JP2013103151A - Method for coating surface of porous structure with coating material, and method for producing electrode catalyst layer - Google Patents

Method for coating surface of porous structure with coating material, and method for producing electrode catalyst layer Download PDF

Info

Publication number
JP2013103151A
JP2013103151A JP2011247134A JP2011247134A JP2013103151A JP 2013103151 A JP2013103151 A JP 2013103151A JP 2011247134 A JP2011247134 A JP 2011247134A JP 2011247134 A JP2011247134 A JP 2011247134A JP 2013103151 A JP2013103151 A JP 2013103151A
Authority
JP
Japan
Prior art keywords
porous structure
solvent
electrolyte resin
pressure vessel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247134A
Other languages
Japanese (ja)
Inventor
Motohiro Mizuno
基弘 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011247134A priority Critical patent/JP2013103151A/en
Publication of JP2013103151A publication Critical patent/JP2013103151A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an electrode catalyst layer capable of efficiently coating an electrolyte resin on a surface of a conductive porous structure carrying a catalyst.SOLUTION: The method for producing an electrode catalyst layer for coating an electrolyte resin on the conductive porous structure 3 carrying a catalyst by using a supercritical fluid in a pressure vessel 1 includes: a preparation step of arranging an electrolyte resin dissolved solution dissolving the electrolyte resin and the conductive porous structure carrying a catalyst in the pressure vessel 1; a step of exposing the conductive porous structure 3 carrying a catalyst to an electrolyte resin solution 6 including the electrolyte resin and a solvent in a liquid state at less than the critical temperature and at more than the critical pressure; a step of heating the conductive porous structure to more than the critical temperature of the solvent while exposing the conductive porous structure to the electrolyte resin solution after the exposure step; and a step of depositing the electrolyte resin on the surface of the conductive porous structure by changing the state of the solvent in a supercritical state after the heating step.

Description

本発明は、多孔質構造体の表面を被覆材で被覆する方法、及び、触媒を担持した導電性多孔質構造体の表面に電解質樹脂を被覆させる電極触媒層の製造方法に関する。   The present invention relates to a method for coating the surface of a porous structure with a coating material, and a method for producing an electrode catalyst layer in which a surface of a conductive porous structure carrying a catalyst is coated with an electrolyte resin.

燃料電池は、燃料と酸化剤を電気的に接続された2つの電極に供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。火力発電とは異なり、燃料電池はカルノーサイクルの制約を受けないので、高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で挟持した膜・電極接合体を基本構造とする単セルを複数積層して構成されている。   A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Unlike thermal power generation, fuel cells are not subject to the Carnot cycle, and thus exhibit high energy conversion efficiency. A fuel cell is usually formed by laminating a plurality of single cells having a basic structure of a membrane / electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes.

燃料電池の電極は、一般的に、導電性担体に担持された触媒及び電解質樹脂を含む電極触媒層を備える。このような燃料電池の触媒層では、導電性担体と電解質樹脂と反応ガスとが接する、いわゆる、三相界面において、電極反応が進行するため、三相界面を効率的に形成することが重要である。従って、触媒を担持した導電性担体の表面に、ムラなく電解質樹脂を被覆することが求められる。   An electrode of a fuel cell generally includes an electrode catalyst layer containing a catalyst and an electrolyte resin supported on a conductive carrier. In such a fuel cell catalyst layer, the electrode reaction proceeds at the so-called three-phase interface where the conductive carrier, the electrolyte resin, and the reactive gas are in contact, so it is important to efficiently form the three-phase interface. is there. Therefore, it is required to coat the surface of the conductive support carrying the catalyst with the electrolyte resin without unevenness.

例えば、特許文献1には、密閉容器内に、触媒が担持された導電性担体と、基板と、電解質樹脂と、超臨界流体と、を封入し、前記基板の温度を変化させることによって、前記触媒が担持された導電性担体と前記電解質樹脂とを備える電極触媒層を前記基板上に形成する、電極触媒層の製造方法が開示されている。特許文献1には、具体的な製造方法として、電解質樹脂を溶解した超臨界流体中で、カーボンナノチューブが垂直配向された基板を加熱することで、超臨界流体中に溶解していた電解質樹脂をカーボンナノチューブの周囲に析出させる方法が記載されている。
一方、電解質樹脂の被覆方法ではないが、特許文献2及び3には、金属を表面に担持させる方法として、超臨界流体を利用する技術が開示されている。
For example, Patent Document 1 discloses that by enclosing a conductive carrier carrying a catalyst, a substrate, an electrolyte resin, and a supercritical fluid in a sealed container, and changing the temperature of the substrate, A method for producing an electrode catalyst layer is disclosed in which an electrode catalyst layer comprising a conductive carrier carrying a catalyst and the electrolyte resin is formed on the substrate. In Patent Document 1, as a specific manufacturing method, an electrolyte resin dissolved in a supercritical fluid is heated by heating a substrate in which carbon nanotubes are vertically aligned in a supercritical fluid in which an electrolyte resin is dissolved. A method of depositing around carbon nanotubes is described.
On the other hand, although not an electrolytic resin coating method, Patent Documents 2 and 3 disclose a technique using a supercritical fluid as a method for supporting a metal on the surface.

特開2010−003531号公報JP 2010-003531 A 特開2000−17442号公報JP 2000-17442 A 特開2006−273613号公報JP 2006-273613 A

触媒を担持した導電性担体は、通常、微細な多孔質構造を有していることから、従来、導電性担体の多孔質構造表面に所望量の電解質樹脂を被覆することは難しく、電解質樹脂を導電性担体の表面に効率良く被覆する方法の構築が求められている。特に、基板上に略垂直に配向した複数のカーボンナノチューブを、導電性担体として用いる場合には、カーボンナノチューブ間の微細な隙間に電解質樹脂を行き渡らせることが困難であるために、カーボンナノチューブの表面を充分量の電解質樹脂で被覆することが難しかった。   Since the conductive support carrying the catalyst usually has a fine porous structure, it has been difficult to coat the surface of the porous structure of the conductive support with a desired amount of electrolyte resin. Construction of a method for efficiently covering the surface of a conductive carrier is demanded. In particular, when a plurality of carbon nanotubes oriented substantially perpendicularly on a substrate are used as a conductive carrier, it is difficult to distribute the electrolyte resin in the fine gaps between the carbon nanotubes. It was difficult to coat with a sufficient amount of electrolyte resin.

特許文献1のように、電解質樹脂を溶解した超臨界流体を用いることで、電解質樹脂をカーボンナノチューブの隙間に浸透させることが可能であるが、特許文献1に記載の方法では、超臨界流体における電解質樹脂濃度が低く、充分量の電解質樹脂を被覆させるのに、時間を要するという問題がある。さらに、特許文献1に記載の方法は、充分量の電解質樹脂を被覆させるためには、電解質樹脂を大量に使用する必要があるという問題もある。   As in Patent Document 1, it is possible to infiltrate the electrolyte resin into the gaps between the carbon nanotubes by using a supercritical fluid in which the electrolyte resin is dissolved. However, in the method described in Patent Document 1, in the supercritical fluid, There is a problem in that the electrolyte resin concentration is low and it takes time to coat a sufficient amount of the electrolyte resin. Furthermore, the method described in Patent Document 1 also has a problem that it is necessary to use a large amount of electrolyte resin in order to coat a sufficient amount of electrolyte resin.

本発明は、上記実状を鑑みて成し遂げられたものであり、本発明の目的は、微細な多孔質構造を有する多孔質構造体の表面に、被覆材を効率的に被覆することが可能な方法、特に、触媒を担持した導電性多孔質構造体の表面に電解質樹脂を効率的に被覆することが可能な電極触媒層の製造方法を提供することである。   The present invention has been accomplished in view of the above-mentioned actual situation, and an object of the present invention is a method capable of efficiently coating a coating material on the surface of a porous structure having a fine porous structure. In particular, it is to provide a method for producing an electrode catalyst layer capable of efficiently coating an electrolyte resin on the surface of a conductive porous structure carrying a catalyst.

本発明の被覆方法は、圧力容器内で、超臨界流体を用い、多孔質構造体の表面を被覆材で被覆する方法であって、
前記被覆材を溶解した被覆材溶解溶液及び前記多孔質構造体を前記圧力容器内に配置する準備工程と、
前記被覆材、及び、臨界温度未満且つ臨界圧力以上の液体状態の溶媒、を含む被覆材溶液に、前記多孔質構造体を曝露する工程と、
前記曝露工程後、前記多孔質構造体を、前記被覆材溶液に曝露したまま、前記溶媒の臨界温度以上に加熱する工程と、
前記加熱工程後、超臨界状態の前記溶媒を状態変化させ、前記被覆材を前記多孔質構造体の表面に析出させる工程と、
を有することを特徴とする。
The coating method of the present invention is a method of coating the surface of a porous structure with a coating material using a supercritical fluid in a pressure vessel,
A preparatory step of disposing the covering material dissolving solution in which the covering material is dissolved and the porous structure in the pressure vessel;
Exposing the porous structure to a coating solution containing the coating material and a solvent in a liquid state below the critical temperature and above the critical pressure;
After the exposing step, heating the porous structure to a temperature equal to or higher than the critical temperature of the solvent while being exposed to the coating material solution;
After the heating step, changing the state of the solvent in a supercritical state, and depositing the coating material on the surface of the porous structure,
It is characterized by having.

本発明の被覆方法では、多孔質構造体を、一旦、被覆材と臨界温度未満且つ臨界圧力以上の液体状態の溶媒とを含む被覆材溶液に曝露させることによって、前記溶媒を超臨界状態にする前記加熱工程において、多孔質構造体の近傍に多くの被覆材を存在させることができるため、多孔質構造体の細孔構造内に多くの被覆材を浸透させることができる。その結果、前記移行工程において、被覆材を多孔質構造体表面にて効率良く析出させ、多孔質構造体を被覆させることができる。また、多孔質構造体を加熱し、該多孔質構造体の近傍に存在する溶媒を超臨界状態にすることによって、多孔質構造体を、高濃度で被覆材を含有する超臨界流体に接触させることができる。さらに、多孔質構造体のみを加熱することによって、前記溶媒を超臨界状態にするために要するエネルギーを削減することができ、ひいては、被覆処理のコストを削減することができる。   In the coating method of the present invention, the porous structure is once exposed to a coating material solution containing the coating material and a solvent in a liquid state below the critical temperature and above the critical pressure, thereby bringing the solvent into a supercritical state. In the heating step, since many coating materials can be present in the vicinity of the porous structure, many coating materials can be infiltrated into the pore structure of the porous structure. As a result, in the transition step, the coating material can be efficiently deposited on the surface of the porous structure to coat the porous structure. Further, the porous structure is heated and the solvent existing in the vicinity of the porous structure is brought into a supercritical state, thereby bringing the porous structure into contact with the supercritical fluid containing the coating material at a high concentration. be able to. Furthermore, by heating only the porous structure, it is possible to reduce the energy required to bring the solvent into a supercritical state, thereby reducing the cost of the coating process.

本発明の被覆方法は、
前記曝露工程において、前記圧力容器内を、前記溶媒の臨界温度未満の温度条件下、気体状態の前記溶媒の導入により該溶媒の臨界圧力以上に加圧し、該溶媒を液体状態に移行させ、前記被覆材と液体状態の前記溶媒とを含む前記被覆材溶液の液面を上昇させることで、前記多孔質構造体を該被覆材溶液に曝露し、
前記準備工程において、前記多孔質構造体の配置位置は、前記曝露工程における前記被覆材溶液の液面が、該多孔質構造体の下端部以下から該多孔質構造体の上端部以上に上昇する位置であることが好ましい。
被覆材の被覆量を確保しつつ、被覆材の使用量を低減することができるからである。
The coating method of the present invention comprises:
In the exposure step, the pressure vessel is pressurized to a pressure higher than the critical pressure of the solvent by introducing the solvent in a gaseous state under a temperature condition lower than the critical temperature of the solvent, and the solvent is transferred to a liquid state, Raising the liquid level of the coating material solution containing the coating material and the liquid solvent, exposing the porous structure to the coating material solution,
In the preparation step, the position of the porous structure is such that the liquid level of the coating material solution in the exposure step rises from the lower end portion of the porous structure to the upper end portion of the porous structure. Preferably it is a position.
This is because the amount of coating material used can be reduced while securing the coating amount of the coating material.

本発明の被覆方法は、前記加熱工程において、前記圧力容器内の雰囲気環境温度を、前記溶媒の臨界温度未満にすることが好ましい。より効果的に効率良く被覆材を被覆することができるからである。   In the coating method of the present invention, it is preferable that the ambient temperature in the pressure vessel is lower than the critical temperature of the solvent in the heating step. This is because the coating material can be coated more effectively and efficiently.

本発明の被覆方法は、前記析出工程において、前記溶媒を、超臨界状態から、液体状態を経由せずに、気体状態に移行させることが好ましい。析出工程における被覆材の凝集や多孔質構造体の多孔質構造の変化を抑制することができるからである。   In the coating method of the present invention, in the precipitation step, the solvent is preferably transferred from the supercritical state to the gas state without passing through the liquid state. This is because it is possible to suppress the aggregation of the coating material and the change in the porous structure of the porous structure in the precipitation step.

本発明の電極触媒層の製造方法は、圧力容器内で超臨界流体を用いて、触媒を担持した導電性多孔質構造体の表面に電解質樹脂を被覆させる、電極触媒層の製造方法であって、
前記電解質樹脂を溶解した電解質樹脂溶解溶液及び前記触媒を担持した導電性多孔質構造体を前記圧力容器内に配置する準備工程と、
前記電解質樹脂、及び、臨界温度未満且つ臨界圧力以上の液体状態の溶媒、を含む電解質樹脂溶液に、前記触媒を担持した導電性多孔質構造体を曝露する工程と、
前記曝露工程後、前記導電性多孔質構造体を、前記電解質樹脂溶液に曝露したまま、前記溶媒の臨界温度以上に加熱する工程と、
前記加熱工程後、超臨界状態の前記溶媒を状態変化させ、前記電解質樹脂を前記導電性多孔質構造体表面に析出させる工程と、
を有することを特徴とする。
The method for producing an electrode catalyst layer of the present invention is a method for producing an electrode catalyst layer in which a surface of a conductive porous structure carrying a catalyst is coated with an electrolyte resin using a supercritical fluid in a pressure vessel. ,
A preparatory step of disposing an electrolyte resin solution in which the electrolyte resin is dissolved and a conductive porous structure carrying the catalyst in the pressure vessel;
Exposing the conductive porous structure carrying the catalyst to an electrolyte resin solution containing the electrolyte resin and a solvent in a liquid state below a critical temperature and above a critical pressure;
After the exposing step, heating the conductive porous structure to a temperature equal to or higher than the critical temperature of the solvent while being exposed to the electrolyte resin solution;
After the heating step, the state of the solvent in a supercritical state is changed, and the electrolyte resin is deposited on the surface of the conductive porous structure.
It is characterized by having.

