JP2013101867A - Nonaqueous electrolyte secondary battery, and manufacturing method therefor - Google Patents

Nonaqueous electrolyte secondary battery, and manufacturing method therefor Download PDF

Info

Publication number
JP2013101867A
JP2013101867A JP2011245485A JP2011245485A JP2013101867A JP 2013101867 A JP2013101867 A JP 2013101867A JP 2011245485 A JP2011245485 A JP 2011245485A JP 2011245485 A JP2011245485 A JP 2011245485A JP 2013101867 A JP2013101867 A JP 2013101867A
Authority
JP
Japan
Prior art keywords
layer
secondary battery
electrode mixture
negative electrode
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011245485A
Other languages
Japanese (ja)
Inventor
Yozo Uchida
陽三 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011245485A priority Critical patent/JP2013101867A/en
Publication of JP2013101867A publication Critical patent/JP2013101867A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery including a heat-resistant layer capable of limiting an increase in the internal resistance, and to provide a manufacturing method therefor.SOLUTION: A lithium ion secondary battery is manufactured by a manufacturing method including a dispersion step S11 for preparing a paste by dispersing an insulating filler and a binding agent into a solvent, a granulation step S12 for granulating composite particles compounding the insulating filler and binding agent by drying the paste prepared in the dispersion step S11, a molding step S13 for forming a particle layer composed of a large number of composite particles by molding the composite particles prepared in the granulation step S12 so as to cover a negative electrode mixture layer 12, and a press step S14 for changing the particle layer to a heat-resistant layer by pressing the particle layer formed in the molding step S13.

Description

本発明は、非水電解質二次電池、及びその製造方法に関し、特に電極合剤層上に耐熱層を形成する技術に関する。   The present invention relates to a nonaqueous electrolyte secondary battery and a method for producing the same, and more particularly to a technique for forming a heat-resistant layer on an electrode mixture layer.

一般的に、リチウムイオン二次電池、及びニッケル・水素蓄電池等の非水電解質二次電池は、シート状に形成された一対の電極(正極及び負極)をセパレータを介して積層し、捲回して成る電極体を具備している。
このような非水電解質二次電池においては、電極体への異物の混入等によって正負極間でショートが発生し、セパレータが溶融するおそれがある。
In general, lithium ion secondary batteries and non-aqueous electrolyte secondary batteries such as nickel / hydrogen storage batteries are formed by laminating a pair of electrodes (a positive electrode and a negative electrode) formed in a sheet shape via a separator and winding them. The electrode body which comprises is comprised.
In such a non-aqueous electrolyte secondary battery, a short circuit may occur between the positive and negative electrodes due to foreign matters mixed into the electrode body, and the separator may melt.

従来、セパレータの溶融等に起因する内部短絡を防止するために、電極合剤層の表面に耐熱層を形成する技術が公知となっている(例えば、特許文献1参照)。
当該耐熱層は、絶縁性フィラー及び結着剤を溶媒に分散させて成るペーストを、ダイコータ等の塗工機を用いて、電極合剤層の表面に塗布した後、乾燥させることで形成される。
Conventionally, a technique for forming a heat-resistant layer on the surface of an electrode mixture layer in order to prevent an internal short circuit due to melting of a separator or the like is known (for example, see Patent Document 1).
The heat-resistant layer is formed by applying a paste obtained by dispersing an insulating filler and a binder in a solvent to the surface of the electrode mixture layer using a coating machine such as a die coater and then drying the paste. .

しかしながら、上記の耐熱層が形成された非水電解質二次電池においては、ペースト中の溶媒及び結着剤が電極合剤層内に浸透するため、電極合剤層中の活物質が結着剤によって被覆され、内部抵抗が上昇するという問題が生じる。   However, in the nonaqueous electrolyte secondary battery in which the above heat-resistant layer is formed, the solvent and the binder in the paste permeate into the electrode mixture layer, so that the active material in the electrode mixture layer is the binder. This causes a problem that the internal resistance is increased.

特開2006−120604号公報JP 2006-120604 A

本発明は、内部抵抗の上昇を抑制可能な耐熱層を具備する非水電解質二次電池、及びその製造方法を提供することを課題とする。   This invention makes it a subject to provide the nonaqueous electrolyte secondary battery which comprises the heat-resistant layer which can suppress a raise of internal resistance, and its manufacturing method.

