JP2013100758A - Exhaust heat recovery device of engine - Google Patents

Exhaust heat recovery device of engine Download PDF

Info

Publication number
JP2013100758A
JP2013100758A JP2011244379A JP2011244379A JP2013100758A JP 2013100758 A JP2013100758 A JP 2013100758A JP 2011244379 A JP2011244379 A JP 2011244379A JP 2011244379 A JP2011244379 A JP 2011244379A JP 2013100758 A JP2013100758 A JP 2013100758A
Authority
JP
Japan
Prior art keywords
exhaust
filter
exhaust gas
passage
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011244379A
Other languages
Japanese (ja)
Other versions
JP5761517B2 (en
Inventor
Kazuhito Kawashima
川島  一仁
Keisuke Tashiro
圭介 田代
Kenji Hashimoto
賢治 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011244379A priority Critical patent/JP5761517B2/en
Publication of JP2013100758A publication Critical patent/JP2013100758A/en
Application granted granted Critical
Publication of JP5761517B2 publication Critical patent/JP5761517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device for efficiently recovering heat, without impairing activation of an oxidation catalyst.SOLUTION: This exhaust heat recovery device of an engine 1 includes: a DPF 21 for collecting PM in exhaust gas in an exhaust passage 20; and a DOC 22 having oxidation capacity with respect to a component in the exhaust gas in the exhaust passage 20 on the upstream side of the DPF 21. The exhaust heat recovery device includes: a bypass passage 52 connected in parallel to a main exhaust passage 51 between the DOC 22 and the DPF 21; a heat exchanger 53 provided in the bypass passage 52 and exchanging heat between the exhaust gas passing through the bypass passage 52 and a heating medium; an opening-closing valve 54 for opening-closing the main exhaust passage 51 arranged in parallel to the bypass passage 52; and an ECU 40 for controlling operation of at least the opening-closing valve.

Description

本発明は、エンジンの排気熱回収装置に係り、詳しくは、排気通路に備えられた熱交換器による熱回収技術に関する。   The present invention relates to an exhaust heat recovery apparatus for an engine, and more particularly, to a heat recovery technique using a heat exchanger provided in an exhaust passage.

希薄燃焼で運転可能なエンジン、例えばディーゼルエンジンの排気を浄化する排気後処理装置として、ディーゼルパティキュレートフィルタ(以下、DPFという)が知られている。DPFは、排気通路に設けられ、排気中の微粒子状物質(パティキュレートマター、以下、PMという)を捕集するものである。また、排気通路に酸化触媒を設け、この酸化触媒に未燃燃料を流入させて酸化反応を起こさせ、これに伴う反応熱により排気温度を上昇させて、排気中のPMやDPFに捕集されたPMを燃焼・除去させる技術が知られている。   2. Description of the Related Art Diesel particulate filters (hereinafter referred to as DPFs) are known as exhaust aftertreatment devices that purify exhaust from engines that can be operated by lean combustion, for example, diesel engines. The DPF is provided in the exhaust passage and collects particulate matter (particulate matter, hereinafter referred to as PM) in the exhaust. In addition, an oxidation catalyst is provided in the exhaust passage, and an unburned fuel is caused to flow into the oxidation catalyst to cause an oxidation reaction. The reaction heat accompanying this raises the exhaust temperature, which is collected by PM or DPF in the exhaust. A technique for burning and removing PM is known.

また、エンジンの排気通路に熱交換器を備え、排気熱を回収して冷却水をあたためることで、暖機運転時間を短縮させる技術が知られている。具体的には、排気通路にバイパス路を設けて、当該排気通路に熱交換器を配置するとともに、排気通路とバイパス路の接続部に流路切換弁を備え、エンジンから排出した排気が熱交換器を通過、または通過しないように切り換える機能を有している(特許文献1)。   Further, a technique is known in which a heat exchanger is provided in the exhaust passage of the engine, and the warm-up operation time is shortened by collecting the exhaust heat and warming the cooling water. Specifically, a bypass passage is provided in the exhaust passage, a heat exchanger is disposed in the exhaust passage, a flow switching valve is provided at a connection portion between the exhaust passage and the bypass passage, and the exhaust discharged from the engine exchanges heat. It has a function of switching so as to pass or not pass through the vessel (Patent Document 1).

