JP2013103166A - Method for separating co2 by pressure swing adsorption method - Google Patents

Method for separating co2 by pressure swing adsorption method Download PDF

Info

Publication number
JP2013103166A
JP2013103166A JP2011248387A JP2011248387A JP2013103166A JP 2013103166 A JP2013103166 A JP 2013103166A JP 2011248387 A JP2011248387 A JP 2011248387A JP 2011248387 A JP2011248387 A JP 2011248387A JP 2013103166 A JP2013103166 A JP 2013103166A
Authority
JP
Japan
Prior art keywords
gas
pressure swing
containing gas
concentration
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248387A
Other languages
Japanese (ja)
Other versions
JP5816059B2 (en
Inventor
Yasuhiro Mogi
康弘 茂木
Hitoshi Saima
等 斉間
Takashi Haraoka
たかし 原岡
Masakuni Miyake
正訓 三宅
Yoshinori Takada
吉則 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Sumitomo Seika Chemicals Co Ltd
Original Assignee
JFE Steel Corp
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Sumitomo Seika Chemicals Co Ltd filed Critical JFE Steel Corp
Priority to JP2011248387A priority Critical patent/JP5816059B2/en
Publication of JP2013103166A publication Critical patent/JP2013103166A/en
Application granted granted Critical
Publication of JP5816059B2 publication Critical patent/JP5816059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently separating COfrom a CO-containing gas by a pressure swing adsorption method.SOLUTION: When a gas separation facility having at least one adsorption column is used to adsorb/separate COfrom a CO-containing gas by a pressure swing adsorption method, the concentration of COis increased by mixing an oxygen combustion exhaust gas (g) with the CO-containing gas (g), and the CO-containing gas (g) with increased COconcentration is introduced into the gas separation facility to adsorb/separate the CO. Since the CO-containing gas with the increased COconcentration by being mixed with the oxygen combustion exhaust gas is used as a raw material gas, the COcan efficiently be adsorbed/separated.

Description

本発明は、圧力スイング吸着法(PSA法)によって混合ガスからCOを吸着・分離するためのガス分離方法に関する。なお、本発明法には、吸着工程を大気圧付近の圧力で行い、脱着工程を真空付近の圧力で行う方法(VPSA法)も含まれる。 The present invention relates to a gas separation method for adsorbing and separating CO 2 from a mixed gas by a pressure swing adsorption method (PSA method). The method of the present invention includes a method (VPSA method) in which the adsorption step is performed at a pressure near atmospheric pressure and the desorption step is performed at a pressure near vacuum.

混合ガスから特定のガス成分を分離する方法として、圧力スイング吸着法(PSA法=Pressure Swing Adsorption法)が用いられている。この方法は、吸着剤を充填した吸着塔に所定の圧力で混合ガスを導入し、特定のガス成分を吸着させる吸着工程と、この特定のガス成分が吸着された吸着塔を所定の圧力まで減圧し、そのガス成分を回収又は排出する脱着工程を行うものである。また、このPSA法には、吸着工程を大気圧付近の圧力で行い、脱着工程を真空付近の圧力で行う方法(VPSA法)もある。   As a method for separating a specific gas component from a mixed gas, a pressure swing adsorption method (PSA method = Pressure Swing Adsorption method) is used. In this method, a mixed gas is introduced into an adsorption tower filled with an adsorbent at a predetermined pressure to adsorb a specific gas component, and the adsorption tower on which the specific gas component is adsorbed is depressurized to a predetermined pressure. Then, a desorption process for collecting or discharging the gas component is performed. This PSA method also includes a method (VPSA method) in which the adsorption step is performed at a pressure near atmospheric pressure and the desorption step is performed at a pressure near vacuum.