本発明に係る非水電解質二次電池の製造方法は、シート状の集電体、及び当該集電体の表面に形成される電極合剤層を備える一対の電極を具備する非水電解質二次電池の製造方法であって、絶縁性フィラー及び結着剤を溶媒に分散させてペーストを作製する分散工程と、前記分散工程にて作製されたペーストを乾燥させて、前記絶縁性フィラーと前記結着剤とが複合した複合粒子を造粒する造粒工程と、前記造粒工程にて作製された複合粒子を、前記一対の電極の少なくとも一方の電極合剤層を覆うように成型して、多数の複合粒子からなる粒子層を形成する成型工程と、前記成型工程にて形成された粒子層に対してプレス加工を施し、当該粒子層を耐熱層へと変化させるプレス工程と、を具備する。   A method for producing a nonaqueous electrolyte secondary battery according to the present invention comprises a nonaqueous electrolyte secondary comprising a sheet-like current collector and a pair of electrodes each having an electrode mixture layer formed on the surface of the current collector. A method for producing a battery, comprising: a dispersion step in which an insulating filler and a binder are dispersed in a solvent to prepare a paste; and the paste produced in the dispersion step is dried to obtain the insulating filler and the binder. A granulation step of granulating composite particles combined with an adhesive, and forming the composite particles produced in the granulation step so as to cover at least one electrode mixture layer of the pair of electrodes, A molding step for forming a particle layer composed of a large number of composite particles; and a pressing step for applying a pressing process to the particle layer formed in the molding step to change the particle layer into a heat-resistant layer. .

本発明に係る非水電解質二次電池の製造方法において、前記成型工程では、前記電極合剤層の表面及び側面を覆うように前記粒子層を形成することが好ましい。   In the method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention, in the molding step, the particle layer is preferably formed so as to cover a surface and a side surface of the electrode mixture layer.

本発明に係る非水電解質二次電池の製造方法において、負極のみに前記耐熱層を形成することが好ましい。   In the method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention, it is preferable to form the heat-resistant layer only on the negative electrode.

本発明に係る非水電解質二次電池は、シート状の集電体、及び当該集電体の表面に形成される電極合剤層を備える電極を具備する非水電解質二次電池であって、絶縁性フィラーと結着剤とが複合した複合粒子からなる耐熱層が前記電極合剤層上に形成され、前記耐熱層は、前記電極合剤層の表面及び側面を覆うように形成される。   A non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery comprising a sheet-shaped current collector and an electrode comprising an electrode mixture layer formed on the surface of the current collector, A heat-resistant layer made of composite particles in which an insulating filler and a binder are combined is formed on the electrode mixture layer, and the heat-resistant layer is formed so as to cover the surface and side surfaces of the electrode mixture layer.

本発明に係る非水電解質二次電池、及びその製造方法によれば、電極合剤層の表面に耐熱層を形成する場合における内部抵抗の上昇を抑制することができる。   According to the nonaqueous electrolyte secondary battery and the manufacturing method thereof according to the present invention, it is possible to suppress an increase in internal resistance when a heat-resistant layer is formed on the surface of the electrode mixture layer.

本発明に係る非水電解質二次電池の負極を示す図。The figure which shows the negative electrode of the nonaqueous electrolyte secondary battery which concerns on this invention. 本発明に係る非水電解質二次電池の製造工程を示す図。The figure which shows the manufacturing process of the nonaqueous electrolyte secondary battery which concerns on this invention. 負極合剤層上に形成された粒子層を示す図。The figure which shows the particle layer formed on the negative mix layer. 従来の耐熱層が形成された電極を示す図。The figure which shows the electrode in which the conventional heat-resistant layer was formed.

以下では、図1を参照して、本発明に係る非水電解質二次電池の一実施形態であるリチウムイオン二次電池について説明する。   Below, with reference to FIG. 1, the lithium ion secondary battery which is one Embodiment of the nonaqueous electrolyte secondary battery which concerns on this invention is demonstrated.

前記リチウムイオン二次電池は、外装を成す容器と、当該容器に収納される電極体とを具備する。   The lithium ion secondary battery includes a container forming an exterior and an electrode body housed in the container.

前記容器は、アルミニウム又は、ステンレス鋼等から成る金属缶であり、内部に前記電極体を収納可能に構成される。前記容器に前記電極体が収納された状態で、前記容器の内部に電解液が充填されることで、当該電解液が前記電極体に含浸する。   The container is a metal can made of aluminum, stainless steel, or the like, and is configured to accommodate the electrode body therein. In the state where the electrode body is stored in the container, the electrolyte solution is impregnated into the electrode body by filling the inside of the container with the electrolyte solution.

