JP2013101931A - Negative electrode active material, manufacturing method for the same, electrode including the active material, and lithium battery including the electrode - Google Patents

Negative electrode active material, manufacturing method for the same, electrode including the active material, and lithium battery including the electrode Download PDF

Info

Publication number
JP2013101931A
JP2013101931A JP2012244511A JP2012244511A JP2013101931A JP 2013101931 A JP2013101931 A JP 2013101931A JP 2012244511 A JP2012244511 A JP 2012244511A JP 2012244511 A JP2012244511 A JP 2012244511A JP 2013101931 A JP2013101931 A JP 2013101931A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
carbon
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012244511A
Other languages
Japanese (ja)
Other versions
JP6125202B2 (en
Inventor
Dok-Hyon Kim
▲徳▼ ▲眩▼ 金
Jae-Myung Kim
載 明 金
Gyu-Nan Zhu
圭 楠 朱
Tae Sik Kim
泰 植 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2013101931A publication Critical patent/JP2013101931A/en
Application granted granted Critical
Publication of JP6125202B2 publication Critical patent/JP6125202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material, a manufacturing method for the same, an electrode including the active material, and a lithium battery including the electrode.SOLUTION: A negative electrode active material includes: a composite body in which silicon particles are dispersed in matrix including silicon oxide, silicon carbide, and carbon; and a carbon coating layer formed on a surface of the composite body. In the X-ray diffraction spectrum of the negative electrode active material, the intensity ratio of the SiC peak to the Si peak is 1 or more. A manufacturing method for the active material, a negative electrode including the negative electrode active material, and a lithium battery including the electrode are also provided.

Description

本発明は、負極活物質、その製造方法、該活物質を含む電極及び該電極を採用したリチウム電池に関する。   The present invention relates to a negative electrode active material, a method for producing the same, an electrode containing the active material, and a lithium battery employing the electrode.

携帯用電子機器、通信機器などが発展するにつれ、高エネルギー密度のリチウム電池開発への必要性が高まっている。   As portable electronic devices and communication devices develop, the need for the development of high energy density lithium batteries is increasing.

前記リチウム電池の負極活物質として、バナジウム、シリコン、ビスマス、ジルコニウムなどの金属酸化物が利用される。   A metal oxide such as vanadium, silicon, bismuth, or zirconium is used as the negative electrode active material of the lithium battery.

前記負極活物質としてシリコン酸化物を使う場合、高容量の電極を得ることができるが、寿命特性及び伝導度特性において、満足すべきレベルに逹していない。   When silicon oxide is used as the negative electrode active material, a high-capacity electrode can be obtained, but the lifetime characteristics and conductivity characteristics are not satisfied.

前記シリコン酸化物の表面に、炭素コーティング層を形成する方法が提案されたが、この方法によって得られた負極活物質の伝導度及び寿命特性が十分ではなく、改善の余地が多い。   A method of forming a carbon coating layer on the surface of the silicon oxide has been proposed, but the conductivity and life characteristics of the negative electrode active material obtained by this method are not sufficient, and there is much room for improvement.

本発明の一側面は、容量及び寿命特性にすぐれる負極活物質を提供することを目的とする。   An object of one aspect of the present invention is to provide a negative electrode active material having excellent capacity and life characteristics.

本発明の他の側面は、前記負極活物質の製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for producing the negative electrode active material.

本発明のさらに他の側面は、前記負極活物質を採用した負極を提供することを目的とする。   Still another aspect of the present invention aims to provide a negative electrode employing the negative electrode active material.

本発明のさらに他の側面は、前記電極を採用したリチウム電池を提供することを目的とする。   Still another aspect of the present invention aims to provide a lithium battery employing the electrode.

本発明の一側面によって、シリコン酸化物、炭化シリコン及び炭素を含むマトリックス内にシリコン粒子が分散した複合体と、前記複合体の表面上に形成された炭素コーティング層と、を含み、X線回折スペクトルで、Siピークに対するSiCのピークの強度比が1以上である負極活物質が提供される。   According to one aspect of the present invention, an X-ray diffraction comprising a composite in which silicon particles are dispersed in a matrix containing silicon oxide, silicon carbide, and carbon, and a carbon coating layer formed on a surface of the composite. In the spectrum, a negative electrode active material is provided in which the intensity ratio of SiC peak to Si peak is 1 or more.

本発明の他の側面によって、サンプル注入部がある炭素ロッドに、シリコン及びシリコン酸化物を供給してアーク放電用負極を製造する段階と、前記アーク放電用負極及びアーク放電用正極をアーク放電させ、シリコン酸化物、炭化シリコン及び炭素を含むマトリックス内にシリコンが分散した複合体と、前記複合体の表面上に形成された炭素コーティング層とを含み、Siピークに対するSiCのピークの強度比が1以上である負極活物質の製造方法が提供される。   According to another aspect of the present invention, a step of supplying an arc discharge negative electrode by supplying silicon and silicon oxide to a carbon rod having a sample injection portion, and arc discharge of the arc discharge negative electrode and the arc discharge positive electrode. , A composite in which silicon is dispersed in a matrix containing silicon oxide, silicon carbide and carbon, and a carbon coating layer formed on the surface of the composite, the intensity ratio of SiC peak to Si peak being 1 The manufacturing method of the negative electrode active material which is the above is provided.

本発明のさらに他の側面によって、負極活物質を含む負極が提供される。   According to still another aspect of the present invention, a negative electrode including a negative electrode active material is provided.

本発明のさらに他の側面によって、負極活物質を含む負極を含むリチウム電池が提供される。   According to still another aspect of the present invention, a lithium battery including a negative electrode including a negative electrode active material is provided.

前記リチウム電池の充放電を実施した後、負極活物質のX線回折測定で、Siピークに対するSiCのピークの強度比が1ないし10である。   After charge / discharge of the lithium battery, the intensity ratio of the SiC peak to the Si peak is 1 to 10 in the X-ray diffraction measurement of the negative electrode active material.

本発明による負極活物質を含むことによって、放電容量及び寿命特性が向上する。   By including the negative electrode active material according to the present invention, the discharge capacity and life characteristics are improved.

一具現例による負極活物質の構造を概略的に示した図面である。1 is a schematic view illustrating a structure of a negative electrode active material according to an embodiment. 一具現例による炭素ロッドの構造を示した側面図である。It is the side view which showed the structure of the carbon rod by one implementation example. 一具現例による炭素ロッドの構造を示した正面図である。It is the front view which showed the structure of the carbon rod by one implementation example. 一具現例によるアーク放電装置を概略的に示した図面である。1 is a schematic view illustrating an arc discharge apparatus according to an embodiment. 一具現例によるリチウム電池の概路図である。1 is a schematic diagram of a lithium battery according to an embodiment. 実施例1ないし4による負極活物質のX線回折分析スペクトルである。3 is an X-ray diffraction analysis spectrum of a negative electrode active material according to Examples 1 to 4. FIG. 実施例1ないし4による負極活物質のX線蛍光分析スペクトルである。4 is an X-ray fluorescence analysis spectrum of a negative electrode active material according to Examples 1 to 4. 実施例1ないし4による負極活物質のX線蛍光分析スペクトルである。4 is an X-ray fluorescence analysis spectrum of a negative electrode active material according to Examples 1 to 4. 実施例1による負極活物質の電子走査顕微鏡写真を示したイメージである。2 is an image showing an electron scanning micrograph of a negative electrode active material according to Example 1. FIG. 実施例4による負極活物質の電子走査顕微鏡写真を示したイメージである。6 is an image showing an electron scanning micrograph of a negative electrode active material according to Example 4. 実施例4による負極活物質のEDS(electron dispersion spectroscope)分析グラフである。7 is an EDS (electron dispersion spectroscope) analysis graph of a negative electrode active material according to Example 4. 製作例1ないし4によるリチウム電池の充放電実験結果を示したグラフである。6 is a graph showing the results of charging and discharging experiments on lithium batteries according to Production Examples 1 to 4. 製作例1によるリチウム電池の50回充放電サイクルを繰り返した後の負極活物質のX線回折分析スペクトルである。2 is an X-ray diffraction analysis spectrum of a negative electrode active material after 50 charge / discharge cycles of a lithium battery according to Production Example 1 were repeated.

以下、例示的な一具現例による負極活物質、その製造方法及び前記負極活物質を含む電極、前記電極を採用したリチウム電池について詳細に説明する。   Hereinafter, a negative active material according to an exemplary embodiment, a manufacturing method thereof, an electrode including the negative active material, and a lithium battery employing the electrode will be described in detail.

一具現例による負極活物質は、シリコン酸化物、炭化シリコン及び炭素を含むマトリックスにシリコン粒子が分散した複合体と、前記複合体の表面に形成された炭素コーティング層と、を具備する。   A negative active material according to an embodiment includes a composite in which silicon particles are dispersed in a matrix including silicon oxide, silicon carbide, and carbon, and a carbon coating layer formed on a surface of the composite.

図1は、本発明の一具現例による負極活物質の構造を概略的に示したものであり、これを参照しつつ、負極活物質の構造について具体的に説明する。   FIG. 1 schematically shows the structure of a negative electrode active material according to an embodiment of the present invention, and the structure of the negative electrode active material will be described in detail with reference to this.

負極活物質10は、炭化シリコン、シリコン酸化物及び炭素を含むマトリックス11、例えば、SiO(x=0.1〜1.2、y=0.01〜0.2)に、シリコン粒子12が分散した構造を有している複合体、そして前記複合体の表面に、炭素コーティング膜13が形成される。 The negative electrode active material 10 is obtained by adding silicon particles to a matrix 11 containing silicon carbide, silicon oxide, and carbon, for example, SiO x C y (x = 0.1 to 1.2, y = 0.01 to 0.2). A carbon coating film 13 is formed on the composite having a structure in which 12 is dispersed and on the surface of the composite.

前記負極活物質の複合体は、シリコン粒子12が、炭化シリコン、シリコン酸化物及び炭素を含むマトリックス11、例えば、SiO(x=0.1〜1.2、y=0.01〜0.2)マトリックスに等しく分散された堅固な構造を有する。かような構造を有することにより、充放電反復時に、リチウムを大量に吸蔵、放出するとき、大きい体積変化が伴い、これによって粒子の破壊が起き、リチウムの吸蔵によって、導電性の微小なシリコン及びシリコン酸化物が体積膨脹することによって、導電性が低下し、リチウムイオンの電極内での移動が妨害されることをあらかじめ予防することができる。また、SiCの存在により、酸化リチウム(LiO)による初期非可逆容量を減らすことができ、導電性が改善される。 In the composite of the negative electrode active material, the silicon particles 12 have a matrix 11 containing silicon carbide, silicon oxide, and carbon, for example, SiO x C y (x = 0.1 to 1.2, y = 0.01 to 0.2) Has a rigid structure equally distributed in the matrix. By having such a structure, when a large amount of lithium is occluded and released during repeated charging and discharging, a large volume change occurs, thereby causing particle destruction, and by occlusion of lithium, conductive fine silicon and By expanding the volume of silicon oxide, it is possible to prevent in advance that the conductivity is lowered and the movement of lithium ions in the electrode is hindered. In addition, the presence of SiC can reduce the initial irreversible capacity due to lithium oxide (Li 2 O), improving the conductivity.