本発明の電極触媒層の製造方法では、本発明の被覆方法と同様、導電性多孔質構造体を、一旦、電解質樹脂と臨界温度未満且つ臨界圧力以上の液体状態の溶媒とを含む電解質樹脂溶液に曝露させることによって、前記溶媒を超臨界状態にする前記加熱工程において、導電性多孔質構造体の近傍に多くの電解質樹脂を存在させることができるため、導電性多孔質構造体の細孔構造内に多くの電解質樹脂を浸透させることができる。その結果、前記移行工程において、電解質樹脂を導電性多孔質構造体の表面に効率良く析出させ、導電性多孔質構造体を電解質樹脂で被覆させることができる。また、導電性多孔質構造体を加熱し、該導電性多孔質構造体の近傍に存在する溶媒を超臨界状態にすることによって、導電性多孔質構造体を、高濃度で電解質樹脂を含む超臨界流体に接触させることができる。さらに、導電性多孔質構造体のみを加熱することによって、前記溶媒を超臨界状態にするために要するエネルギーを削減することができ、ひいては、電極触媒層の製造コストを削減することができる。   In the method for producing an electrode catalyst layer according to the present invention, as in the coating method according to the present invention, the conductive porous structure once contains an electrolyte resin and a solvent in a liquid state below the critical temperature and above the critical pressure. In the heating step of bringing the solvent into a supercritical state by exposing it to a large amount of electrolyte resin in the vicinity of the conductive porous structure, the pore structure of the conductive porous structure Many electrolyte resins can penetrate into the inside. As a result, in the transition step, the electrolyte resin can be efficiently deposited on the surface of the conductive porous structure, and the conductive porous structure can be covered with the electrolyte resin. In addition, the conductive porous structure is heated and the solvent existing in the vicinity of the conductive porous structure is brought into a supercritical state, so that the conductive porous structure is superconducted containing the electrolyte resin at a high concentration. It can be contacted with a critical fluid. Furthermore, by heating only the conductive porous structure, it is possible to reduce the energy required to bring the solvent into a supercritical state, thereby reducing the production cost of the electrode catalyst layer.

本発明の電極触媒層の製造方法は、
前記曝露工程において、前記圧力容器内を、前記溶媒の臨界温度未満の温度条件下、気体状態の前記溶媒の導入により該溶媒の臨界圧力以上に加圧し、該溶媒を液体状態に移行させ、前記電解質樹脂と、液体状態の前記溶媒とを含む前記電解質溶液の液面を上昇させることで、前記導電性多孔質構造体を該電解質樹脂溶液に曝露し、
前記準備工程において、前記導電性多孔質構造体の配置位置は、前記曝露工程における前記電解質樹脂溶液の液面が、該導電性多孔質構造体の下端部以下から該導電性多孔質構造体の上端部以上に上昇する位置であることが好ましい。導電性多孔質構造体表面の電解質樹脂の被覆量を確保しつつ、電解質樹脂の使用量を低減することができるからである。
The method for producing the electrode catalyst layer of the present invention comprises:
In the exposure step, the pressure vessel is pressurized to a pressure higher than the critical pressure of the solvent by introducing the solvent in a gaseous state under a temperature condition lower than the critical temperature of the solvent, and the solvent is transferred to a liquid state, By raising the liquid level of the electrolyte solution containing an electrolyte resin and the solvent in a liquid state, the conductive porous structure is exposed to the electrolyte resin solution,
In the preparation step, the conductive porous structure is disposed at a position where the liquid level of the electrolyte resin solution in the exposure step is lower than the lower end of the conductive porous structure. It is preferable that the position be higher than the upper end. This is because the amount of electrolyte resin used can be reduced while securing the amount of electrolyte resin coating on the surface of the conductive porous structure.

本発明の電極触媒層の製造方法は、前記加熱工程において、前記圧力容器内の雰囲気環境温度を、前記溶媒の臨界温度未満にすることが好ましい。より効果的に効率良く電解質樹脂を導電性多孔質構造体の表面に被覆することができるからである。   In the method for producing an electrode catalyst layer of the present invention, in the heating step, it is preferable that the ambient temperature in the pressure vessel is lower than the critical temperature of the solvent. This is because the surface of the conductive porous structure can be coated with the electrolyte resin more effectively and efficiently.

本発明の電極触媒層の製造方法は、前記析出工程において、前記溶媒を、超臨界状態から、液体状態を経由せずに、気体状態に移行させることが好ましい。析出工程における電解質樹脂の凝集や導電性多孔質構造体の多孔質構造の変化を抑制することができるからである。   In the method for producing an electrode catalyst layer of the present invention, in the precipitation step, the solvent is preferably transferred from a supercritical state to a gas state without passing through a liquid state. This is because the aggregation of the electrolyte resin and the change in the porous structure of the conductive porous structure can be suppressed in the precipitation step.

本発明の電極触媒層の製造方法において、前記導電性多孔質構造体が、基材上に担持されている場合、前記加熱工程において、該基材を前記溶媒の臨界温度以上に加熱することにより、前記導電性多孔質構造体を前記溶媒の臨界温度以上に加熱することができる。   In the method for producing an electrode catalyst layer of the present invention, when the conductive porous structure is supported on a substrate, in the heating step, the substrate is heated to a temperature higher than the critical temperature of the solvent. The conductive porous structure can be heated above the critical temperature of the solvent.

本発明の電極触媒層の製造方法において、前記導電性多孔質構造体は、前記基材上に略垂直配向されたカーボンナノチューブを含むことが好ましい。略垂直配向されたカーボンナノチューブは、ガス拡散性や電子伝導性に優れた電極触媒層を形成することができるからである。   In the method for producing an electrode catalyst layer of the present invention, the conductive porous structure preferably includes carbon nanotubes that are substantially vertically aligned on the substrate. This is because the substantially vertically aligned carbon nanotubes can form an electrode catalyst layer excellent in gas diffusibility and electron conductivity.

本発明の電極触媒層の製造方法において、前記電極触媒層としては、例えば、燃料電池用電極触媒層が挙げられる。   In the method for producing an electrode catalyst layer of the present invention, examples of the electrode catalyst layer include a fuel cell electrode catalyst layer.

本発明の被覆方法及び電極触媒層の製造方法によれば、被覆材又は電解質樹脂を、効率良く、被処理物である多孔質構造体又は導電性多孔質構造体の表面に被覆させることができる。従って、本発明によれば、被覆材や電解質樹脂の被覆量を確保しつつ、被覆材や電解質樹脂の使用量の低減、さらには、被覆処理時間の短縮が可能である。   According to the coating method and the electrode catalyst layer manufacturing method of the present invention, the surface of the porous structure or conductive porous structure, which is the object to be treated, can be efficiently coated with the coating material or the electrolyte resin. . Therefore, according to the present invention, it is possible to reduce the amount of the coating material or the electrolyte resin used and to shorten the coating processing time while securing the coating amount of the coating material or the electrolyte resin.

本発明の被覆方法及び製造方法の曝露工程における圧力容器内の様子を示す断面模式図である。It is a cross-sectional schematic diagram which shows the mode in the pressure vessel in the exposure process of the coating method and manufacturing method of this invention. 実施例及び比較例で用いた圧力容器における導電性多孔質構造体(CNT基板)の配置位置を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the arrangement | positioning position of the electroconductive porous structure (CNT board | substrate) in the pressure vessel used by the Example and the comparative example. 図2に示す圧力容器内の圧力と電解質樹脂溶液の液面との関係を示す図である。It is a figure which shows the relationship between the pressure in the pressure vessel shown in FIG. 2, and the liquid level of an electrolyte resin solution. CHFの状態変化と、本発明の被覆方法及び製造方法における雰囲気環境及び導電性多孔質構造体環境の温度変化及び圧力変化の典型例(実施例1)とを示す図である。And state change CHF 3, is a diagram showing a typical example of temperature changes and pressure changes (Example 1) of the coating method and the atmosphere in the production process environment and the conductive porous structure environment of the present invention. CHFの状態変化と、比較例1における雰囲気環境及び導電性多孔質構造体環境の温度変化及び圧力変化とを示す図である。And state change CHF 3, is a diagram showing a temperature change and a pressure change in the atmospheric environment and the conductive porous structure environment in Comparative Example 1. CHFの状態変化と、比較例2における雰囲気環境及び導電性多孔質構造体環境の温度変化及び圧力変化とを示す図である。And state change CHF 3, is a diagram showing a temperature change and a pressure change in the atmospheric environment and the conductive porous structure environment in Comparative Example 2. CHFの状態変化と、比較例3における雰囲気環境及び導電性多孔質構造体環境の温度変化及び圧力変化とを示す図である。And state change CHF 3, is a diagram showing a temperature change and a pressure change in the atmospheric environment and the conductive porous structure environment in Comparative Example 3. 実施例及び比較例の電解質樹脂溶解溶液量と電解質樹脂の目付け量との関係を示す図である。It is a figure which shows the relationship between the amount of electrolyte resin solution solutions of an Example and a comparative example, and the amount of electrolyte resin. 実施例及び比較例の超臨界流体処理時間と電解質樹脂の目付け量との関係を示す図である。It is a figure which shows the relationship between the supercritical fluid processing time of an Example and a comparative example, and the fabric weight of electrolyte resin. 実施例4、比較例1及び比較例6の電解質樹脂の目付け量を示す図である。It is a figure which shows the fabric weight of the electrolyte resin of Example 4, the comparative example 1, and the comparative example 6. FIG.

本発明の被覆方法は、圧力容器内で、超臨界流体を用い、多孔質構造体の表面を被覆材で被覆する方法であって、
前記被覆材を溶解した被覆材溶解溶液及び前記多孔質構造体を前記圧力容器内に配置する準備工程と、
前記被覆材、及び、臨界温度未満且つ臨界圧力以上の液体状態の溶媒、を含む被覆材溶液に、前記多孔質構造体を曝露する工程と、
前記曝露工程後、前記多孔質構造体を、前記被覆材溶液に曝露したまま、前記溶媒の臨界温度以上に加熱する工程と、
前記加熱工程後、超臨界状態の前記溶媒を状態変化させ、前記被覆材を前記多孔質構造体の表面に析出させる工程と、
を有することを特徴とする。
The coating method of the present invention is a method of coating the surface of a porous structure with a coating material using a supercritical fluid in a pressure vessel,
A preparatory step of disposing the covering material dissolving solution in which the covering material is dissolved and the porous structure in the pressure vessel;
Exposing the porous structure to a coating solution containing the coating material and a solvent in a liquid state below the critical temperature and above the critical pressure;
After the exposing step, heating the porous structure to a temperature equal to or higher than the critical temperature of the solvent while being exposed to the coating material solution;
After the heating step, changing the state of the solvent in a supercritical state, and depositing the coating material on the surface of the porous structure,
It is characterized by having.

また、本発明の電極触媒層の製造方法は、圧力容器内で超臨界流体を用いて、触媒を担持した導電性多孔質構造体の表面に電解質樹脂を被覆させる、電極触媒層の製造方法であって、
前記電解質樹脂を溶解した電解質樹脂溶解溶液及び前記触媒を担持した導電性多孔質構造体を前記圧力容器内に配置する準備工程と、
前記電解質樹脂、及び、臨界温度未満且つ臨界圧力以上の液体状態の溶媒、を含む電解質樹脂溶液に、前記触媒を担持した導電性多孔質構造体を曝露する工程と、
前記曝露工程後、前記導電性多孔質構造体を、前記電解質樹脂溶液に曝露したまま、前記溶媒の臨界温度以上に加熱する工程と、
前記加熱工程後、超臨界状態の前記溶媒を状態変化させ、前記電解質樹脂を前記導電性多孔質構造体表面に析出させる工程と、
を有することを特徴とする。
The method for producing an electrode catalyst layer according to the present invention is a method for producing an electrode catalyst layer, in which a surface of a conductive porous structure carrying a catalyst is coated with an electrolyte resin using a supercritical fluid in a pressure vessel. There,
A preparatory step of disposing an electrolyte resin solution in which the electrolyte resin is dissolved and a conductive porous structure carrying the catalyst in the pressure vessel;
Exposing the conductive porous structure carrying the catalyst to an electrolyte resin solution containing the electrolyte resin and a solvent in a liquid state below a critical temperature and above a critical pressure;
After the exposing step, heating the conductive porous structure to a temperature equal to or higher than the critical temperature of the solvent while being exposed to the electrolyte resin solution;
After the heating step, the state of the solvent in a supercritical state is changed, and the electrolyte resin is deposited on the surface of the conductive porous structure.
It is characterized by having.

