以上であった。また、2時間後、4時間後、6時間後における浄化筒の圧力損失の結果を表1に示す。尚、いずれの場合においても、試験中に浄化剤の充填部の出口ガスからSiHは検出されなかった。
[Examples 2 to 4]
Example 1 except that the content of SiO 2 contained in the exhaust gas was changed to 2.0 mg / L, 3.0 mg / L, and 4.0 mg / L in the collection rate measurement test of the pulverized material in Example 1, respectively. In the same manner as above, a powder collection rate measurement test and a pressure loss measurement test of the purification cylinder were performed. As a result, the collection rate of the powdered material captured by the powdered material capturing tool was 99.9% or more. In addition, Table 1 shows the results of pressure loss of the purification cylinder after 2 hours, 4 hours, and 6 hours. In any case, SiH 4 was not detected from the outlet gas of the purifier filling portion during the test.

[比較例1]
実施例1における粉化物捕捉具の製作において、凹状の筒の替わりに平面状のフィルタ(実施例1と同様の材質の円盤(孔なし)の上面に実施例1と同様のガラス繊維材を重ね合せたもの)を用いたほかは実施例1と同様にして、比較例用の粉化物捕捉具を製作した。また、実施例1における浄化筒の製作において、前記の比較例用の粉化物捕捉具を用いたほかは実施例1と同様にして浄化筒を製作した。
この浄化筒を用いたほかは実施例1と同様にして浄化筒の圧力損失測定試験を行なった。2時間後、4時間後、6時間後における浄化筒の圧力損失の結果を表1に示す。尚、いずれの場合においても、圧力損失測定試験中に、浄化剤の充填部の出口ガスからSiHは検出されなかった。
[Comparative Example 1]
In the manufacture of the powdered material capturing tool in Example 1, the same glass fiber material as in Example 1 is overlaid on the upper surface of a flat filter (the same material as in Example 1 (without holes)) instead of the concave cylinder. The powdered product capturing tool for the comparative example was manufactured in the same manner as in Example 1 except that the above-mentioned one was used. Further, in the production of the purification cylinder in Example 1, a purification cylinder was produced in the same manner as in Example 1 except that the powdered material capturing tool for the comparative example was used.
A pressure loss measurement test of the purification cylinder was performed in the same manner as in Example 1 except that this purification cylinder was used. Table 1 shows the results of pressure loss of the purification cylinder after 2 hours, 4 hours and 6 hours. In any case, SiH 4 was not detected from the outlet gas of the purifier filling portion during the pressure loss measurement test.

[比較例2〜4]
比較例1における粉化物の捕集率測定試験において、排ガスに含まれるSiOの含有量を各々2.0mg/L、3.0mg/L、4.0mg/Lに変えたほかは比較例1と同様にして浄化筒の圧力損失測定試験を行なった。その結果を表1に示す。尚、圧力損失測定試験中に、浄化剤の充填部の出口ガスからSiHは検出されなかった。
[Comparative Examples 2 to 4]
Comparative Example 1 except that the content of SiO 2 contained in the exhaust gas was changed to 2.0 mg / L, 3.0 mg / L, and 4.0 mg / L in the collection rate measurement test of the pulverized material in Comparative Example 1, respectively. In the same manner, the pressure loss measurement test of the purification cylinder was conducted. The results are shown in Table 1. During the pressure loss measurement test, SiH 4 was not detected from the outlet gas at the purifier filling portion.

[実施例5]
実施例1で用いたものと同様の浄化筒の前段に、セレン化水素を分解して粉末状のセレンを発生させるための石英管を設置した。この石英管は、内径50mm、長さ300mmであり、石英管の外側には石英管内部を加熱するためのヒーターが設けられている。
実施例1と同様に、浄化筒に浄化剤及び粉化物捕捉具を設置した後、浄化剤の充填部における空筒線速度が10cm/secとなるように、石英管の導入口から乾燥窒素を導入するとともに石英管内部の温度が300℃となるように加熱した。石英管内部の温度が安定した後、この乾燥窒素にセレン化水素を3000ppmとなるように含ませて、実施例1と同様にして圧力損失測定試験を行ない、セレン化水素の分解で生成した粉末状のセレンが、浄化筒の下流側に設置したフィルタに付着した量を測定した。
[Example 5]
A quartz tube for decomposing hydrogen selenide to generate powdered selenium was installed in the previous stage of the purification cylinder similar to that used in Example 1. The quartz tube has an inner diameter of 50 mm and a length of 300 mm, and a heater for heating the inside of the quartz tube is provided outside the quartz tube.
In the same manner as in Example 1, after installing the purifying agent and the pulverized product capturing tool in the purifying cylinder, dry nitrogen was introduced from the inlet of the quartz tube so that the empty tube linear velocity at the purifying agent filling portion was 10 cm / sec. While being introduced, the quartz tube was heated so that the temperature inside the quartz tube became 300 ° C. After the temperature inside the quartz tube is stabilized, hydrogen selenide is contained in this dry nitrogen so as to be 3000 ppm, and a pressure loss measurement test is performed in the same manner as in Example 1, and the powder produced by decomposition of hydrogen selenide The amount of selenium adhering to the filter installed on the downstream side of the purification cylinder was measured.