前記複合体表面には、炭素コーティング層を具備し、導電性が付与される。   The composite surface has a carbon coating layer and is imparted with conductivity.

前記負極活物質で、シリコン粒子は、リチウムを吸蔵及び放出させるとき、大きい膨脹及び収縮を示す。かような変化による応力を緩和させるために、シリコン粒子を、炭化シリコン、シリコン酸化物及び炭素を含むマトリックス内に均一に分散させる。   In the negative electrode active material, the silicon particles exhibit large expansion and contraction when inserting and extracting lithium. In order to relieve stress due to such changes, silicon particles are uniformly dispersed in a matrix comprising silicon carbide, silicon oxide and carbon.

前記マトリックス内に含有された炭化シリコンは、その含量がシリコン粒子100重量部を基準にして、50ないし90重量部である。   The silicon carbide contained in the matrix has a content of 50 to 90 parts by weight based on 100 parts by weight of silicon particles.

前記炭化シリコンは、非晶質または結晶質であり、かような炭化シリコンは、シリコン酸化物及び炭素とともにマトリックスを形成し、シリコン粒子を取り囲んだり、あるいは保有する方式で、均一にシリコン活性粒子を分散させる。   The silicon carbide is amorphous or crystalline, and such silicon carbide forms a matrix together with silicon oxide and carbon, and surrounds or holds silicon particles so that silicon active particles are uniformly distributed. Disperse.

前記炭化シリコンの含量が前記範囲であるとき、導電性にすぐれる負極活物質を得ることができる。   When the silicon carbide content is in the above range, a negative electrode active material having excellent conductivity can be obtained.

前記シリコン酸化物の含量は、前記シリコン粒子100重量部を基準にして、10ないし30重量部である。   The content of the silicon oxide is 10 to 30 parts by weight based on 100 parts by weight of the silicon particles.

前記シリコン酸化物の含量が前記範囲であるとき、伝導度及び寿命の低下なしに、容量特性にすぐれる負極活物質を得ることができる。   When the content of the silicon oxide is within the above range, a negative electrode active material having excellent capacity characteristics can be obtained without a decrease in conductivity and life.

前記複合体で炭素の総含量は、シリコン粒子100重量部を基準にして、0.5ないし50重量部である。ここで、炭素の含量が前記範囲であるとき、伝導度の低下なしに、容量特性にすぐれる負極活物質を得ることができる。   The total carbon content of the composite is 0.5 to 50 parts by weight based on 100 parts by weight of silicon particles. Here, when the carbon content is within the above range, a negative electrode active material having excellent capacity characteristics can be obtained without a decrease in conductivity.

前記シリコン粒子の平均粒径は、1ないし300nmであり、例えば、2ないし50nmである。   The average particle diameter of the silicon particles is 1 to 300 nm, for example, 2 to 50 nm.

前記シリコン粒子の平均粒径が前記範囲であるとき、負極活物質の充放電容量の低下なしに、サイクル効率にすぐれる電池を製造することができる。   When the average particle size of the silicon particles is within the above range, a battery having excellent cycle efficiency can be produced without a decrease in charge / discharge capacity of the negative electrode active material.

前記シリコン粒子の平均粒径は、X線回折分析(XRD)を利用して測定する。   The average particle diameter of the silicon particles is measured using X-ray diffraction analysis (XRD).

Si結晶粒サイズは、Si主ピーク(main peak)の半値幅として、下記数式1のシェーラー式(Scherrer’s formula)を利用して決める。
The Si crystal grain size is determined using the Scherrer's formula of the following formula 1 as the half width of the Si main peak.

前記複合体で、シリコン酸化物は、非晶質または結晶質であり、例えば、シリコン酸化物は、炭化シリコンと共にシリコンと結合され、シリコンを取り囲んだり、あるいは保有する方式で、均一にマトリックスに分散される。   In the composite, silicon oxide is amorphous or crystalline. For example, silicon oxide is bonded to silicon together with silicon carbide, and is uniformly dispersed in the matrix by surrounding or holding silicon. Is done.

前記複合体では炭素として、黒鉛、硬質炭素、軟質炭素、無定形炭素及びアセチレンブラックのうち選択された一つ以上を使う。例えば、前記炭素では、カーボンブラックを使う。   In the composite, at least one selected from graphite, hard carbon, soft carbon, amorphous carbon, and acetylene black is used as carbon. For example, carbon is used for the carbon.

前記炭素コーティング層で炭素の含量は、複合体100重量部を基準にして、0.1ないし20重量部、例えば、1ないし5重量部である。炭素の含量が前記範囲であるとき、サイクル特性及び充放電容量が低下することなしに、導電性にすぐれる負極活物質を得ることができる。   The carbon content of the carbon coating layer is 0.1 to 20 parts by weight, for example 1 to 5 parts by weight, based on 100 parts by weight of the composite. When the carbon content is within the above range, a negative electrode active material having excellent conductivity can be obtained without lowering cycle characteristics and charge / discharge capacity.

前記負極活物質でSiCを含むマトリックスに、シリコン粒子の分散した構造というのは、X線回折スペクトル(X−ray diffraction spectrum)で得られるピークで確認される。   A structure in which silicon particles are dispersed in a matrix containing SiC in the negative electrode active material is confirmed by a peak obtained by an X-ray diffraction spectrum.

例えば、前記負極活物質は、X線回折スペクトルで、SiCに対するピークが、ブラッグ2θ角34ないし37゜、例えば、35.5ないし36.5゜で示される。   For example, the negative electrode active material has an X-ray diffraction spectrum with a peak with respect to SiC at a Bragg 2θ angle of 34 to 37 °, for example, 35.5 to 36.5 °.

前記SiCに係わるピークは、半値幅が0.1ないし1、例えば、0.3ないし0.5である。このように、半値幅が前記範囲である場合には、SiCが結晶質であり、優秀な容量及び導電性を有するということが分かる。   The peak related to SiC has a half width of 0.1 to 1, for example, 0.3 to 0.5. Thus, when the half width is in the above range, it can be seen that SiC is crystalline and has excellent capacity and conductivity.

前記X線回折スペクトルで、Si(111)面に係わるピークは、ブラッグ2θ角27ないし29゜、例えば、27.5ないし28.5゜で現れる。   In the X-ray diffraction spectrum, a peak related to the Si (111) plane appears at a Bragg 2θ angle of 27 to 29 °, for example, 27.5 to 28.5 °.

前記負極活物質のX線回折スペクトルで、Siピークに対するSiCのピークの強度比が1以上、例えば、1ないし10、具体的には、1.8ないし5.5である。   In the X-ray diffraction spectrum of the negative electrode active material, the intensity ratio of the SiC peak to the Si peak is 1 or more, for example, 1 to 10, specifically 1.8 to 5.5.

前記Siピークに対するSiCのピークの強度比が前記範囲であるとき、容量特性にすぐれる負極活物質を得ることができる。   When the intensity ratio of the SiC peak to the Si peak is in the above range, a negative electrode active material having excellent capacity characteristics can be obtained.

前記負極活物質は、約2270mAh/g以上の単位重量当たり放電容量、及び1130mAh/cc以上の単位体積当たり放電容量を提供することができる。そして電気伝導度は、50S/m以下、例えば、20ないし40S/mである。ここで、前記電気伝導度は、2cm径の円筒状ホルダに負極活物質を充填し、圧力を4kN〜20kNで加え、4プローブで抵抗を測定して伝導度を求める。   The negative electrode active material may provide a discharge capacity per unit weight of about 2270 mAh / g and a discharge capacity per unit volume of 1130 mAh / cc. The electric conductivity is 50 S / m or less, for example, 20 to 40 S / m. Here, the electrical conductivity is obtained by filling a 2 cm diameter cylindrical holder with a negative electrode active material, applying a pressure of 4 kN to 20 kN, and measuring resistance with four probes.

前記負極活物質は、X線蛍光分析を介して、各成分のピーク強度から、シリコン、酸素及び炭素の総含量を求めることができる。   The negative electrode active material can determine the total content of silicon, oxygen, and carbon from the peak intensity of each component through X-ray fluorescence analysis.

前記負極活物質のX線蛍光分析装置(X-ray fluorescence analyzer)を利用した分析を実施し、シリコン、酸素及び炭素の含量を把握することができる。   Analysis of the negative electrode active material using an X-ray fluorescence analyzer can be performed to determine the contents of silicon, oxygen and carbon.

前記負極活物質を利用すれば、容量及び寿命特性にすぐれ、初期効率が改善された電極及びリチウム電池を製作することができる。   By using the negative electrode active material, it is possible to manufacture an electrode and a lithium battery that have excellent capacity and life characteristics and improved initial efficiency.

以下、前記負極活物質の製造方法について説明する。   Hereinafter, a method for producing the negative electrode active material will be described.

チャンバ圧力が2×10−1torrまでポンピングした後、HeまたはArを充填する。 After the chamber pressure is pumped to 2 × 10 −1 torr, it is filled with He or Ar.

約300A、40Vほどの電流及び電圧を電極に印加し、負極・正極間のアーク放電を起こしてパウダを合成する。   A current and voltage of about 300 A and 40 V are applied to the electrode, and arc discharge is generated between the negative electrode and the positive electrode to synthesize powder.

まず、図2Aに図示されているように、アーク放電用炭素ロッド(carbon rod)20に、サンプル注入部21を形成した後、このサンプル注入部21に、シリコン粒子及びシリコン酸化物を供給し、アーク放電用負極を製造する。   First, as shown in FIG. 2A, after forming a sample injection portion 21 in the carbon rod 20 for arc discharge, silicon particles and silicon oxide are supplied to the sample injection portion 21; A negative electrode for arc discharge is manufactured.

前記シリコン粒子及びシリコン酸化物をサンプル注入部21に供給する方式は、特別に制限されるわけではない。例えば、炭素ロッドのサンプル注入部に、シリコン酸化物及びシリコン粒子を順次に付加したり、あるいはシリコン酸化物とシリコン粒子とを混合した後、この混合物を同時に付加するということも可能である。   The method of supplying the silicon particles and silicon oxide to the sample injection unit 21 is not particularly limited. For example, it is possible to sequentially add silicon oxide and silicon particles to the sample injection portion of the carbon rod, or after mixing silicon oxide and silicon particles, this mixture may be added simultaneously.