前記電極体は、正極及び負極10(一対の電極)をセパレータを介して積層し、捲回することで所定の形状に成形された捲回体である。前記電極体は、前記電解液が含浸することで発電要素となる。   The electrode body is a wound body that is formed into a predetermined shape by laminating a positive electrode and a negative electrode 10 (a pair of electrodes) via a separator and winding them. The electrode body becomes a power generation element when impregnated with the electrolytic solution.

前記正極は、シート状の正極集電体と、当該正極集電体の表面に形成された正極合剤層とを備える電極である。
前記正極集電体は、アルミニウム、チタン、又はステンレス鋼等の金属箔から成る集電体である。
前記正極合剤層は、正極活物質を導電助剤及び結着剤等と共に溶媒に分散させた正極合剤からなる電極合剤層である。前記正極合剤層は、前記正極集電体の表面にダイコータ等の塗工機によって塗工されたペースト状の前記正極合剤を乾燥させた後、当該正極合剤に対してプレス加工を施すことによって形成される。
The positive electrode is an electrode including a sheet-like positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
The positive electrode current collector is a current collector made of a metal foil such as aluminum, titanium, or stainless steel.
The positive electrode mixture layer is an electrode mixture layer made of a positive electrode mixture in which a positive electrode active material is dispersed in a solvent together with a conductive additive and a binder. The positive electrode mixture layer is formed by drying the paste-like positive electrode mixture coated on a surface of the positive electrode current collector by a coating machine such as a die coater and then pressing the positive electrode mixture. Formed by.

図1に示すように、負極10は、シート状の負極集電体11と、負極集電体11の表面に形成された負極合剤層12と、負極合剤層12上に形成された耐熱層(HRL:Heat Resistance Layer)13とを備える電極である。
負極集電体11は、銅、ニッケル、又はステンレス鋼等の金属箔から成る集電体である。
負極合剤層12は、負極活物質を導電助剤及び結着剤等と共に溶媒に分散させた負極合剤からなる電極合剤層である。負極合剤層12は、負極集電体11の表面にダイコータ等の塗工機によって塗工されたペースト状の前記負極合剤を乾燥させた後、当該負極合剤に対してプレス加工を施すことによって形成される。
耐熱層13は、前記セパレータの溶融等に起因する内部短絡を抑制するための層であり、負極合剤層12の表面(図1における上面)及び側面(図1における左右両面)を覆うように形成されている。耐熱層13は、絶縁性フィラーと結着剤とが複合した多数の粒子に対してプレス加工を施すことによって形成される。
なお、本発明に係る電極合剤層(負極合剤層12)の表面とは、本発明に係る集電体(負極集電体11)の表面(電極合剤層が形成される面)に対して略平行となる面であり、本発明に係る電極合剤層(負極合剤層12)の側面とは、本発明に係る集電体(負極集電体11)の表面に対して略垂直となる面である。
As shown in FIG. 1, the negative electrode 10 includes a sheet-like negative electrode current collector 11, a negative electrode mixture layer 12 formed on the surface of the negative electrode current collector 11, and a heat resistance formed on the negative electrode mixture layer 12. It is an electrode provided with a layer (HRL: Heat Resistance Layer) 13.
The negative electrode current collector 11 is a current collector made of a metal foil such as copper, nickel, or stainless steel.
The negative electrode mixture layer 12 is an electrode mixture layer made of a negative electrode mixture in which a negative electrode active material is dispersed in a solvent together with a conductive additive and a binder. The negative electrode mixture layer 12 is obtained by drying the paste-like negative electrode mixture coated on the surface of the negative electrode current collector 11 by a coating machine such as a die coater and then pressing the negative electrode mixture. Formed by.
The heat-resistant layer 13 is a layer for suppressing an internal short circuit caused by the melting of the separator, and covers the surface (upper surface in FIG. 1) and side surfaces (both left and right in FIG. 1) of the negative electrode mixture layer 12. Is formed. The heat-resistant layer 13 is formed by pressing a large number of particles in which an insulating filler and a binder are combined.
The surface of the electrode mixture layer (negative electrode mixture layer 12) according to the present invention is the surface of the current collector (negative electrode current collector 11) according to the present invention (surface on which the electrode mixture layer is formed). The side surface of the electrode mixture layer (negative electrode mixture layer 12) according to the present invention is substantially parallel to the surface of the current collector (negative electrode current collector 11) according to the present invention. It is a vertical surface.