このように構成することにより、例えば暖機完了後では排気が熱交換器を通過させないようにすることで、冷却水の必要以上の昇温を防止するとともに、熱交換器の下流側に設けた三元触媒に流入する排気温度の低下を抑制して排気浄化性能を向上させている。   By configuring in this way, for example, by preventing the exhaust from passing through the heat exchanger after completion of warm-up, the temperature of the cooling water is prevented from being increased more than necessary, and provided downstream of the heat exchanger. The exhaust purification performance is improved by suppressing the decrease in the exhaust temperature flowing into the three-way catalyst.

特開2009−127435号公報JP 2009-127435 A

上記特許文献1では、通常燃焼のガソリンエンジンにおける排気熱を回収可能としているが、ディーゼルエンジンについても、同様に暖機運転時間の短縮化が要求されている。しかしながら、一般的にディーゼルエンジンの排気通路には、三元触媒ではなく、上記のように酸化触媒やDPFが備えられており、熱交換器の適切な配置が検討されていなかった。例えば、熱交換器が排気通路の下流に配置されると熱交換率が低下し、上流側に配置されるとその下流側の触媒の冷態始動時における早期活性を妨げる要因となってしまう。   In Patent Document 1, exhaust heat from a normal combustion gasoline engine can be recovered, but a diesel engine is also required to shorten the warm-up operation time. However, in general, an exhaust passage of a diesel engine is not provided with a three-way catalyst but is provided with an oxidation catalyst and a DPF as described above, and an appropriate arrangement of a heat exchanger has not been studied. For example, when the heat exchanger is disposed downstream of the exhaust passage, the heat exchange rate is reduced, and when it is disposed upstream, it becomes a factor that hinders early activation of the downstream catalyst during cold start.

本発明は、この様な問題を解決するためになされたもので、その目的とするところは、排気通路に酸化触媒及びDPFを備えた希薄燃焼エンジンにおいて、酸化触媒の活性化を損ねることなく、熱回収を効率よく行うことが可能な排気熱回収装置を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is, in a lean combustion engine provided with an oxidation catalyst and a DPF in an exhaust passage, without impairing the activation of the oxidation catalyst. An object of the present invention is to provide an exhaust heat recovery device capable of efficiently performing heat recovery.

上記の目的を達成するために、請求項1のエンジンの排気熱回収装置は、排気通路に排気中の微粒子状物質を捕集する第1のフィルタを備えるとともに、第1のフィルタの上流側の排気通路に排気中の成分に対して酸化能を有する酸化触媒を備えたエンジンの排気熱回収装置であって、酸化触媒と第1のフィルタとの間の排気通路に並列に接続されたバイパス路と、バイパス路に備えられ、バイパス路を通過する排気と熱媒体との間で熱交換させる熱交換手段と、酸化触媒を通過した排気の流入先を、バイパス路に並列した排気通路とバイパス路との間で切換える切換手段と、少なくとも切換手段を作動制御する制御手段と、を備えたことを特徴とする。   In order to achieve the above object, an exhaust heat recovery apparatus for an engine according to claim 1 is provided with a first filter for collecting particulate matter in exhaust gas in an exhaust passage, and on the upstream side of the first filter. An exhaust heat recovery apparatus for an engine having an oxidation catalyst capable of oxidizing components in exhaust gas in an exhaust passage, wherein the bypass passage is connected in parallel to the exhaust passage between the oxidation catalyst and the first filter. And a heat exchange means provided in the bypass passage for exchanging heat between the exhaust passing through the bypass passage and the heat medium, and an exhaust passage and a bypass passage in parallel with the bypass passage through which the exhaust gas has passed through the oxidation catalyst. Switching means for switching between and a control means for controlling the operation of at least the switching means.