図2に、圧力スイング吸着法によるガス分離を行うための従来の3塔式ガス分離設備の一例を示す。3基の吸着塔1〜3では、吸着工程、洗浄工程、脱着工程がこの順で交互に行われることにより、ガス分離が連続的に行われる。この3塔式ガス分離装置を用いCO含有ガスからCOを吸着・分離する場合、次のような操作が行われる。図2において、白抜きの遮断弁は開状態にあることを、黒く塗りつぶした遮断弁は閉状態にあることを、それぞれ示している。吸着塔1が吸着工程、吸着塔2が洗浄工程、吸着塔3が脱着工程にあるとき、CO含有ガスはブロワー4によって吸着塔1に導入され、ここでCOが吸着され、そのオフガスが排気ライン6から排出される(吸着工程)。このとき、吸着塔3では、塔内の濃縮されたCOが真空ポンプ5により排出される(脱着工程)。排出されたCOは、一部が回収ライン7より排出され、他の一部が洗浄ライン8より洗浄ガスとして洗浄工程にある吸着塔へ送られる。吸着塔2では、吸着塔3から送られてきたCO(洗浄ガス)が塔内に導入され、吸着塔2内の不要な成分を排気ライン6に排出し、CO濃度を高める工程が行われる(洗浄工程)。以上のような吸着工程、洗浄工程、脱着工程をそれぞれの吸着塔が順次行うことにより、CO含有ガスからのCO分離が連続的に行われる。 FIG. 2 shows an example of a conventional three-column gas separation facility for performing gas separation by the pressure swing adsorption method. In the three adsorption towers 1 to 3, gas separation is continuously performed by alternately performing an adsorption process, a cleaning process, and a desorption process in this order. When adsorbing and separating CO 2 from CO 2 containing gas using the 3-tower gas separation apparatus, the following operation is performed. In FIG. 2, the open shut-off valve is in an open state, and the black shut-off shut-off valve is in a closed state. When the adsorption tower 1 is in the adsorption process, the adsorption tower 2 is in the washing process, and the adsorption tower 3 is in the desorption process, the CO 2 -containing gas is introduced into the adsorption tower 1 by the blower 4, where CO 2 is adsorbed and the off-gas is It is discharged from the exhaust line 6 (adsorption process). At this time, in the adsorption tower 3, the concentrated CO 2 in the tower is discharged by the vacuum pump 5 (desorption process). Part of the discharged CO 2 is discharged from the recovery line 7 and the other part is sent from the cleaning line 8 to the adsorption tower in the cleaning process as cleaning gas. In the adsorption tower 2, CO 2 (cleaning gas) sent from the adsorption tower 3 is introduced into the tower, and unnecessary components in the adsorption tower 2 are discharged to the exhaust line 6 to increase the CO 2 concentration. (Cleaning process). Adsorption step described above, a washing step, by carrying out the desorption step, each of the adsorption tower sequentially, CO 2 separated from the CO 2 containing gas is continuously performed.

ところで、一般的な吸着剤を使用した吸着現象では、混合ガス中での吸着ガスの分圧が高いほど、すなわち吸着ガスの濃度が高いほど、吸着量が多くなり、吸着効率が高くなる。したがって、CO含有ガスからのCOの吸着・分離においても、原料ガスであるCO含有ガス中のCO濃度が高いほど、吸着効率が高くなる。また、CO含有ガス中のCO濃度が低い場合には、吸着塔内にCO以外の成分が残留するため、洗浄工程においてCO濃度を高めるためには、使用する洗浄ガス量が多くなり、その結果、回収されるCOガス量が低下してしまう。
このような問題に対して、特許文献1では、洗浄工程において排出されるCO濃度が90vol%以上のオフガスを、オフガス貯留部を設けて回収し、これを原料ガスに混合する方法が提案されている。
By the way, in the adsorption phenomenon using a general adsorbent, the higher the partial pressure of the adsorbed gas in the mixed gas, that is, the higher the concentration of the adsorbed gas, the greater the amount of adsorption and the higher the adsorption efficiency. Accordingly, even in the adsorption-separation of CO 2 from CO 2 containing gas, the higher the CO 2 concentration of CO 2 containing gas as a source gas, the adsorption efficiency is improved. In addition, when the CO 2 concentration in the CO 2 -containing gas is low, components other than CO 2 remain in the adsorption tower. Therefore, in order to increase the CO 2 concentration in the cleaning process, a large amount of cleaning gas is used. As a result, the amount of CO 2 gas recovered decreases.
In order to solve such a problem, Patent Document 1 proposes a method in which an off gas having a CO 2 concentration of 90 vol% or more discharged in the cleaning process is collected by providing an off gas storage unit and mixed with the raw material gas. ing.