次に、粉化物捕捉具を設置しないで前記と同様の処理を行ない、粉末状のセレンが浄化筒の下流側に設置したフィルタに付着した量を測定した。これらの結果から、粉化物捕捉具により捕捉された粉化物の捕集率は、99.9%以上であることが推定された。また、実施例1の圧力損失測定試験と同様にして、2時間後、4時間後、6時間後における浄化筒の圧力損失を測定した。その結果を表2に示す。尚、試験中に浄化剤の充填部の出口ガスからセレン化水素は検出されなかった。   Next, the same processing as described above was performed without installing the powdered material capturing tool, and the amount of powdered selenium adhering to the filter installed on the downstream side of the purification cylinder was measured. From these results, it was estimated that the collection rate of the pulverized material captured by the pulverized material capturing tool was 99.9% or more. Further, in the same manner as the pressure loss measurement test of Example 1, the pressure loss of the purification cylinder after 2 hours, 4 hours, and 6 hours was measured. The results are shown in Table 2. During the test, hydrogen selenide was not detected from the outlet gas of the purifier filling portion.

[実施例6]
実施例5における粉化物の捕集率測定試験において、セレン化水素の濃度を6000ppmに変えたほかは実施例5と同様にして捕集率測定試験を行なった。その結果、粉化物捕捉具により捕捉された粉化物の捕集率は、99.9%以上であることが推定された。また、実施例5の圧力損失測定試験と同様にして、2時間後、4時間後、6時間後における浄化筒の圧力損失を測定した。その結果を表2に示す。尚、試験中に浄化剤の充填部の出口ガスからセレン化水素は検出されなかった。
[Example 6]
A collection rate measurement test was performed in the same manner as in Example 5 except that the concentration of hydrogen selenide was changed to 6000 ppm in the powder rate collection rate measurement test in Example 5. As a result, it was estimated that the collection rate of the pulverized material captured by the pulverized material capturing tool was 99.9% or more. Further, in the same manner as the pressure loss measurement test of Example 5, the pressure loss of the purification cylinder after 2 hours, 4 hours, and 6 hours was measured. The results are shown in Table 2. During the test, hydrogen selenide was not detected from the outlet gas of the purifier filling portion.

[比較例5]
実施例5における浄化筒の圧力損失測定試験において、比較例1と同様の粉化物捕捉具を用いたほかは実施例5と同様にして粉化物の圧力損失測定試験を行なった。2時間後、4時間後、6時間後における浄化筒の圧力損失の結果を表1に示す。尚、圧力損失測定試験中に浄化剤の充填部の出口ガスからセレン化水素は検出されなかった。
[Comparative Example 5]
In the pressure loss measurement test of the purification cylinder in Example 5, the pressure loss measurement test of the powder was performed in the same manner as in Example 5 except that the same powdered material capturing tool as in Comparative Example 1 was used. Table 1 shows the results of pressure loss of the purification cylinder after 2 hours, 4 hours and 6 hours. In the pressure loss measurement test, hydrogen selenide was not detected from the outlet gas at the purifier filling portion.

[比較例6]
実施例6における浄化筒の圧力損失測定試験において、比較例1と同様の粉化物捕捉具を用いたほかは実施例6と同様にして粉化物の圧力損失測定試験を行なった。2時間後、4時間後、6時間後における浄化筒の圧力損失の結果を表1に示す。尚、圧力損失測定試験中に浄化剤の充填部の出口ガスからセレン化水素は検出されなかった。
[Comparative Example 6]
In the pressure loss measurement test of the purification cylinder in Example 6, the pressure loss measurement test of the powdered material was performed in the same manner as in Example 6 except that the same powdered material capturing tool as in Comparative Example 1 was used. Table 1 shows the results of pressure loss of the purification cylinder after 2 hours, 4 hours and 6 hours. In the pressure loss measurement test, hydrogen selenide was not detected from the outlet gas at the purifier filling portion.

