JP2013101877A - Electrode for secondary battery, method for manufacturing electrode for secondary battery, secondary battery and vehicle - Google Patents

Electrode for secondary battery, method for manufacturing electrode for secondary battery, secondary battery and vehicle Download PDF

Info

Publication number
JP2013101877A
JP2013101877A JP2011245667A JP2011245667A JP2013101877A JP 2013101877 A JP2013101877 A JP 2013101877A JP 2011245667 A JP2011245667 A JP 2011245667A JP 2011245667 A JP2011245667 A JP 2011245667A JP 2013101877 A JP2013101877 A JP 2013101877A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
electrode
material layer
collector plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011245667A
Other languages
Japanese (ja)
Inventor
Motoaki Okuda
元章 奥田
Kyoichi Kinoshita
恭一 木下
Taichi Nakamizo
太一 中溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011245667A priority Critical patent/JP2013101877A/en
Publication of JP2013101877A publication Critical patent/JP2013101877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a secondary battery, capable of reducing time required for impregnating an electrolyte into an active material layer in manufacturing a secondary battery.SOLUTION: An electrode 10 for a secondary battery comprises an electrode having an active material layer 12 including an active material coated on at least one side of a metal collector plate 11. The active material layer 12 is formed on both sides of the collector plate 11 in two layers, respectively. A surface layer 15 as the active material layer on the most surface side is not coated on the whole surface of an inner layer 13, but a plurality of grooves 16, at least each one end of which reaches an outer peripheral end of the surface layer 15, are formed in the surface layer. The surface layer 15 is intermittently coated, and each of the grooves 16 extends in a direction orthogonal to the longitudinal direction of the collector plate 11 and both ends thereof reach the outer peripheral end of the surface layer 15.

Description

本発明は、二次電池用電極、二次電池用電極の製造方法及び二次電池並びに車両に関する。   The present invention relates to a secondary battery electrode, a method for manufacturing a secondary battery electrode, a secondary battery, and a vehicle.

ニッケル水素二次電池やリチウムイオン二次電池などの二次電池では、電極として金属製の集電板に活物質を塗布(担持)したものが使用されている。そして、集電板に塗布された活物質の量を多くすることにより、二次電池の出力(放電電流に放電電圧を乗じた値)を高くすることができる。   2. Description of the Related Art Secondary batteries such as nickel metal hydride secondary batteries and lithium ion secondary batteries use an active material coated (supported) on a metal current collector plate as an electrode. Further, by increasing the amount of the active material applied to the current collector plate, the output of the secondary battery (a value obtained by multiplying the discharge current by the discharge voltage) can be increased.

二次電池の基本的な構成は、金属製の集電板に活物質を塗布(担持)した正極用の集電板と負極用の集電板との間に帯状のセパレータを挟んだ積層状態で発電要素(電極組立体)が構成され、その発電要素が電解液と共に電池ケースに収容されている。二次電池の製造工程には、電池ケース内に収容された発電要素を構成する集電板に塗布された活物質に電解液を含浸させる工程があるが、活物質の量が多くなると、含浸に時間がかかり生産性が悪くなる。   The basic configuration of the secondary battery is a stacked state in which a strip-shaped separator is sandwiched between a positive electrode current collector plate and a negative electrode current collector plate coated (supported) with an active material on a metal current collector plate A power generation element (electrode assembly) is configured, and the power generation element is accommodated in the battery case together with the electrolyte. The secondary battery manufacturing process includes a step of impregnating an electrolyte into an active material applied to a current collector plate constituting a power generation element housed in a battery case. Takes a long time and productivity decreases.

電解液の含浸性を向上させる方法として、図5に示すように、溝加工用突条50a,51aを有する一対の溝加工ローラ50,51間を、長尺帯状の銅箔製の集電用芯材52の両面に正極活物質層53が形成された正極板フープ材54を通過させることにより両面の正極活物質層53に溝部55を形成する方法が提案されている(特許文献1参照)。   As a method for improving the impregnation property of the electrolytic solution, as shown in FIG. 5, between the pair of grooving rollers 50 and 51 having the grooving protrusions 50a and 51a, for collecting current made of a long strip of copper foil. A method has been proposed in which a groove 55 is formed in the positive electrode active material layers 53 on both sides by passing a positive electrode plate hoop material 54 in which the positive electrode active material layers 53 are formed on both sides of the core material 52 (see Patent Document 1). .

特開2010−186737号公報JP 2010-186737 A

ところが、特許文献1の方法で形成された溝部55は正極活物質層53を圧縮して形成されているため、溝部55の正極活物質層53は高密度となり、電解液の含浸を阻害する。   However, since the groove part 55 formed by the method of Patent Document 1 is formed by compressing the positive electrode active material layer 53, the positive electrode active material layer 53 of the groove part 55 has a high density and inhibits impregnation of the electrolytic solution.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、二次電池を製造する際に活物質層への電解液の含浸に要する時間の短縮を図ることができる二次電池用電極、二次電池用電極の製造方法及び二次電池並びにその二次電池を搭載した車両を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to reduce the time required for impregnating the active material layer with the electrolytic solution when manufacturing a secondary battery. It is providing the battery electrode, the manufacturing method of the electrode for secondary batteries, a secondary battery, and the vehicle carrying the secondary battery.

前記の目的を達成するため、請求項1に記載の発明は、金属製の集電板の少なくとも片面に活物質が塗布された活物質層を有する電極からなる二次電池用電極であって、前記活物質層は前記集電板の少なくとも片面に複数層に塗布され、最も表面側の前記活物質層には少なくとも一端が前記最も表面側の活物質層の外周端部まで達する溝が複数形成されている。   To achieve the above object, the invention according to claim 1 is an electrode for a secondary battery comprising an electrode having an active material layer coated with an active material on at least one surface of a metal current collector plate, The active material layer is applied in multiple layers on at least one surface of the current collector plate, and the active material layer on the most surface side has a plurality of grooves that reach at least one end to the outer peripheral edge of the active material layer on the most surface side. Has been.