本発明者が、基板上に略垂直配向したカーボンナノチューブ(CNT)の表面に電解質樹脂を被覆させるべく、検討したところ、上記特許文献1に記載された方法では、電解質樹脂を効率良く、カーボンナノチューブの表面に被覆させることができないという知見が得られた。
具体的には、特許文献1では、複数のCNTが略垂直配向した基板(CNT基板)と電解質樹脂溶液とを収容した圧力容器内に、CHFガスを導入して圧力を上昇させ、CHFを気体状態から超臨界状態にした後、CNT基板を冷却し、CNT基板近傍のCHFを、液体状態を経て気体状態にすることで、電解質樹脂を析出させている。また、特許文献1では、CNT基板と電解質樹脂溶液とを収容した圧力容器内に、CHFガスを導入して圧力を上昇させ、CHFを気体状態から超臨界状態にした後、CNT基板を加熱し、CNT基板近傍のCHFの電解質樹脂の溶解度を低下させることで、電解質樹脂を析出させている。
上記のように、特許文献1に記載の如く、CHFを気体状態から超臨界状態にする場合、圧力容器全体に電解質樹脂が分散するため、超臨界流体における電解質樹脂濃度が低く、CNT近傍の電解質樹脂濃度が低くなる。そのため、充分量の電解質樹脂をCNTに被覆させるには時間を要する(比較例1及び比較例5、図9参照)。また、CNT基板の近傍に存在する超臨界流体中の電解質樹脂濃度を確保し、充分量の電解質樹脂をCNTに被覆させるには、多量の電解質樹脂を使用する必要がある(比較例1及び比較例4、図8参照)。
The present inventor has studied to coat the surface of carbon nanotubes (CNTs) substantially vertically aligned on the substrate with an electrolyte resin. In the method described in Patent Document 1, the electrolyte resin is efficiently converted into carbon nanotubes. The knowledge that it cannot be made to coat on the surface of was obtained.
Specifically, in Patent Document 1, CHF 3 gas is introduced into a pressure vessel containing a substrate (CNT substrate) in which a plurality of CNTs are substantially vertically aligned (CNT substrate) and an electrolyte resin solution to increase the pressure, and CHF 3 After changing the gas state from the gas state to the supercritical state, the CNT substrate is cooled, and the CHF 3 in the vicinity of the CNT substrate is changed to the gas state through the liquid state, thereby depositing the electrolyte resin. Further, in Patent Document 1, CHF 3 gas is introduced into a pressure vessel containing a CNT substrate and an electrolyte resin solution to increase the pressure, and CHF 3 is changed from a gas state to a supercritical state. The electrolyte resin is deposited by heating and reducing the solubility of the CHF 3 electrolyte resin in the vicinity of the CNT substrate.
As described above, when CHF 3 is changed from a gas state to a supercritical state as described in Patent Document 1, since the electrolyte resin is dispersed throughout the pressure vessel, the electrolyte resin concentration in the supercritical fluid is low, The electrolyte resin concentration is lowered. Therefore, it takes time to coat the CNT with a sufficient amount of electrolyte resin (see Comparative Example 1 and Comparative Example 5 and FIG. 9). Moreover, in order to ensure the electrolyte resin concentration in the supercritical fluid existing in the vicinity of the CNT substrate and to coat the CNT with a sufficient amount of electrolyte resin, it is necessary to use a large amount of electrolyte resin (Comparative Example 1 and Comparative Example 1). Example 4, see FIG. 8).

そして、本発明者は、鋭意検討の結果、CHF等の超臨界状態にする溶媒(以下、超臨界用溶媒ということがある)を、まず、液体状態とし、該液体状態の超臨界用溶媒と電解質樹脂とを含む電解質樹脂溶液に、CNT基板を曝露し、続いて、CNT基板を加熱してCNT基板近傍の超臨界用溶媒を超臨界状態とすることによって、高濃度で電解質樹脂を含む超臨界流体でCNT基板を処理することが可能であり、電解質樹脂の被覆量を向上させると共に、電解質樹脂使用量の低減及び処理時間の短縮が実現されることを見出した。 As a result of intensive studies, the inventor first changed a solvent to be in a supercritical state such as CHF 3 (hereinafter sometimes referred to as a supercritical solvent) into a liquid state, and then the supercritical solvent in the liquid state. And the electrolyte resin solution containing the electrolyte resin, the CNT substrate is exposed, and then the CNT substrate is heated to bring the supercritical solvent near the CNT substrate into a supercritical state, thereby containing the electrolyte resin at a high concentration. It has been found that it is possible to treat a CNT substrate with a supercritical fluid, which can improve the coating amount of the electrolyte resin, reduce the amount of electrolyte resin used, and shorten the treatment time.

図4を用いて、具体的に説明する。図4は、CHFの状態変化を示すものであり、また、CHFを超臨界用溶媒として用いた実施例1のCNT基板(導電性多孔質構造体)の環境の温度変化及び圧力変化(点線矢印)と、雰囲気環境の温度変化及び圧力変化(実線矢印)とを示す図である。
CHFは、臨界温度が25.65℃、臨界圧力が4.87MPaであり、図4に示すように、臨界点(25.65℃、4.87MPa)以上の条件下で超臨界状態となる。超臨界流体は、気体の性質(拡散性)と溶液の性質(溶解性)とを併せ持つ。
This will be specifically described with reference to FIG. FIG. 4 shows the change in the state of CHF 3 , and the temperature change and pressure change in the environment of the CNT substrate (conductive porous structure) of Example 1 using CHF 3 as a supercritical solvent ( It is a figure which shows the temperature change and pressure change (solid line arrow) of atmospheric environment.
CHF 3 has a critical temperature of 25.65 ° C. and a critical pressure of 4.87 MPa, and, as shown in FIG. 4, becomes a supercritical state under conditions of a critical point (25.65 ° C., 4.87 MPa) or higher. . A supercritical fluid has both a gas property (diffusibility) and a solution property (solubility).

ここで、CNT基板環境とはCNT基板が晒される環境であり、CNT基板環境の温度とはCNT基板の温度を意味し、CNT基板環境の圧力とはCNT基板が晒される環境の圧力を意味する。CNT基板環境温度は、CNTの温度を調整するヒーター等により直接的に又は間接的に制御することができる。本明細書において、多孔質構造体環境及び導電性多孔質構造体環境もまた同様に、それぞれの構造体が晒される環境であり、各構造体環境の温度は各構造体の温度を意味し、各構造体環境の圧力は各構造体が晒される環境の圧力を意味する。
また、本明細書において雰囲気環境の温度及び圧力とは、圧力容器内において、超臨界用溶媒が液体状態及び超臨界状態の場合には、電解質樹脂溶液の温度及び圧力を意味し、超臨界用溶媒が気体状態の場合には、電解質樹脂を含む気体状態の超臨界溶媒の温度及び圧力を意味する。雰囲気環境の温度の制御方法は特に限定されず、例えば、圧力容器の壁部を加熱及び冷却可能な温度調節機によって制御することができる。雰囲気環境の圧力は、典型的には圧力容器内に導入する超臨界用溶媒の量によって制御することができる。CNT基板、多孔質構造体及び導電性多孔質構造体の圧力も、典型的には、圧力容器内の超臨界用溶媒量によって制御でき、通常、雰囲気環境の圧力とほぼ同じになる。
Here, the CNT substrate environment is an environment where the CNT substrate is exposed, the temperature of the CNT substrate environment means the temperature of the CNT substrate, and the pressure of the CNT substrate environment means the pressure of the environment where the CNT substrate is exposed. . The environmental temperature of the CNT substrate can be controlled directly or indirectly by a heater or the like that adjusts the temperature of the CNT. In this specification, the porous structure environment and the conductive porous structure environment are also environments to which the respective structures are exposed, and the temperature of each structure environment means the temperature of each structure, The pressure of each structure environment means the pressure of the environment to which each structure is exposed.
In this specification, the temperature and pressure of the atmospheric environment mean the temperature and pressure of the electrolyte resin solution when the supercritical solvent is in a liquid state and a supercritical state in the pressure vessel. When the solvent is in the gaseous state, it means the temperature and pressure of the supercritical solvent in the gaseous state containing the electrolyte resin. The method for controlling the temperature of the atmospheric environment is not particularly limited, and can be controlled by, for example, a temperature controller that can heat and cool the wall of the pressure vessel. The pressure of the atmospheric environment can typically be controlled by the amount of supercritical solvent introduced into the pressure vessel. The pressure of the CNT substrate, the porous structure, and the conductive porous structure can also typically be controlled by the amount of the supercritical solvent in the pressure vessel, and is usually approximately the same as the pressure in the ambient environment.

圧力容器内に電解質樹脂(電解質樹脂溶解溶液)及びCNT基板を配置した状態で、図4に示すように、まず、CNT基板環境及び雰囲気環境を、CHFの臨界温度未満を維持したまま、CHFの臨界圧力以上にし、圧力容器内のCHFを液体状態にする(図4中の(1))。このとき、液体状態のCHF中に電解質樹脂が分散、溶解した電解質樹脂溶液にCNTが浸漬する。次に、電解質樹脂溶液にCNTを浸漬させた状態で、CNT基板環境の温度を、CHFの臨界温度以上に上昇させ、CNT基板近傍のCHFを超臨界状態にする(図4中の(2))。超臨界流体の溶解性及び拡散性により、CNT基板近傍において局所的に電解質樹脂の濃度を高めると共に、電解質樹脂をCNT基板上の複数のCNT間に浸透させることができる。続いて、CNT基板環境の圧力をCHFの臨界圧力以下にする(図4中の(3))ことで、溶解していた電解質樹脂を析出させ、CNT表面に被覆させることができる。 With the electrolyte resin (electrolyte resin solution) and the CNT substrate placed in the pressure vessel, as shown in FIG. 4, first, the CNT substrate environment and the atmosphere environment are maintained under CHF 3 below the critical temperature of CHF 3. 3 or higher so that CHF 3 in the pressure vessel is in a liquid state ((1) in FIG. 4). At this time, the CNTs are immersed in the electrolyte resin solution in which the electrolyte resin is dispersed and dissolved in the CHF 3 in a liquid state. Next, with the CNT immersed in the electrolyte resin solution, the temperature of the CNT substrate environment is raised to a temperature higher than or equal to the critical temperature of the CHF 3 to bring the CHF 3 near the CNT substrate into a supercritical state (in FIG. 2)). Due to the solubility and diffusibility of the supercritical fluid, the concentration of the electrolyte resin can be locally increased in the vicinity of the CNT substrate, and the electrolyte resin can permeate between the plurality of CNTs on the CNT substrate. Subsequently, by making the pressure of the CNT substrate environment equal to or lower than the critical pressure of CHF 3 ((3) in FIG. 4), the dissolved electrolyte resin can be deposited and coated on the CNT surface.

本発明者は、上記のようなCNT表面への電解質樹脂の被覆方法は、CNT基板を用いた電極触媒層の製造方法のみならず、CNT基板以外の導電性多孔質材料を含む電極触媒層の製造方法、さらに、CNT基板のような微細な細孔構造を有する多孔質構造体を、被覆材で被覆する方法に応用可能であることを見出した。複数のCNTが略垂直に配向した基板において、CNT同士の微細な隙間にも充分量の電解質樹脂を被覆させることができることから、CNT基板と同様、微細な細孔構造を有する多孔質構造体の表面を、被覆材で効率良く被覆可能であることが見出されたからである。   The present inventor has not only applied the method for coating an electrolyte resin to the CNT surface as described above, but also a method for producing an electrode catalyst layer using a CNT substrate, as well as an electrode catalyst layer containing a conductive porous material other than the CNT substrate. It has been found that the present invention can be applied to a production method and a method of coating a porous structure having a fine pore structure such as a CNT substrate with a coating material. In a substrate in which a plurality of CNTs are oriented substantially vertically, a sufficient amount of electrolyte resin can be coated even in the minute gaps between the CNTs. Therefore, as with the CNT substrate, the porous structure having a fine pore structure is used. This is because it has been found that the surface can be efficiently coated with a coating material.

以下、本発明の被覆方法及び電極触媒層の製造方法について説明する。
本発明の被覆方法は、圧力容器内で、超臨界流体を用い、多孔質構造体の表面を被覆材で被覆する方法であり、本発明の電極触媒層の製造方法は、本発明の被覆方法において、多孔質構造体として触媒を担持した導電性多孔質構造体、被覆材として電解質樹脂を用い、導電性多孔質構造体の表面に電解質樹脂を被覆するものである。ここでは、主に電極触媒層の製造方法を説明しながら、適宜、本発明の被覆方法について説明する。
尚、本明細書において、超臨界流体とは、超臨界流体そのもののみならず、電解質樹脂やその他成分(例えば、電解質樹脂溶解溶液の溶媒など)を含む超臨界流体も指すものとする。また、本明細書において、被覆とは、被覆対象の表面の一部を覆う形態及び被覆対象の表面全面を覆う形態を含む。
Hereinafter, the coating method and the production method of the electrode catalyst layer of the present invention will be described.
The coating method of the present invention is a method of coating the surface of a porous structure with a coating material using a supercritical fluid in a pressure vessel. The method for producing an electrode catalyst layer of the present invention is a coating method of the present invention. In this method, a conductive porous structure carrying a catalyst is used as the porous structure, and an electrolyte resin is used as the coating material, and the surface of the conductive porous structure is coated with the electrolyte resin. Here, the coating method of the present invention will be described as appropriate while mainly explaining the method for producing the electrode catalyst layer.
In the present specification, the supercritical fluid refers not only to the supercritical fluid itself but also to a supercritical fluid containing an electrolyte resin and other components (for example, a solvent of an electrolyte resin solution). Moreover, in this specification, the covering includes a form covering a part of the surface of the coating target and a form covering the entire surface of the coating target.

[準備工程]
準備工程は、圧力容器内に、電解質樹脂(被覆材)を溶解した電解質樹脂溶解溶液(被覆材溶解溶液)と、導電性多孔質構造体(多孔質構造体)とを配置する工程である。
[Preparation process]
The preparation step is a step of placing an electrolyte resin solution (coating material solution) in which an electrolyte resin (coating material) is dissolved and a conductive porous structure (porous structure) in a pressure vessel.

電解質樹脂としては、所望のイオン伝導性を有し、超臨界流体に溶解可能であれば、特に限定されず、例えば、プロトン伝導性を有する電解質樹脂としては、フッ素系高分子電解質、炭化水素系高分子電解質等が挙げられる。
ここで、フッ素系高分子電解質とは、ナフィオン(商品名、デュポン製)やアシプレックス(商品名、旭化成製)、フレミオン(商品名、旭硝子製)に代表されるパーフルオロカーボンスルホン酸樹脂の他、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーの共重合体やジフルオロビニルモノマーの重合物にスルホン酸基、スルホンイミド基、カルボン酸基、リン酸基、ホスホン酸基、フェノール性水酸基等のプロトン酸基(プロトン伝導性基)を導入したもののような部分フッ素化高分子電解質等の含フッ素高分子電解質を指す。
また、炭化水素系高分子電解質とは、フッ素を含有しない高分子電解質であり、具体的には、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリパラフェニレン等のエンジニアリングプラスチックや、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリスチレン等の汎用プラスチックにスルホン酸基、スルホンイミド基、カルボン酸基、リン酸基、ホスホン酸基、フェノール性水酸基等のプロトン酸基(プロトン伝導性基)を導入したもの又はこれらの共重合体等が挙げられる。
The electrolyte resin is not particularly limited as long as it has desired ionic conductivity and can be dissolved in a supercritical fluid. For example, examples of the electrolyte resin having proton conductivity include a fluorine-based polymer electrolyte and a hydrocarbon-based electrolyte. Examples include polymer electrolytes.
Here, the fluoropolymer electrolyte is a perfluorocarbon sulfonic acid resin represented by Nafion (trade name, manufactured by DuPont), Aciplex (trade name, manufactured by Asahi Kasei), Flemion (trade name, manufactured by Asahi Glass), Protonic acids such as sulfonic acid groups, sulfonimide groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and phenolic hydroxyl groups on copolymers of fluorocarbon vinyl monomers and hydrocarbon vinyl monomers and polymers of difluorovinyl monomers Fluorine-containing polymer electrolytes such as partially fluorinated polymer electrolytes such as those having a group (proton conductive group) introduced.
The hydrocarbon-based polymer electrolyte is a polymer electrolyte that does not contain fluorine. Specifically, polyether ether ketone, polyether ketone, polyether sulfone, polyphenylene sulfide, polyphenylene ether, polyparaphenylene, etc. General purpose plastics such as engineering plastics, polyethylene terephthalate, polyethylene, polypropylene, polystyrene, and proton acid groups (proton conductive groups such as sulfonic acid groups, sulfonimide groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, phenolic hydroxyl groups) ) Or a copolymer thereof.