前記セパレータは、ポリエチレン、ポリプロピレンといったポリオレフィン樹脂等から成る絶縁体であり、前記正極と負極10との間に介装されている。   The separator is an insulator made of a polyolefin resin such as polyethylene or polypropylene, and is interposed between the positive electrode and the negative electrode 10.

以下では、図2〜図4を参照して、本発明に係る非水電解質二次電池の製造方法の一実施形態である、前記リチウムイオン二次電池の製造工程について説明する。   Below, with reference to FIGS. 2-4, the manufacturing process of the said lithium ion secondary battery which is one Embodiment of the manufacturing method of the nonaqueous electrolyte secondary battery which concerns on this invention is demonstrated.

前記リチウムイオン二次電池の製造工程は、前記正極を作製する正極作製工程と、負極10を作製する負極作製工程とを具備する。   The manufacturing process of the lithium ion secondary battery includes a positive electrode manufacturing process for manufacturing the positive electrode and a negative electrode manufacturing process for manufacturing the negative electrode 10.

前記正極作製工程においては、まず、ダイコータ等の塗工機を用いて、前記正極集電体の表面に前記正極合剤を塗工した後、当該正極合剤を乾燥させる。
次に、前記正極集電体の表面上の前記正極合剤に対してプレス加工を施すことで、前記正極集電体の表面に前記正極合剤層を形成する。
こうして、前記正極を作製する。
In the positive electrode preparation step, first, the positive electrode mixture is applied to the surface of the positive electrode current collector using a coating machine such as a die coater, and then the positive electrode mixture is dried.
Next, the positive electrode mixture layer is formed on the surface of the positive electrode current collector by pressing the positive electrode mixture on the surface of the positive electrode current collector.
Thus, the positive electrode is produced.

前記負極作製工程は、負極10を作製する工程であり、負極合剤層12上に耐熱層13を形成する耐熱層形成工程S10を具備する。
前記負極作製工程においては、負極集電体11の表面に負極合剤層12を形成する工程を行った後に、耐熱層形成工程S10を行う。
なお、負極集電体11の表面に負極合剤層12を形成する工程は、前記正極作製工程と略同様であるため、詳細な説明は省略する。
The negative electrode manufacturing step is a step of manufacturing the negative electrode 10, and includes a heat-resistant layer forming step S 10 for forming the heat-resistant layer 13 on the negative electrode mixture layer 12.
In the negative electrode preparation step, after the step of forming the negative electrode mixture layer 12 on the surface of the negative electrode current collector 11, the heat resistant layer forming step S10 is performed.
In addition, since the process of forming the negative mix layer 12 on the surface of the negative electrode collector 11 is substantially the same as the positive electrode preparation process, detailed description thereof is omitted.

図2に示すように、耐熱層形成工程S10は、分散工程S11と、造粒工程S12と、成型工程S13と、プレス工程S14とを具備する。   As shown in FIG. 2, the heat-resistant layer forming step S10 includes a dispersing step S11, a granulating step S12, a molding step S13, and a pressing step S14.

分散工程S11は、前記絶縁性フィラー及び前記結着剤を溶媒に分散させてペーストを作製する工程である。
分散工程S11においては、適宜の分散機を用いて、粉末状の前記絶縁性フィラー及び前記結着剤を溶媒に分散させ、ペーストを作製する。
前記絶縁性フィラーとしては、酸化マグネシウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化タングステン、酸化亜鉛、酸化ケイ素等を採用することが可能であり、それらのうちの一種を単独で用いても、二種以上を組み合わせて用いてもよい。
前記結着剤としては、ポリアクリロニトリル(PAN)、ポリアクリル酸(PAA)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、スチレン−ブタジエンゴム(SBR)等を採用することが可能であり、それらのうちの一種を単独で用いても、二種以上を組み合わせて用いてもよい。
前記溶媒としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)等を採用することが可能である。
例えば、前記絶縁性フィラーとして酸化マグネシウム(MgO)、前記結着剤としてポリアクリロニトリル(PAN)、溶媒としてN−メチルピロリドン(NMP)を採用し、混合比をMgO:PAN=96:4(wt%)として、固形分率が35wt%となるようにペーストを作製する。
The dispersion step S11 is a step of producing a paste by dispersing the insulating filler and the binder in a solvent.
In the dispersion step S11, using a suitable disperser, the powdery insulating filler and the binder are dispersed in a solvent to prepare a paste.
As the insulating filler, magnesium oxide, titanium oxide, aluminum oxide, zirconium oxide, tungsten oxide, zinc oxide, silicon oxide and the like can be adopted. Even if one of them is used alone, You may use combining more than a seed.
As the binder, polyacrylonitrile (PAN), polyacrylic acid (PAA), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene (PE), styrene-butadiene rubber (SBR), etc. are adopted. One of them may be used alone, or two or more may be used in combination.
As the solvent, N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMA) or the like can be employed.
For example, magnesium oxide (MgO) is used as the insulating filler, polyacrylonitrile (PAN) is used as the binder, N-methylpyrrolidone (NMP) is used as the solvent, and the mixing ratio is MgO: PAN = 96: 4 (wt%). ), A paste is prepared so that the solid content is 35 wt%.