集電板に塗布された活物質層に電解液を含浸する際、含浸に要する時間は活物質層の密度が同じであれば、厚さが厚い方が長くなる。活物質層を圧縮して活物質層の厚さを薄くした場合は、薄くした分、密度が高くなるため、含浸に要する時間の短縮効果は低い。しかし、この発明では、集電板の少なくとも片面に塗布された活物質層は複数層からなり、最も表面側の活物質層は少なくとも一端が最も表面側の活物質層の外周端部まで達する溝が複数形成されて、溝は活物質層を圧縮せずに形成されているため、溝が形成された部分は他の部分より電解液の含浸が早くなる。また、溝が形成されていない部分も、表面からだけでなく溝の部分からも電解液が含浸するようになるため、電解液の含浸が早くなる。したがって、二次電池を製造する際に活物質層への電解液の含浸に要する時間の短縮を図ることができる。   When the active material layer applied to the current collector plate is impregnated with the electrolytic solution, the time required for the impregnation becomes longer as the thickness of the active material layer is the same. When the thickness of the active material layer is reduced by compressing the active material layer, the density increases as the thickness is reduced, so that the effect of shortening the time required for impregnation is low. However, in this invention, the active material layer applied to at least one surface of the current collector plate is composed of a plurality of layers, and the active material layer on the most surface side is a groove that reaches at least one end to the outer peripheral edge of the active material layer on the most surface side. Are formed, and the groove is formed without compressing the active material layer. Therefore, the portion where the groove is formed is more quickly impregnated with the electrolyte than the other portion. Further, since the electrolyte solution is impregnated not only from the surface but also from the groove portion in the portion where the groove is not formed, the impregnation of the electrolyte solution is accelerated. Accordingly, it is possible to reduce the time required for impregnating the active material layer with the electrolytic solution when manufacturing the secondary battery.

請求項2に記載の発明は、請求項1に記載の発明において、前記活物質層は前記集電板の両面に塗布されている。一枚の電極板に塗布される活物質の量が同じばあい、活物質層が電極板の両面に形成されている方が片面に形成されている場合に比べて厚さが半分になり、二次電池を製造する際に活物質層への電解液の含浸に要する時間の短縮を図ることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the active material layer is applied to both surfaces of the current collector plate. If the amount of active material applied to one electrode plate is the same, the thickness of the active material layer formed on both sides of the electrode plate is halved compared to the case where it is formed on one side, When manufacturing the secondary battery, it is possible to shorten the time required for impregnating the active material layer with the electrolytic solution.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、最も表面側の前記活物質層は間欠的に塗布されている。ここで、「間欠的に塗布されている」とは、最も表面側の活物質層を構成する活物質層が一つではなく、集電板の長手方向に間隔をおいて複数の部分が独立して存在することを意味する。この発明では、最も表面側の活物質層は間欠的に塗布されているため、最も表面側の活物質層には少なくとも一端が最も表面側の活物質層の外周端部まで達する溝が存在する状態になる。一般に二次電池では電極はセパレータを挟んで複数層に積層された状態で電池ケース内に収容され、電解液は電極とセパレータの間から電極の活物質層に含浸する。そのとき、少なくとも一端が最も表面側の活物質層の外周端部まで達する溝が存在すると、電解液が溝に浸入し易くなり活物質層への含浸がより早くなる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the active material layer on the most surface side is applied intermittently. Here, “intermittently applied” means that there is not one active material layer that constitutes the active material layer on the most surface side, and a plurality of parts are independent at intervals in the longitudinal direction of the current collector plate. Means it exists. In this invention, since the active material layer on the most surface side is applied intermittently, the active material layer on the most surface side has a groove where at least one end reaches the outer peripheral end of the active material layer on the most surface side. It becomes a state. In general, in a secondary battery, an electrode is accommodated in a battery case in a state of being stacked in a plurality of layers with a separator interposed therebetween, and an electrolytic solution impregnates an active material layer of the electrode from between the electrode and the separator. At this time, if there is a groove having at least one end reaching the outermost edge of the active material layer on the most surface side, the electrolytic solution is likely to enter the groove and impregnation into the active material layer becomes faster.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の発明において、前記集電板は一方向に長く延びる形状をしており、前記溝は前記集電板の長手方向と直交する方向に延び、かつ両端が前記最も表面側の活物質層の外周端部まで達する。この発明では、溝が集電板の長手方向と傾斜する状態で形成されたものに比べてローラを用いた活物質の塗布が容易になる。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the current collector plate has a shape extending in one direction, and the groove is a length of the current collector plate. It extends in a direction orthogonal to the direction, and both ends reach the outer peripheral end of the outermost active material layer. In the present invention, the application of the active material using a roller is facilitated as compared with the groove formed with the groove inclined with respect to the longitudinal direction of the current collector plate.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の二次電池用電極を用いた二次電池である。この発明の二次電池は、請求項1〜4のいずれか一項に記載の二次電池用電極の効果が得られる。   Invention of Claim 5 is a secondary battery using the electrode for secondary batteries as described in any one of Claims 1-4. The effect of the secondary battery electrode according to any one of claims 1 to 4 is obtained in the secondary battery of the present invention.