特開2008−174407公報JP 2008-174407 A

しかしながら、特許文献1の方法では、一度ガス分離装置(PSA装置)で分離を行った洗浄時のオフガスを、再度原料ガスとして同じガス分離装置に導入するといったガスのリサイクルを行うため、もとの原料ガスに対する装置の効率が悪いという問題がある。また、洗浄工程では、塔内に残留したCO以外の成分を押し出すための最低量の洗浄ガスを使用する方が、洗浄ガス量が少なくて済み効率がよいが、特許文献1の方法のように、排出されるオフガスのCO濃度を高めるためには、多量の洗浄ガスを流す必要があり、効率が悪いという問題もある。 However, in the method of Patent Document 1, since the off-gas at the time of cleaning once separated by the gas separation device (PSA device) is recycled to the same gas separation device as the raw material gas, the original gas is recycled. There is a problem that the efficiency of the apparatus for the raw material gas is poor. Further, in the cleaning process, the use of the minimum amount of cleaning gas for extruding components other than CO 2 remaining in the tower requires less cleaning gas and is more efficient. In addition, in order to increase the CO 2 concentration of the discharged off gas, it is necessary to flow a large amount of cleaning gas, and there is a problem that the efficiency is poor.

したがって本発明の目的は、このような従来技術の課題を解決し、圧力スイング吸着法によりCO含有ガスからCOを効率的に分離することができる方法を提供することにある。 Therefore, an object of the present invention, to solve such a problem of the prior art is to provide a method capable of efficiently separating the CO 2 from the CO 2 containing gas by a pressure swing adsorption method.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]1基または2基以上の吸着塔を有するガス分離設備を用い、圧力スイング吸着法によりCO含有ガスからCOを吸着・分離するに際し、CO含有ガス(g)に酸素燃焼排ガス(g)を混合することでCO濃度を高め、このCO濃度を高めたCO含有ガス(g)をガス分離設備に導入してCOを吸着・分離することを特徴とする圧力スイング吸着法によるCOの分離方法。
[2]上記[1]の分離方法において、CO含有ガス(g)のCO濃度が30vol%未満であることを特徴とする圧力スイング吸着法によるCOの分離方法。
[3]上記[1]又は[2]の分離方法において、酸素燃焼排ガス(g)のCO濃度が90vol%以上であることを特徴とする圧力スイング吸着法によるCOの分離方法。
The gist of the present invention for solving the above problems is as follows.
[1] using a gas separation equipment having one or two or more adsorption towers, when the CO 2 adsorption-separation from the CO 2 containing gas by pressure swing adsorption, oxygen combustion to CO 2 containing gas (g 0) CO 2 concentration is increased by mixing exhaust gas (g x ), and CO 2 containing gas (g) with increased CO 2 concentration is introduced into a gas separation facility to adsorb and separate CO 2. A method for separating CO 2 by a pressure swing adsorption method.
[2] In the method of separating the above-mentioned [1] The method for separating CO 2 by the pressure swing adsorption method, wherein the CO 2 concentration of CO 2 containing gas (g 0) is less than 30 vol%.
[3] In the method of separating the above-mentioned [1] or [2] The method for separating CO 2 by the pressure swing adsorption method, wherein the CO 2 concentration of the oxygen combustion exhaust gas (g x) is not less than 90 vol%.