造粒工程S12は、分散工程S11にて作製されたペーストを乾燥させて、前記絶縁性フィラーと前記結着剤とが複合した粒子(以下、「複合粒子」と記す)を造粒する工程である。
造粒工程S12においては、スプレードライ、フリーズドライ、又は流動層造粒等により、前記ペーストを乾燥させて、前記絶縁性フィラーと前記結着剤とが複合した複合粒子を造粒する。この時、造粒された複合粒子に対して、適宜、分級を行うことが好ましい。
The granulation step S12 is a step of drying the paste produced in the dispersion step S11 to granulate particles (hereinafter referred to as “composite particles”) in which the insulating filler and the binder are combined. is there.
In the granulation step S12, the paste is dried by spray drying, freeze drying, fluidized bed granulation, or the like, and composite particles in which the insulating filler and the binder are combined are granulated. At this time, it is preferable to appropriately classify the granulated composite particles.

図3に示すように、成型工程S13は、造粒工程S12にて作製された複合粒子を負極合剤層12を覆うように成型し、多数の複合粒子からなる粒子層14を形成する工程である。
成型工程S13においては、スキージ法、ロール間プレス法、又は静電スクリーン法等により、負極集電体11の表面に形成された負極合剤層12上に複合粒子を成型することで粒子層14を形成する。
この時、負極合剤層12の表面(図3における上面)及び側面(図3における左右両面)を覆うように、粒子層14を形成することが好ましい。詳細には、粒子層14の表面(図3における上端面)と、負極集電体11の表面との距離が略均一となるように、負極合剤層12の表面、及び負極合剤層12の側面近傍における負極集電体11の表面に複合粒子を成型する。つまり、負極合剤層12の表面に成型される複合粒子の量を、負極合剤層12の側面近傍における負極集電体11の表面に成型される複合粒子の量よりも少なくなるように(負極合剤層12の表面に成型される複合粒子の厚み寸法が負極合剤層12の側面近傍における負極集電体11の表面に成型される複合粒子の厚み寸法よりも小さくなるように)、複合粒子の成型を制御する。複合粒子は、粉体であるため堆積し、粒子層14を容易に所望の形状とすることができる。
As shown in FIG. 3, the molding step S13 is a step of molding the composite particles produced in the granulation step S12 so as to cover the negative electrode mixture layer 12 and forming a particle layer 14 composed of a large number of composite particles. is there.
In the molding step S13, the particle layer 14 is formed by molding composite particles on the negative electrode mixture layer 12 formed on the surface of the negative electrode current collector 11 by a squeegee method, an inter-roll press method, an electrostatic screen method, or the like. Form.
At this time, it is preferable to form the particle layer 14 so as to cover the surface (upper surface in FIG. 3) and the side surfaces (left and right both surfaces in FIG. 3) of the negative electrode mixture layer 12. Specifically, the surface of the negative electrode mixture layer 12 and the negative electrode mixture layer 12 so that the distance between the surface of the particle layer 14 (upper end surface in FIG. 3) and the surface of the negative electrode current collector 11 is substantially uniform. Composite particles are molded on the surface of the negative electrode current collector 11 in the vicinity of the side surface of the electrode. That is, the amount of composite particles molded on the surface of the negative electrode mixture layer 12 is smaller than the amount of composite particles molded on the surface of the negative electrode current collector 11 in the vicinity of the side surface of the negative electrode mixture layer 12 ( The thickness dimension of the composite particles molded on the surface of the negative electrode mixture layer 12 is smaller than the thickness dimension of the composite particles molded on the surface of the negative electrode current collector 11 in the vicinity of the side surface of the negative electrode mixture layer 12). Control molding of composite particles. Since the composite particles are powder, they are deposited, and the particle layer 14 can be easily formed into a desired shape.