請求項6に記載の発明は、請求項5に記載の二次電池を搭載した車両である。したがって、この発明の車両は請求項5に記載の二次電池の効果が得られる。
請求項7に記載の発明は、金属製の集電板の少なくとも片面に活物質が塗布された活物質層を有する電極からなる二次電池用電極の製造方法であって、前記活物質の塗布工程において、前記集電板に活物質層が複数層になるように複数回に分けて塗布を行い、最も表面側の前記活物質層の塗布は間欠的に行う。したがって、最も表面側の活物質層には最も表面側の活物質層の外周端部まで達する溝が存在し、二次電池を製造する際に活物質層への電解液の含浸に要する時間の短縮を図ることができる二次電池用電極を容易に製造することができる。
The invention described in claim 6 is a vehicle on which the secondary battery according to claim 5 is mounted. Therefore, the vehicle of the present invention can achieve the effect of the secondary battery according to claim 5.
The invention according to claim 7 is a method for producing an electrode for a secondary battery comprising an electrode having an active material layer coated with an active material on at least one surface of a metal current collector plate, wherein the application of the active material In the process, the current collecting plate is applied in a plurality of times so that there are a plurality of active material layers, and the active material layer on the most surface side is applied intermittently. Accordingly, the active material layer on the most surface side has a groove reaching the outer peripheral edge of the active material layer on the most surface side, and the time required for impregnating the electrolyte into the active material layer when the secondary battery is manufactured. An electrode for a secondary battery that can be shortened can be easily manufactured.

請求項8に記載の発明は、請求項7に記載の発明において、最も表面側の前記活物質層の塗布は転写ローラを用いて行われる。活物質を集電板に塗布する場合、活物質のペーストを集電板上あるいは集電板に塗布された活物質層上に直接塗布する方法では、集電板が移動する状態において所望の間隔で間欠的に塗布するのが難しい。しかし、この発明では、最も表面側の活物質層の活物質の塗布は転写ローラを用いて行われるため、集電板が移動する状態でも活物質を所望の間隔で間欠的に容易に塗布することができる。   The invention according to claim 8 is the invention according to claim 7, wherein the application of the active material layer on the most surface side is performed using a transfer roller. When the active material is applied to the current collector plate, the active material paste is applied directly on the current collector plate or on the active material layer applied to the current collector plate. It is difficult to apply intermittently. However, in the present invention, since the active material of the active material layer on the most surface side is applied using a transfer roller, the active material is easily and intermittently applied at a desired interval even when the current collector plate moves. be able to.

請求項1〜請求項4に記載の発明によれば、二次電池を製造する際に活物質層への電解液の含浸に要する時間の短縮を図ることができる二次電池用電極を提供することができる。請求項5に記載の発明によれば、前記二次電池用電極の効果が得られる二次電池を提供することができる。請求項6に記載の発明によれば、前記二次電池の効果が得られる車両を提供することができる。請求項7及び請求項8に記載の発明によれば、二次電池を製造する際に活物質層への電解液の含浸に要する時間の短縮を図ることができる二次電池用電極の製造方法を提供することができる。   According to the first to fourth aspects of the present invention, there is provided a secondary battery electrode capable of shortening the time required for impregnating the active material layer with the electrolyte when manufacturing the secondary battery. be able to. According to invention of Claim 5, the secondary battery from which the effect of the said electrode for secondary batteries is acquired can be provided. According to invention of Claim 6, the vehicle from which the effect of the said secondary battery is acquired can be provided. According to invention of Claim 7 and Claim 8, when manufacturing a secondary battery, the manufacturing method of the electrode for secondary batteries which can aim at shortening of the time which impregnation of the electrolyte solution to an active material layer is aimed at Can be provided.

(a)は電極の模式平面図、(b)は模式側面図。(A) is a schematic plan view of an electrode, (b) is a schematic side view. (a)は転写ローラを用いた活物質の塗布方法を示す模式図、(b)は表面層の塗布方法を示す模式図。(A) is a schematic diagram which shows the coating method of the active material using a transfer roller, (b) is a schematic diagram which shows the coating method of a surface layer. 電解液含浸時間と電極抵抗の関係を示すグラフ。The graph which shows the relationship between electrolyte solution impregnation time and electrode resistance. (a),(b)は別の実施形態の電極の模式平面図、(c)は別の実施形態の溝の形状を示す模式図。(A), (b) is a schematic top view of the electrode of another embodiment, (c) is a schematic diagram which shows the shape of the groove | channel of another embodiment. 従来技術の斜視図。The perspective view of a prior art.

以下、本発明を具体化した一実施形態を図1〜図3にしたがって説明する。
図1(a),(b)に示すように、二次電池用電極10は金属製の集電板11の少なくとも片面に活物質が塗布された活物質層12を有する電極からなる。この実施形態では、集電板11は、例えば帯状の銅箔で形成され、活物質層12は集電板11の両面にそれぞれ複数層に塗布されている。この実施形態では活物質層12は2層に形成され、内側層13は集電板11の幅方向の両側に存在する一定幅の活物質非塗布部14を除いた部分全面に塗布されている。最も表面側の活物質層としての表面層15は内側層13の全面に塗布されるのではなく、少なくとも一端が表面層15の外周端部まで達する溝16が複数形成されている。内側層13を構成する活物質と表面層15を構成する活物質とは同じものが使用されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIGS. 1A and 1B, the secondary battery electrode 10 is composed of an electrode having an active material layer 12 in which an active material is applied to at least one surface of a metal current collector plate 11. In this embodiment, the current collector plate 11 is formed of, for example, a strip-shaped copper foil, and the active material layer 12 is applied to both sides of the current collector plate 11 in a plurality of layers. In this embodiment, the active material layer 12 is formed in two layers, and the inner layer 13 is applied to the entire surface of the current collector plate 11 excluding the constant width active material non-applied portion 14 existing on both sides in the width direction. . The surface layer 15 as the active material layer on the most surface side is not applied to the entire surface of the inner layer 13, but a plurality of grooves 16 reaching at least one end to the outer peripheral end of the surface layer 15 are formed. The active material constituting the inner layer 13 and the active material constituting the surface layer 15 are the same.