[4]上記[1]〜[3]のいずれかの分離方法において、CO含有ガス(g)と酸素燃焼排ガス(g)がともに、ガス分離設備に導入するに当たって清浄化ための前処理が必要なガスである場合に、CO含有ガス(g)と酸素燃焼排ガス(g)に対する個別の前処理を行うことなく、CO含有ガス(g)に対して前処理を行うことを特徴とする圧力スイング吸着法によるCOの分離方法。
[5]上記[1]〜[4]のいずれかの分離方法において、専用の燃焼設備で発生させた酸素燃焼排ガス(g)をCO含有ガス(g)に混合することを特徴とする圧力スイング吸着法によるCOの分離方法。
[6]上記[1]〜[4]のいずれかの分離方法において、他の用途で使用されている燃焼設備で発生した酸素燃焼排ガス(g)をCO含有ガス(g)に混合することを特徴とする圧力スイング吸着法によるCOの分離方法。
[4] In the separation method according to any one of [1] to [3] above, before the CO 2 -containing gas (g 0 ) and the oxygen combustion exhaust gas (g x ) are introduced into the gas separation facility, If the process is a gas required, CO 2 containing gas (g 0) and without separate pretreatment for oxygen combustion exhaust gas (g x), performing a preprocessing on CO 2 containing gas (g) A method for separating CO 2 by a pressure swing adsorption method.
[5] The separation method according to any one of [1] to [4] above, wherein oxygen combustion exhaust gas (g x ) generated by a dedicated combustion facility is mixed with CO 2 -containing gas (g 0 ). CO 2 separation method by pressure swing adsorption method.
[6] In the separation method according to any one of [1] to [4] above, oxygen combustion exhaust gas (g x ) generated in a combustion facility used for other purposes is mixed with CO 2 -containing gas (g 0 ). A method for separating CO 2 by a pressure swing adsorption method.

本発明によれば、圧力スイング吸着法によりCO含有ガスからCOを吸着・分離する際に、酸素燃焼排ガスを混合することによりCO濃度を高めたCO含有ガスを原料ガスとするため、COを効率的に分離することができる According to the present invention, when the adsorbing and separating CO 2 from CO 2 containing gas by a pressure swing adsorption method, the CO 2 containing gas with an increased CO 2 concentration by mixing the oxygen combustion gas to the feed gas , CO 2 can be separated efficiently

本発明のガス分離方法の一実施形態を示す説明図Explanatory drawing which shows one Embodiment of the gas separation method of this invention 従来の圧力スイング吸着法によるガス分離設備の一例を示す説明図Explanatory drawing which shows an example of the gas separation equipment by the conventional pressure swing adsorption method

本発明法は、1基又は2基以上の吸着塔を有するガス分離設備を用い、圧力スイング吸着法(以下、PSA法という)によりCO含有ガスからCOを吸着・分離するに際し、CO含有ガス(g)に酸素燃焼排ガス(g)を混合することでCO濃度を高め、このCO濃度を高めたCO含有ガス(g)をガス分離設備に導入してCOを吸着・分離するものである。
本発明が対象とするCO含有ガス(g)のCO濃度は特に限定しないが、CO含有ガス(g)のCO濃度が30vol%未満の場合にCOの吸着効率の低下が特に問題となるので、CO濃度が30vol%未満の場合が特に好ましい。
Upon this invention method, a gas separation equipment having one or two or more adsorption towers, pressure swing adsorption (hereinafter referred to as PSA method) by adsorbing and separating CO 2 from CO 2 containing gas, CO 2 The CO 2 concentration is increased by mixing the oxygen combustion exhaust gas (g x ) with the containing gas (g 0 ), and the CO 2 containing gas (g) with the increased CO 2 concentration is introduced into the gas separation facility to reduce CO 2 . It is adsorbed and separated.
CO 2 concentration of the CO 2 containing gas present invention is directed to (g 0) is not particularly limited, reduction in the adsorption efficiency of CO 2 when the CO 2 concentration of the CO 2 containing gas (g 0) is less than 30 vol% Is particularly a problem, and the case where the CO 2 concentration is less than 30 vol% is particularly preferable.

酸素燃焼排ガス(g)とは、支燃ガスとして酸素ガスが導入された燃焼設備から排出されるガスであり、Nを含まないためCOを高濃度に含んでいる。そのなかでもCO濃度が90vol%以上、より好ましくは95vol%以上の酸素燃焼排ガスが望ましい。
このような酸素燃焼排ガス(g)は、専用の燃焼設備で発生させたものでもよいし、他の用途で使用されている燃焼設備で発生したものでもよい。後者の場合には、例えば既存の設備の操業条件を調整して高CO濃度の酸素燃焼排ガスが発生するようにしてもよい。
The oxygen combustion exhaust gas (g x ) is a gas discharged from a combustion facility in which oxygen gas is introduced as a combustion support gas, and does not contain N 2 and therefore contains CO 2 at a high concentration. Among them, oxygen combustion exhaust gas having a CO 2 concentration of 90 vol% or more, more preferably 95 vol% or more is desirable.
Such oxygen combustion exhaust gas (g x ) may be generated by a dedicated combustion facility, or may be generated by a combustion facility used for other purposes. In the latter case, for example, the operating conditions of the existing equipment may be adjusted so that oxygen combustion exhaust gas with a high CO 2 concentration is generated.