一具現例によれば、前記サンプル注入部21には、炭素ロッドに、シリコン粒子及びシリコン酸化物を供給する以前に、炭素系物質をさらに供給したりする。この炭素系物質をサンプル注入部に供給する場合には、図2Aに図示されているように、炭素系物質を炭素ロッドのサンプル注入部に先に付加する過程を経る。このように、炭素系物質を炭素ロッドのサンプル注入部に先に付加してこそ、複合体表面に炭素コーティング層が形成される。   According to an embodiment, the sample injection unit 21 may be further supplied with a carbon-based material before supplying silicon particles and silicon oxide to the carbon rod. When supplying the carbon-based material to the sample injection unit, as shown in FIG. 2A, a process of adding the carbon-based material to the sample injection unit of the carbon rod first is performed. Thus, the carbon coating layer is formed on the composite surface only by adding the carbon-based material to the sample injection portion of the carbon rod.

ここで、シリコン酸化物及びシリコン粒子を順次に付加したり、あるいはシリコン酸化物とシリコン粒子との混合物を同時に付加する方式に従ってもよい。   Here, a method of adding silicon oxide and silicon particles sequentially or a mixture of silicon oxide and silicon particles at the same time may be followed.

前記炭素系物質としては、カーボンブラック、炭素ナノチューブ(CNT)などを使う。   As the carbon-based material, carbon black, carbon nanotube (CNT), or the like is used.

図2Bは、図2Aのアーク放電用炭素ロッドを上端から見た図面を示したものであり、サンプル注入部21の直径は、15ないし30mm、例えば、約22mmであり、炭素ロッドの直径は、20ないし35mm、例えば、約25mmである。   FIG. 2B is a view of the arc discharge carbon rod of FIG. 2A as viewed from the upper end. The diameter of the sample injection portion 21 is 15 to 30 mm, for example, about 22 mm, and the diameter of the carbon rod is 20 to 35 mm, for example about 25 mm.

前記炭素ロッド20の長さは、150ないし500mm、例えば、約300mmであり、サンプル注入部の高さa(図2A)は、150ないし300mm、例えば、約200mmである。   The length of the carbon rod 20 is 150 to 500 mm, for example, about 300 mm, and the height a (FIG. 2A) of the sample injection portion is 150 to 300 mm, for example, about 200 mm.

炭素ロッド20の長さ並びに直径、及びサンプル注入部21の直径並びに高さが前記範囲であるとき、放電容量、伝導度特性にすぐれる負極活物質を得ることができる。   When the length and diameter of the carbon rod 20 and the diameter and height of the sample injection portion 21 are within the above ranges, a negative electrode active material having excellent discharge capacity and conductivity characteristics can be obtained.

前記炭素ロッド20は、例えば、伝導性にすぐれる黒鉛ロッド(graphite rod)を使う。このように、黒鉛ロッドを使えば、炭素ロッド20のサンプル注入部21に炭素系物質を充填しなくても、本発明の一具現例による負極活物質を得ることができる。   As the carbon rod 20, for example, a graphite rod having excellent conductivity is used. As described above, when the graphite rod is used, the negative electrode active material according to an embodiment of the present invention can be obtained without filling the sample injection portion 21 of the carbon rod 20 with the carbon-based material.

図3は、本発明の一具現例によるアルゴン放電装置を概略的に示したのである。図3を参照し、炭素ロッド31を、アーク放電用負極32としてアーク放電器に装着した後、これをアーク放電用正極33と定位置にセッティングする。   FIG. 3 schematically illustrates an argon discharge apparatus according to an embodiment of the present invention. Referring to FIG. 3, after the carbon rod 31 is attached to the arc discharger as the arc discharge negative electrode 32, it is set at a fixed position with the arc discharge positive electrode 33.

アーク放電用正極としては、Mo、Cu、Taなどからなる電極を使う。   As the positive electrode for arc discharge, an electrode made of Mo, Cu, Ta or the like is used.

次に、前記アーク放電用負極32とアーク放電用正極33との間に一定距離を維持させ、アーク放電を実施し、シリコン酸化物、炭化シリコン及び炭素を含むマトリックス内に、シリコンが分散した複合体と、前記複合体の表面上に形成された炭素コーティング層とを含む負極活物質を得る。   Next, a constant distance is maintained between the arc discharge negative electrode 32 and the arc discharge positive electrode 33, arc discharge is performed, and a composite in which silicon is dispersed in a matrix containing silicon oxide, silicon carbide, and carbon. A negative electrode active material comprising a body and a carbon coating layer formed on the surface of the composite is obtained.

前記アーク放電時の電流は、200ないし400A、例えば、300Aの電流、20ないし50Vの電圧、例えば、約40Vの直流電圧である。アーク放電が、前記範囲の電流及び電圧条件で遂行されれば、金属粒子が非常に高温のアークプラズマによって、前記正極から放出され、チャンバ上側の捕集器(図示せず)ですぐ蒸発されて蒸着される。このとき、炭素ロッドから炭素粒子も共に放出され、ナノサイズの炭素粒子も蒸着される。前記正極33の表面にたまった金属、炭素粒子、炭化シリコンは、捕集器(図示せず)で収集されて負極活物質として使われる。   The current during the arc discharge is a current of 200 to 400A, for example, 300A, a voltage of 20 to 50V, for example, a DC voltage of about 40V. If arc discharge is performed at the current and voltage conditions in the above range, the metal particles are released from the positive electrode by a very hot arc plasma and immediately evaporated in a collector (not shown) on the upper side of the chamber. Vapor deposited. At this time, carbon particles are also released from the carbon rod, and nano-sized carbon particles are also deposited. Metal, carbon particles, and silicon carbide accumulated on the surface of the positive electrode 33 are collected by a collector (not shown) and used as a negative electrode active material.

前述の製造方法を利用すれば、複合体形成過程と、複合体表面への炭素コーティング層の形成過程とを同時に遂行することができるので、製造工程が非常に容易であって単純化される。   If the above-described manufacturing method is used, the composite forming process and the carbon coating layer forming process on the composite surface can be performed at the same time, so that the manufacturing process is very easy and simplified.

前記負極活物質は、前述の電極材料以外に、他の一般的な負極活物質を追加して含んでもよい。前記一般的な負極活物質は、当該技術分野で、リチウム電池の負極活物質として使われるものであるならば、いずれも可能である。例えば、前記一般的な負極活物質は、リチウム金属、リチウムと合金可能な金属、遷移金属酸化物、非遷移金属酸化物及び炭素系材料からなる群から選択された一つ以上を含んでもよい。   The negative electrode active material may include other general negative electrode active materials in addition to the electrode materials described above. The general negative electrode active material may be any material as long as it is used in the art as a negative electrode active material for a lithium battery. For example, the general negative electrode active material may include one or more selected from the group consisting of lithium metal, metal that can be alloyed with lithium, transition metal oxide, non-transition metal oxide, and carbon-based material.

例えば、前記リチウムと合金可能な金属は、Si、Sn、Al、Ge、Pb、Bi、Sb、Si−Y合金(前記Yは、アルカリ金属、アルカリ土類金属、13族元素、14族元素、遷移金属、希土類元素、またはそれらの組み合わせ元素であり、Siではない)、Sn−Y合金(前記Yは、アルカリ金属、アルカリ土類金属、13族元素、14族元素、遷移金属、希土類元素、またはそれらの組み合わせ元素であり、Snではない)などであってもよい。前記Si−Y合金及びSn−Y合金の元素Yとしては、Mg、Ca、Sr、Ba、Ra、Sc、Y、Ti、Zr、Hf、Rf、V、Nb、Ta、Db、Cr、Mo、W、Sg、Tc、Re、Bh、Fe、Pb、Ru、Os、Hs、Rh、Ir、Pd、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、Sn、In、Ti、Ge、P、As、Sb、Bi、S、Se、Te、Poまたはそれらの化合物を使う。   For example, the metal that can be alloyed with lithium is Si, Sn, Al, Ge, Pb, Bi, Sb, Si—Y alloy (where Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, Transition metal, rare earth element, or a combination thereof, not Si), Sn-Y alloy (wherein Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth element, Or a combination element thereof, not Sn). As the element Y of the Si-Y alloy and the Sn-Y alloy, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po or compounds thereof are used.

例えば、前記遷移金属酸化物は、リチウムチタン酸化物、バナジウム酸化物、リチウムバナジウム酸化物などであってもよい。   For example, the transition metal oxide may be lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like.

例えば、前記非遷移金属酸化物は、SnO、SiO(0<x<2)などであってもよい。 For example, the non-transition metal oxide may be SnO 2 , SiO x (0 <x <2) or the like.

前記炭素系材料としては、結晶質炭素、非晶質炭素、またはそれらの混合物であってもよい。前記結晶質炭素は、無定形、板状、鱗片状(flake)、球形またはファイバ型の天然黒鉛または人造黒鉛のような黒鉛であってもよく、前記非晶質炭素は、ソフト炭素(soft carbon:低温焼成炭素)またはハード炭素(hard carbon)、メゾ相ピッチ(mesophase pitch)炭化物、焼成されたコークスなどであってもよい。   The carbon-based material may be crystalline carbon, amorphous carbon, or a mixture thereof. The crystalline carbon may be amorphous, plate-like, flake, spherical or fiber-type graphite such as natural graphite or artificial graphite, and the amorphous carbon may be soft carbon. : Low temperature calcined carbon) or hard carbon, mesophase pitch carbide, calcined coke and the like.

例えば、前記負極は、次のように製造されもする。   For example, the negative electrode may be manufactured as follows.

前記負極活物質、導電剤、結合剤及び溶媒を混合して負極活物質組成物を製造し、これを銅集電体に直接コーティングして負極極板を製造することができる。代案としては、前記負極活物質組成物を別途の支持体上にキャスティングし、この支持体から剥離させた負極活物質フィルムを銅集電体にラミネーションさせて負極極板を製造することができる。   The negative electrode active material, a conductive agent, a binder and a solvent are mixed to produce a negative electrode active material composition, which is directly coated on a copper current collector to produce a negative electrode plate. As an alternative, the negative electrode active material composition can be cast on a separate support, and the negative electrode active material film peeled from the support can be laminated to a copper current collector to produce a negative electrode plate.

負極活物質組成物で、導電剤、結合剤及び溶媒は、正極の場合と同一のものを使うことができる。場合によっては、前記負極活物質組成物に可塑剤をさらに付加し、電極板内部に気孔を形成するということも可能である。   In the negative electrode active material composition, the same conductive agent, binder and solvent as in the case of the positive electrode can be used. In some cases, a plasticizer may be further added to the negative electrode active material composition to form pores inside the electrode plate.

前記負極活物質、導電剤、結合剤及び溶媒の含量は、リチウム電池で一般的に使うレベルである。リチウム電池の用途及び構成によって、前記導電剤、結合剤及び溶媒のうち一つ以上が省略されもする。   The contents of the negative electrode active material, the conductive agent, the binder, and the solvent are at levels generally used in lithium batteries. Depending on the use and configuration of the lithium battery, one or more of the conductive agent, the binder, and the solvent may be omitted.