この実施形態では表面層15は間欠的に塗布されている。また、集電板11は一方向に長く延びる形状をしており、溝16は集電板11の長手方向と直交する方向に延び、かつ両端が表面層15の外周端部まで達する。即ち、内側層13上には集電板11の長手方向に間隔をおいて複数の表面層15が独立して存在する。各溝16間の間隔Lは、例えば、内側層13の幅以上に形成されている。   In this embodiment, the surface layer 15 is applied intermittently. The current collector plate 11 has a shape extending long in one direction, the groove 16 extends in a direction perpendicular to the longitudinal direction of the current collector plate 11, and both ends reach the outer peripheral end of the surface layer 15. That is, on the inner layer 13, a plurality of surface layers 15 exist independently at intervals in the longitudinal direction of the current collector plate 11. The interval L between the grooves 16 is, for example, greater than the width of the inner layer 13.

活物質は、例えば、ニッケル水素電池とリチウムイオン電池のように二次電池の種類によって異なる。また、同じ種類の二次電池でも正極用の電極に塗布されるものと負極用の電極に塗布されるものとでは異なる。   The active material varies depending on the type of secondary battery such as a nickel metal hydride battery and a lithium ion battery. Further, even if the same type of secondary battery is applied to the positive electrode, it is different from that applied to the negative electrode.

次に前記のように構成された二次電池用電極10の製造方法を説明する。
二次電池用電極10の製造方法として、活物質の塗布工程が従来と異なり、その他の工程は基本的に同じため、説明を省略する。活物質の塗布工程は内側層13を形成する内側層塗布工程と、表面層15を形成する表面層塗布工程とがあり、内側層塗布工程は従来と同様に行われる。そして、内側層塗布工程で形成された内側層13が塗布された集電板11の内側層13上に表面層塗布工程で表面層15が塗布される。
Next, the manufacturing method of the electrode 10 for secondary batteries comprised as mentioned above is demonstrated.
As a method for manufacturing the secondary battery electrode 10, the application process of the active material is different from the conventional process, and the other processes are basically the same, and thus the description thereof is omitted. The active material application process includes an inner layer application process for forming the inner layer 13 and a surface layer application process for forming the surface layer 15, and the inner layer application process is performed in the same manner as before. And the surface layer 15 is apply | coated by the surface layer application | coating process on the inner layer 13 of the current collecting plate 11 with which the inner layer 13 formed by the inner layer application | coating process was apply | coated.

表面層塗布工程では転写ローラを用いて表面層15の塗布が間欠的に行われる。転写ローラを用いた塗布装置は、図2に示すように、転写ローラ21とニップローラ22とが対向して設けられ、転写ローラ21はニップローラ22に対して接近、離間可能に図示しない駆動装置により移動されるようになっている。転写ローラ21及びニップローラ22の下方には帯状の集電板11を案内するガイドローラ23が設けられている。そして、内側層13が塗布された集電板11は、図示しない集電板供給ローラから供給されるとともに、ガイドローラ23を経て転写ローラ21とニップローラ22の間を通過した後、図示しないガイドローラに案内されて図示しない巻き取りローラに巻き取られるようになっている。なお、集電板11の移動経路にはガイドローラの他に図示しない張力調整機構が設けられている。転写ローラ21近傍にはペースト状の活物質を転写ローラ21上に供給する活物質供給部24が、転写ローラ21と一体的に移動可能に設けられている。   In the surface layer application step, the surface layer 15 is intermittently applied using a transfer roller. As shown in FIG. 2, the coating apparatus using the transfer roller is provided with a transfer roller 21 and a nip roller 22 facing each other, and the transfer roller 21 is moved by a driving device (not shown) so as to be able to approach and separate from the nip roller 22. It has come to be. Below the transfer roller 21 and the nip roller 22, a guide roller 23 for guiding the belt-shaped current collector plate 11 is provided. The current collecting plate 11 coated with the inner layer 13 is supplied from a current collecting plate supply roller (not shown), and after passing between the transfer roller 21 and the nip roller 22 via the guide roller 23, the guide roller (not shown). And is wound around a winding roller (not shown). In addition to the guide roller, a tension adjusting mechanism (not shown) is provided on the moving path of the current collector plate 11. In the vicinity of the transfer roller 21, an active material supply unit 24 that supplies a paste-like active material onto the transfer roller 21 is provided so as to be movable integrally with the transfer roller 21.

転写ローラ21に活物質供給部24から供給された活物質は、転写ローラ21がニップローラ22に接近した転写位置では転写ローラ21とニップローラ22とによりニップされた集電板11上に転写される。また、転写ローラ21がニップローラ22から離れて集電板11のニップが解除される位置に配置された状態では、転写ローラ21上の活物質は集電板11上に転写されない。活物質供給部24は図示しない機構により、活物質を転写ローラ21上へ供給可能な状態と、供給を停止する状態とに切り換えられるようになっている。そして、転写ローラ21のニップローラ22への接近、離間と、活物質供給部24からの転写ローラ21への活物質の供給、停止を制御することにより、図2(a)に示すように、集電板11上に任意の長さの活物質層12を塗布することが可能になっている。   The active material supplied to the transfer roller 21 from the active material supply unit 24 is transferred onto the current collector plate 11 nipped by the transfer roller 21 and the nip roller 22 at the transfer position where the transfer roller 21 approaches the nip roller 22. In addition, when the transfer roller 21 is located at a position where the nip of the current collector plate 11 is released away from the nip roller 22, the active material on the transfer roller 21 is not transferred onto the current collector plate 11. The active material supply unit 24 can be switched between a state where the active material can be supplied onto the transfer roller 21 and a state where supply is stopped by a mechanism (not shown). Then, by controlling the approach and separation of the transfer roller 21 to and from the nip roller 22 and the supply and stop of the active material from the active material supply unit 24 to the transfer roller 21, as shown in FIG. An active material layer 12 having an arbitrary length can be applied on the electric plate 11.