本発明により、CO濃度の高い酸素燃焼排ガス(g)をCO含有ガス(g)に混合すれば、PSA法によるCO含有ガスからのCOの吸着・分離を高い吸着効率で行うことができる。例えば、CO濃度が25vol%程度である石灰焼成炉排ガスからCOを分離する場合、この石灰焼成炉排ガスに対して、体積比で10%の酸素燃焼排ガス(CO濃度:90vol%)を混合すれば、混合後のガスのCO濃度は34vol%となる。そして、CO濃度25vol%のCO含有ガス(原料ガス)から一定条件のPSA法で濃度99vol%のCOを回収した時、そのCO回収率が75vol%であるとすると、CO濃度34vol%のCO含有ガス(原料ガス)から同じ条件のPSA法で濃度99vol%のCOを回収した時には、CO回収率は82vol%となり、COを高い吸着効率で吸着・分離することができる。CO回収率向上の程度は、PSA分離条件により異なるが、CO含有ガス(g)のCO濃度が高いほどCO回収率は向上し、その分だけ効率的な分離が行えることになる。 The present invention, CO 2 concentrations higher oxygen flue gas and (g x) by mixing the CO 2 containing gas (g 0), the adsorption and separation of CO 2 from CO 2 containing gas by a PSA process at a high adsorption efficiency It can be carried out. For example, when CO 2 is separated from lime firing furnace exhaust gas having a CO 2 concentration of about 25 vol%, 10% oxygen combustion exhaust gas (CO 2 concentration: 90 vol%) in a volume ratio with respect to the lime firing furnace exhaust gas. If mixed, the CO 2 concentration of the mixed gas becomes 34 vol%. When the recovered concentration 99 vol% of CO 2 in the PSA processes certain conditions from the CO 2 concentration 25 vol% of CO 2 containing gas (raw gas), when the CO 2 recovery rate is assumed to be 75 vol%, CO 2 concentration when the concentration 99 vol% of CO 2 was recovered in the PSA process of the same condition from 34Vol% of CO 2 containing gas (raw material gas), CO 2 recovery rate becomes 82vol%, to adsorb and separate CO 2 at a high adsorption efficiency Can do. The degree of improvement in the CO 2 recovery rate varies depending on the PSA separation conditions, but the higher the CO 2 concentration of the CO 2 -containing gas (g), the higher the CO 2 recovery rate and the more efficient the separation can be performed. .

通常、COの吸着・分離を行うCO含有ガスに、ダストや硫黄化合物、或いは多量の水分などが含まれている場合、事前に除塵、脱硫、除湿などの前処理が施され、しかる後、ガス分離設備に導入される。本発明において、CO含有ガス(g)と酸素燃焼排ガス(g)がともに、そのようなガス清浄化ための前処理が必要なガスである場合、それぞれのガスを個別に前処理することなく、両ガスを混合した後のCO含有ガス(g)を前処理することが好ましい。1箇所の設備だけで効率的に前処理を行うことができるからである。例えば、CO含有ガス(g)としてごみ焼却炉排ガスを用い、酸素燃焼排ガス(g)として石炭火力発電の排ガスを用いる場合などが該当する。 Normally, when the CO 2 -containing gas that adsorbs and separates CO 2 contains dust, sulfur compounds, or a large amount of moisture, pretreatment such as dust removal, desulfurization, and dehumidification is performed in advance. Introduced into gas separation equipment. In the present invention, when both the CO 2 -containing gas (g 0 ) and the oxygen combustion exhaust gas (g x ) are gases that require such pretreatment for gas purification, the respective gases are individually pretreated. Without pretreatment, it is preferable to pre-treat the CO 2 -containing gas (g) after mixing both gases. This is because the pretreatment can be efficiently performed with only one piece of equipment. For example, a case where waste incinerator exhaust gas is used as the CO 2 -containing gas (g 0 ) and coal-fired power generation exhaust gas is used as the oxygen combustion exhaust gas (g x ) is applicable.