また、請求項2のエンジンの排気熱回収装置は、請求項1において、制御手段は、第1のフィルタの再生時には、酸化触媒を通過した排気がバイパス路に並列した排気通路を通過するように、切換手段を作動制御することを特徴とする。
また、請求項3のエンジンの排気熱回収装置は、請求項2において、熱交換手段の熱交換率を検出する熱交換率検出手段を備え、制御手段は、熱交換率を制御可能であって、第1のフィルタの再生時において、切換手段を作動制御して酸化触媒を通過した排気をバイパス路に通過させる場合には、熱交換率検出手段により検出された熱交換率を所定値以下とすることを特徴とする。
According to a second aspect of the present invention, there is provided an exhaust heat recovery apparatus for an engine according to the first aspect, wherein the control means is configured such that when the first filter is regenerated, the exhaust gas that has passed through the oxidation catalyst passes through an exhaust passage parallel to the bypass passage. The switching means is controlled to operate.
According to a third aspect of the present invention, there is provided an exhaust heat recovery apparatus for an engine according to the second aspect, further comprising a heat exchange rate detection means for detecting a heat exchange rate of the heat exchange means, wherein the control means can control the heat exchange rate. In the regeneration of the first filter, when the exhaust gas that has passed through the oxidation catalyst is controlled by operating the switching means and is passed through the bypass passage, the heat exchange rate detected by the heat exchange rate detection means is set to a predetermined value or less. It is characterized by doing.

また、請求項4のエンジンの排気熱回収装置は、請求項3において、熱交換手段には、貴金属が担持されていることを特徴とする。
また、請求項5のエンジンの排気熱回収装置は、請求項1〜4のいずれか1項において、熱交換手段の上流側の前記バイパス路に、排気中の微粒子状物質を捕集する第2のフィルタを備えたことを特徴とする。
According to a fourth aspect of the present invention, there is provided an exhaust heat recovery apparatus for an engine according to the third aspect, wherein the heat exchange means carries a noble metal.
An engine exhaust heat recovery device according to a fifth aspect of the present invention is the engine exhaust heat recovery device according to any one of the first to fourth aspects, wherein the particulate matter in the exhaust gas is collected in the bypass path upstream of the heat exchange means. It is characterized by comprising the filter.

また、請求項6のエンジンの排気熱回収装置は、請求項5において、第2のフィルタにおける微粒子状物質の堆積量を検出する堆積量検出手段を備え、制御手段は、堆積量検出手段により検出した微粒子状物質の堆積量が所定量以上である場合には、第1のフィルタの再生時において、酸化触媒を通過した排気がバイパス路を通過するように、切換手段を作動制御することを特徴とする。   According to a sixth aspect of the present invention, there is provided an exhaust heat recovery apparatus for an engine according to the fifth aspect of the present invention, further comprising a deposition amount detecting means for detecting the amount of particulate matter deposited on the second filter. When the deposited amount of the particulate matter is greater than or equal to a predetermined amount, the switching means is controlled to operate so that the exhaust gas that has passed through the oxidation catalyst passes through the bypass when the first filter is regenerated. And

また、請求項7のエンジンの排気熱回収装置は、請求項6において、制御手段は、酸化触媒を通過した排気をバイパス路に通過させる場合には、切換手段を全開状態から全閉状態まで開度を連続的に徐変制御することを特徴とする。
また、請求項8のエンジンの排気熱回収装置は、請求項6において、第2のフィルタには、貴金属が担持されていることを特徴とする。
According to a seventh aspect of the present invention, there is provided an exhaust heat recovery apparatus for an engine according to the sixth aspect, wherein the control means opens the switching means from the fully open state to the fully closed state when the exhaust gas that has passed through the oxidation catalyst is allowed to pass through the bypass passage. It is characterized in that the degree is continuously and gradually changed.
An engine exhaust heat recovery apparatus according to claim 8 is characterized in that, in claim 6, noble metal is supported on the second filter.

請求項1の発明によれば、エンジンの排気通路に設けられた酸化触媒と第1のフィルタとの間の排気通路に熱交換手段を有するバイパス路が設けられるので、排気がバイパス路を通過するように切換手段を作動制御することで、熱交換手段によって排気熱を回収することができる。したがって、例えば熱媒体がエンジンの冷却水である場合には、排気の熱エネルギーによって冷却水を暖めて、暖機運転時間を短縮させることができる。   According to the first aspect of the present invention, the bypass passage having the heat exchange means is provided in the exhaust passage between the oxidation catalyst provided in the exhaust passage of the engine and the first filter, so that the exhaust passes through the bypass passage. By controlling the operation of the switching means as described above, the exhaust heat can be recovered by the heat exchange means. Therefore, for example, when the heat medium is engine cooling water, the cooling water is warmed by the heat energy of the exhaust, and the warm-up operation time can be shortened.