また、前記負極は、リチウム電池以外に、スーパーキャパシタなど、他の電気化学電池(electrochemical cell)に使われるために、製造方法、電極組成、電極構造などが適切に変更されもする。   In addition to the lithium battery, the negative electrode is used in other electrochemical cells such as a supercapacitor, so that the manufacturing method, electrode composition, electrode structure, and the like are appropriately changed.

例えば、キャパシタ用電極は、伝導性基板上に金属構造体を配置し、前記金属構造体上に、前述の負極活物質組成物をコーティングして製造することができる。代案としては、前記伝導性基板上に、前述の負極活物質組成物を直接コーティングして製造することができる。   For example, the capacitor electrode can be manufactured by disposing a metal structure on a conductive substrate and coating the above-described negative electrode active material composition on the metal structure. As an alternative, the negative electrode active material composition can be directly coated on the conductive substrate.

正極活物質を含む正極は、下記方法によって製造される。   The positive electrode containing a positive electrode active material is manufactured by the following method.

正極活物質、導電剤、結合剤及び溶媒を混合し、正極活物質組成物を準備する。前記正極活物質組成物を集電体上に直接コーティング及び乾燥させ、正極活物質層が形成された正極を製造することができる。この代案としては、前記正極活物質組成物を別途の支持体上にキャスティングした後、この支持体から剥離して得たフィルムを、前記アルミニウム集電体上にラミネートし、正極活物質層が形成された正極極板を製造することができる。   A positive electrode active material, a conductive agent, a binder, and a solvent are mixed to prepare a positive electrode active material composition. The positive electrode active material composition can be directly coated on a current collector and dried to produce a positive electrode on which a positive electrode active material layer is formed. As an alternative, the positive electrode active material composition is cast on a separate support, and then the film obtained by peeling from the support is laminated on the aluminum current collector to form a positive electrode active material layer. The manufactured positive electrode plate can be manufactured.

また、前記正極活物質は、前述の正極活物質以外に、他の一般的な負極活物質を追加して含んでもよい。前記一般的な正極活物質としては、リチウム含有金属酸化物として、当業界で一般的に使われるものであるならば、制限なしにいずれも使われてもよい。例えば、コバルト、マンガン、ニッケル、及びそれらの組み合わせから選択される金属と、リチウムとの複合酸化物のうち1種以上のものを使うことができ、その具体的な例としては、Li1−b(前記式で、0.90≦a≦1.8、及び0≦b≦0.5である);Li1−b2−c(前記式で、0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05である);LiE2−b4−c(前記式で、0≦b≦0.5、0≦c≦0.05である);LiNi1−b−cCoα(前記式で、0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α≦2である);LiNi1−b−cCo2−αα(前記式で、0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2である);LiNi1−b−cCo2−α(前記式で、0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2である);LiNi1−b−cMnα(前記式で、0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α≦2である);LiNi1−b−cMn2−αα(前記式で、0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2である);LiNi1−b−cMn2−α(前記式で、0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2である);LiNi(前記式で、0.90≦a≦1.8、0≦b≦0.9、0≦c≦0.5、0.001≦d≦0.1である。);LiNiCoMnGeO(前記式で、0.90≦a≦1.8、0≦b≦0.9、0≦c≦0.5、0≦d≦0.5、0.001≦e≦0.1である。);LiNiG(前記式で、0.90≦a≦1.8、0.001≦b≦0.1である。);LiCoG(前記式で、0.90≦a≦1.8、0.001≦b≦0.1である。);LiMnG(前記式で、0.90≦a≦1.8、0.001≦b≦0.1である);LiMn(前記式で、0.
90≦a≦1.8、0.001≦b≦0.1である);QO;QS;LiQS;LiV;LiIO;LiNiVO;Li3−f(PO(0≦f≦2);Li3−fFe(PO(0≦f≦2);LiFePOのうちいずれか一つを挙げることができる。
In addition to the positive electrode active material described above, the positive electrode active material may additionally include other general negative electrode active materials. As the general positive electrode active material, any lithium-containing metal oxide may be used without limitation as long as it is generally used in the art. For example, one or more of complex oxides of lithium and a metal selected from cobalt, manganese, nickel, and combinations thereof can be used, and specific examples thereof include Li a A 1. -b B b D 2 (in the above formula, 0.90 ≦ a ≦ 1.8, and is 0 ≦ b ≦ 0.5); Li a E 1-b B b O 2-c D c ( formula 0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05); LiE 2-b B b O 4-c D c (where 0 ≦ b ≦ 0.5, 0 a ≦ c ≦ 0.05); in Li a Ni 1-b-c Co b B c D α ( formula, 0.90 ≦ a ≦ 1.8,0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α ≦ 2); Li a Ni 1- bc Co b B c O 2−α F α (in the above formula, 0.90 ≦ a ≦ 1.8, ≦ b ≦ 0.5,0 ≦ c ≦ 0.05,0 <α < a 2); Li a Ni 1- b-c Co b B c O 2-α F 2 ( in the formula, 0.90 in Li a Ni 1-b-c Mn b B c D α ( the formula; ≦ a ≦ 1.8,0 ≦ b ≦ 0.5,0 ≦ c ≦ 0.05,0 <α < a 2) 0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α ≦ 2); Li a Ni 1- bc Mn b B c O 2 -.alpha. F alpha (in the formula, 0.90 ≦ a ≦ 1.8,0 ≦ b ≦ 0.5,0 ≦ c ≦ 0.05,0 <α < a 2); Li a Ni 1- b -C Mn b B c O 2 -α F 2 (in the above formula, 0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α <2. ); Li a Ni b E c G d O 2 ( in the above formula, 0.90 ≦ a ≦ 1.8,0 ≦ b ≦ 0. , 0 is ≦ c ≦ 0.5,0.001 ≦ d ≦ 0.1 );. In Li a Ni b Co c Mn d GeO 2 ( Formula, 0.90 ≦ a ≦ 1.8,0 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.5, 0 ≦ d ≦ 0.5, 0.001 ≦ e ≦ 0.1); Li a NiG b O 2 (in the above formula, 0.90 ≦ a ≦ 1.8, 0.001 ≦ b ≦ 0.1); Li a CoG b O 2 (in the above formula, 0.90 ≦ a ≦ 1.8, 0.001 ≦ b ≦ 0. 1 a it is);. in Li a MnG b O 2 (wherein, is 0.90 ≦ a ≦ 1.8,0.001 ≦ b ≦ 0.1); Li a Mn 2 G b O 4 ( wherein Where 0.
90 ≦ a ≦ 1.8, 0.001 ≦ b ≦ 0.1); QO 2 ; QS 2 ; LiQS 2 ; LiV 2 O 5 ; LiIO 2 ; LiNiVO 4 ; Li 3-f J 2 (PO 4 ) 3 (0 ≦ f ≦ 2); Li 3 -f Fe 2 (PO 4 ) 3 (0 ≦ f ≦ 2); LiFePO 4 .

前記化学式において、Aは、Ni、Co、Mnまたはそれらの組み合わせであり、Bは、Al、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、希土類元素、またはそれらの組み合わせであり、Dは、O、F、S、Pまたはそれらの組み合わせであり、Eは、Co、Mnまたはそれらの組み合わせであり、Fは、F、S、Pまたはそれらの組み合わせであり、Gは、Al、Cr、Mn、Fe、Mg、La、Ce、Sr、Vまたはそれらの組み合わせであり、Qは、Ti、Mo、Mnまたはそれらの組み合わせであり、Iは、Cr、V、Fe、Sc、Yまたはそれらの組み合わせであり、Jは、V、Cr、Mn、Co、Ni、Cuまたはそれらの組み合わせである。   In the chemical formula, A is Ni, Co, Mn, or a combination thereof, and B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element, or a combination thereof. D is O, F, S, P or a combination thereof; E is Co, Mn or a combination thereof; F is F, S, P or a combination thereof; G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V or combinations thereof; Q is Ti, Mo, Mn or combinations thereof; I is Cr, V, Fe, Sc, Y or These are combinations, and J is V, Cr, Mn, Co, Ni, Cu or a combination thereof.

例えば、LiCoO、LiMn2x(x=1または2)、LiNi1−xMnO2(0<x<1)、Ni1−x−yCoMn(0≦x≦0.5、0≦y≦0.5)、LiFePOなどである。 For example, LiCoO 2, LiMn x O 2x (x = 1 or 2), LiNi 1-x Mn x O2 x (0 <x <1), Ni 1-x-y Co x Mn y O 2 (0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5), LiFePO 4 and the like.

もちろん、前記化合物表面にコーティング層を有するものも使うことができ、または、前記化合物と、コーティング層を有する化合物とを混合して使うこともできる。このコーティング層は、コーティング元素の酸化物、水酸化物、オキシ水酸化物、オキシカーボネートまたはヒドロキシカーボネートを含んでもよい。それらコーティング層を成す化合物は、非晶質または結晶質であってもよい。前記コーティング層に含まれるコーティング元素としては、Mg、Al、Co、K、Na、Ca、Si、Ti、V、Sn、Ge、Ga、B、As、Zrまたはそれらの混合物を使うことができる。コーティング層形成工程は、前記化合物にかような元素を使い、正極活物質の物性に悪影響を与えない方法(例えば、スプレーコーティング、浸漬法など)でコーティングが可能であれば、いかなるコーティング方法を使っても差し支えなく、ここについては、当該分野に携わる当業者に周知であるので、詳しい説明は省略する。   Of course, those having a coating layer on the surface of the compound can be used, or the compound and a compound having a coating layer can be mixed and used. This coating layer may comprise an oxide, hydroxide, oxyhydroxide, oxycarbonate or hydroxycarbonate of the coating element. The compounds forming the coating layer may be amorphous or crystalline. As a coating element contained in the coating layer, Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr or a mixture thereof can be used. The coating layer forming step uses any coating method as long as it can be coated by a method that uses such an element in the compound and does not adversely affect the physical properties of the positive electrode active material (for example, spray coating, dipping method). However, since this is well known to those skilled in the art, a detailed description thereof will be omitted.

前記導電剤としては、炭素ブラック、黒鉛微粒子、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、炭素ファイバ、炭素ナノチューブのような炭素系材料;銅、ニッケル、アルミニウム、銀などの金属粉末または金属ファイバまたは金属チューブ;ポリフェニレン誘導体のような伝導性高分子などが使われてもよいが、それらに限定されるものではなく、当該技術分野で導電材として使われるものであるならば、いずれも可能である。   Examples of the conductive agent include carbon-based materials such as carbon black, graphite fine particles, natural graphite, artificial graphite, acetylene black, ketjen black, carbon fiber, and carbon nanotube; metal powder such as copper, nickel, aluminum, silver, or metal Fibers or metal tubes; conductive polymers such as polyphenylene derivatives may be used, but are not limited thereto, and any can be used as long as they are used as conductive materials in the technical field. It is.