また、被覆材としては、超臨界流体に溶解可能であれば特に限定されず、例えば、上記電解質樹脂等を挙げることができる。   The coating material is not particularly limited as long as it can be dissolved in the supercritical fluid, and examples thereof include the above electrolyte resin.

電解質樹脂(被覆材)は、溶媒に溶解した電解質樹脂溶解溶液(被覆材溶解溶液)として圧力容器内に投入することで、電解質樹脂を超臨界用溶媒により溶解させやすくすることができる。電解質樹脂溶液は、電解質樹脂溶解溶液と液体状態の超臨界用溶媒とを含むことになる。電解質樹脂溶解溶液における溶媒としては、電解質樹脂を溶解できれば特に限定されず、適宜選択することができる。例えば、エタノール等のアルコール等の有機溶媒が挙げられる。   The electrolyte resin (coating material) can be easily dissolved in the supercritical solvent by introducing the electrolyte resin (coating material) into the pressure vessel as an electrolyte resin dissolving solution (coating material dissolving solution) dissolved in a solvent. The electrolyte resin solution contains an electrolyte resin solution and a supercritical solvent in a liquid state. The solvent in the electrolyte resin solution is not particularly limited as long as the electrolyte resin can be dissolved, and can be appropriately selected. For example, organic solvents, such as alcohol, such as ethanol, are mentioned.

導電性多孔質構造体は、導電性と多孔質構造とを有していれば、その材料及び形状に特に限定はない。
本明細書において、多孔質構造体は、表面に微細な細孔構造を有するものを意味し、例えば、複数の構成繊維が規則正しく配列された構造(例えば、メッシュ構造)、複数の構成繊維がランダムに配列された不織布構造、独立孔や連結孔を有する三次元網目構造、複数の構成粒子が連結された構造等が含まれる。また、基板上に略垂直に配向したCNTも多孔質構造体に含まれる。
ここで、基板上に略垂直に配向したCNTとは、基板の面方向と、CNTのチューブ長さ方向とのなす角度が、90°±30°の範囲であることを意味する。90°±30°の範囲であれば、垂直(90°)に配向した場合と同様の効果が得られる。尚、CNTには、直線状のものと、直線状でないものとがあり、直線状でないCNTの場合には、チューブ長さ方向の両端面の中心を結ぶ直線の方向を、チューブ長さ方向とする。
The conductive porous structure is not particularly limited in material and shape as long as it has conductivity and a porous structure.
In the present specification, the porous structure means one having a fine pore structure on the surface. For example, a structure in which a plurality of constituent fibers are regularly arranged (for example, a mesh structure), and a plurality of constituent fibers are random. Non-woven fabric structure arranged in a three-dimensional structure, a three-dimensional network structure having independent holes and connecting holes, a structure in which a plurality of constituent particles are connected, and the like. In addition, CNTs oriented substantially vertically on the substrate are also included in the porous structure.
Here, the CNT oriented substantially perpendicularly on the substrate means that the angle formed by the surface direction of the substrate and the tube length direction of the CNT is in a range of 90 ° ± 30 °. If it is in the range of 90 ° ± 30 °, the same effect as in the case of being oriented vertically (90 °) can be obtained. There are two types of CNT, straight and non-linear. In the case of non-linear CNT, the direction of the straight line connecting the centers of both end faces in the tube length direction is the tube length direction. To do.

導電性多孔質構造体の構成材料としては、例えば、カーボンナノチューブ(CNT)、カーボンナノファイバー、カーボンブラック、グラッシーカーボン、アセチレンブラック、カーボンフェルト、カーボンクロス、カーボンナノホーン(CNH)、カーボンナノウォール(CNW)等の炭素材料、チタン、シリコン、スズ、銅、チタニア、シリカ、酸化スズ等の金属や金属酸化物、等を挙げることができる。これら構成材料は、1種類のみでも、2種類以上を組み合わせて用いてもよい。   As a constituent material of the conductive porous structure, for example, carbon nanotube (CNT), carbon nanofiber, carbon black, glassy carbon, acetylene black, carbon felt, carbon cloth, carbon nanohorn (CNH), carbon nanowall (CNW) ) And the like, and metals such as titanium, silicon, tin, copper, titania, silica, tin oxide, and metal oxides. These constituent materials may be used alone or in combination of two or more.

中でも、CNTは、燃料電池の電極における反応ガスの拡散性、電子伝導性、比表面積、等の観点から、燃料電池用電極の構成材料として好ましく、特に基板上に略垂直に配向したCNTが好ましい。また、CNTを含む導電性多孔質構造体、特に、基板上に略垂直に配向したCNTは、CNTの表面に充分量の電解質樹脂を被覆させにくいことから、本発明により得られる効果が特に高いといえる。   Among them, CNT is preferable as a constituent material of the electrode for the fuel cell from the viewpoint of the diffusibility of the reaction gas in the electrode of the fuel cell, the electronic conductivity, the specific surface area, and the like, and in particular, CNT oriented substantially vertically on the substrate is preferable. . In addition, conductive porous structures containing CNTs, in particular, CNTs oriented substantially perpendicularly on the substrate, are difficult to cover the surface of the CNTs with a sufficient amount of electrolyte resin, and thus the effects obtained by the present invention are particularly high. It can be said.

導電性多孔質構造体には触媒が担持される。触媒としては、電極反応を促進できるものであれば特に限定されず、例えば、燃料電池用電極の触媒としては、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミニウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、これら金属の合金等が挙げられる。
導電性多孔質構造体への触媒担持方法は特に限定されず、湿式法や乾式法を採用することができる。例えば、触媒金属塩溶液(例えば、白金塩溶液等)を導電性多孔質構造体表面に塗布し、乾燥、焼成還元する方法、金属触媒塩の超臨界流体に導電性多孔質構造体を曝露し、金属触媒塩を析出後、焼成還元する方法等が挙げられる。
A catalyst is supported on the conductive porous structure. The catalyst is not particularly limited as long as it can accelerate the electrode reaction. For example, the catalyst for the fuel cell electrode is platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt. And metals such as nickel, manganese, vanadium, molybdenum, gallium, and aluminum, and alloys of these metals.
The method for supporting the catalyst on the conductive porous structure is not particularly limited, and a wet method or a dry method can be employed. For example, a catalytic metal salt solution (for example, a platinum salt solution) is applied to the surface of the conductive porous structure, dried, calcined and reduced, and the conductive porous structure is exposed to a supercritical fluid of the metal catalyst salt. And a method of firing and reducing the metal catalyst salt after precipitation.

被覆材の被覆対象である多孔質構造体としては、上記したような多孔質構造を有していれば、具体的な形状や構成材料は特に限定されない。構成材料としては、例えば、上記導電性多孔質構造の構成材料等を挙げることができる。   As the porous structure to be covered with the covering material, the specific shape and constituent materials are not particularly limited as long as the porous structure has the above-described porous structure. As a constituent material, the constituent material of the said electroconductive porous structure etc. can be mentioned, for example.

準備工程において、圧力容器内における導電性多孔質構造体及び電解質樹脂溶解溶液の配置形態は特に限定されない。導電性多孔質構造体の好ましい配置位置については、曝露工程における電解質樹脂溶液の液面との関係から、後述の[曝露工程]において説明する。   In the preparation step, the arrangement of the conductive porous structure and the electrolyte resin solution in the pressure vessel is not particularly limited. A preferable arrangement position of the conductive porous structure will be described in [Exposure Step] described later, from the relationship with the liquid level of the electrolyte resin solution in the exposure step.

[曝露工程]
曝露工程は、電解質樹脂(被覆材)及び臨界温度未満且つ臨界圧力以上の液体状態の超臨界用溶媒を含む電解質樹脂溶液(被覆材溶液)に、触媒を担持した導電性多孔質構造体(多孔質構造体)を、曝露する工程である。
[Exposure process]
In the exposure process, a conductive porous structure (porous) carrying a catalyst in an electrolyte resin solution (coating material) and an electrolyte resin solution (coating material solution) containing a supercritical solvent in a liquid state below the critical temperature and above the critical pressure. Is the step of exposing the structure).

電解質樹脂溶液は、少なくとも、上記電解質樹脂と、臨界温度未満且つ臨界圧力以上の液体状態の超臨界用溶媒と、を含む。
超臨界用溶媒は、後続の加熱工程において、臨界圧力以上を保持したまま、臨界温度以上に加熱して超臨界状態に移行させられるものであり、本明細書では、超臨界用溶媒ということがある。尚、超臨界用溶媒とは、加熱工程において超臨界状態で用いる溶媒を指し、気体状態や液体状態の溶媒も含む。
The electrolyte resin solution contains at least the electrolyte resin and a supercritical solvent in a liquid state that is less than the critical temperature and higher than the critical pressure.
In the subsequent heating step, the supercritical solvent is one that is heated to a critical temperature or higher while maintaining a critical pressure or higher, and is referred to as a supercritical solvent in this specification. is there. The supercritical solvent refers to a solvent used in a supercritical state in the heating step, and includes a solvent in a gas state or a liquid state.

超臨界用溶媒としては、例えば、トリフルオロメタン(CHF)、CO、テトラフルオロエチレン(CF=CF)、1,1,2,2−テトラフルオロエタン(CHFCHF)、ペンタフルオロエタン(CFCHF)、水、エタノール、メタノール等を挙げることができる。これら溶媒は1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the supercritical solvent include trifluoromethane (CHF 3 ), CO 2 , tetrafluoroethylene (CF 2 ═CF 2 ), 1,1,2,2-tetrafluoroethane (CHF 2 CHF 2 ), pentafluoro Examples include ethane (CF 3 CHF 2 ), water, ethanol, methanol, and the like. These solvents may be used alone or in combination of two or more.

超臨界溶媒としては、トリフルオロメタン(CHF)、COが特に好ましい。CHFは、電解質樹脂の溶解性に優れるため、導電性多孔質構造体に対する電解質樹脂の被覆量を確保しやすいというメリットがある。一方、COは、地球温暖化係数が低く、また、低コストというメリットがある。さらに、COは、導電性多孔質構造体への触媒担持工程において、COを超臨界流体として用いた場合に、使用する機材等を流用できるため、電極触媒層の製造コストをさらに削減できるというメリットもある。COは、CHFと比較して電解質樹脂の溶解性が低いために、従来の超臨界流体を用いた電解質樹脂の被覆方法では、導電性多孔質構造体に対する電解質樹脂の目付け量は非常に少なかったが、本発明によれば、目付け量を大幅に向上することができる(実施例4、比較例1及び6、図10参照)。 As the supercritical solvent, trifluoromethane (CHF 3 ) and CO 2 are particularly preferable. Since CHF 3 is excellent in solubility of the electrolyte resin, there is an advantage that it is easy to ensure the coating amount of the electrolyte resin on the conductive porous structure. On the other hand, CO 2 has the advantages of a low global warming potential and low cost. Furthermore, since CO 2 can be used as a supercritical fluid when CO 2 is used as a supercritical fluid in the catalyst loading process on the conductive porous structure, the production cost of the electrode catalyst layer can be further reduced. There is also a merit. Since CO 2 has a lower solubility of the electrolyte resin than CHF 3 , the coating amount of the electrolyte resin with respect to the conductive porous structure is very large in the conventional coating method of the electrolyte resin using the supercritical fluid. Although there were few, according to this invention, a fabric weight can be improved significantly (refer Example 4, Comparative Examples 1 and 6, FIG. 10).

曝露工程において、超臨界用溶媒は、臨界温度未満且つ臨界圧力以上であり、液体状態である。超臨界用溶媒をこのような液体状態にする方法は特に限定されない。例えば、圧力容器内に、臨界温度未満を保持しながら、気体状態の超臨界用溶媒を導入し、圧力容器内の圧力を上昇させることで、超臨界用溶媒を液体状態に移行させると共に、臨界圧力以上にすることができる。このとき、超臨界用溶媒の液体状態への状態変化により、電解質樹脂溶液の液面が上昇する。   In the exposure step, the supercritical solvent is in a liquid state below the critical temperature and above the critical pressure. The method for bringing the supercritical solvent into such a liquid state is not particularly limited. For example, while maintaining the temperature below the critical temperature in the pressure vessel, the supercritical solvent in a gaseous state is introduced and the pressure in the pressure vessel is increased, so that the supercritical solvent is transferred to the liquid state and the critical state is changed. It can be over pressure. At this time, the liquid level of the electrolyte resin solution rises due to the state change of the supercritical solvent to the liquid state.

曝露工程においては、導電性多孔質構造体に電解質樹脂溶液を接触させ、曝露させることができれば、超臨界用溶媒の量や圧力容器内の導電性多孔質構造体の配置位置等は特に限定されない。ただし、加熱工程において、より高濃度の電解質樹脂を含む超臨界流体で、導電性多孔質体を処理できることから、上記準備工程における導電性多孔質構造体の配置位置と、曝露工程における電解質樹脂溶液の液面高さと、を制御することが好ましい。   In the exposure step, the amount of the supercritical solvent and the position of the conductive porous structure in the pressure vessel are not particularly limited as long as the electrolyte resin solution can be brought into contact with the conductive porous structure and exposed. . However, since the conductive porous body can be treated with a supercritical fluid containing a higher concentration electrolyte resin in the heating step, the position of the conductive porous structure in the preparation step and the electrolyte resin solution in the exposure step It is preferable to control the liquid level height.