図1は、本発明の一実施形態を示すもので、3塔式ガス分離装置を用いたPSA法によるガス分離プロセスであり、例えば、石灰焼成炉排ガスからCOを吸着・分離する場合などを示している。図1において、白抜きの遮断弁は開状態にあることを、黒く塗りつぶした遮断弁は閉状態にあることを、それぞれ示している。図1での基本的な操業形態は、図2と同様であり、3基の吸着塔1〜3では、吸着工程、洗浄工程、脱着工程がこの順で交互に行われることにより、CO含有ガスからのCOの分離が連続的に行われる。すなわち、吸着塔1が吸着工程、吸着塔2が洗浄工程、吸着塔3が脱着工程にあるとき、CO含有ガスは、ブロワー4によって吸着塔1に導入され、ここでCOが吸着され、そのオフガスが排気ライン6から排出される(吸着工程)。このとき、吸着塔3では、塔内の濃縮されたCOが真空ポンプ5により排出される(脱着工程)。排出されたCOは、一部が回収ライン7より排出され、他の一部が洗浄ライン8より洗浄ガスとして洗浄工程にある吸着塔へ送られる。吸着塔2では、吸着塔3から送られてきたCO(洗浄ガス)が塔内に導入され、吸着塔2内の不要な成分を排気ラインに排出し、CO濃度を高める工程が行われる(洗浄工程)。以上のような吸着工程、洗浄工程、脱着工程をそれぞれの吸着塔が順次行うことにより、CO含有ガスからのCO分離が連続的に行われる。 FIG. 1 shows an embodiment of the present invention, which is a gas separation process by a PSA method using a three-column gas separation device, for example, when CO 2 is adsorbed and separated from lime firing furnace exhaust gas. Show. In FIG. 1, the open shut-off valve is in an open state, and the black shut-off shut-off valve is in a closed state. The basic operation mode in FIG. 1 is the same as that in FIG. 2, and in the three adsorption towers 1 to 3, the adsorption step, the washing step, and the desorption step are alternately performed in this order, so that CO 2 is contained. The separation of CO 2 from the gas is carried out continuously. That is, when the adsorption tower 1 is in the adsorption process, the adsorption tower 2 is in the washing process, and the adsorption tower 3 is in the desorption process, the CO 2 -containing gas is introduced into the adsorption tower 1 by the blower 4 where CO 2 is adsorbed. The off gas is discharged from the exhaust line 6 (adsorption process). At this time, in the adsorption tower 3, the concentrated CO 2 in the tower is discharged by the vacuum pump 5 (desorption process). Part of the discharged CO 2 is discharged from the recovery line 7 and the other part is sent from the cleaning line 8 to the adsorption tower in the cleaning process as cleaning gas. In the adsorption tower 2, CO 2 (cleaning gas) sent from the adsorption tower 3 is introduced into the tower, and unnecessary components in the adsorption tower 2 are discharged to the exhaust line to increase the CO 2 concentration. (Washing process). Adsorption step described above, a washing step, by carrying out the desorption step, each of the adsorption tower sequentially, CO 2 separated from the CO 2 containing gas is continuously performed.