そして、活物質が活物質供給部24から一定の間隔で供給される状態で、転写ローラ21が所定のタイミングでニップローラ22に対して接近、離間を繰り返すことにより、図2(b)に示すように、内側層塗布工程で内側層13(図示せず)が形成された集電板11上に活物質が表面層15として間欠的に塗布される。活物質が片面に塗布されて表面層15が片面に形成された集電板11は巻き取りローラに巻き取られる。そして、片面に表面層15が形成された集電板11は、前述と同様にして反対側の面に活物質が塗布されて表面層15が両面に形成された集電板11が形成される。なお、図2(b)では表面層15が等間隔で塗布されていることを分かり易くするため、隣り合う表面層15の間隔を表面層15の長さに比べて広く図示している。   Then, with the active material being supplied from the active material supply unit 24 at regular intervals, the transfer roller 21 repeatedly approaches and separates from the nip roller 22 at a predetermined timing, as shown in FIG. Further, the active material is intermittently applied as the surface layer 15 on the current collector plate 11 on which the inner layer 13 (not shown) is formed in the inner layer application step. The current collector plate 11 on which the active material is applied on one side and the surface layer 15 is formed on one side is wound around a winding roller. Then, the current collector plate 11 having the surface layer 15 formed on one side is formed with the current collector plate 11 having the surface layer 15 formed on both sides by applying the active material to the opposite surface in the same manner as described above. . In FIG. 2B, the interval between the adjacent surface layers 15 is shown wider than the length of the surface layer 15 in order to make it easy to understand that the surface layers 15 are applied at equal intervals.

次に前記のように構成された二次電池用電極10の作用を説明する。
二次電池の基本的な構成は、金属製の集電板11に活物質を塗布(担持)した正極用の二次電池用電極10と負極用の二次電池用電極10との間に帯状のセパレータを挟んだ積層状態で発電要素(電極組立体)が構成され、その発電要素が電解液と共に電池ケースに収容されている。二次電池の製造工程には、電池ケース内に収容された発電要素を構成する集電板11に塗布された活物質層12に電解液を含浸させる工程があるが、活物質層12の厚さが厚くなると、含浸に時間がかかり生産性が悪くなる。
Next, the operation of the secondary battery electrode 10 configured as described above will be described.
The basic configuration of the secondary battery is a belt-like shape between the positive electrode secondary battery electrode 10 and the negative electrode secondary battery electrode 10 in which an active material is applied (supported) to a metal current collector plate 11. The power generation element (electrode assembly) is configured in a stacked state with the separator interposed therebetween, and the power generation element is housed in the battery case together with the electrolytic solution. The manufacturing process of the secondary battery includes a step of impregnating the active material layer 12 applied to the current collector plate 11 constituting the power generation element housed in the battery case with an electrolyte solution. If the thickness is too thick, it takes time to impregnate and the productivity becomes poor.

集電板11に塗布された活物質層12に電解液が含浸される際、含浸に要する時間は活物質層12の密度が同じであれば、厚さが厚い方が長くなる。活物質層12を圧縮して活物質層12の厚さを薄くした場合は、薄くした分、密度が高くなるため、含浸に要する時間の短縮効果は低い。しかし、この実施形態の二次電池用電極10は、集電板11の両面に塗布された活物質層12は複数層からなり、表面層15は少なくとも一端が表面層15の外周端部まで達する溝16が複数形成されているため、溝16が形成された部分は他の部分より電解液の含浸が早くなる。また、溝16が形成されていない部分も、表面からだけでなく溝16の部分からも電解液が含浸するようになるため、電解液の含浸が早くなる。   When the active material layer 12 applied to the current collector plate 11 is impregnated with the electrolytic solution, the time required for the impregnation becomes longer as the thickness of the active material layer 12 is the same. When the thickness of the active material layer 12 is reduced by compressing the active material layer 12, the density is increased as much as the thickness is reduced, so that the effect of shortening the time required for impregnation is low. However, in the secondary battery electrode 10 of this embodiment, the active material layer 12 applied to both surfaces of the current collector plate 11 is composed of a plurality of layers, and at least one end of the surface layer 15 reaches the outer peripheral end of the surface layer 15. Since a plurality of grooves 16 are formed, the portion where the grooves 16 are formed is more quickly impregnated with the electrolyte than the other portions. Further, since the electrolytic solution is impregnated not only from the surface but also from the portion of the groove 16 in the portion where the groove 16 is not formed, the impregnation of the electrolytic solution is accelerated.

二次電池用電極10を構成する活物質層12への電解液の含浸性に対する溝16の効果を確認するため、集電板11の内側層13上に表面層15が間欠的に形成された二次電池用電極(実施例)と、比較例として集電板11上に内側層13及び表面層15の合計の厚さを有する1層の活物質層12が形成された二次電池用電極を形成した。実施例と比較例の二次電池用電極について、電解液含浸時間と電極抵抗の関係を調べた。結果を図3に示す。図3において縦軸は電極抵抗を表し、横軸は浸漬時間を表す。   In order to confirm the effect of the groove 16 on the impregnation property of the electrolytic solution to the active material layer 12 constituting the secondary battery electrode 10, the surface layer 15 was intermittently formed on the inner layer 13 of the current collector plate 11. Secondary battery electrode (Example) and secondary battery electrode in which one active material layer 12 having the total thickness of the inner layer 13 and the surface layer 15 is formed on the current collector plate 11 as a comparative example. Formed. For the secondary battery electrodes of the example and the comparative example, the relationship between the electrolyte impregnation time and the electrode resistance was examined. The results are shown in FIG. In FIG. 3, the vertical axis represents electrode resistance, and the horizontal axis represents immersion time.