以下、準備工程における導電性多孔質構造体の配置位置と、曝露工程における電解質樹脂の液面高さについて、図1を用いて説明する。
図1は、曝露工程における圧力容器内の様子を示す断面模式図である。図1において、圧力容器1には、電解質樹脂を溶解した電解質樹脂溶解溶液2とCNT基板3とが配置されている。CNT基板には、CNT基板を加熱可能なヒーター4が取り付けられている。圧力容器1は、その周囲に温度調節機5が取り付けられており、圧力容器内の雰囲気環境温度が調節可能である。また、圧力容器1は、超臨界用溶媒を圧力容器内に供給するための供給弁7、及び圧力容器内の気体状態の超臨界用溶媒等を圧力容器外に排出し、大気開放可能な排出弁8を備えている。
Hereinafter, the arrangement position of the conductive porous structure in the preparation process and the liquid level of the electrolyte resin in the exposure process will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view showing the inside of the pressure vessel in the exposure process. In FIG. 1, an electrolyte resin solution 2 in which an electrolyte resin is dissolved and a CNT substrate 3 are disposed in a pressure vessel 1. A heater 4 capable of heating the CNT substrate is attached to the CNT substrate. The pressure vessel 1 is provided with a temperature adjuster 5 around the pressure vessel 1 so that the ambient temperature in the pressure vessel can be adjusted. Further, the pressure vessel 1 discharges the supply valve 7 for supplying the supercritical solvent into the pressure vessel, and the supercritical solvent in a gas state in the pressure vessel to the outside of the pressure vessel and can be opened to the atmosphere. A valve 8 is provided.

上記したように、曝露工程では、圧力容器1内を、超臨界用溶媒の臨界温度未満の温度条件下で、気体状態の超臨界用溶媒の導入により超臨界用溶媒の臨界圧力以上に加圧し、超臨界用溶媒を液体状態に移行させ、電解質樹脂溶液6の液面を上昇させることで、導電性多孔質構造体3を電解質樹脂溶液6に浸漬(曝露)させることができる。
このとき、準備工程における、導電性多孔質構造体の配置位置を次のようにすることが好ましい。すなわち、図1に示すように、圧力容器1において、導電性多孔質構造体3は、曝露工程における加圧により、該導電性多孔質構造体3の下端部3b以下に位置する電解質溶液6の液面が該導電性多孔質構造体3の上端部3a以上に上昇するように配置されることが好ましい。
As described above, in the exposure step, the pressure vessel 1 is pressurized above the critical pressure of the supercritical solvent by introducing the supercritical solvent in a gaseous state under a temperature condition lower than the critical temperature of the supercritical solvent. The conductive porous structure 3 can be immersed (exposed) in the electrolyte resin solution 6 by shifting the supercritical solvent to a liquid state and raising the liquid level of the electrolyte resin solution 6.
At this time, it is preferable to arrange the conductive porous structure in the preparation step as follows. That is, as shown in FIG. 1, in the pressure vessel 1, the conductive porous structure 3 is made of the electrolyte solution 6 positioned below the lower end portion 3 b of the conductive porous structure 3 by pressurization in the exposure process. It is preferable that the liquid surface is disposed so as to rise above the upper end portion 3 a of the conductive porous structure 3.

このように、導電性多孔質構造体の配置位置と電解質樹脂溶液6の液面の位置を調整することで、導電性多孔質構造体を曝露させる電解質樹脂溶液の電解質樹脂濃度を高くすることができる。その結果、導電性多孔質構造体に、より効率良く電解質樹脂を析出させることができ、導電性多孔質構造体の表面を被覆する電解質樹脂の量を確保しつつ、電極触媒層の製造に使用する電解質樹脂量を少なくし、さらには、被覆処理に要する時間を短縮することができる。
ここで、導電性多孔質構造体の下端部及び上端部とは、圧力容器内に配置した導電性多孔質構造体における重力方向下端部及び重力方向上端部を意味し、上昇する電解質樹脂溶液の液面に最初に接触するのが下端部、最後に接触するのが上端部となる。
Thus, the electrolyte resin concentration of the electrolyte resin solution to which the conductive porous structure is exposed can be increased by adjusting the position of the conductive porous structure and the position of the liquid surface of the electrolyte resin solution 6. it can. As a result, the electrolyte resin can be deposited more efficiently on the conductive porous structure, and used for the production of the electrode catalyst layer while ensuring the amount of the electrolyte resin that covers the surface of the conductive porous structure. The amount of electrolyte resin to be reduced can be reduced, and furthermore, the time required for the coating process can be shortened.
Here, the lower end portion and the upper end portion of the conductive porous structure mean the lower end portion in the gravitational direction and the upper end portion in the gravitational direction of the conductive porous structure disposed in the pressure vessel, and the rising electrolyte resin solution The lower end is the first contact with the liquid surface, and the upper end is the last contact.

電解質樹脂溶液の液面の高さは、導電性多孔質構造体の上端部以上であれば、導電性多孔質体全体を電解質樹脂溶液に接触させ、曝露することができる。少ない電解質樹脂使用量で、電解質樹脂溶液の電解質樹脂濃度を高くできることから、電解質樹脂溶液の液面の高さは、必要最小限とすることが好ましい。尚、導電性多孔質構造体の所望の領域のみに限定的に電解質樹脂を被覆させる等の場合には、電解質樹脂溶液に導電性多孔質構造体全体を接触させる必要はない。   If the liquid level of the electrolyte resin solution is equal to or higher than the upper end of the conductive porous structure, the entire conductive porous body can be brought into contact with the electrolyte resin solution and exposed. Since the electrolyte resin concentration of the electrolyte resin solution can be increased with a small amount of electrolyte resin used, it is preferable that the level of the liquid surface of the electrolyte resin solution is minimized. In the case where the electrolyte resin is coated only on a desired region of the conductive porous structure, it is not necessary to bring the entire conductive porous structure into contact with the electrolyte resin solution.

電解質樹脂溶液の液面の高さは、例えば、圧力容器内の圧力や超臨界用溶媒の量等によって調整することができ、典型的には、圧力容器内に導入する気体状態の超臨界用溶媒の量を調整することによって圧力容器内の圧力を調整し、液面高さを制御することができる。気体状態の超臨界用溶媒の導入による、圧力容器内の圧力と電解質樹脂溶液の液面の高さとの関係を、予め調べておくことで、曝露工程における電解質樹脂溶液の液面高さを容易且つ適切にコントロールすることができる(図3参照)。   The liquid level of the electrolyte resin solution can be adjusted, for example, by the pressure in the pressure vessel, the amount of the supercritical solvent, etc. By adjusting the amount of the solvent, the pressure in the pressure vessel can be adjusted, and the liquid level can be controlled. By examining the relationship between the pressure in the pressure vessel and the level of the electrolyte resin solution by introducing a supercritical solvent in the gaseous state in advance, the level of the electrolyte resin solution in the exposure process can be easily And it can control appropriately (refer FIG. 3).

曝露工程における雰囲気環境温度及び導電性多孔質環境温度は、共に超臨界用溶媒の臨界温度未満であれば特に限定されない。例えば、超臨界溶媒の臨界温度−5℃以下であることが好ましい。
また、曝露工程において、加圧状態を保持し、電解質樹脂溶液に導電性多孔質構造体を曝露する時間は、特に限定されず、電解質樹脂溶液の電解質樹脂濃度、多孔質構造体の構造等に応じて適宜設定すればよい。例えば、5〜60分程度とすることができる。
The ambient environment temperature and the conductive porous environment temperature in the exposure step are not particularly limited as long as they are both lower than the critical temperature of the supercritical solvent. For example, the critical temperature of the supercritical solvent is preferably −5 ° C. or lower.
In the exposure step, the time for maintaining the pressurized state and exposing the conductive porous structure to the electrolyte resin solution is not particularly limited, and it depends on the electrolyte resin concentration of the electrolyte resin solution, the structure of the porous structure, etc. What is necessary is just to set suitably according to. For example, it can be about 5 to 60 minutes.

[加熱工程]
加熱工程は、曝露工程後、超臨界溶媒の超臨界圧力以上を保持して、導電性多孔質構造体(多孔質構造体)を、電解質樹脂溶液(被覆材溶液)に曝露したまま、前記溶媒の臨界温度以上に加熱する工程である。
加熱工程では、導電性多孔質構造体近傍の超臨界用溶媒を液体状態から超臨界状態に移行させることができ、電解質樹脂を溶解した超臨界流体を導電性多孔質構造体の多孔質構造内へ拡散させることができる。
[Heating process]
In the heating step, after the exposure step, the supercritical pressure of the supercritical solvent is maintained, and the conductive porous structure (porous structure) is exposed to the electrolyte resin solution (coating material solution) while the solvent is exposed. It is the process of heating above the critical temperature.
In the heating process, the supercritical solvent in the vicinity of the conductive porous structure can be transferred from the liquid state to the supercritical state, and the supercritical fluid in which the electrolyte resin is dissolved is transferred into the porous structure of the conductive porous structure. Can diffuse.

導電性多孔質構造体を加熱する方法は特に限定されず、例えば、導電性多孔質構造体を加熱可能なヒーターを導電性多孔質構造体に取り付け、該ヒーターにより直接、導電性多孔質構造体を加熱することができる。導電性多孔質構造体が基板上に担持されている場合には、該基板を加熱することで、導電性多孔質構造体を間接的に、超臨界用溶媒の臨界温度以上に加熱してもよい。基板を加熱する場合には、例えば、基板に該基板を加熱可能なヒーターを取り付ければよい。   The method for heating the conductive porous structure is not particularly limited. For example, a heater capable of heating the conductive porous structure is attached to the conductive porous structure, and the conductive porous structure is directly applied by the heater. Can be heated. When the conductive porous structure is supported on the substrate, the conductive porous structure can be heated indirectly or higher than the critical temperature of the supercritical solvent by heating the substrate. Good. In the case of heating the substrate, for example, a heater that can heat the substrate may be attached to the substrate.

加熱工程において、導電性多孔質構造体のみを局所的に加熱することで、導電性多孔質構造体近傍に存在する超臨界用溶媒のみを超臨界状態にすることができる。その結果、圧力容器内の導電性多孔質構造体近傍で、局所的に電解質樹脂濃度を高くすることができるため、電解質樹脂の被覆量を確保しつつ、使用量の低減や処理時間の短縮が可能である。また、圧力容器内の超臨界用溶媒全体を超臨界状態にする場合と比較して、加熱に要するエネルギーの削減が可能である。   By heating only the conductive porous structure locally in the heating step, only the supercritical solvent existing in the vicinity of the conductive porous structure can be brought into a supercritical state. As a result, since the electrolyte resin concentration can be locally increased in the vicinity of the conductive porous structure in the pressure vessel, it is possible to reduce the amount used and the processing time while securing the amount of electrolyte resin coating. Is possible. In addition, the energy required for heating can be reduced as compared with the case where the entire supercritical solvent in the pressure vessel is brought into a supercritical state.

導電性多孔質構造体の加熱温度は、超臨界用溶媒の臨界温度以上であれば特に限定されず、例えば、超臨界用溶媒の臨界温度〜臨界温度+100℃の範囲が好ましく、特に臨界温度+10℃〜臨界温度+60℃の範囲が好ましい。   The heating temperature of the conductive porous structure is not particularly limited as long as it is equal to or higher than the critical temperature of the supercritical solvent. For example, the temperature is preferably in the range of the critical temperature to the critical temperature + 100 ° C., particularly the critical temperature +10 The range of from ° C to critical temperature + 60 ° C is preferred.

導電性多孔質構造体近傍において、局所的に超臨界状態を形成するためには、加熱工程において、圧力容器内の雰囲気環境温度は、超臨界用溶媒の臨界温度未満にすることが好ましい。加熱工程における具体的な雰囲気環境温度は、例えば、超臨界用溶媒の臨界温度未満〜臨界温度−30℃の範囲が好ましく、特に、超臨界用溶媒の臨界温度−5℃〜臨界温度−10℃の範囲が好ましい。
加熱工程における雰囲気環境温度の制御方法は特に限定されず、例えば、上記したような温度調節機等を用いた方法が挙げられる。
In order to form a supercritical state locally in the vicinity of the conductive porous structure, it is preferable that the atmospheric environment temperature in the pressure vessel is lower than the critical temperature of the supercritical solvent in the heating step. The specific atmospheric environment temperature in the heating step is preferably, for example, in the range of less than the critical temperature of the supercritical solvent to the critical temperature of −30 ° C., and particularly, the critical temperature of the supercritical solvent of −5 ° C. to the critical temperature of −10 ° C. The range of is preferable.
The method for controlling the ambient temperature in the heating step is not particularly limited, and examples thereof include a method using a temperature controller as described above.

加熱工程において、導電性多孔質構造体の加熱時間は、特に限定されず、電解質樹脂溶液の電解質樹脂濃度、多孔質構造体の構造等に応じて適宜設定すればよい。例えば、1〜60分が好ましく、1〜10分でも充分量の被覆量が確保できる。   In the heating step, the heating time of the conductive porous structure is not particularly limited, and may be set as appropriate according to the electrolyte resin concentration of the electrolyte resin solution, the structure of the porous structure, and the like. For example, it is preferably 1 to 60 minutes, and a sufficient amount of coating can be secured even for 1 to 10 minutes.

[析出工程]
析出工程は、加熱工程後、超臨界状態の超臨界用溶媒を状態変化させ、電解質樹脂(被覆材)を導電性多孔質構造体(多孔質構造体)表面に析出させる工程である。
析出工程では、導電性多孔質構造体(多孔質構造体)の近傍において、超臨界流体中に溶解している電解質樹脂(被覆材)が、超臨界用溶媒の状態変化に伴う電解質樹脂(被覆材)の溶解性低下により析出し、導電性多孔質構造体(多孔質構造体)表面が電解質樹脂(被覆材)により被覆される。
[Precipitation process]
The deposition step is a step of changing the state of the supercritical solvent in the supercritical state after the heating step to deposit the electrolyte resin (coating material) on the surface of the conductive porous structure (porous structure).
In the deposition step, the electrolyte resin (coating material) dissolved in the supercritical fluid is in the vicinity of the conductive porous structure (porous structure), and the electrolyte resin (coating material) accompanying the change in the state of the supercritical solvent. And the surface of the conductive porous structure (porous structure) is covered with the electrolyte resin (coating material).