結合剤としては、フッ化ビニリデン/ヘキサフルオロプロピレンコポリマー、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリテトラフルオロエチレン(PTFE)、前述の高分子の混合物、スチレンブタジエンゴム系ポリマーなどが使われ、溶媒としては、N−メチルピロリドン(NMP)、アセトン、水などが使われてもよいが、必ずしもそれらに限定されるものではなく、技術分野で使われるものであるならば、いずれも可能である。   As the binder, vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene (PTFE), a mixture of the aforementioned polymers, a styrene butadiene rubber-based polymer, and the like are used. As the solvent, N-methylpyrrolidone (NMP), acetone, water or the like may be used, but is not necessarily limited thereto, and any solvent can be used as long as it is used in the technical field. .

前記正極活物質、導電剤、結合剤及び溶媒の含量は、リチウム電池で一般的に使うレベルである。   The contents of the positive electrode active material, the conductive agent, the binder and the solvent are at levels generally used in lithium batteries.

さらに他の一具現例によるリチウム電池は、前述の負極を採用する。前記リチウム電池は、例えば、次のように製造される。   Further, a lithium battery according to another embodiment employs the above-described negative electrode. The lithium battery is manufactured as follows, for example.

まず、前述のように、一具現例による正極及び負極を製造する。   First, as described above, a positive electrode and a negative electrode according to an embodiment are manufactured.

次に、前記正極と負極との間に挿入されるセパレータを設ける。前記セパレータは、リチウム電池で一般的に使われるものであるならば、いずれも使用可能である。電解質のイオン移動に対して低抵抗であり、電解液含湿能にすぐれるのが使われる。例えば、ガラスファイバ、ポリエステル、テフロン(登録商標)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、またはそれらの化合物ののうち選択されたものであり、不織布形態または織布形態いずれでもよい。例えば、リチウムイオン電池には、ポリエチレン、ポリプロピレンなどのような巻き取り可能なセパレータが使われ、リチウムイオンポリマー電池には、有機電解液含浸能にすぐれるセパレータが使われてもよい。例えば、前記セパレータは、下記方法によって製造されもする。   Next, a separator inserted between the positive electrode and the negative electrode is provided. Any separator can be used as long as it is commonly used in lithium batteries. It has a low resistance to ion migration of the electrolyte, and it is used for its excellent ability to wet the electrolyte. For example, glass fiber, polyester, Teflon (registered trademark), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a compound thereof is selected, and may be in a nonwoven fabric form or a woven fabric form. For example, a rollable separator such as polyethylene or polypropylene may be used for a lithium ion battery, and a separator having an excellent ability to impregnate an organic electrolyte may be used for a lithium ion polymer battery. For example, the separator may be manufactured by the following method.

高分子樹脂、充填剤及び溶媒を混合し、セパレータ組成物を設ける。前記セパレータ組成物が電極上部に直接コーティング及び乾燥され、セパレータが形成される。または、前記セパレータ組成物を支持体上にキャスティング及び乾燥させた後、前記支持体から剥離させたセパレータフィルムが電極上部にラミネーションされてセパレータが形成されもする。   A polymer resin, a filler, and a solvent are mixed to provide a separator composition. The separator composition is directly coated on the electrode and dried to form a separator. Alternatively, after the separator composition is cast on a support and dried, the separator film peeled off from the support is laminated on the electrode to form a separator.

前記セパレータ製造に使われる高分子樹脂は、特別に限定されるものではなく、電極板の結合材に使われる物質がいずれも使われてもよい。例えば、フッ化ビニリデン/ヘキサフルオルプロピレンコポリマー、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル、ポリメチルメタクリレートまたはそれらの混合物などが使われてもよい。   The polymer resin used for manufacturing the separator is not particularly limited, and any material used for the binder of the electrode plate may be used. For example, vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate, or a mixture thereof may be used.

次に、電解質を設ける。   Next, an electrolyte is provided.

例えば、前記電解質は、有機電解液であってもよい。また、前記電解質は、固体であってもよい。例えば、ボロン酸化物、リチウム酸窒化物などであってもよいが、それらに限定されるものではなく、当該技術分野で、固体電解質として使われるものであるならば、いずれも使用可能である。前記固体電解質は、スパッタリングなどの方法で、前記負極上に形成されもする。   For example, the electrolyte may be an organic electrolyte. The electrolyte may be a solid. For example, it may be boron oxide, lithium oxynitride, etc., but is not limited to them, and any of them can be used as long as it is used as a solid electrolyte in the technical field. The solid electrolyte may be formed on the negative electrode by a method such as sputtering.

例えば、有機電解液を準備する。有機電解液は、有機溶媒にリチウム塩が溶解されて製造されもする。   For example, an organic electrolyte is prepared. The organic electrolyte may be manufactured by dissolving a lithium salt in an organic solvent.

前記有機溶媒は、当該技術分野で有機溶媒として使われるものであるならば、いずれも使われる。例えば、プロピレンカーボネート、エチレンカーボネート、フルオロエチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルスルホキシド、1,4−ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクルロロエタン、クロロベンゼン、ニトロベンゼン、ジエチレングリコール、ジメチルエーテルまたはそれらの混合物などである。   Any organic solvent may be used as long as it is used as an organic solvent in the technical field. For example, propylene carbonate, ethylene carbonate, fluoroethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, dibutyl carbonate, benzonitrile, acetonitrile, tetrahydrofuran 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, 1,4 -Dioxane, 1,2-dimethoxyethane, sulfolane, dichlorochloroethane, chlorobenzene, nitrobenzene, Ethylene glycol, dimethyl ether or mixtures thereof.

前記リチウム塩も、当該技術分野でリチウム塩として使われるものであるならば、いずれも使用される。例えば、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiAlO、LiAlCl、LiN(CxF2x+1SO)(CyF2y+1SO)(ただし、x、yは自然数)、LiCl、LiIまたはそれらの混合物などである。 Any lithium salt may be used as long as it is used in the art as a lithium salt. For example, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiAlO 2, LiAlCl 4, LiN (CxF2x + 1 SO 2 ) (CyF 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, or a mixture thereof.

本発明の一具現例によるリチウム電池は、充放電実施した後、負極活物質のX線回折測定で、Siピークに対するSiCの強度比が0.5ないし0.7、例えば、0.6である。このように強度比を有するということは、充放電後にシリコン粒子が壊れつつ現れるのである。   The lithium battery according to an embodiment of the present invention has a SiC intensity ratio of 0.5 to 0.7, for example, 0.6 according to X-ray diffraction measurement of the negative electrode active material after charging and discharging. . Having such an intensity ratio means that the silicon particles appear broken after charging and discharging.

図4を参照し、リチウム電池40は、正極43、負極42及びセパレータ44を含む。前述の正極43、負極42及びセパレータ44が巻き取られたり折り畳まれて電池ケース45に収容される。次に、前記電池ケース45に有機電解液が注入され、キャップ(cap)アセンブリ46に密封され、リチウム二次電池40が完成される。前記電池ケース45は、円筒状、角形、薄膜型などであってもよい。例えば、前記リチウム電池40は、大型薄膜型電池でもある。前記リチウム電池は、リチウムイオン電池でもある。   Referring to FIG. 4, the lithium battery 40 includes a positive electrode 43, a negative electrode 42, and a separator 44. The positive electrode 43, the negative electrode 42, and the separator 44 described above are wound or folded and accommodated in the battery case 45. Next, an organic electrolyte is injected into the battery case 45 and sealed in a cap assembly 46 to complete the lithium secondary battery 40. The battery case 45 may be cylindrical, rectangular, thin film type or the like. For example, the lithium battery 40 may be a large thin film battery. The lithium battery is also a lithium ion battery.

前記正極及び負極の間にセパレータが配置され、電池構造体が形成される。前記電池構造体がバイセル構造に積層された後、有機電解液に含浸され、得られた結果物がポーチに収容されて密封されれば、リチウムイオンポリマー電池が完成される。   A separator is disposed between the positive electrode and the negative electrode to form a battery structure. After the battery structure is laminated in a bicell structure, it is impregnated with an organic electrolyte, and the resultant product is accommodated in a pouch and sealed to complete a lithium ion polymer battery.

また、前記電池構造体は、複数個積層されて電池パックを形成し、かような電池パックが高容量及び高出力が要求されるすべての機器に使われる。例えば、ノート型パソコン、スマートホン、電気自動車などに使われる。   In addition, a plurality of the battery structures are stacked to form a battery pack, and the battery pack is used for all devices that require high capacity and high output. For example, it is used for notebook computers, smart phones, electric cars, etc.

また、前記リチウム電池は、高温で保存安定性、寿命特性及び高率特性にすぐれるので、電気自動車(EV:electric vehicle)に使われてもよい。例えば、プラグインハイブリッド車両(PHEV:plug-in hybrid electric vehicle)などのハイブリッド車にも使われる。   In addition, the lithium battery is excellent in storage stability, life characteristics, and high rate characteristics at high temperatures, and may be used in an electric vehicle (EV). For example, it is also used for a hybrid vehicle such as a plug-in hybrid electric vehicle (PHEV).

前記リチウム電池は、負極活物質単位重量当たり800mAh/g以上の放電容量を提供することができる。また、前記リチウム電池は、負極活物質単位体積当たり1000mAh/cc以上の放電容量を提供することができる。   The lithium battery can provide a discharge capacity of 800 mAh / g or more per unit weight of the negative electrode active material. In addition, the lithium battery can provide a discharge capacity of 1000 mAh / cc or more per unit volume of the negative electrode active material.

前記電解液に使われる溶媒は、アセトニトリル、ジメチルケトン及びプロピレンカーボネートからなる群から選択された一つ以上の溶媒であってもよい。   The solvent used in the electrolytic solution may be one or more solvents selected from the group consisting of acetonitrile, dimethyl ketone, and propylene carbonate.

前記電解液は、前記溶媒に対する溶解度が0.01モル/L以上であり、前記キャパシタの作動電圧範囲で、電気的に不活性であるアルカリ金属塩を含む。例えば、過塩素酸リチウム、リチウムテトラフルオロボレート、リチウムヘキサフルオロポスペートなどである。前記電解液は、キャパシタの物性を向上させるための追加的な添加剤を含んでもよい。例えば、安定剤、増粘剤などである。   The electrolytic solution includes an alkali metal salt that has a solubility in the solvent of 0.01 mol / L or more and is electrically inactive in the operating voltage range of the capacitor. For example, lithium perchlorate, lithium tetrafluoroborate, lithium hexafluoropostate and the like. The electrolytic solution may include an additional additive for improving the physical properties of the capacitor. For example, a stabilizer and a thickener.

以下の実施例及び比較例を介して、例示的な具現例についてさらに詳細に説明する。ただし、実施例は、技術的思想を例示するためのものであり、それらのみによって本発明の範囲が限定されるものではない。   An exemplary implementation will be described in more detail through the following examples and comparative examples. However, the examples are for illustrating the technical idea, and the scope of the present invention is not limited only by these examples.