二次電池用電極に電解液の含浸を開始した時点では電極抵抗はkΩ(キロオーム)のオーダーであるが、含浸の進行に伴って電極抵抗は低下し、mΩ(ミリオーム)のオーダーまで低下して安定化、即ちほぼ一定の値になる。電解液が活物質層12全体に含浸されたことの確認は、電極抵抗がmΩのオーダーで安定化することで行われる。図3に示すように、実施例の二次電池用電極は比較例の二次電池用電極に比べて電極抵抗の低下速度が大きく、安定化に要する時間が短くなった。比較例に比べて実施例では1/4程度の時間で安定化した。   The electrode resistance is in the order of kΩ (kiloohm) at the time of starting the impregnation of the electrolyte for the secondary battery electrode. Stabilization, that is, almost constant value. Confirmation that the electrolytic solution is impregnated in the entire active material layer 12 is performed by stabilizing the electrode resistance on the order of mΩ. As shown in FIG. 3, the electrode for the secondary battery of the example had a higher rate of decrease in electrode resistance than the electrode for the secondary battery of the comparative example, and the time required for stabilization was shortened. Compared with the comparative example, in the example, it was stabilized in about ¼ time.

前記の構成の二次電池用電極10を用いた二次電池は種々の用途に使用されるが、例えば車両に搭載した状態でも使用される。
この実施形態によれば、以下に示す効果を得ることができる。
Although the secondary battery using the secondary battery electrode 10 having the above-described configuration is used for various purposes, for example, it is also used in a state where it is mounted on a vehicle.
According to this embodiment, the following effects can be obtained.

(1)二次電池用電極10は、金属製の集電板11の少なくとも片面に活物質が塗布された活物質層12を有する電極からなり、活物質層12は集電板11の少なくとも片面に複数層に塗布され、最も表面側の活物質層(表面層15)には少なくとも一端が表面層15の外周端部まで達する溝16が複数形成されている。そのため、活物質層12を圧縮して溝16を形成した場合に比べて電解液の含浸が早くなる。したがって、二次電池を製造する際に活物質層12への電解液の含浸に要する時間の短縮を図ることができる。   (1) The secondary battery electrode 10 includes an electrode having an active material layer 12 in which an active material is applied to at least one surface of a metal current collector plate 11, and the active material layer 12 is at least one surface of the current collector plate 11. A plurality of grooves 16 reaching at least one end to the outer peripheral end of the surface layer 15 are formed in the active material layer (surface layer 15) on the most surface side. Therefore, the impregnation with the electrolytic solution is accelerated compared to the case where the groove 16 is formed by compressing the active material layer 12. Therefore, it is possible to reduce the time required for impregnating the active material layer 12 with the electrolyte when manufacturing the secondary battery.

(2)活物質層12は集電板11の両面に塗布されている。一枚の集電板11に塗布される活物質の量が同じばあい、活物質層12が集電板11の両面に形成されている方が片面に形成されている場合に比べて厚さが半分になり、二次電池を製造する際に活物質層12への電解液の含浸に要する時間の短縮を図ることができる。   (2) The active material layer 12 is applied to both surfaces of the current collector plate 11. When the amount of active material applied to one current collector plate 11 is the same, the thickness of the active material layer 12 formed on both sides of the current collector plate 11 is larger than that formed on one side. Thus, the time required for impregnating the active material layer 12 with the electrolytic solution can be reduced when the secondary battery is manufactured.

(3)表面層15は間欠的に塗布されているため、表面層15には両端が表面層15の外周端部まで達する溝16が存在する状態になる。したがって、一端が表面層15の外周端部まで達する溝が形成された場合に比べて、電解液が溝16に浸入し易くなり活物質層12への含浸がより早くなる。   (3) Since the surface layer 15 is intermittently applied, the surface layer 15 is in a state in which there are grooves 16 whose both ends reach the outer peripheral end of the surface layer 15. Therefore, compared with the case where a groove whose one end reaches the outer peripheral end of the surface layer 15 is formed, the electrolytic solution easily enters the groove 16 and the active material layer 12 is impregnated faster.

(4)集電板11は一方向に長く延びる形状をしており、溝16は集電板11の長手方向と直交する方向に延び、かつ両端が表面層15の外周端部まで達する。したがって、溝16が集電板11の長手方向と傾斜する状態で形成されたものに比べてローラを用いた活物質の塗布が容易になる。   (4) The current collector plate 11 has a shape extending long in one direction, the groove 16 extends in a direction perpendicular to the longitudinal direction of the current collector plate 11, and both ends reach the outer peripheral end of the surface layer 15. Therefore, the application of the active material using a roller becomes easier as compared with the groove 16 formed in a state inclined with respect to the longitudinal direction of the current collector plate 11.

(5)二次電池用電極の製造方法は、金属製の集電板11の少なくとも片面に活物質が塗布された活物質層12を有する電極からなる二次電池用電極に対する活物質の塗布工程において、集電板11に活物質層12が複数層になるように複数回に分けて塗布を行い、最も表面側の活物質層(表面層15)の塗布は間欠的に行う。したがって、表面層15として両端が表面層15の外周端部まで達する溝16が存在し、電解液の含浸に要する時間の短縮を図ることができる二次電池用電極10を容易に製造することができる。   (5) The manufacturing method of the electrode for secondary batteries is an application process of the active material with respect to the electrode for secondary batteries which consists of an electrode which has the active material layer 12 with which the active material was apply | coated to the at least single side | surface of the metal current collecting plates 11. In FIG. 2, the active material layer 12 is applied in a plurality of times so that the active material layer 12 becomes a plurality of layers, and the active material layer (surface layer 15) on the most surface side is applied intermittently. Therefore, as the surface layer 15, there are grooves 16 whose both ends reach the outer peripheral end of the surface layer 15, and it is possible to easily manufacture the secondary battery electrode 10 capable of shortening the time required for impregnation with the electrolytic solution. it can.