析出工程における超臨界用溶媒の状態変化は、超臨界状態から液体状態への移行であってもよいし、超臨界状態から気体状態への移行であってもよいし、超臨界状態から液体状態を経由する気体状態への移行であってもよいが、液体状態を経ることなく、超臨界状態から直接気体状態に移行させることが好ましい。液体状態を経由すると、その表面張力により、電解質樹脂の凝集や、CNT等の導電性多孔質構造体を構成する材料の凝集が発生し、均一な電解質樹脂の被覆や、導電性多孔質構造体の多孔質構造の維持が難しくなる恐れがあるためである。
導電性多孔質構造体近傍の超臨界状態の超臨界用溶媒を、超臨界状態から液体状態を経ずに気体状態に移行させる方法としては、例えば、導電性多孔質構造体の温度を臨界温度以上に保持したまま、導電性多孔質構造体環境の圧力を臨界圧力以下に低下させる方法が挙げられる。
具体的には、図1において、ヒーター4によりCNT基板を超臨界温度以上に加熱した状態で、圧力容器1の開放口8を開放することで、圧力容器内を大気開放する方法が挙げられる。これにより、図4の(3)のように、導電性多孔質構造体環境を、超臨界用溶媒の臨界温度以上且つ臨界圧力未満にすることができ、超臨界用溶媒を超臨界状態から、直接、気体状態に移行させることができる。圧力容器の大気開放により、雰囲気環境の圧力も臨界圧力以上から臨界圧力未満に低下し、液体状態の超臨界用溶媒も気体状態に移行する(図4(4)参照)。
The state change of the supercritical solvent in the precipitation process may be a transition from the supercritical state to the liquid state, a transition from the supercritical state to the gas state, or a liquid state from the supercritical state to the liquid state. However, it is preferable to shift directly from the supercritical state to the gas state without passing through the liquid state. When passing through the liquid state, the surface tension causes aggregation of the electrolyte resin and aggregation of the material constituting the conductive porous structure such as CNT, so that uniform coating of the electrolyte resin or conductive porous structure This is because it may be difficult to maintain the porous structure.
As a method for transferring the supercritical solvent in the supercritical state near the conductive porous structure from the supercritical state to the gas state without passing through the liquid state, for example, the temperature of the conductive porous structure is set to the critical temperature. There is a method of reducing the pressure of the conductive porous structure environment to a critical pressure or less while maintaining the above.
Specifically, in FIG. 1, there is a method in which the inside of the pressure vessel is opened to the atmosphere by opening the opening 8 of the pressure vessel 1 while the CNT substrate is heated to a supercritical temperature or higher by the heater 4. As a result, as shown in FIG. 4 (3), the conductive porous structure environment can be made higher than the critical temperature and lower than the critical pressure of the supercritical solvent. The gas state can be directly transferred. When the pressure vessel is opened to the atmosphere, the pressure of the atmospheric environment is reduced from the critical pressure to less than the critical pressure, and the supercritical solvent in the liquid state also shifts to the gas state (see FIG. 4 (4)).

析出工程において、超臨界用溶媒を状態変化させるための具体的な条件は特に限定されず、例えば、上記のように導電性多孔質構造体を臨界温度以上に保持したまま、圧力容器内を大気開放する場合、導電性多孔質構造体を加熱可能なヒーター温度を調整する等して、排気による導電性多孔質構造体の温度低下が生じないようにすることが好ましい。   In the precipitation step, the specific conditions for changing the state of the supercritical solvent are not particularly limited. For example, while maintaining the conductive porous structure at a critical temperature or higher as described above, the pressure vessel is evacuated to the atmosphere. In the case of opening, it is preferable to prevent the temperature of the conductive porous structure from decreasing due to exhaust, for example, by adjusting the temperature of a heater capable of heating the conductive porous structure.

本発明の電極触媒層の製造方法により提供される電極触媒層は、従来の電極触媒層と比較して、導電性多孔質構造の表面が多くの電解質樹脂で被覆されているため、優れたイオン伝導性を発現することができる。本発明により提供される電極触媒層の用途は特に限定されず、幅広い種類及び分野において用いることができるが、特に燃料電池用電極触媒層として好適である。   The electrode catalyst layer provided by the method for producing an electrode catalyst layer according to the present invention is superior to conventional electrode catalyst layers because the surface of the conductive porous structure is coated with many electrolyte resins, so that excellent ion Conductivity can be developed. The application of the electrode catalyst layer provided by the present invention is not particularly limited and can be used in a wide variety of fields and fields, but is particularly suitable as a fuel cell electrode catalyst layer.

以下に、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples.

(実施例1)
まず、表面に白金を担持したカーボンナノチューブが略垂直配向したSi製の基板(以下、CNT基板という)を準備し、底面からの高さ260mm、容積500cmの圧力容器内に収容した。CNT基板には、CNT基板を加熱するヒーターを取り付けた。また、圧力容器には、圧力容器内の雰囲気環境温度を制御するための温度調節機を取り付けた。
尚、圧力容器内のCNT基板の配置は、図2に示すように、CNT基板3の上端部の位置が、圧力容器1の底面から70mmとなるように配置した。この位置は、後述するCHFガスによる加圧時の電解質樹脂溶液6の液面(80cm)以下となる位置であり、圧力及び雰囲気環境温度、並びに圧力容器の容積から算出した。算出結果を図3に示す。
Example 1
First, a Si substrate (hereinafter referred to as a CNT substrate) in which carbon nanotubes carrying platinum on the surface are substantially vertically aligned was prepared and accommodated in a pressure vessel having a height of 260 mm from the bottom surface and a volume of 500 cm 3 . A heater for heating the CNT substrate was attached to the CNT substrate. The pressure vessel was equipped with a temperature controller for controlling the ambient temperature in the pressure vessel.
In addition, the arrangement | positioning of the CNT board | substrate in a pressure vessel was arrange | positioned so that the position of the upper end part of the CNT board | substrate 3 might become 70 mm from the bottom face of the pressure vessel 1, as shown in FIG. This position is a position that is equal to or lower than the liquid surface (80 cm) of the electrolyte resin solution 6 when pressurized with CHF 3 gas, which will be described later, and was calculated from the pressure, the ambient environment temperature, and the volume of the pressure vessel. The calculation results are shown in FIG.

圧力容器内には、電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)を5ml投入した。上記上端部が圧力容器1の底面から70mmとなる位置に配置されたCNT基板は、その下端部が電解質樹脂溶解溶液とは接触していなかった。   In the pressure vessel, 5 ml of an electrolyte resin solution (solution in which the electrolyte resin was diluted to 3 wt% with ethanol) was charged. The lower end portion of the CNT substrate disposed at a position where the upper end portion is 70 mm from the bottom surface of the pressure vessel 1 was not in contact with the electrolyte resin solution.

続いて、図4に示すように、圧力容器内の雰囲気環境温度及びCNT基板温度を20℃に保持しながら、CHFガスを導入して圧力容器内を加圧し、CHFを液化した(図4の(1))。CHFガスによる加圧は、電解質樹脂溶解溶液と液化したCHFとの混合溶液である電解質樹脂溶液の液面が、圧力容器の底面から80mmの位置となるよう、圧力容器内の圧力が9MPaになるまで行った。圧力容器内の雰囲気環境温度及びCNT基板温度を20℃に保持しながら、加圧状態を30分保持し、CNT基板を、電解質樹脂溶液中に浸漬して暴露させた。
尚、圧力容器内の圧力は、図3に示すように、10MPaにしても、CNT基板全面を電解質樹脂溶液の液面下におくことができるが、電解質樹脂溶液の体積がより少なく、電解質樹脂溶液中の電解質樹脂濃度を高くすることができることから、9MPaとした。
Subsequently, as shown in FIG. 4, while maintaining the atmospheric environment temperature and the CNT substrate temperature in the pressure vessel at 20 ° C., CHF 3 gas was introduced to pressurize the pressure vessel to liquefy CHF 3 (FIG. 4). 4 (1)). Pressurization with CHF 3 gas is performed so that the pressure in the pressure vessel is 9 MPa so that the liquid level of the electrolyte resin solution, which is a mixed solution of the electrolyte resin solution and liquefied CHF 3 , is positioned 80 mm from the bottom of the pressure vessel. I went until. While maintaining the atmospheric environment temperature in the pressure vessel and the CNT substrate temperature at 20 ° C., the pressurized state was maintained for 30 minutes, and the CNT substrate was immersed in the electrolyte resin solution to be exposed.
In addition, even if the pressure in the pressure vessel is 10 MPa as shown in FIG. 3, the entire surface of the CNT substrate can be placed below the surface of the electrolyte resin solution, but the volume of the electrolyte resin solution is smaller, and the electrolyte resin Since the electrolyte resin concentration in the solution can be increased, the pressure was set to 9 MPa.

続いて、圧力容器内の雰囲気環境温度を20℃に保持しながら、CNT基板をヒーターで60℃まで昇温させ、CNT基板近傍の液化CHFを超臨界状態にした(図4中の(2))。圧力容器内の雰囲気環境温度が20℃且つCNT基板温度が60℃の状態を30分保持した。 Subsequently, while maintaining the atmospheric temperature in the pressure vessel at 20 ° C., the CNT substrate was heated to 60 ° C. with a heater, and the liquefied CHF 3 in the vicinity of the CNT substrate was brought into a supercritical state ((2 in FIG. 4). )). The state where the atmospheric environment temperature in the pressure vessel was 20 ° C. and the CNT substrate temperature was 60 ° C. was maintained for 30 minutes.

その後、圧力容器内の雰囲気温度を20℃、CNT基板温度を60℃に保持しながら、圧力容器を大気に開放して圧力容器内圧力を大気圧に戻した(図4中の(3)及び(4))。これにより、基板近傍の超臨界状態のCHFを、液体状態を経ずに気体状態にし、超臨界状態のCHFに溶解していた電解質樹脂をCNT表面に析出させた。このとき、雰囲気環境の液体状態のCHFも気体状態になった。 Thereafter, while maintaining the atmospheric temperature in the pressure vessel at 20 ° C. and the CNT substrate temperature at 60 ° C., the pressure vessel was opened to the atmosphere to return the pressure vessel pressure to atmospheric pressure ((3) and FIG. 4). (4)). As a result, the supercritical CHF 3 in the vicinity of the substrate was changed to a gas state without passing through the liquid state, and the electrolyte resin dissolved in the supercritical CHF 3 was deposited on the CNT surface. At this time, CHF 3 in a liquid state of the atmospheric environment was also in a gas state.

CNT基板の単位面積当たりの電解質樹脂の目付量を下記式に基づいて算出したところ、0.78mg/cmだった。結果を表1に示す。尚、下記式において、析出前のCNT基板重量とは、圧力容器内に設置するまえのCNT基板の重量である。 When the basis weight of the electrolyte resin per unit area of the CNT substrate was calculated based on the following formula, it was 0.78 mg / cm 2 . The results are shown in Table 1. In the following formula, the weight of the CNT substrate before deposition is the weight of the CNT substrate before being installed in the pressure vessel.

Figure 2013103151
Figure 2013103151

(比較例1)
まず、実施例1と同様にして、CNT基板を圧力容器内に収容すると共に、CNT基板にヒーターを取り付け、圧力容器に温度調節機を取り付けた。
また、圧力容器内に電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)を5ml投入した。
(Comparative Example 1)
First, in the same manner as in Example 1, the CNT substrate was accommodated in the pressure vessel, a heater was attached to the CNT substrate, and a temperature controller was attached to the pressure vessel.
Further, 5 ml of an electrolyte resin solution (solution obtained by diluting the electrolyte resin with ethanol to 3 wt%) was put into the pressure vessel.

続いて、図5に示すように、圧力容器内の雰囲気温度及びCNT基板温度を30℃に保持しながら、CHFガスを導入して圧力容器内を9MPaまで加圧し、CHFを超臨界状態にした。圧力容器内の雰囲気環境温度及びCNT基板温度を30℃に保持しながら、加圧状態を30分保持した。 Subsequently, as shown in FIG. 5, while maintaining the atmospheric temperature and the CNT substrate temperature in the pressure vessel at 30 ° C., CHF 3 gas is introduced to pressurize the pressure vessel to 9 MPa, and CHF 3 is in a supercritical state. I made it. While maintaining the atmospheric environment temperature and the CNT substrate temperature in the pressure vessel at 30 ° C., the pressurized state was maintained for 30 minutes.

続いて、図5に示すように、圧力容器内の雰囲気環境温度を30℃に保持しながら、CNT基板をヒーターで60℃まで昇温させた。圧力容器内の雰囲気環境温度が30℃且つCNT基板温度が60℃の状態を30分保持した。   Subsequently, as shown in FIG. 5, the CNT substrate was heated to 60 ° C. with a heater while maintaining the ambient temperature in the pressure vessel at 30 ° C. The state where the atmospheric environment temperature in the pressure vessel was 30 ° C. and the CNT substrate temperature was 60 ° C. was maintained for 30 minutes.

その後、図5に示すように、圧力容器内の雰囲気環境温度を30℃、CNT基板温度を60℃に保持しながら、圧力容器を大気に開放して圧力容器内圧力を大気圧に戻した。   Thereafter, as shown in FIG. 5, while maintaining the atmospheric environment temperature in the pressure vessel at 30 ° C. and the CNT substrate temperature at 60 ° C., the pressure vessel was opened to the atmosphere to return the pressure vessel pressure to atmospheric pressure.

実施例1と同様にして、CNT基板の単位面積当たりの電解質樹脂の目付量を算出したところ、0.03mg/cmだった。結果を表1に示す。 When the basis weight of the electrolyte resin per unit area of the CNT substrate was calculated in the same manner as in Example 1, it was 0.03 mg / cm 2 . The results are shown in Table 1.

(比較例2)
まず、実施例1と同様にして、CNT基板を圧力容器内に収容すると共に、CNT基板にヒーターを取り付け、圧力容器に温度調節機を取り付けた。
また、圧力容器内に電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)を5ml投入した。
(Comparative Example 2)
First, in the same manner as in Example 1, the CNT substrate was accommodated in the pressure vessel, a heater was attached to the CNT substrate, and a temperature controller was attached to the pressure vessel.
Further, 5 ml of an electrolyte resin solution (solution obtained by diluting the electrolyte resin with ethanol to 3 wt%) was put into the pressure vessel.

続いて、図6に示すように、圧力容器内の雰囲気温度及びCNT基板温度を20℃に保持しながら、CHFガスを導入して圧力容器内を9MPaまで加圧し、CHFを液化した。圧力容器内の雰囲気環境温度及びCNT基板温度を20℃に保持しながら、加圧状態を30分保持した。 Subsequently, as shown in FIG. 6, while maintaining the atmospheric temperature and the CNT substrate temperature in the pressure vessel at 20 ° C., CHF 3 gas was introduced and the pressure vessel was pressurized to 9 MPa to liquefy CHF 3 . While maintaining the atmospheric environment temperature and the CNT substrate temperature in the pressure vessel at 20 ° C., the pressurized state was maintained for 30 minutes.