プレス工程S14は、成型工程S13にて形成された粒子層14に対してプレス加工を施す工程である。
プレス工程S14においては、平板プレス機、又はロールプレス機等を用いて、粒子層14に対してプレス加工を施すことで、粒子層14を耐熱層13へと変化させる。
The pressing step S14 is a step of pressing the particle layer 14 formed in the molding step S13.
In the pressing step S <b> 14, the particle layer 14 is changed to the heat-resistant layer 13 by pressing the particle layer 14 using a flat plate press or a roll press.

以上のように、耐熱層形成工程S10を経て、負極合剤層12上に耐熱層13が形成される(図1参照)。
耐熱層13は、従来の耐熱層とは異なり、溶剤が存在していない多数の複合粒子から作製されるため、当該溶剤と共に前記結着剤が負極合剤層12内に浸透することがない。
これにより、前記結着剤が負極合剤層12中の負極活物質を被覆することに起因する、前記リチウムイオン二次電池の内部抵抗の上昇を抑制することができる。
As described above, the heat-resistant layer 13 is formed on the negative electrode mixture layer 12 through the heat-resistant layer forming step S10 (see FIG. 1).
Unlike the conventional heat-resistant layer, the heat-resistant layer 13 is produced from a large number of composite particles in which no solvent is present, so that the binder does not penetrate into the negative electrode mixture layer 12 together with the solvent.
Thereby, the raise of the internal resistance of the said lithium ion secondary battery resulting from the said binder coat | covering the negative electrode active material in the negative mix layer 12 can be suppressed.

また、負極合剤層12の表面及び側面を覆うように粒子層14が形成されるため、負極合剤層12の表面のみならず、負極合剤層12の側面も覆うように耐熱層13が形成される。
これにより、負極合剤層12の側面における異物による短絡を抑制することができる。
図4に示すように、従来の非水電解質二次電池においては、電極合剤層の側面(図4の左右両面)を覆う耐熱層が形成できないという問題が生じていた。これは、従来の非水電解質二次電池においては、前記絶縁性フィラー及び前記結着剤を所定の溶媒に分散させて成るペーストを、ダイコータ等の塗工機を用いて塗布することによって耐熱層を形成するためである。ダイコータ等の塗工機は、平坦面に対して均一の厚みでペーストを塗工するように構成されているため、塗工対象に段差が存在すると、当該段差部分に対するペーストの塗布量が不足してしまう。
しかしながら、本発明によれば、このような問題を解決することができるのである。
Further, since the particle layer 14 is formed so as to cover the surface and the side surface of the negative electrode mixture layer 12, the heat-resistant layer 13 is formed so as to cover not only the surface of the negative electrode mixture layer 12 but also the side surface of the negative electrode mixture layer 12. It is formed.
Thereby, the short circuit by the foreign material in the side surface of the negative mix layer 12 can be suppressed.
As shown in FIG. 4, in the conventional non-aqueous electrolyte secondary battery, the problem that the heat-resistant layer which covers the side surface (left and right both surfaces of FIG. 4) of an electrode mixture layer cannot be formed has arisen. This is because, in a conventional nonaqueous electrolyte secondary battery, a heat-resistant layer is formed by applying a paste in which the insulating filler and the binder are dispersed in a predetermined solvent using a coating machine such as a die coater. It is for forming. A coating machine such as a die coater is configured to apply paste with a uniform thickness on a flat surface. Therefore, if there is a step in the coating target, the amount of paste applied to the stepped portion is insufficient. End up.
However, according to the present invention, such a problem can be solved.

前記正極作製工程及び前記負極作製工程の後は、前記電極体を前記容器に収納する収納工程、及び前記電極体が収納された前記容器の内部に前記電解液を注液する注液工程等を経て、前記リチウムイオン二次電池が製造されることとなる。   After the positive electrode preparation step and the negative electrode preparation step, a storage step of storing the electrode body in the container, a liquid injection step of injecting the electrolyte into the container in which the electrode body is stored, and the like. As a result, the lithium ion secondary battery is manufactured.