(6)表面層15の塗布は転写ローラ21を用いて行われる。活物質を集電板11に塗布する場合、活物質のペーストを集電板11上あるいは集電板11に塗布された活物質層12上に直接塗布する方法では、集電板11が移動する状態において所望の間隔で間欠的に塗布するのが難しい。しかし、表面層15の塗布は転写ローラ21を用いて行われるため、集電板11が移動する状態でも活物質層12を所望の間隔で間欠的に容易に塗布することができる。   (6) The surface layer 15 is applied using the transfer roller 21. When the active material is applied to the current collector plate 11, the current collector plate 11 moves in a method in which the active material paste is directly applied onto the current collector plate 11 or the active material layer 12 applied to the current collector plate 11. It is difficult to apply intermittently at desired intervals in the state. However, since the surface layer 15 is applied using the transfer roller 21, the active material layer 12 can be easily and intermittently applied at a desired interval even when the current collecting plate 11 is moved.

(7)前記のように構成された二次電池用電極10を用いた二次電池は、二次電池用電極10が有する効果を得ることができる。
(8)前記の二次電池を車両に搭載して使用すると、その車両はその二次電池が有する効果を得ることができる。
(7) The secondary battery using the secondary battery electrode 10 configured as described above can obtain the effects of the secondary battery electrode 10.
(8) When the secondary battery is mounted on a vehicle and used, the vehicle can obtain the effects of the secondary battery.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 活物質層12は集電板11の両面ではなく片面にのみ形成されていてもよい。即ち、活物質層12は集電板11の少なくとも片面に形成されていればよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The active material layer 12 may be formed only on one side, not on both sides of the current collector plate 11. That is, the active material layer 12 only needs to be formed on at least one surface of the current collector plate 11.

○ 溝16は集電板11の長手方向と直交する方向に延びるものに限らず、例えば、図4(a)に示すように、集電板11の長手方向と傾斜する方向に延びる溝16が形成されるように表面層15が塗布されてもよい。   The grooves 16 are not limited to those extending in the direction orthogonal to the longitudinal direction of the current collector plate 11, and for example, as shown in FIG. 4A, the grooves 16 extending in the direction inclined with respect to the longitudinal direction of the current collector plate 11 are provided. A surface layer 15 may be applied to form.

○ 表面層15は、内側層13上に内側層13の幅と同じ幅で塗布される代わりに、図4(b)に示すように、内側層13の幅より狭い幅で塗布されてもよい。この場合、電解液の含浸はより早く行われる。   The surface layer 15 may be applied on the inner layer 13 with a width narrower than that of the inner layer 13, as shown in FIG. 4B, instead of being applied with the same width as the inner layer 13. . In this case, the impregnation with the electrolytic solution is performed earlier.

○ 隣り合う溝16の間隔L、即ち表面層15の長さは一定ではなく、異なる間隔Lの部分が存在してもよい。
○ 表面層15は両端が表面層15の外周端部まで達する溝16が複数存在する状態に限らず、少なくとも一端が表面層15の外周端部まで達する溝16が複数形成されていればよい。例えば、図4(c)に示すように、隣り合う表面層15同士が幅方向の一端で連続部15aを介して連続する状態に形成され、溝16は両端が表面層15の外周端部まで達する構成ではなく一端が表面層15の外周端部まで達する構成であってもよい。
The interval L between adjacent grooves 16, that is, the length of the surface layer 15 is not constant, and there may be portions with different intervals L.
The surface layer 15 is not limited to a state in which there are a plurality of grooves 16 whose both ends reach the outer peripheral end of the surface layer 15, and a plurality of grooves 16 whose at least one end reaches the outer peripheral end of the surface layer 15 are formed. For example, as shown in FIG. 4 (c), adjacent surface layers 15 are formed in a state where one end in the width direction continues through the continuous portion 15 a, and the groove 16 has both ends extending to the outer peripheral end portion of the surface layer 15. The structure which one end reaches to the outer periphery edge part of the surface layer 15 may be sufficient instead of the structure which reaches | attains.

○ 二次電池用電極10は活物質非塗布部14が集電板11の幅方向の両側に設けられた構成に限らず、幅方向の片側に設けられた構成であってもよい。
○ 集電板11上に塗布された内側層13上に活物質のペーストを間欠的に塗布して表面層15を間欠的に形成する場合、転写ローラ21を用いて塗布する代わりに、活物質供給部24から活物質のペーストを直接内側層13上に供給するようにしてもよい。また、ノズル噴射インクジェット式や塗布式などにより活物質のペーストを直接内側層13上に供給するようにしてもよい。
The secondary battery electrode 10 is not limited to the configuration in which the active material non-applied portions 14 are provided on both sides in the width direction of the current collector plate 11, but may be configured in one side in the width direction.
In the case where the surface layer 15 is intermittently formed by intermittently applying the active material paste on the inner layer 13 applied on the current collector plate 11, instead of applying using the transfer roller 21, the active material You may make it supply the paste of an active material directly on the inner layer 13 from the supply part 24. FIG. Alternatively, the active material paste may be directly supplied onto the inner layer 13 by a nozzle jet ink jet method or a coating method.

○ 集電板11上に形成された活物質層12は複数層で表面層15の内側に内側層13が2層以上存在してもよい。また、内側層13が2層以上存在する場合、それらの幅が全て同じではなく、表面層15に近い側の内側層13の幅が狭くてもよい。   The active material layer 12 formed on the current collector plate 11 may be a plurality of layers, and two or more inner layers 13 may exist inside the surface layer 15. Further, when two or more inner layers 13 are present, the widths of all the inner layers 13 are not the same and the width of the inner layer 13 closer to the surface layer 15 may be narrow.

10…二次電池用電極、11…集電板、12…活物質層、15…最も表面側の活物質層としての表面層、16…溝、21…転写ローラ。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery electrode, 11 ... Current collector plate, 12 ... Active material layer, 15 ... Surface layer as active material layer on the most surface side, 16 ... Groove, 21 ... Transfer roller.