続いて、図6に示すように、圧力容器内の雰囲気環境温度及びCNT基板の温度を20℃に保持しながら、圧力容器を大気に開放して圧力容器内圧力を大気圧に戻した。   Subsequently, as shown in FIG. 6, while maintaining the atmospheric environment temperature in the pressure vessel and the temperature of the CNT substrate at 20 ° C., the pressure vessel was opened to the atmosphere to return the pressure vessel pressure to atmospheric pressure.

実施例1と同様にして、CNT基板の単位面積当たりの電解質樹脂の目付量を算出したところ、0.02mg/cmだった。結果を表1に示す。 When the basis weight of the electrolyte resin per unit area of the CNT substrate was calculated in the same manner as in Example 1, it was 0.02 mg / cm 2 . The results are shown in Table 1.

(比較例3)
まず、実施例1と同様にして、CNT基板を圧力容器内に収容すると共に、CNT基板にヒーターを取り付け、圧力容器に温度調節機を取り付けた。
また、圧力容器内に電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)を5ml投入した。
(Comparative Example 3)
First, in the same manner as in Example 1, the CNT substrate was accommodated in the pressure vessel, a heater was attached to the CNT substrate, and a temperature controller was attached to the pressure vessel.
Further, 5 ml of an electrolyte resin solution (solution obtained by diluting the electrolyte resin with ethanol to 3 wt%) was put into the pressure vessel.

続いて、図7に示すように、圧力容器内の雰囲気環境温度及びCNT基板温度を30℃に保持しながら、CHFガスを導入して圧力容器内を9MPaまで加圧し、CHFを超臨界状態にした。圧力容器内の雰囲気環境温度及びCNT基板温度を30℃に保持しながら、加圧状態を30分保持した。 Subsequently, as shown in FIG. 7, while maintaining the atmospheric environment temperature and the CNT substrate temperature in the pressure vessel at 30 ° C., CHF 3 gas is introduced to pressurize the pressure vessel to 9 MPa, and CHF 3 is supercritical. It was in a state. While maintaining the atmospheric environment temperature and the CNT substrate temperature in the pressure vessel at 30 ° C., the pressurized state was maintained for 30 minutes.

続いて、図7に示すように、圧力容器内の雰囲気環境温度及びCNT基板の温度を30℃に保持しながら、圧力容器を大気に開放して圧力容器内圧力を大気圧に戻した。   Subsequently, as shown in FIG. 7, the atmospheric pressure in the pressure vessel and the temperature of the CNT substrate were maintained at 30 ° C., and the pressure vessel was opened to the atmosphere to return the pressure vessel pressure to atmospheric pressure.

実施例1と同様にして、CNT基板の単位面積当たりの電解質樹脂の目付量を算出したところ、0.02mg/cmだった。結果を表1に示す。 When the basis weight of the electrolyte resin per unit area of the CNT substrate was calculated in the same manner as in Example 1, it was 0.02 mg / cm 2 . The results are shown in Table 1.

Figure 2013103151
Figure 2013103151

表1に示すように、実施例1の電解質樹脂目付け量は0.78mg/cmであり、比較例1〜3と比べて、約25〜40倍程度の電解質樹脂でCNTを被覆することができた。 As shown in Table 1, the basis weight of the electrolyte resin of Example 1 is 0.78 mg / cm 2. Compared with Comparative Examples 1 to 3, the CNT can be covered with about 25 to 40 times the electrolyte resin. did it.

[電解質樹脂溶解溶液の量と電解質樹脂の目付け量]
(実施例2)
実施例1において、圧力容器内に投入する電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)の量を5mlから2.5mlに変更したこと以外は、同様にして、CNTに電解質樹脂を被覆させ、電解質樹脂の目付け量を算出した。結果を図8に示す。尚、図8には、実施例1の結果も併せて示す。
[Amount of electrolyte resin solution and amount of electrolyte resin]
(Example 2)
In Example 1, the electrolyte resin was dissolved in CNT in the same manner except that the amount of the electrolyte resin solution (solution obtained by diluting the electrolyte resin with ethanol to 3 wt%) charged into the pressure vessel was changed from 5 ml to 2.5 ml. The resin was coated, and the basis weight of the electrolyte resin was calculated. The results are shown in FIG. In addition, in FIG. 8, the result of Example 1 is also shown collectively.

(比較例4)
比較例1において、圧力容器内に投入する電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)の量を5mlから、2.5ml、15ml、及び20mlに変更したこと以外は、同様にして、CNTに電解質樹脂を被覆させ、電解質樹脂の目付け量を算出した。結果を図8に示す。尚、図8には、比較例1の結果も示した。
も示した。
(Comparative Example 4)
In Comparative Example 1, the same except that the amount of the electrolyte resin solution (solution obtained by diluting the electrolyte resin to 3 wt% with ethanol) was changed from 5 ml to 2.5 ml, 15 ml, and 20 ml in the pressure vessel. Thus, the electrolyte resin was coated on the CNTs, and the basis weight of the electrolyte resin was calculated. The results are shown in FIG. FIG. 8 also shows the result of Comparative Example 1.
Also shown.

図8に示めされているように、本発明によれば、使用する電解質樹脂量を大幅に低減可能であることが確認された。具体的には、電解質樹脂の目付け量約0.8g/cmを確保するために使用する電解質樹脂量は、比較例の4分の1以下とすることが可能である。 As shown in FIG. 8, according to the present invention, it was confirmed that the amount of electrolyte resin to be used can be greatly reduced. Specifically, the amount of the electrolyte resin used for securing the basis weight of the electrolyte resin of about 0.8 g / cm 2 can be set to a quarter or less of the comparative example.

[超臨界処理時間と電解質樹脂の目付け量] [Supercritical processing time and electrolyte resin weight]

(実施例3)
実施例1において、9MPaにて、圧力容器内の雰囲気環境温度を20℃、CNT基板温度を60℃に保持する時間(超臨界流体処理時間)を30分から5分に変更したこと以外は、同様にして、CNTに電解質樹脂を被覆させ、電解質樹脂の目付け量を算出した。結果を図9に示す。尚、図9には、実施例1の結果も併せて示す。
(Example 3)
In Example 1, it is the same except that the atmospheric environment temperature in the pressure vessel is 20 ° C. and the time for maintaining the CNT substrate temperature at 60 ° C. (supercritical fluid processing time) is changed from 30 minutes to 5 minutes at 9 MPa. Thus, the electrolyte resin was coated on the CNTs, and the basis weight of the electrolyte resin was calculated. The results are shown in FIG. In addition, in FIG. 9, the result of Example 1 is also shown collectively.

(比較例5)
比較例1において、9MPaにて、圧力容器内の雰囲気環境温度を30℃、CNT基板温度を60℃に保持する時間(超臨界流体処理時間)を30分から100分に変更したこと以外は、同様にして、CNTに電解質樹脂を被覆させ、電解質樹脂の目付量を算出した。結果を図9に示す。尚、図9には、比較例1の結果も併せて示す。
(Comparative Example 5)
The same as in Comparative Example 1, except that the atmospheric environment temperature in the pressure vessel was 30 ° C. and the time for maintaining the CNT substrate temperature at 60 ° C. (supercritical fluid processing time) was changed from 30 minutes to 100 minutes at 9 MPa. Thus, the CNT was coated with an electrolyte resin, and the basis weight of the electrolyte resin was calculated. The results are shown in FIG. In FIG. 9, the result of Comparative Example 1 is also shown.

図9に示されているように、本発明によれば、電解質樹脂の目付け量を著しく増加させることが可能であると共に、電解質樹脂を含む超臨界流体によるCNT基板の処理時間を大幅に短縮可能であることが確認された。   As shown in FIG. 9, according to the present invention, the weight of the electrolyte resin can be remarkably increased, and the processing time of the CNT substrate by the supercritical fluid containing the electrolyte resin can be greatly shortened. It was confirmed that.

(実施例4)
CHFガスの代わりにCOガス(COの臨界温度31℃、臨界圧力7.3MPa)を用い、以下のようにして、実施例1と同様のプロセスでCNTに電解質樹脂を被覆させた。
まず、実施例1と同様にして、CNT基板を圧力容器内に収容すると共に、CNT基板にヒーターを取り付け、圧力容器に温度調節機を取り付けた。また、圧力容器内に電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)を5ml投入した。
Example 4
Instead of CHF 3 gas, CO 2 gas (CO 2 critical temperature 31 ° C., critical pressure 7.3 MPa) was used, and CNT was coated with an electrolyte resin in the same process as in Example 1 as follows.
First, in the same manner as in Example 1, the CNT substrate was accommodated in the pressure vessel, a heater was attached to the CNT substrate, and a temperature controller was attached to the pressure vessel. Further, 5 ml of an electrolyte resin solution (solution obtained by diluting the electrolyte resin with ethanol to 3 wt%) was put into the pressure vessel.

続いて、圧力容器内の雰囲気環境温度及びCNT基板温度を25℃に保持しながら、COガスを導入して圧力容器内を加圧し、COを液化した。COガスによる加圧は、電解質樹脂溶解溶液と液化したCOとの混合溶液である電解質樹脂溶液の液面が、圧力容器の底面から80mmの位置となるよう、圧力容器内の圧力が9MPaになるまで行った。圧力容器内の雰囲気環境温度及びCNT基板温度を25℃に保持しながら、加圧状態を30分保持し、CNT基板を、電解質樹脂溶液中に浸漬して暴露させた。 Subsequently, while maintaining the atmospheric environment temperature and the CNT substrate temperature in the pressure vessel at 25 ° C., CO 2 gas was introduced to pressurize the pressure vessel to liquefy CO 2 . The pressurization with CO 2 gas is such that the pressure in the pressure vessel is 9 MPa so that the liquid level of the electrolyte resin solution, which is a mixed solution of the electrolyte resin solution and liquefied CO 2 , is 80 mm from the bottom of the pressure vessel. I went until. While maintaining the atmospheric environment temperature in the pressure vessel and the CNT substrate temperature at 25 ° C., the pressurized state was maintained for 30 minutes, and the CNT substrate was immersed in the electrolyte resin solution to be exposed.

続いて、圧力容器内の雰囲気環境温度を25℃に保持しながら、CNT基板をヒーターで60℃まで昇温させ、CNT基板近傍の液化COを超臨界状態にした。圧力容器内の雰囲気環境温度が25℃且つCNT基板温度が60℃の状態を30分保持した。 Subsequently, while maintaining the ambient temperature in the pressure vessel at 25 ° C., the CNT substrate was heated to 60 ° C. with a heater, and the liquefied CO 2 near the CNT substrate was brought into a supercritical state. The state where the atmospheric environment temperature in the pressure vessel was 25 ° C. and the CNT substrate temperature was 60 ° C. was maintained for 30 minutes.

その後、圧力容器内の雰囲気温度を25℃、CNT基板温度を60℃に保持しながら、圧力容器を大気に開放して圧力容器内圧力を大気圧に戻した。これにより、基板近傍の超臨界状態のCOを液体状態を経ずに気体状態にし、超臨界状態のCOに溶解していた電解質樹脂をCNT表面に析出させた。また、雰囲気環境の液体状態のCOも気体状態になった。
実施例1と同様にして、電解質樹脂の目付け量を算出した。結果を図10に示す。
Thereafter, while maintaining the atmospheric temperature in the pressure vessel at 25 ° C. and the CNT substrate temperature at 60 ° C., the pressure vessel was opened to the atmosphere to return the pressure vessel pressure to atmospheric pressure. Thus, the supercritical CO 2 in the vicinity of the substrate was changed to a gas state without passing through the liquid state, and the electrolyte resin dissolved in the supercritical CO 2 was deposited on the CNT surface. In addition, the liquid CO 2 in the atmospheric environment was also in a gaseous state.
In the same manner as in Example 1, the basis weight of the electrolyte resin was calculated. The results are shown in FIG.

(比較例6)
CHFガスの代わりにCOガスを用い、以下のようにして、比較例1と同様のプロセスでCNTに電解質樹脂を被覆させた。
まず、実施例1と同様にして、CNT基板を圧力容器内に収容すると共に、CNT基板にヒーターを取り付け、圧力容器に温度調節機を取り付けた。また、圧力容器内に電解質樹脂溶解溶液(電解質樹脂をエタノールで3wt%に希釈した溶液)を5ml投入した。
続いて、圧力容器内の雰囲気温度及びCNT基板温度を35℃に保持しながら、COガスを導入して圧力容器内を10MPaまで加圧し、COを超臨界状態にした。圧力容器内の雰囲気環境温度及びCNT基板温度を35℃に保持しながら、加圧状態を30分保持した。
続いて、圧力容器内の雰囲気環境温度を35℃に保持しながら、CNT基板をヒーターで60℃まで昇温させた。圧力容器内の雰囲気環境温度が35℃且つCNT基板温度が60℃の状態を30分保持した。
その後、圧力容器内の雰囲気環境温度を35℃、CNT基板温度を60℃に保持しながら、圧力容器を大気に開放して圧力容器内圧力を大気圧に戻した。
実施例1と同様にして、電解質樹脂の目付量を算出した。結果を図10に示す。尚、図10には、比較例1の結果も併せて示した。
(Comparative Example 6)
Using CO 2 gas instead of CHF 3 gas, CNT was coated with an electrolyte resin by the same process as in Comparative Example 1 as follows.
First, in the same manner as in Example 1, the CNT substrate was accommodated in the pressure vessel, a heater was attached to the CNT substrate, and a temperature controller was attached to the pressure vessel. Further, 5 ml of an electrolyte resin solution (solution obtained by diluting the electrolyte resin with ethanol to 3 wt%) was put into the pressure vessel.
Subsequently, while maintaining the atmospheric temperature in the pressure vessel and the CNT substrate temperature at 35 ° C., CO 2 gas was introduced to pressurize the pressure vessel to 10 MPa to bring CO 2 into a supercritical state. While maintaining the atmospheric environment temperature and the CNT substrate temperature in the pressure vessel at 35 ° C., the pressurized state was maintained for 30 minutes.
Subsequently, the CNT substrate was heated to 60 ° C. with a heater while maintaining the ambient temperature in the pressure vessel at 35 ° C. The state where the ambient temperature in the pressure vessel was 35 ° C. and the CNT substrate temperature was 60 ° C. was maintained for 30 minutes.
Thereafter, while maintaining the atmospheric environment temperature in the pressure vessel at 35 ° C. and the CNT substrate temperature at 60 ° C., the pressure vessel was opened to the atmosphere to return the pressure vessel pressure to atmospheric pressure.
In the same manner as in Example 1, the basis weight of the electrolyte resin was calculated. The results are shown in FIG. In FIG. 10, the results of Comparative Example 1 are also shown.