ここで、原料ガスであるCO含有ガス(g)はガス供給ライン11を通じてガス分離装置に供給されるが、このガス供給ライン11には酸素燃焼排ガス供給ライン10が接続され、この酸素燃焼排ガス供給ライン10を通じて供給される酸素燃焼排ガス(g)がCO含有ガス(g)に混合されることでCO濃度が高められ、このCO含有ガス(g)が前処理装置9を経てガス分離設備に供給される。例えば、CO含有ガス(g)が石灰焼成炉排ガスである場合には、前処理装置9ではダスト除去および脱硫処理が行われる。
この実施形態では、専用の燃焼設備12が設置され、この燃焼設備12で発生させた高CO濃度の酸素燃焼排ガス(g)が酸素燃焼排ガス供給ライン10を通じてCO含有ガス(g)に混合される。
Here, the CO 2 -containing gas (g 0 ), which is a raw material gas, is supplied to a gas separation device through a gas supply line 11, and an oxygen combustion exhaust gas supply line 10 is connected to the gas supply line 11. The oxyfuel combustion exhaust gas (g 0 ) supplied through the exhaust gas supply line 10 is mixed with the CO 2 -containing gas (g 0 ) to increase the CO 2 concentration, and this CO 2 -containing gas (g) is converted into the pretreatment device 9. After that, it is supplied to the gas separation facility. For example, when the CO 2 -containing gas (g 0 ) is lime firing furnace exhaust gas, the pretreatment device 9 performs dust removal and desulfurization treatment.
In this embodiment, a dedicated combustion facility 12 is installed, and a high CO 2 concentration oxygen combustion exhaust gas (g 0 ) generated by the combustion facility 12 passes through the oxygen combustion exhaust gas supply line 10 and contains a CO 2 -containing gas (g 0 ). To be mixed.

1,2,3 吸着塔
4 ブロワー
5 真空ポンプ
6 排気ライン
7 回収ライン
8 洗浄ライン
9 前処理装置
10 酸素燃焼排ガス供給ライン
11 ガス供給ライン
12 燃焼設備
1, 2, 3 Adsorption tower 4 Blower 5 Vacuum pump 6 Exhaust line 7 Recovery line 8 Cleaning line 9 Pretreatment device 10 Oxyfuel combustion exhaust gas supply line 11 Gas supply line 12 Combustion equipment

Claims (6)

1基又は2基以上の吸着塔を有するガス分離設備を用い、圧力スイング吸着法によりCO含有ガスからCOを吸着・分離するに際し、
CO含有ガス(g)に酸素燃焼排ガス(g)を混合することでCO濃度を高め、このCO濃度を高めたCO含有ガス(g)をガス分離設備に導入してCOを吸着・分離することを特徴とする圧力スイング吸着法によるCOの分離方法。
Using a gas separation equipment having one or two or more adsorption towers, upon adsorbing and separating CO 2 from CO 2 containing gas by a pressure swing adsorption method,
CO 2 increases the CO 2 concentration in the gas containing (g 0) admixing oxygen flue gas (g x), the the CO 2 concentration of CO 2 containing gases with an increased (g) was introduced into the gas separation equipment CO A method for separating CO 2 by a pressure swing adsorption method, wherein 2 is adsorbed and separated.
CO含有ガス(g)のCO濃度が30vol%未満であることを特徴とする請求項1に記載の圧力スイング吸着法によるCOの分離方法。 The method of separating CO 2 by the pressure swing adsorption method according to claim 1, wherein the CO 2 CO 2 concentration of the gas containing (g 0) is less than 30 vol%. 酸素燃焼排ガス(g)のCO濃度が90vol%以上であることを特徴とする請求項1又は2に記載の圧力スイング吸着法によるCOの分離方法。 The method for separating CO 2 by the pressure swing adsorption method according to claim 1 or 2, wherein the oxygen combustion exhaust gas (g x ) has a CO 2 concentration of 90 vol% or more. CO含有ガス(g)と酸素燃焼排ガス(g)がともに、ガス分離設備に導入するに当たって清浄化ための前処理が必要なガスである場合に、CO含有ガス(g)と酸素燃焼排ガス(g)に対する個別の前処理を行うことなく、CO含有ガス(g)に対して前処理を行うことを特徴とする請求項1〜3のいずれかに記載の圧力スイング吸着法によるCOの分離方法。 When both the CO 2 -containing gas (g 0 ) and the oxygen combustion exhaust gas (g x ) are gases that require pretreatment for introduction into the gas separation facility, the CO 2 -containing gas (g 0 ) The pressure swing adsorption according to any one of claims 1 to 3, wherein the pretreatment is performed on the CO 2 -containing gas (g) without performing a separate pretreatment on the oxyfuel combustion exhaust gas (g x ). Method for separating CO 2 by the method. 専用の燃焼設備で発生させた酸素燃焼排ガス(g)をCO含有ガス(g)に混合することを特徴とする請求項1〜4のいずれかに記載の圧力スイング吸着法によるCOの分離方法。 The oxygen combustion exhaust gas (g x ) generated by a dedicated combustion facility is mixed with the CO 2 -containing gas (g 0 ), and CO 2 by the pressure swing adsorption method according to claim 1. Separation method. 他の用途で使用されている燃焼設備で発生した酸素燃焼排ガス(g)をCO含有ガス(g)に混合することを特徴とする請求項1〜4のいずれかに記載の圧力スイング吸着法によるCOの分離方法。 The pressure swing according to any one of claims 1 to 4, wherein oxygen combustion exhaust gas (g x ) generated in a combustion facility used in another application is mixed with CO 2 -containing gas (g 0 ). A method for separating CO 2 by an adsorption method.
JP2011248387A 2011-11-14 2011-11-14 CO2 separation method by pressure swing adsorption method Active JP5816059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248387A JP5816059B2 (en) 2011-11-14 2011-11-14 CO2 separation method by pressure swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248387A JP5816059B2 (en) 2011-11-14 2011-11-14 CO2 separation method by pressure swing adsorption method