なお、本実施形態においては、負極10のみに耐熱層13を形成したが、前記正極のみに本発明に係る耐熱層を形成すること、又は前記正極及び負極10の双方に本発明に係る耐熱層を形成することも可能である。
ただし、負極10におけるデンドライト析出等を考慮すると、少なくとも負極10に耐熱層13を形成することが好ましく、前記リチウムイオン二次電池の製造に要する時間及びコスト等を考慮すると、負極10のみに耐熱層13を形成することが更に好ましい。
In this embodiment, the heat-resistant layer 13 is formed only on the negative electrode 10, but the heat-resistant layer according to the present invention is formed only on the positive electrode, or the heat-resistant layer according to the present invention is formed on both the positive electrode and the negative electrode 10. It is also possible to form
However, in consideration of dendrite precipitation or the like in the negative electrode 10, it is preferable to form at least the heat-resistant layer 13 on the negative electrode 10, and considering the time and cost required for manufacturing the lithium ion secondary battery, the heat-resistant layer is formed only on the negative electrode 10. More preferably, 13 is formed.

10 負極(電極)
11 負極集電体(集電体)
12 負極合剤層(電極合剤層)
13 耐熱層
14 粒子層
10 Negative electrode (electrode)
11 Negative electrode current collector (current collector)
12 Negative electrode mixture layer (electrode mixture layer)
13 Heat-resistant layer 14 Particle layer

Claims (4)

シート状の集電体、及び当該集電体の表面に形成される電極合剤層を備える一対の電極を具備する非水電解質二次電池の製造方法であって、
絶縁性フィラー及び結着剤を溶媒に分散させてペーストを作製する分散工程と、
前記分散工程にて作製されたペーストを乾燥させて、前記絶縁性フィラーと前記結着剤とが複合した複合粒子を造粒する造粒工程と、
前記造粒工程にて作製された複合粒子を、前記一対の電極の少なくとも一方の電極合剤層を覆うように成型して、多数の複合粒子からなる粒子層を形成する成型工程と、
前記成型工程にて形成された粒子層に対してプレス加工を施し、当該粒子層を耐熱層へと変化させるプレス工程と、を具備する、
ことを特徴とする、非水電解質二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery comprising a sheet-shaped current collector and a pair of electrodes comprising an electrode mixture layer formed on the surface of the current collector,
A dispersion step of producing a paste by dispersing an insulating filler and a binder in a solvent;
A granulation step of drying the paste prepared in the dispersion step and granulating composite particles in which the insulating filler and the binder are combined;
A molding step of molding the composite particles produced in the granulation step so as to cover at least one electrode mixture layer of the pair of electrodes, and forming a particle layer composed of a large number of composite particles;
Pressing the particle layer formed in the molding step, and changing the particle layer into a heat-resistant layer,
A method for producing a non-aqueous electrolyte secondary battery.
前記成型工程では、前記電極合剤層の表面及び側面を覆うように前記粒子層を形成する、
ことを特徴とする請求項1に記載の非水電解質二次電池の製造方法。
In the molding step, the particle layer is formed so as to cover the surface and side surfaces of the electrode mixture layer.
The manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1 characterized by the above-mentioned.
負極のみに前記耐熱層を形成する、
ことを特徴とする請求項1又は請求項2に記載の非水電解質二次電池の製造方法。
Forming the heat-resistant layer only on the negative electrode,
The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein:
シート状の集電体、及び当該集電体の表面に形成される電極合剤層を備える電極を具備する非水電解質二次電池であって、
絶縁性フィラーと結着剤とが複合した複合粒子からなる耐熱層が前記電極合剤層上に形成され、
前記耐熱層は、前記電極合剤層の表面及び側面を覆うように形成される、
ことを特徴とする、非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a sheet-like current collector and an electrode comprising an electrode mixture layer formed on the surface of the current collector,
A heat-resistant layer composed of composite particles in which an insulating filler and a binder are combined is formed on the electrode mixture layer,
The heat-resistant layer is formed so as to cover the surface and side surfaces of the electrode mixture layer.
A non-aqueous electrolyte secondary battery characterized by the above.
JP2011245485A 2011-11-09 2011-11-09 Nonaqueous electrolyte secondary battery, and manufacturing method therefor Pending JP2013101867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245485A JP2013101867A (en) 2011-11-09 2011-11-09 Nonaqueous electrolyte secondary battery, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011245485A JP2013101867A (en) 2011-11-09 2011-11-09 Nonaqueous electrolyte secondary battery, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013101867A true JP2013101867A (en) 2013-05-23