実施例1:負極活物質の製造
直径約25mm、長さ約300mmの黒鉛ロッドに、直径が約22mm、高さ約200mmのサンプル注入部を形成し、前記サンプル注入部に、カーボンブラック30g、SiO 60g及びSi 100gを順次に充填してアーク放電用負極を製造した。
Example 1: Production of negative electrode active material A sample injection part having a diameter of about 22 mm and a height of about 200 mm was formed on a graphite rod having a diameter of about 25 mm and a length of about 300 mm, and 30 g of carbon black, SiO 2 was formed in the sample injection part. 2 A negative electrode for arc discharge was manufactured by sequentially filling 60 g and Si 100 g.

これと別途に、アーク放電用正極としては、モリブデン(Mo)電極を使った。   Separately, a molybdenum (Mo) electrode was used as a positive electrode for arc discharge.

前記負極及び正極を、約300mmほどの間隔を置いて、アーク放電器に配置した後、チャンバ圧力が約2×10−1torrまでポンピングした後、アルゴンガスを充填して入れた。次に、約300Aの電流、約40Vの直流電圧を印加してアーク放電を実施し、負極活物質を製造した。 The negative electrode and the positive electrode were placed in an arc discharger with an interval of about 300 mm, pumped to a chamber pressure of about 2 × 10 −1 torr, and then filled with argon gas. Next, an arc discharge was performed by applying a current of about 300 A and a DC voltage of about 40 V to produce a negative electrode active material.

実施例2:負極活物質の製造
アーク放電用負極製造の時、カーボンブラックの含量が20gに変わったことを除き、実施例1と同一の方法によって実施し、負極活物質を製造した。
Example 2 Production of Negative Electrode Active Material A negative electrode active material was produced in the same manner as in Example 1 except that the carbon black content was changed to 20 g when producing a negative electrode for arc discharge.

実施例3:負極活物質の製造
アーク放電用負極製造の時、カーボンブラックの含量が10gに変わったことを除き、実施例1と同一の方法によって実施し、負極活物質を製造した。
Example 3 Production of Negative Electrode Active Material A negative electrode active material was produced in the same manner as in Example 1 except that the carbon black content was changed to 10 g when producing a negative electrode for arc discharge.

実施例4:負極活物質の製造
アーク放電用負極製造の時、カーボンブラックが使われていないことを除き、実施例1と同一の方法によって実施し、負極活物質を製造した。
Example 4: Production of negative electrode active material A negative electrode active material was produced in the same manner as in Example 1 except that carbon black was not used when producing a negative electrode for arc discharge.

製作例1:負極及びリチウム二次電池の製造
前記実施例1で製造された負極活物質、70mg、炭素導電剤(Super−P、Timcal Inc.)15mg及びバインダ(ポリアミド/イミド(PAI))15mgを15mLのN−メチルピロリドン(NMP)と共に、メノウ乳鉢で混合してスラリを製造した。前記スラリを、ドクターブレードを使って銅集電体上に約50μm厚に塗布し、常温で2時間乾燥させた後、真空、200°の条件で2時間、さらに1回乾燥させて負極を製造した。
Production Example 1: Production of Negative Electrode and Lithium Secondary Battery Negative electrode active material produced in Example 1 70 mg, carbon conductive agent (Super-P, Timcal Inc.) 15 mg, and binder (polyamide / imide (PAI)) 15 mg Was mixed with 15 mL of N-methylpyrrolidone (NMP) in an agate mortar to produce a slurry. The slurry is applied to a copper current collector to a thickness of about 50 μm using a doctor blade, dried at room temperature for 2 hours, and then dried once again under vacuum and 200 ° for 2 hours to produce a negative electrode. did.

前記負極を使い、リチウム金属を相対電極にし、セパレータとしてポリプロピレン隔離膜(Cellgard 3510)を使い、1.3M LiPFが、エチレンカーボネート(EC)+ジエチルカーボネート(DEC)(3:7重量比)に溶解されている溶液を電解質として使い、CR−2016規格のコインセルを製造した。 Using the negative electrode, using lithium metal as a relative electrode, using a polypropylene separator (Cellgard 3510) as a separator, 1.3M LiPF 6 becomes ethylene carbonate (EC) + diethyl carbonate (DEC) (3: 7 weight ratio). Using the dissolved solution as an electrolyte, a CR-2016 standard coin cell was manufactured.

製作例2ないし4
前記実施例1で製造された負極酸化物の代わりに、実施例2ないし4によって製造された負極酸化物を使ったことを除き、前記製作例1と同一の方法で製造した。
Production examples 2 to 4
The negative electrode oxide manufactured in Examples 2 to 4 was used instead of the negative electrode oxide manufactured in Example 1, and the same method as in Production Example 1 was used.

評価例1:X線回折分析
前記実施例1ないし4で製造された負極活物質に対して、X線回折(X−ray diffraction)分析を行い、その結果を図5に示した。図5には、実施例1ないし4による負極活物質のXRDピークとの比較のために、Si(111)面のピークと、SiC(111)面のピークとをレファレンスとして共に示した。
Evaluation Example 1: X-ray diffraction analysis The negative electrode active materials produced in Examples 1 to 4 were subjected to X-ray diffraction analysis, and the results are shown in FIG. In FIG. 5, for comparison with the XRD peak of the negative electrode active material according to Examples 1 to 4, the Si (111) plane peak and the SiC (111) plane peak are shown together as a reference.

前記X線回折分析時、CuKアルファ特性X線波長1.541Åを使用し、X線回折分析器としては、XPERT−PRO(フィリップス)を使った。   In the X-ray diffraction analysis, CuK alpha characteristic X-ray wavelength of 1.541 mm was used, and XPERT-PRO (Phillips) was used as the X-ray diffraction analyzer.

図5に表示されるX線回折スペクトル(X−ray diffraction spectrum)で、Si(111)面に係わるピークが、ブラッグ2θ角約28゜で現れ、SiC(111)面に係わるピークが、ブラッグ2θ角約36θ゜で現れた。そして、ブラッグ2θ角約47゜で現れるピークは、Siに該当し、ブラッグ2θ角約56゜で現れるピークは、Siに該当し、ブラッグ2θ角約60゜で現れるピークは、SiCに該当する。   In the X-ray diffraction spectrum displayed in FIG. 5, a peak related to the Si (111) plane appears at a Bragg 2θ angle of about 28 °, and a peak related to the SiC (111) plane is shown as Bragg 2θ. It appeared at an angle of about 36θ °. A peak appearing at a Bragg 2θ angle of about 47 ° corresponds to Si, a peak appearing at a Bragg 2θ angle of about 56 ° corresponds to Si, and a peak appearing at a Bragg 2θ angle of about 60 ° corresponds to SiC.

前記実施例1ないし4の負極活物質で、Si(111)面のピークに対するSiC(111)面のピークの強度比及びSiC(111)面ピークの半値幅は、下記表1の通りである。
In the negative electrode active materials of Examples 1 to 4, the intensity ratio of the SiC (111) plane peak to the Si (111) plane peak and the half width of the SiC (111) plane peak are shown in Table 1 below.

評価例2:蛍光X線分析(XRF)
前記実施例1ないし4で製造された負極活物質に対して、X線蛍光分析実験を行い、その結果を、図6A及び図6Bに示した。図6Aは、シリコンに係わるものであり、図6Bは、酸素に係わるものである。
Evaluation Example 2: X-ray fluorescence analysis (XRF)
An X-ray fluorescence analysis experiment was performed on the negative electrode active materials manufactured in Examples 1 to 4, and the results are shown in FIGS. 6A and 6B. FIG. 6A relates to silicon, and FIG. 6B relates to oxygen.

前記X線蛍光分析実験時使われる機器は、WD−XRF(Philips PW2400)である。   The instrument used during the X-ray fluorescence analysis experiment is WD-XRF (Philips PW2400).

前記図6A及び図6Bに図示された各グラフのシリコン及び酸素に該当するピークの強度比を利用してスタンダードサンプルに対する検量線(calibration curve)を利用し、シリコン、酸素及び炭素の含量を把握することができる。実施例1ないし4による負極活物質で、シリコン、酸素及び炭素の含量を示せば、表2の通りである。
6A and 6B, the intensity ratio of peaks corresponding to silicon and oxygen in the respective graphs shown in FIGS. 6A and 6B is used to determine the contents of silicon, oxygen, and carbon using a calibration curve for a standard sample. be able to. Table 2 shows the contents of silicon, oxygen, and carbon in the negative electrode active materials according to Examples 1 to 4.

評価例3:電子走査顕微鏡分析
前記実施例1及び4による負極活物質の電子走査顕微鏡写真を、それぞれ図7A及び図7Bに示した。図7S及び図7Bは、それぞれ約30,000倍拡大したものである。
Evaluation Example 3: Electron Scanning Microscope Analysis Electron scanning micrographs of the negative electrode active materials according to Examples 1 and 4 are shown in FIGS. 7A and 7B, respectively. 7S and 7B are enlarged by about 30,000 times, respectively.

評価例4:EDS(energy dispersion spectroscope)分析
前記実施例1による負極活物質のEDS分析を実施し、その結果を図8に示した。
Evaluation Example 4: EDS (energy dispersion spectroscope) analysis An EDS analysis of the negative electrode active material according to Example 1 was performed, and the results are shown in FIG.

図8を参照すれば、Si、O、Cの存在及び含量を確認することができ、前記Cは、複合体の内部及び複合体の表面に存在する炭素コーティング層の炭素であると判断された。   Referring to FIG. 8, the presence and content of Si, O, and C can be confirmed, and the C is determined to be carbon of the carbon coating layer existing inside the composite and on the surface of the composite. .

評価例5:充放電実験
前記製作例1ないし4によって製造されたリチウム電池に対して、負極活物質1g当たり100mAの電流で、電圧が0.001V(vs.Li)に至るまで充電し、再び同一の電流で、電圧が3V(vs.Li)に至るまで放電した。次に、同一の電流区間及び電圧区間で、充電及び放電を50回繰り返した。
Evaluation Example 5: Charge / Discharge Experiment The lithium batteries manufactured in the above Production Examples 1 to 4 were charged with a current of 100 mA per 1 g of the negative electrode active material until the voltage reached 0.001 V (vs. Li), and again. Discharge was performed with the same current until the voltage reached 3 V (vs. Li). Next, charging and discharging were repeated 50 times in the same current section and voltage section.

製作例1ないし4のリチウム電池に対する最初のサイクルでの充放電結果を図9に示した。   The charge / discharge results in the first cycle for the lithium batteries of Production Examples 1 to 4 are shown in FIG.

前記実施例1ないし4によるリチウム電池の最初のサイクルでの放電容量、初期充放電効率及び容量維持率を、下記表3に示した。容量維持率は、下記式2で定義され、初期充放電効率は、下記式3で定義される。   The discharge capacity, initial charge / discharge efficiency, and capacity retention rate in the first cycle of the lithium batteries according to Examples 1 to 4 are shown in Table 3 below. The capacity retention rate is defined by the following formula 2, and the initial charge / discharge efficiency is defined by the following formula 3.