Claims (8)

金属製の集電板の少なくとも片面に活物質が塗布された活物質層を有する電極からなる二次電池用電極であって、前記活物質層は前記集電板の少なくとも片面に複数層に塗布され、最も表面側の前記活物質層には少なくとも一端が前記最も表面側の活物質層の外周端部まで達する溝が複数形成されていることを特徴とする二次電池用電極。   An electrode for a secondary battery comprising an electrode having an active material layer coated with an active material on at least one side of a metal current collector plate, wherein the active material layer is applied to a plurality of layers on at least one side of the current collector plate An electrode for a secondary battery, wherein the active material layer on the outermost surface is formed with a plurality of grooves that reach at least one end to the outer peripheral end of the active material layer on the outermost surface. 前記活物質層は前記集電板の両面に塗布されている請求項1に記載の二次電池用電極。   The secondary battery electrode according to claim 1, wherein the active material layer is applied to both surfaces of the current collector plate. 最も表面側の前記活物質層は間欠的に塗布されている請求項1又は請求項2に記載の二次電池用電極。   The electrode for a secondary battery according to claim 1, wherein the active material layer on the most surface side is intermittently applied. 前記集電板は一方向に長く延びる形状をしており、
前記溝は前記集電板の長手方向と直交する方向に延び、かつ両端が前記最も表面側の活物質層の外周端部まで達する請求項1〜3のいずれか一項に記載の二次電池用電極。
The current collector plate has a shape extending long in one direction,
4. The secondary battery according to claim 1, wherein the groove extends in a direction orthogonal to the longitudinal direction of the current collector plate, and both ends reach the outer peripheral end of the outermost active material layer. Electrode.
請求項1〜4のいずれか一項に記載の二次電池用電極を用いた二次電池。   The secondary battery using the electrode for secondary batteries as described in any one of Claims 1-4. 請求項5に記載の二次電池を搭載した車両。   A vehicle equipped with the secondary battery according to claim 5. 金属製の集電板の少なくとも片面に活物質が塗布された活物質層を有する電極からなる二次電池用電極の製造方法であって、前記活物質の塗布工程において、前記集電板に活物質層が複数層になるように複数回に分けて塗布を行い、最も表面側の前記活物質層の塗布は間欠的に行うことを特徴とする二次電池用電極の製造方法。   A method for producing an electrode for a secondary battery comprising an electrode having an active material layer coated with an active material on at least one surface of a metal current collector plate, wherein the active material is applied to the current collector plate in the active material application step. A method for producing an electrode for a secondary battery, wherein the material layer is applied in a plurality of times so as to form a plurality of layers, and the active material layer on the most surface side is applied intermittently. 最も表面側の前記活物質層の塗布は転写ローラを用いて行われる請求項7に記載の二次電池用電極の製造方法。   The method for manufacturing an electrode for a secondary battery according to claim 7, wherein the application of the active material layer on the most surface side is performed using a transfer roller.
JP2011245667A 2011-11-09 2011-11-09 Electrode for secondary battery, method for manufacturing electrode for secondary battery, secondary battery and vehicle Pending JP2013101877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245667A JP2013101877A (en) 2011-11-09 2011-11-09 Electrode for secondary battery, method for manufacturing electrode for secondary battery, secondary battery and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011245667A JP2013101877A (en) 2011-11-09 2011-11-09 Electrode for secondary battery, method for manufacturing electrode for secondary battery, secondary battery and vehicle

Publications (1)

Publication Number Publication Date
JP2013101877A true JP2013101877A (en) 2013-05-23

Family

ID=48622310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245667A Pending JP2013101877A (en) 2011-11-09 2011-11-09 Electrode for secondary battery, method for manufacturing electrode for secondary battery, secondary battery and vehicle

Country Status (1)

Country Link
JP (1) JP2013101877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210717A1 (en) 2018-06-29 2020-01-02 Robert Bosch Gmbh Method for producing an electrode assembly for an electrical energy storage unit and corresponding electrical energy storage unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210717A1 (en) 2018-06-29 2020-01-02 Robert Bosch Gmbh Method for producing an electrode assembly for an electrical energy storage unit and corresponding electrical energy storage unit

Similar Documents

Publication Publication Date Title
KR101184544B1 (en) Method and apparatus for drying electrode material
KR101103499B1 (en) Electrode assembly for battery and manufacturing thereof
JP5359136B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP6402555B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP6115380B2 (en) Strip electrode manufacturing method and strip electrode cutting apparatus
KR20120020223A (en) Doping apparatus for manufacturing electrode of enegy storage device, and method for manufacturing the electrode with the same
JP2010225393A (en) Method of manufacturing electrode of battery, manufacturing device, and battery
JP2014116080A (en) Electricity storage device and method for manufacturing electricity storage device
JP2013101877A (en) Electrode for secondary battery, method for manufacturing electrode for secondary battery, secondary battery and vehicle
KR101623716B1 (en) Guide Roll Device Having Pressing Arms
JP2018198161A (en) Coating device
JP2016018647A (en) Roll press apparatus
JP6206222B2 (en) Electrode manufacturing method
JP2014102991A (en) Electrode manufacturing method and electrode manufacturing device
JP2013171669A (en) Power storage device and vehicle
JP2017004717A (en) Manufacturing method of power storage device, and press device for electrode sheet for power storage device
JP2017091726A (en) Manufacturing apparatus and manufacturing method for electrode plate
WO2014203773A1 (en) Method for manufacturing electricity storage device electrode
JP2015115116A (en) Press apparatus and manufacturing method of electrode material
JP2013118097A (en) Electrode for secondary battery, secondary battery, and vehicle
US20190013511A1 (en) Electrode sheet manufacturing method
US11594787B2 (en) Electrospinning apparatus and method for manufacturing separator-integrated electrode
KR20170094642A (en) Pressing Device Capable of Adjusting Space between Pressing Rolls
JP5857935B2 (en) Electrode manufacturing method
JP5900219B2 (en) Electrode manufacturing method, power storage device, and secondary battery