Family

ID=48622303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245485A Pending JP2013101867A (en) 2011-11-09 2011-11-09 Nonaqueous electrolyte secondary battery, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013101867A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053184A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2015193982A1 (en) * 2014-06-18 2015-12-23 株式会社日立製作所 Lithium ion battery and method for manufacturing same
JP2016152066A (en) * 2015-02-16 2016-08-22 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2016213094A (en) * 2015-05-11 2016-12-15 トヨタ自動車株式会社 Method of manufacturing negative electrode for secondary battery
CN106716684A (en) * 2014-09-30 2017-05-24 株式会社杰士汤浅国际 Negative electrode for nonaqueous electrolyte electricity storage elements, nonaqueous electrolyte electricity storage element, and electricity storage device
US10566610B2 (en) 2017-03-22 2020-02-18 Toyota Jidosha Kabushiki Kaisha Method of manufacturing negative electrode for non-aqueous electrolyte secondary battery, and method of manufacturing non-aqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053184A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2015193982A1 (en) * 2014-06-18 2015-12-23 株式会社日立製作所 Lithium ion battery and method for manufacturing same
JPWO2015193982A1 (en) * 2014-06-18 2017-04-20 株式会社日立製作所 Lithium ion battery and manufacturing method thereof
CN106716684A (en) * 2014-09-30 2017-05-24 株式会社杰士汤浅国际 Negative electrode for nonaqueous electrolyte electricity storage elements, nonaqueous electrolyte electricity storage element, and electricity storage device
JPWO2016052648A1 (en) * 2014-09-30 2017-08-17 株式会社Gsユアサ Negative electrode for nonaqueous electrolyte storage element, nonaqueous electrolyte storage element, and storage device
CN106716684B (en) * 2014-09-30 2021-02-05 株式会社杰士汤浅国际 Negative electrode for nonaqueous electrolyte electricity storage element, and electricity storage device
JP2016152066A (en) * 2015-02-16 2016-08-22 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
CN105895852A (en) * 2015-02-16 2016-08-24 丰田自动车株式会社 Manufacturing method for non-aqueous electrolyte secondary battery
US10461310B2 (en) 2015-02-16 2019-10-29 Toyota Jidosha Kabushiki Kaisha Manufacturing method for non-aqueous electrolyte secondary battery
JP2016213094A (en) * 2015-05-11 2016-12-15 トヨタ自動車株式会社 Method of manufacturing negative electrode for secondary battery
US10566610B2 (en) 2017-03-22 2020-02-18 Toyota Jidosha Kabushiki Kaisha Method of manufacturing negative electrode for non-aqueous electrolyte secondary battery, and method of manufacturing non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US10461310B2 (en) Manufacturing method for non-aqueous electrolyte secondary battery
CN103460443B (en) Lithium ion secondary battery
CN104106158B (en) Bipolar electrode and use its bipolar lithium ion secondary battery
JP5842407B2 (en) Method for producing lithium ion secondary battery
US9917306B2 (en) Manufacturing method of electrode and wet granules
KR101738806B1 (en) Electrode for secondary battery
JP2018106879A (en) Insulator layer-attached negative electrode
JP2013101867A (en) Nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP6601065B2 (en) Secondary battery
KR102030454B1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing the same
KR20200030518A (en) Method for manufacturing battery
JP6540741B2 (en) Lithium secondary battery
JP5999433B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6156406B2 (en) Electrode manufacturing method
CN102738466A (en) Electrode for a nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of manufacture of electrode for a nonaqueous electrolyte secondary battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2018073602A (en) Lithium ion secondary battery
JP5135677B2 (en) Lithium secondary battery
JP2013134897A (en) Manufacturing method of electrode, and positive electrode in nonaqueous electrolyte secondary battery
JP2016062832A (en) Method for manufacturing secondary battery
JP7127638B2 (en) Secondary battery and manufacturing method thereof
JP2016058181A (en) Method for manufacturing electrode plate for nonaqueous secondary battery
JP2016126900A (en) Manufacturing method for secondary battery
CN111868971A (en) Electrode for secondary battery, secondary battery using the same, and method of manufacturing the same