[数2]
容量維持率[%]=[50回目のサイクル放電容量/2回目のサイクル放電容量]×100
[数3]
初期充放電効率[%]=[最初のサイクル放電容量/最初のサイクル充電容量]×100
[Equation 2]
Capacity maintenance ratio [%] = [50th cycle discharge capacity / second cycle discharge capacity] × 100
[Equation 3]
Initial charge / discharge efficiency [%] = [first cycle discharge capacity / first cycle charge capacity] × 100

前記図9及び表3から分かるように、製作例1ないし4のリチウム電池は、放電容量、初期効率及び容量維持率が非常にすぐれている。   As can be seen from FIG. 9 and Table 3, the lithium batteries of Production Examples 1 to 4 have very excellent discharge capacity, initial efficiency, and capacity retention rate.

評価例6:充放電の後、X線回折実験
前記製作例1によって製造されたリチウム電池に対して、負極活物質1g当たり100mAの電流で、電圧が0.001V(vs.Li)に至るまで充電し、さらに同一の電流で、電圧が3V(vs.Li)に至るまで放電した。次に、同一の電流区間及び電圧区間で、充電及び放電を50回繰り返した。
Evaluation Example 6: After charging / discharging, X-ray diffraction experiment Until the voltage reaches 0.001 V (vs. Li) at a current of 100 mA per 1 g of the negative electrode active material with respect to the lithium battery manufactured in Preparation Example 1. The battery was charged and further discharged at the same current until the voltage reached 3 V (vs. Li). Next, charging and discharging were repeated 50 times in the same current section and voltage section.

前記コインセルを解体し、負極活物質のみを収集してXRD分析を実施し、その結果を図10に示した。   The coin cell was disassembled, and only the negative electrode active material was collected and XRD analysis was performed. The result is shown in FIG.

図10を参照すれば、充放電の後にもSiCピークが観察され、Siピークに対するSiCのピークの強度比が、約0.6であるということが分かった。   Referring to FIG. 10, an SiC peak was observed even after charge / discharge, and it was found that the intensity ratio of the SiC peak to the Si peak was about 0.6.

以上、本発明の実施例について説明したが、本発明は、それらに限定されるものではなく、特許請求の範囲、発明の詳細な説明及び添付した図面の範囲内で、さまざまに変形して実施することが可能であり、それらも本発明の範囲に属するということは言うまでもない。   Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications can be made within the scope of the claims, the detailed description of the invention, and the attached drawings. Needless to say, they are also within the scope of the present invention.

本発明の負極活物質、その製造方法、該活物質を含む電極及び該電極を採用したリチウム電池は、例えば、電源関連の技術分野に効果的に適用可能である。   The negative electrode active material, the manufacturing method thereof, the electrode containing the active material, and the lithium battery employing the electrode can be effectively applied to, for example, a technical field related to a power source.

10 負極活物質
11 マトリックス
12 シリコン粒子
13 炭素コーティング膜
20 炭素ロッド
21 サンプル注入部
31 炭素ロッド
32 アーク放電用負極
33 アーク放電用正極
40 リチウム電池
42 負極
43 正極
44 セパレータ
45 電池ケース
46 キャップアセンブリ
DESCRIPTION OF SYMBOLS 10 Negative electrode active material 11 Matrix 12 Silicon particle 13 Carbon coating film 20 Carbon rod 21 Sample injection part 31 Carbon rod 32 Negative electrode for arc discharge 33 Positive electrode for arc discharge 40 Lithium battery 42 Negative electrode 43 Positive electrode 44 Separator 45 Battery case 46 Cap assembly

Claims (17)

シリコン酸化物、炭化シリコン及び炭素を含むマトリックス内にシリコン粒子が分散した複合体と、
前記複合体の表面上に形成された炭素コーティング層と、を含み、
X線回折スペクトルで、Siピークに対するSiCのピークの強度比が1以上である負極活物質。
A composite in which silicon particles are dispersed in a matrix comprising silicon oxide, silicon carbide and carbon;
A carbon coating layer formed on the surface of the composite,
A negative electrode active material having an intensity ratio of SiC peak to Si peak of 1 or more in an X-ray diffraction spectrum.
前記負極活物質のX線回折スペクトルで、SiCピークの半値幅が、0.1ないし1゜であることを特徴とする請求項1に記載の負極活物質。   2. The negative electrode active material according to claim 1, wherein in the X-ray diffraction spectrum of the negative electrode active material, the half width of the SiC peak is 0.1 to 1 °. 前記負極活物質のX線回折スペクトルで、SiCのピークが、
ブラッグ2θ角34ないし37゜で現れることを特徴とする請求項1に記載の負極活物質。
In the X-ray diffraction spectrum of the negative electrode active material, the SiC peak is
The negative electrode active material according to claim 1, wherein the negative electrode active material appears at a Bragg 2θ angle of 34 to 37 °.
前記負極活物質のX線回折スペクトルで、Siピークに対するSiCピークの強度比が、
1ないし10であることを特徴とする請求項1に記載の負極活物質。
In the X-ray diffraction spectrum of the negative electrode active material, the intensity ratio of the SiC peak to the Si peak is
The negative electrode active material according to claim 1, wherein the negative electrode active material is 1 to 10.
前記負極活物質のX線蛍光分析で、
シリコンの含量は、45ないし65重量%であり、
酸素の含量は、10ないし23重量%であり、
炭素の含量は、12ないし45重量%であることを特徴とする請求項1に記載の負極活物質。
In the X-ray fluorescence analysis of the negative electrode active material,
The silicon content is 45 to 65% by weight,
The oxygen content is 10 to 23% by weight;
The negative active material according to claim 1, wherein the carbon content is 12 to 45 wt%.
前記負極活物質でシリコン酸化物の含量は、
シリコン粒子100重量部を基準にして、10ないし30重量部であることを特徴とする請求項1に記載の負極活物質。
The content of silicon oxide in the negative electrode active material is:
The negative electrode active material according to claim 1, wherein the negative electrode active material is 10 to 30 parts by weight based on 100 parts by weight of silicon particles.
前記負極活物質で炭化シリコンの含量は、
シリコン粒子100重量部を基準にして、50ないし90重量部であることを特徴とする請求項1に記載の負極活物質。
The content of silicon carbide in the negative electrode active material is:
The negative electrode active material according to claim 1, wherein the negative electrode active material is 50 to 90 parts by weight based on 100 parts by weight of silicon particles.
前記負極活物質の炭素コーティング層で炭素の含量は、
複合体100重量部を基準にして、0.1ないし20重量部であることを特徴とする請求項1に記載の負極活物質。
The carbon content of the carbon coating layer of the negative electrode active material is:
The negative electrode active material according to claim 1, wherein the negative electrode active material is 0.1 to 20 parts by weight based on 100 parts by weight of the composite.
前記シリコン粒子の平均粒径が、
1ないし300nmであることを特徴とする請求項1に記載の負極活物質。
The average particle size of the silicon particles is
The negative electrode active material according to claim 1, wherein the negative electrode active material is 1 to 300 nm.
炭素ロッドに、シリコン粒子及びシリコン酸化物を供給してアーク放電用負極を製造する段階と、
前記アーク放電用負極及びアーク放電用正極をアーク放電させる段階と、を含み、
シリコン酸化物、炭化シリコン及び炭素を含むマトリックス内にシリコン粒子が分散した複合体と、前記複合体の表面上に形成された炭素コーティング層と、を含み、
X線回折スペクトルで、Siピークに対するSiCのピークの強度比が1以上である負極活物質を得る負極活物質の製造方法。
Supplying carbon particles and silicon oxide to a carbon rod to produce a negative electrode for arc discharge;
Arcing the arc discharge negative electrode and the arc discharge positive electrode, and
A composite in which silicon particles are dispersed in a matrix containing silicon oxide, silicon carbide and carbon, and a carbon coating layer formed on the surface of the composite,
A method for producing a negative electrode active material, which obtains a negative electrode active material having an intensity ratio of SiC peak to Si peak of 1 or more in an X-ray diffraction spectrum.
前記炭素ロッドに、シリコン粒子及びシリコン酸化物を供給する以前に、炭素系物質をさらに供給することを特徴とする請求項10に記載の負極活物質の製造方法。   The method for producing a negative electrode active material according to claim 10, further comprising supplying a carbon-based material before supplying silicon particles and silicon oxide to the carbon rod. 前記炭素系物質の含量は、
前記シリコン粒子100重量部を基準にして、0.5ないし50重量部であることを特徴とする請求項11に記載の負極活物質の製造方法。
The content of the carbonaceous material is
The method for producing a negative electrode active material according to claim 11, wherein the amount is 0.5 to 50 parts by weight based on 100 parts by weight of the silicon particles.
前記アーク放電は、
カーボンロッド、負極及び正極の中から選択された一つ以上に、20ないし50Vの直流電圧を印加して実施することを特徴とする請求項10に記載の負極活物質の製造方法。
The arc discharge is
The method for producing a negative electrode active material according to claim 10, wherein a direct current voltage of 20 to 50 V is applied to at least one selected from a carbon rod, a negative electrode, and a positive electrode.
前記炭化シリコンの含量は、
前記シリコン粒子100重量部を基準にして、50ないし90重量部であることを特徴とする請求項10に記載の負極活物質の製造方法。
The silicon carbide content is:
The method for producing a negative electrode active material according to claim 10, wherein the amount is 50 to 90 parts by weight based on 100 parts by weight of the silicon particles.
請求項1ないし請求項9のうち、いずれか1項に記載の負極活物質を含む負極。   The negative electrode containing the negative electrode active material of any one of Claims 1 thru | or 9. 請求項15に記載の負極活物質を含む負極を含むリチウム電池。   The lithium battery containing the negative electrode containing the negative electrode active material of Claim 15. 前記リチウム電池の充放電を実施した後、負極活物質のX線回折測定で、Siピークに対するSiCの強度比が0.5ないし0.7であることを特徴とする請求項16に記載のリチウム電池。   17. The lithium according to claim 16, wherein after the charge and discharge of the lithium battery is performed, the intensity ratio of SiC to the Si peak is 0.5 to 0.7 in the X-ray diffraction measurement of the negative electrode active material. battery.
JP2012244511A 2011-11-08 2012-11-06 Negative electrode active material, method for producing the same, electrode containing the active material, and lithium battery employing the electrode Active JP6125202B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110115915A KR101772113B1 (en) 2011-11-08 2011-11-08 anode electrode material, preparation method thereof, electrode comprising the material, and lithium battery comprising the electrode
KR10-2011-0115915 2011-11-08

Publications (2)

Publication Number Publication Date
JP2013101931A true JP2013101931A (en) 2013-05-23
JP6125202B2 JP6125202B2 (en) 2017-05-10

Family

ID=46650399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244511A Active JP6125202B2 (en) 2011-11-08 2012-11-06 Negative electrode active material, method for producing the same, electrode containing the active material, and lithium battery employing the electrode