Publications (2)

Publication Number Publication Date
JP2013103166A true JP2013103166A (en) 2013-05-30
JP5816059B2 JP5816059B2 (en) 2015-11-17

Family

ID=48623153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248387A Active JP5816059B2 (en) 2011-11-14 2011-11-14 CO2 separation method by pressure swing adsorption method

Country Status (1)

Country Link
JP (1) JP5816059B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131767A (en) * 1994-11-09 1996-05-28 Tohoku Electric Power Co Inc Method for separating and recovering carbon dioxide of high concentration
JP2011529848A (en) * 2008-07-29 2011-12-15 プラクスエア・テクノロジー・インコーポレイテッド Recovery of carbon dioxide from flue gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131767A (en) * 1994-11-09 1996-05-28 Tohoku Electric Power Co Inc Method for separating and recovering carbon dioxide of high concentration
JP2011529848A (en) * 2008-07-29 2011-12-15 プラクスエア・テクノロジー・インコーポレイテッド Recovery of carbon dioxide from flue gas

Also Published As

Publication number Publication date
JP5816059B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
EP2253915B1 (en) Method and apparatus for separating blast furnace gas
JP5319140B2 (en) Blast furnace gas separation method and blast furnace gas separation system
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
JP5567185B2 (en) Blast furnace gas separation method
JP5498661B2 (en) Blast furnace gas separation method
CN101810985B (en) Method for capturing carbon dioxide by suspension mineralization method with low cost
CN113019094A (en) Device and method for efficiently removing mercury by using sulfur-containing waste gas
JP2015504367A (en) Prevention of nitroamine formation in carbon dioxide adsorption process.
Majchrzak-Kucęba et al. Experimental investigation into CO2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon
TWI405605B (en) Blasting method of blast furnace gas
JP5816059B2 (en) CO2 separation method by pressure swing adsorption method
CN111073717A (en) Natural gas purifying agent and method for purifying natural gas
EP2551006A1 (en) Process for removing contaminants from gas streams
JP2014079680A (en) Apparatus and method for separation recovery of carbon dioxide
EP3768411A1 (en) Process for separating a heavy gas component from a gaseous mixture
CN110735659B (en) Method for reducing oxygen content in flue gas by injecting flue gas of power plant into underground fire prevention and extinguishing chamber
Wawrzyńczak et al. Effect of desorption pressure on CO2 separation from combustion gas by means of zeolite 13X and activated carbon
KR20140014542A (en) Appratus for separating and enriching fluorinated gas, and the method for separating and enriching of fluorinated gas thereby
US20170120184A1 (en) Method for cleaning a waste gas from a metal reduction process
JPS59116115A (en) Method for recovering carbon monoxide
JP4611355B2 (en) Gas processing method and gas processing equipment
JP2013071115A (en) Organic solvent recovery system
EP2540377A1 (en) A method of cleaning a carbon dioxide rich flue gas
JP6084830B2 (en) Perfluorocompound exhaust gas detoxification treatment apparatus and method
KR20140013400A (en) Appratus for separating and recovering fluorinated gas, and the method for separating and recovering of fluorinated gas thereby

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150925

R150 Certificate of patent or registration of utility model

Ref document number: 5816059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250