[実施例7]
実施例1における粉化物捕捉具の製作において、外径30mm、高さ65mmの凹状の筒を4個用いたほかは実施例1と同様にして、図5に示すような粉化物捕捉具を製作した。また、実施例1における浄化筒の製作において、前記の粉化物捕捉具を用いたほかは実施例1と同様にして浄化筒を製作した。
この浄化筒を用いたほかは実施例1と同様にして粉化物の捕集率測定試験を行なった。その結果、粉化物捕捉具により捕捉された粉化物の捕集率は、99.9%以上であった。尚、いずれの場合においても、捕集率測定試験中に、浄化剤の充填部の出口ガスからSiHは検出されなかった。
[Example 7]
In the production of the powdered product catcher in Example 1, a powdered product catcher as shown in FIG. 5 was produced in the same manner as in Example 1 except that four concave cylinders having an outer diameter of 30 mm and a height of 65 mm were used. did. Further, in the production of the purification cylinder in Example 1, a purification cylinder was produced in the same manner as in Example 1 except that the powdered material capturing tool was used.
A powder collection rate measurement test was conducted in the same manner as in Example 1 except that this purification cylinder was used. As a result, the collection rate of the powdered material captured by the powdered material capturing tool was 99.9% or more. In any case, SiH 4 was not detected from the outlet gas of the purifier filling portion during the collection rate measurement test.

Figure 2013103173
Figure 2013103173

Figure 2013103173
Figure 2013103173

以上の実施例により、本発明の粉化物捕捉具を用いた排ガスの浄化筒により、半導体製造工程等から排出される排ガスから、効率よくかつ急激な圧力損失の上昇がなく粉化物を浄化筒内部で捕捉できることが確認された。   According to the above embodiment, the exhaust gas purifying cylinder using the powdered material capturing device of the present invention allows the exhaust gas discharged from the semiconductor manufacturing process and the like to efficiently and rapidly reduce the powdered powder without increasing the pressure loss. It was confirmed that it was possible to capture.

本発明の排ガスの浄化筒の一例を示す鉛直方向の構成図Configuration diagram in the vertical direction showing an example of an exhaust gas purification cylinder of the present invention 本発明に使用される粉化物捕捉具の一例を示す鉛直方向の構成図The block diagram of the perpendicular direction which shows an example of the powdered material capture tool used for this invention 本発明に使用される図2以外の粉化物捕捉具の一例を示す鉛直方向の構成図Configuration diagram in the vertical direction showing an example of the powdered material catching tool other than FIG. 2 used in the present invention 本発明に使用される粉化物捕捉具の一例を示す斜視図The perspective view which shows an example of the powdered material capture tool used for this invention 本発明に使用される図4以外の粉化物捕捉具の一例を示す斜視図The perspective view which shows an example of the powdery material capture tool other than FIG. 4 used for this invention.

1 排ガスの導入口
2 浄化剤の充填部
3 粉化物捕捉具
4 ガスの排出口
5 円盤の外周縁
5’浄化筒の内壁面
6 円盤の孔
7 円盤
8 円盤の孔の縁部
8’凹形状の容器の上端部
9 凹形状の容器
10 粉化物捕捉材
11 目皿
DESCRIPTION OF SYMBOLS 1 Exhaust gas introduction port 2 Purifier filling part 3 Powdered material capture tool 4 Gas discharge port 5 Outer peripheral edge of disk 5 'Inner wall surface of purification cylinder 6 Disk hole 7 Disk 8 Edge of disk hole 8' Concave shape Upper end of container 9 Recessed container 10 Powder trapping material 11 Eye plate

Claims (6)