Country Status (5)

Country Link
US (1) US9048486B2 (en)
EP (1) EP2592675B1 (en)
JP (1) JP6125202B2 (en)
KR (1) KR101772113B1 (en)
CN (1) CN103094538B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183043A (en) * 2013-03-19 2014-09-29 Wacker Chemie Ag Si/C COMPOSITES AS ANODE MATERIALS FOR LITHIUM ION BATTERIES
WO2015125784A1 (en) * 2014-02-19 2015-08-27 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing said negative electrode active material
JP2022508339A (en) * 2018-08-14 2022-01-19 エスジェー・アドバンスド・マテリアルズ・カンパニー・リミテッド A lithium secondary battery equipped with a negative electrode active material, a method for producing the same, and a negative electrode containing the negative electrode.
WO2023181949A1 (en) * 2022-03-25 2023-09-28 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
KR20140128379A (en) 2012-01-30 2014-11-05 넥세온 엘티디 Composition of si/c electro active material
CN105074971B (en) * 2013-01-30 2017-03-29 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active substance, the anode for nonaqueous electrolyte secondary battery using the negative electrode active material and the rechargeable nonaqueous electrolytic battery using the negative pole
KR101687055B1 (en) 2013-05-16 2016-12-15 주식회사 엘지화학 Hollow silicon-based particles, preparation method of thereof, and anode active material for lithium secondary battery comprising the same
CN103400971B (en) * 2013-07-29 2016-07-06 宁德新能源科技有限公司 Silicon based composite material and preparation method thereof and its application
CN103746124B (en) * 2013-12-23 2016-08-24 燕山大学 A kind of nitrogen-doped carbon shell carbon coated SiClx core nano-complex particle and preparation method thereof
KR101567203B1 (en) 2014-04-09 2015-11-09 (주)오렌지파워 Negative electrode material for rechargeable battery and method of fabricating the same
CN106233511B (en) * 2014-04-16 2019-01-25 昭和电工株式会社 Cathode material of lithium ion battery and its purposes
KR101604352B1 (en) 2014-04-22 2016-03-18 (주)오렌지파워 Negative electrode active material and rechargeable battery having the same
KR101550781B1 (en) 2014-07-23 2015-09-08 (주)오렌지파워 Method of forming silicon based active material for rechargeable battery
KR102234287B1 (en) * 2014-08-08 2021-03-31 삼성에스디아이 주식회사 Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
EP3238296B1 (en) * 2014-12-23 2018-11-21 Umicore Composite powder for use in an anode of a lithium ion battery, method of preparing such a composite powder and method for analysing such a composite powder
EP3264505A4 (en) * 2015-02-24 2018-08-01 Nexeon Ltd Silicon anode active material and preparation method therefor
TWI623138B (en) * 2015-04-28 2018-05-01 烏明克公司 Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery
TWI636614B (en) * 2015-09-30 2018-09-21 蕭鎮能 Manufacturing method for a carbon-coated silicon/silicon carbide composite active material for li-ion batteries
CN105489854B (en) * 2015-11-25 2018-12-04 天津师范大学 A kind of preparation method of high-capacity cathode material
JP6353517B2 (en) * 2015-12-30 2018-07-04 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Lithium battery negative electrode material and manufacturing method thereof
KR102270155B1 (en) * 2016-07-21 2021-06-28 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2019022318A1 (en) * 2017-07-24 2019-01-31 엠케이전자 주식회사 Anode active material for secondary battery, and preparation method therefor
CN107611376A (en) * 2017-08-22 2018-01-19 哈尔滨工程大学 A kind of preparation method of graphene parcel silicon particle composite
KR102244952B1 (en) * 2017-11-06 2021-04-27 주식회사 엘지화학 Negative electrode active material, negative electrode comprising the negative electrode active material, lithium secondarty battery comprising the negative electrode, and method for prepareing the negative electrode active material
KR102243610B1 (en) * 2018-12-17 2021-04-27 주식회사 티씨케이 Negative active material, method for preparing the same and lithium secondary battery comprising the same
KR102159693B1 (en) * 2018-12-26 2020-09-24 울산과학기술원 A composite anode active material, method of preparing the same, and lithium secondary batter comprising an anode including the composite anode active material
CN111519075B (en) * 2020-03-30 2021-09-14 维达力实业(深圳)有限公司 Lithium composite material, lithium composite target material, and preparation method and application thereof
CN112234173A (en) * 2020-10-14 2021-01-15 昆明理工大学 Carbon-coated silicon nano-particles and preparation method and application thereof
KR20220061723A (en) * 2020-11-06 2022-05-13 삼성에스디아이 주식회사 Rechargebale lithium battery
KR102634600B1 (en) * 2020-11-30 2024-02-06 포스코홀딩스 주식회사 Metal-Carbon Composite Anode material for lithium secondary battery, method for manufacturing the same and lithium secondary battery comprising the same
CN112736225B (en) * 2020-12-10 2022-08-26 安普瑞斯(南京)有限公司 Silica lithium particle aggregate and preparation method thereof, negative electrode material, pole piece and battery
CN113845099B (en) * 2021-06-30 2024-04-26 南京邮电大学 Method for preparing CoSP sodium-electricity negative electrode material by arc discharge technology
EP4234489A1 (en) * 2022-02-24 2023-08-30 Cenate AS Secondary and tertiary composite particles
CN116207244A (en) * 2022-07-06 2023-06-02 广东凯金新能源科技股份有限公司 High-density high-purity silicon-carbon negative electrode material and preparation method thereof
CN115312780B (en) * 2022-10-10 2023-03-24 宁德新能源科技有限公司 Negative electrode material, secondary battery, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310759A (en) * 2004-03-26 2005-11-04 Shin Etsu Chem Co Ltd Silicon composite particle, production method of same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2009224168A (en) * 2008-03-17 2009-10-01 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456986A (en) 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
CA2144037C (en) * 1995-03-03 2000-12-05 Jiayu Simon Xue Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5716422A (en) * 1996-03-25 1998-02-10 Wilson Greatbatch Ltd. Thermal spray deposited electrode component and method of manufacture
JP4104830B2 (en) * 2001-03-02 2008-06-18 三星エスディアイ株式会社 Carbonaceous material, lithium secondary battery, and method for producing carbonaceous material
US6733922B2 (en) * 2001-03-02 2004-05-11 Samsung Sdi Co., Ltd. Carbonaceous material and lithium secondary batteries comprising same
US7831731B2 (en) 2001-06-12 2010-11-09 Hewlett-Packard Development Company, L.P. Method and system for a modular transmission control protocol (TCP) rare-handoff design in a streams based transmission control protocol/internet protocol (TCP/IP) implementation
JP2003308837A (en) 2002-04-18 2003-10-31 Shin Etsu Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method
TWI278429B (en) 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP3952180B2 (en) 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
KR100497244B1 (en) 2002-12-27 2005-06-28 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4519592B2 (en) 2004-09-24 2010-08-04 株式会社東芝 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2006067891A1 (en) * 2004-12-22 2008-06-12 松下電器産業株式会社 Composite negative electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
KR101451801B1 (en) 2007-02-14 2014-10-17 삼성에스디아이 주식회사 Anode active material, method of preparing the same, anode and lithium battery containing the material
KR101375328B1 (en) * 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C composite, anode materials and lithium battery using the same
KR101002539B1 (en) * 2008-04-29 2010-12-17 삼성에스디아이 주식회사 Negative electrode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
JP5245559B2 (en) 2008-06-16 2013-07-24 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5411780B2 (en) 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310759A (en) * 2004-03-26 2005-11-04 Shin Etsu Chem Co Ltd Silicon composite particle, production method of same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2009224168A (en) * 2008-03-17 2009-10-01 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2011222153A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and its manufacturing method, and lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183043A (en) * 2013-03-19 2014-09-29 Wacker Chemie Ag Si/C COMPOSITES AS ANODE MATERIALS FOR LITHIUM ION BATTERIES
WO2015125784A1 (en) * 2014-02-19 2015-08-27 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing said negative electrode active material
JP2022508339A (en) * 2018-08-14 2022-01-19 エスジェー・アドバンスド・マテリアルズ・カンパニー・リミテッド A lithium secondary battery equipped with a negative electrode active material, a method for producing the same, and a negative electrode containing the negative electrode.
WO2023181949A1 (en) * 2022-03-25 2023-09-28 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
EP2592675A1 (en) 2013-05-15
JP6125202B2 (en) 2017-05-10
CN103094538B (en) 2017-03-01
KR20130050704A (en) 2013-05-16
KR101772113B1 (en) 2017-08-29
CN103094538A (en) 2013-05-08
EP2592675B1 (en) 2018-05-16
US9048486B2 (en) 2015-06-02
US20130115517A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP6125202B2 (en) Negative electrode active material, method for producing the same, electrode containing the active material, and lithium battery employing the electrode
JP6315765B2 (en) Negative electrode active material, manufacturing method thereof, and lithium secondary battery employing negative electrode including the same
JP5791432B2 (en) Positive electrode active material, production method thereof, positive electrode employing the same, and lithium battery
JP6116144B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ELECTRODE CONTAINING THE SAME, LITHIUM BATTERY USING THE SAME, AND METHOD FOR PRODUCING THE SAME
KR101604081B1 (en) Composite anode active material, anode comprising the material, lithium battery comprising the anode, and method for preparing the material
KR101805541B1 (en) Composite cathode active material, cathode and lithium battery comprising the material, and preparation method thereof
KR102380023B1 (en) Secondary Battery
US9070931B2 (en) Cathode, method of preparing the same, and lithium battery including the cathode
JP6088749B2 (en) Negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
KR101771089B1 (en) Composite anode active material, preparation method thereof, anode and lithium battery comprising the material
KR102473532B1 (en) Positive active material, and positive electrode and lithium battery containing the material
KR102065256B1 (en) Silicone based negative active material, preparing method of the same and lithium ion secondary battery including the same
JP2017520892A (en) Positive electrode for lithium battery
EP4068421A1 (en) Composite cathode active material, cathode and lithium battery containing composite cathode active material and preparation method thereof
KR102519438B1 (en) Composite anode active material, lithium battery comprising the same, and method of preparing the composite anode active material
KR20130085323A (en) Composite anode active material, preparation method thereof, anode and lithium battery comprising the material
KR20180027873A (en) Negative active material, negative electrode and lithium secondary battery including the same, and method of preparing the negative active material
KR20120117234A (en) Cathode active material, preparation method thereof, and cathode and lithium battery containing the material
KR20180009571A (en) Negative active material, lithium battery including the same, and method of preparing the negative active material
KR102234705B1 (en) Composite anode active material, anode and lithium battery containing the same, and preparation method thereof
KR20200133704A (en) Lithium battery
KR20200126351A (en) Lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170405

R150 Certificate of patent or registration of utility model

Ref document number: 6125202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250