図10に示されているように、実施例4は、同様にCOガスを用いた比較例6と比較して、10倍以上の電解質樹脂をCNTに被覆させることができた。さらには、COよりも誘電率が高く、電解質樹脂の溶解性が高い、CHFを用いた比較例1と比較しても、実施例4は、電解質樹脂の目付け量が大幅に高かった。これは、本発明の製造方法においては、電解質樹脂の溶解性が低いCOを用いても、比較例1や比較例6と比べて、CNT基板近傍の電解質樹脂濃度を高くすることができるためである。 As shown in FIG. 10, in Example 4, similarly to Comparative Example 6 using CO 2 gas, 10 times or more electrolyte resin could be coated on CNT. Furthermore, even when compared with Comparative Example 1 using CHF 3, which has a higher dielectric constant than CO 2 and higher solubility of the electrolyte resin, Example 4 has a significantly higher amount of electrolyte resin. This is because, in the manufacturing method of the present invention, the concentration of the electrolyte resin in the vicinity of the CNT substrate can be increased as compared with Comparative Example 1 and Comparative Example 6 even if CO 2 having low solubility of the electrolyte resin is used. It is.

1…圧力容器
2…電解質樹脂溶解溶液
3…CNT基板
4…ヒーター
5…温度調節機
6…電解質樹脂溶液
7…供給弁
8…排出弁
DESCRIPTION OF SYMBOLS 1 ... Pressure vessel 2 ... Electrolyte resin solution 3 ... CNT board | substrate 4 ... Heater 5 ... Temperature controller 6 ... Electrolyte resin solution 7 ... Supply valve 8 ... Discharge valve

Claims (12)

圧力容器内で、超臨界流体を用い、多孔質構造体の表面を被覆材で被覆する方法であって、
前記被覆材を溶解した被覆材溶解溶液及び前記多孔質構造体を前記圧力容器内に配置する準備工程と、
前記被覆材、及び、臨界温度未満且つ臨界圧力以上の液体状態の溶媒、を含む被覆材溶液に、前記多孔質構造体を曝露する工程と、
前記曝露工程後、前記多孔質構造体を、前記被覆材溶液に曝露したまま、前記溶媒の臨界温度以上に加熱する工程と、
前記加熱工程後、超臨界状態の前記溶媒を状態変化させ、前記被覆材を前記多孔質構造体表面に析出させる工程と、
を有することを特徴とする、被覆方法。
A method of coating a surface of a porous structure with a coating material using a supercritical fluid in a pressure vessel,
A preparatory step of disposing the covering material dissolving solution in which the covering material is dissolved and the porous structure in the pressure vessel;
Exposing the porous structure to a coating solution containing the coating material and a solvent in a liquid state below the critical temperature and above the critical pressure;
After the exposing step, heating the porous structure to a temperature equal to or higher than the critical temperature of the solvent while being exposed to the coating material solution;
After the heating step, changing the state of the solvent in a supercritical state, and depositing the coating material on the surface of the porous structure,
A coating method characterized by comprising:
前記曝露工程において、前記圧力容器内を、前記溶媒の臨界温度未満の温度条件下、気体状態の前記溶媒の導入により該溶媒の臨界圧力以上に加圧し、該溶媒を液体状態に移行させ、前記被覆材と液体状態の前記溶媒とを含む前記被覆材溶液の液面を上昇させることで、前記多孔質構造体を該被覆材溶液に曝露し、
前記準備工程において、前記多孔質構造体の配置位置は、前記曝露工程における前記加圧により、該多孔質構造体の下端部以下に位置する前記被覆材溶液の液面が該多孔質構造体の上端部以上に位置する位置である、請求項1に記載の被覆方法。
In the exposure step, the pressure vessel is pressurized to a pressure higher than the critical pressure of the solvent by introducing the solvent in a gaseous state under a temperature condition lower than the critical temperature of the solvent, and the solvent is transferred to a liquid state, Raising the liquid level of the coating material solution containing the coating material and the liquid solvent, exposing the porous structure to the coating material solution,
In the preparation step, the position of the porous structure is determined by the pressure in the exposure step so that the liquid surface of the coating material solution positioned below the lower end of the porous structure has the porous structure. The coating method according to claim 1, wherein the coating method is a position located above the upper end.
前記加熱工程において、前記圧力容器内の雰囲気環境温度を、前記溶媒の臨界温度未満にする、請求項1又は2に記載の被覆方法。   The coating method according to claim 1 or 2, wherein, in the heating step, an atmospheric environment temperature in the pressure vessel is made lower than a critical temperature of the solvent. 前記析出工程において、前記溶媒を、超臨界状態から、液体状態を経由せずに、気体状態に移行させる、請求項1乃至3のいずれかに記載の被覆方法。   The coating method according to any one of claims 1 to 3, wherein, in the precipitation step, the solvent is transferred from a supercritical state to a gas state without passing through a liquid state. 圧力容器内で超臨界流体を用いて、触媒を担持した導電性多孔質構造体の表面に電解質樹脂を被覆させる、電極触媒層の製造方法であって、
前記電解質樹脂を溶解した電解質樹脂溶解溶液及び前記触媒を担持した導電性多孔質構造体を前記圧力容器内に配置する準備工程と、
前記電解質樹脂、及び、臨界温度未満且つ臨界圧力以上の液体状態の溶媒、を含む電解質樹脂溶液に、前記触媒を担持した導電性多孔質構造体を曝露する工程と、
前記曝露工程後、前記導電性多孔質構造体を、前記電解質樹脂溶液に曝露したまま、前記溶媒の臨界温度以上に加熱する工程と、
前記加熱工程後、超臨界状態の前記溶媒を状態変化させ、前記電解質樹脂を前記導電性多孔質構造体表面に析出させる工程と、
を有することを特徴とする、製造方法。
A method for producing an electrode catalyst layer, wherein a surface of a conductive porous structure carrying a catalyst is coated with an electrolyte resin using a supercritical fluid in a pressure vessel,
A preparatory step of disposing an electrolyte resin solution in which the electrolyte resin is dissolved and a conductive porous structure carrying the catalyst in the pressure vessel;
Exposing the conductive porous structure carrying the catalyst to an electrolyte resin solution containing the electrolyte resin and a solvent in a liquid state below a critical temperature and above a critical pressure;
After the exposing step, heating the conductive porous structure to a temperature equal to or higher than the critical temperature of the solvent while being exposed to the electrolyte resin solution;
After the heating step, the state of the solvent in a supercritical state is changed, and the electrolyte resin is deposited on the surface of the conductive porous structure.
The manufacturing method characterized by having.
前記曝露工程において、前記圧力容器内を、前記溶媒の臨界温度未満の温度条件下、気体状態の前記溶媒の導入により該溶媒の臨界圧力以上に加圧し、該溶媒を液体状態に移行させ、前記電解質樹脂と、液体状態の前記溶媒とを含む前記電解質溶液の液面を上昇させることで、前記導電性多孔質構造体を該電解質樹脂溶液に曝露し、
前記準備工程において、前記導電性多孔質構造体の配置位置は、前記曝露工程における前記加圧により、該導電性多孔質構造体の下端部以下に位置する前記電解質溶液の液面が該導電性多孔質構造体の上端部以上に位置する位置である、請求項5に記載の製造方法。
In the exposure step, the pressure vessel is pressurized to a pressure higher than the critical pressure of the solvent by introducing the solvent in a gaseous state under a temperature condition lower than the critical temperature of the solvent, and the solvent is transferred to a liquid state, By raising the liquid level of the electrolyte solution containing an electrolyte resin and the solvent in a liquid state, the conductive porous structure is exposed to the electrolyte resin solution,
In the preparation step, the conductive porous structure is disposed at a position where the liquid surface of the electrolyte solution positioned below the lower end of the conductive porous structure is electrically conductive by the pressurization in the exposure step. The manufacturing method of Claim 5 which is a position located above the upper end part of a porous structure.
前記加熱工程において、前記圧力容器内の雰囲気環境温度を、前記溶媒の臨界温度未満にする、請求項5又は6に記載の製造方法。   The manufacturing method of Claim 5 or 6 which makes the atmospheric environmental temperature in the said pressure vessel lower than the critical temperature of the said solvent in the said heating process. 前記析出工程において、前記溶媒を、超臨界状態から、液体状態を経由せずに、気体状態に移行させる、請求項5乃至7のいずれかに記載の製造方法。   The manufacturing method according to claim 5, wherein, in the precipitation step, the solvent is shifted from a supercritical state to a gas state without passing through a liquid state. 前記準備工程において、前記電解質樹脂を溶解した電解質溶解溶液を、前記圧力容器内に配置する、請求項5乃至8のいずれかに記載の製造方法。   The manufacturing method according to claim 5, wherein in the preparation step, an electrolyte solution in which the electrolyte resin is dissolved is disposed in the pressure vessel. 前記導電性多孔質構造体は、基材上に担持されており、
前記加熱工程において、該基材を前記溶媒の臨界温度以上に加熱することにより、前記導電性多孔質構造体を前記溶媒の臨界温度以上に加熱する、請求項5乃至9のいずれかに記載の製造方法。
The conductive porous structure is supported on a substrate,
The heating process according to any one of claims 5 to 9, wherein in the heating step, the conductive porous structure is heated to a temperature equal to or higher than a critical temperature of the solvent by heating the base material to a temperature equal to or higher than a critical temperature of the solvent. Production method.
前記導電性多孔質構造体は、前記基材上に略垂直配向されたカーボンナノチューブを含む、請求項10に記載の製造方法。   The manufacturing method according to claim 10, wherein the conductive porous structure includes carbon nanotubes substantially vertically aligned on the base material. 前記電極触媒層が、燃料電池用電極触媒層である、請求項5乃至11のいずれかに記載の製造方法。   The manufacturing method according to claim 5, wherein the electrode catalyst layer is a fuel cell electrode catalyst layer.
JP2011247134A 2011-11-11 2011-11-11 Method for coating surface of porous structure with coating material, and method for producing electrode catalyst layer Pending JP2013103151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247134A JP2013103151A (en) 2011-11-11 2011-11-11 Method for coating surface of porous structure with coating material, and method for producing electrode catalyst layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247134A JP2013103151A (en) 2011-11-11 2011-11-11 Method for coating surface of porous structure with coating material, and method for producing electrode catalyst layer

Publications (1)

Publication Number Publication Date
JP2013103151A true JP2013103151A (en) 2013-05-30

Family

ID=48623142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247134A Pending JP2013103151A (en) 2011-11-11 2011-11-11 Method for coating surface of porous structure with coating material, and method for producing electrode catalyst layer

Country Status (1)

Country Link
JP (1) JP2013103151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923677B1 (en) * 2016-03-09 2016-05-24 長瀬産業株式会社 Coating liquid composition, coating film forming method, coating liquid composition manufacturing method, coating liquid composition manufacturing apparatus, and carbon dioxide-containing coating liquid composition preparation composition
JP5972435B1 (en) * 2015-07-29 2016-08-17 長瀬産業株式会社 Coating liquid composition, method for producing coating liquid composition, and composition for preparing coating liquid composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972435B1 (en) * 2015-07-29 2016-08-17 長瀬産業株式会社 Coating liquid composition, method for producing coating liquid composition, and composition for preparing coating liquid composition
WO2017017860A1 (en) * 2015-07-29 2017-02-02 長瀬産業株式会社 Coating liquid composition, coating liquid composition manufacturing method, and composition for preparing coating liquid composition
JP2017031251A (en) * 2015-07-29 2017-02-09 長瀬産業株式会社 Coating liquid composition, coating liquid composition manufacturing method, and composition for preparing coating liquid composition
JP5923677B1 (en) * 2016-03-09 2016-05-24 長瀬産業株式会社 Coating liquid composition, coating film forming method, coating liquid composition manufacturing method, coating liquid composition manufacturing apparatus, and carbon dioxide-containing coating liquid composition preparation composition
WO2017154222A1 (en) * 2016-03-09 2017-09-14 長瀬産業株式会社 Coating fluid composition, method for forming coating film, process for producing coating fluid composition, device for producing coating fluid composition, and composition for preparing coating fluid composition containing carbon dioxide
JP2017160324A (en) * 2016-03-09 2017-09-14 長瀬産業株式会社 Coating liquid composition, method for forming coating film, method for producing coating liquid composition, apparatus for producing coating liquid composition, and composition for preparing carbon dioxide-containing coating liquid composition
US10696853B2 (en) 2016-03-09 2020-06-30 Nagase & Co., Ltd. Coating fluid composition, method for forming coating film, process for producing coating fluid composition, device for producing coating fluid composition, and composition for preparing coating fluid composition containing carbon dioxide

Similar Documents

Publication Publication Date Title
CA2925618C (en) Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
Zainoodin et al. High power direct methanol fuel cell with a porous carbon nanofiber anode layer
Saha et al. Fabrication of catalyst-coated membrane by modified decal transfer technique
CA2910372C (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
KR102323487B1 (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
CA2910374C (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
CA2910242C (en) Catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst
Kim et al. The effect of binder content on the performance of a high temperature polymer electrolyte membrane fuel cell produced with reactive spray deposition technology
Daş et al. Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts
JP6927870B2 (en) Electrode catalyst for fuel cells
JP5458503B2 (en) Method for producing electrolyte membrane-electrode assembly
JP2008059841A (en) Fuel cell and manufacturing method of fuel cell
JP5093287B2 (en) Membrane electrode assembly and fuel cell
KR102387596B1 (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
JP6025230B2 (en) Inverse opal structure metal catalyst electrode for fuel cell and manufacturing method thereof
Koh et al. Fabrication of highly effective self-humidifying membrane electrode assembly for proton exchange membrane fuel cells via electrostatic spray deposition
Zhang et al. High performance and durability of polymer-coated Pt electrocatalyst supported on oxidized multi-walled in high-temperature polymer electrolyte fuel cells
KR101180039B1 (en) Method For Manufacturing Electrode For Fuel Cell, Manufacturing Device for the Same, and Fuel Cell Comprising Electrode Manufactured by the Same
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
Ning et al. Nanosized proton conductor array with high specific surface area improves fuel cell performance at low Pt loading
KR100766960B1 (en) Electrode for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
JP2013103151A (en) Method for coating surface of porous structure with coating material, and method for producing electrode catalyst layer
JP2007184140A (en) Method of manufacturing electrolyte membrane-electrode assembly
JP2011129417A (en) Electrode catalyst and fuel cell using the same
JP2011146337A (en) Membrane electrode assembly and method for manufacturing the same