排ガスの導入口、浄化剤の充填部、粉化物捕捉具、及び浄化されたガスの排出口を備えた粉化物を含む排ガスの浄化筒であって、粉化物捕捉具が、外周縁が浄化筒の内壁面に密着し孔を有する円盤、及び該円盤の孔の縁部に上端部が密着するように収納した通気性の凹形状の容器を有し、該凹形状の容器のガス流路上流側の表面に粉化物捕捉材が設けられてなるものであることを特徴とする粉化物を含む排ガスの浄化筒。   An exhaust gas purifying cylinder including a powdered material having an exhaust gas inlet, a purifier filling portion, a powdered material capturing device, and a purified gas discharge port, wherein the powdered material capturing device has an outer peripheral edge of the purifying tube A disk having a hole that is in close contact with the inner wall surface and a breathable concave container that is housed so that the upper end is in close contact with the edge of the hole of the disk, and upstream of the gas flow path of the concave container An exhaust gas purifying cylinder containing powdered material, wherein a powdered material capturing material is provided on the surface on the side. 円盤の孔が、円盤の中心部及び/または円盤の周辺部に設けられる請求項1に記載の粉化物を含む排ガスの浄化筒。   The exhaust gas purifying cylinder containing the pulverized product according to claim 1, wherein a hole of the disk is provided in a center part of the disk and / or a peripheral part of the disk. 凹形状の容器の外形が、円柱、角柱、円錐台、角錐台、円錐、角錐、または半球である請求項1に記載の粉化物を含む排ガスの浄化筒。   The exhaust gas purification cylinder containing pulverized matter according to claim 1, wherein the outer shape of the concave container is a cylinder, a prism, a truncated cone, a truncated pyramid, a cone, a truncated pyramid, or a hemisphere. 凹形状の容器の表面のほか、円盤のガス流路上流側の表面に粉化物捕捉材が設けられる請求項1に記載の粉化物を含む排ガスの浄化筒。   The exhaust gas purification cylinder containing a powdered material according to claim 1, wherein a powdered material capturing material is provided on the surface of the disk on the upstream side of the gas flow path in addition to the surface of the concave container. 粉化物捕捉具のガス通気部の総面積が、浄化筒の断面積に対して、2〜10倍の面積である請求項1に記載の粉化物を含む排ガスの浄化筒。   The exhaust gas purification cylinder containing a powdered product according to claim 1, wherein the total area of the gas ventilation part of the powdered product capturing tool is 2 to 10 times the cross-sectional area of the purification cylinder. 粉化物捕捉材が、ガラス繊維材、プラスチック繊維材、金属繊維材、または多孔質材である請求項1に記載の粉化物を含む排ガスの浄化筒。   The exhaust gas purifying cylinder containing the pulverized material according to claim 1, wherein the pulverized material capturing material is a glass fiber material, a plastic fiber material, a metal fiber material, or a porous material.
JP2011248785A 2011-11-14 2011-11-14 Purification cylinder for exhaust gas including powdered substance Pending JP2013103173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248785A JP2013103173A (en) 2011-11-14 2011-11-14 Purification cylinder for exhaust gas including powdered substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248785A JP2013103173A (en) 2011-11-14 2011-11-14 Purification cylinder for exhaust gas including powdered substance

Publications (1)

Publication Number Publication Date
JP2013103173A true JP2013103173A (en) 2013-05-30

Family

ID=48623160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248785A Pending JP2013103173A (en) 2011-11-14 2011-11-14 Purification cylinder for exhaust gas including powdered substance

Country Status (1)

Country Link
JP (1) JP2013103173A (en)

Similar Documents

Publication Publication Date Title
WO2011019729A3 (en) Ductless fume hood gas monitoring and detection system
WO2004094039A3 (en) Filtration, flow distribution and catalytic method for process streams
JP2015536817A (en) Method and system for mixing gases and liquids to recover compounds gravitationally, physically and chemically
CN204395712U (en) A kind of industrial waste-gas purifier
JP2013103173A (en) Purification cylinder for exhaust gas including powdered substance
JP6258797B2 (en) Exhaust gas combustion purification system
JP2013539415A5 (en)
CN109091990A (en) A kind of waste gas dedusting and purification integrated machine
TW494006B (en) Harmful gas purifying column and method
JP4195831B2 (en) How to detect harmful gases
JP4195833B2 (en) Detecting agent storage container and toxic gas detection method using the same
US20170151528A1 (en) Nanoparticle purifying system
JP2007253082A (en) Detoxifying apparatus of harmful gas
JP6310765B2 (en) Exhaust gas combustion purification system
CN205948598U (en) Exhaust gas circulation purifies environment -friendly device
JPWO2006104039A1 (en) Gas processing equipment
JP5182195B2 (en) Mercury analyzer in exhaust gas
KR100507768B1 (en) Powder dust collector for waste gas generating in semiconductor production line
CN204841317U (en) Gaseous dust removal deodorization purifier
JP2006272083A (en) Gas treatment device
WO2018222175A1 (en) Nanoparticle purifying system
JP2005230679A (en) Purification cylinder for waste gas
CN107149855A (en) A kind of gas cleaning plant
JP5620942B2 (en) Hazardous gas removal equipment
CN210698878U (en) Waste gas treatment device for processing central control ash cover plate