特に、熱交換手段が酸化触媒の下流側に配置されるので、例えば冷態始動時において、酸化触媒を優先して活性化させ、排気浄化性能を迅速に確保することができるとともに、酸化触媒より下流側での排気の温度上昇を促すことができる。また、熱交換手段が第1のフィルタの上流側に配置されるので、熱交換手段における排気熱の回収効率を向上させることができる。なお、一般的にフィルタは、温度低下による捕集効率の低下が比較的少ないので、下流側に配置することで第1のフィルタの機能低下を招く虞は少ない。   In particular, since the heat exchanging means is arranged downstream of the oxidation catalyst, for example, at the time of cold start, the oxidation catalyst can be activated with priority, and the exhaust gas purification performance can be secured quickly. It is possible to promote an increase in exhaust gas temperature on the downstream side. In addition, since the heat exchange means is disposed on the upstream side of the first filter, the exhaust heat recovery efficiency in the heat exchange means can be improved. In general, the filter has a relatively small reduction in the collection efficiency due to a temperature drop, and therefore, there is little possibility that the function of the first filter will be lowered by arranging the filter on the downstream side.

このように熱交換手段を酸化触媒と第1のフィルタとの間に備えることで、酸化触媒及び第1のフィルタの機能低下を抑えつつ、熱交換手段における排気熱の回収効率を向上させることができる。
また、請求項2の発明によれば、第1のフィルタの再生時には、酸化触媒を通過した排気がバイパス路に並列した排気通路を通過するので、第1のフィルタに流入する排気の温度が熱交換手段によって低下することが回避され、第1のフィルタの再生時間を低減させることができる。
By providing the heat exchanging means between the oxidation catalyst and the first filter in this way, it is possible to improve the exhaust heat recovery efficiency in the heat exchanging means while suppressing deterioration of the functions of the oxidation catalyst and the first filter. it can.
According to the second aspect of the present invention, when the first filter is regenerated, the exhaust gas that has passed through the oxidation catalyst passes through the exhaust gas passage in parallel with the bypass passage, so that the temperature of the exhaust gas flowing into the first filter is hot. The reduction by the exchange means is avoided, and the regeneration time of the first filter can be reduced.

また、請求項3の発明によれば、熱交換手段に排気中の微粒子状物質が堆積して熱交換率が低下した場合には、第1のフィルタの再生時において、酸化触媒を通過した排気がバイパス路を通過するので、熱交換手段に堆積した微粒子状物質を燃焼除去し、熱交換手段の熱交換率を回復させることができる。
また、請求項4の発明によれば、熱交換手段に貴金属が担持されているので、熱交換手段に堆積した微粒子状物質の燃焼除去を促進させることができる。
According to the invention of claim 3, when the particulate matter in the exhaust is deposited on the heat exchange means and the heat exchange rate is reduced, the exhaust that has passed through the oxidation catalyst during regeneration of the first filter. Passes through the bypass, so that the particulate matter deposited on the heat exchange means can be burned and removed, and the heat exchange rate of the heat exchange means can be recovered.
According to the invention of claim 4, since the noble metal is supported on the heat exchanging means, combustion removal of the particulate matter deposited on the heat exchanging means can be promoted.

また、請求項5の発明によれば、熱交換手段の上流側のバイパス路に、排気中の微粒子状物質を捕集する第2のフィルタを備えたので、熱交換手段に微粒子状物質が堆積することを防止し、熱交換手段の熱交換率を維持することができる。
また、請求項6の発明によれば、第2のフィルタに微粒子状物質が所定量以上堆積した場合に、第1のフィルタの再生時において酸化触媒を通過した排気がバイパス路を通過するので、第2のフィルタに堆積した微粒子状物質を燃焼除去し、第2のフィルタを再生することができる。これにより、排気熱回収時における第2のフィルタでの圧損を低下させ、燃費低下を抑制することができる。また、過度にPMが堆積した状態で燃焼した場合に発生する虞のある第2のフィルタの焼損を未然に防止することができる。
According to the invention of claim 5, since the second filter for collecting the particulate matter in the exhaust gas is provided in the bypass path upstream of the heat exchange means, the particulate matter is deposited on the heat exchange means. It can be prevented and the heat exchange rate of the heat exchange means can be maintained.
Further, according to the invention of claim 6, when the particulate matter is accumulated in the second filter in a predetermined amount or more, the exhaust gas that has passed through the oxidation catalyst during the regeneration of the first filter passes through the bypass path. The particulate matter deposited on the second filter can be burned and removed to regenerate the second filter. Thereby, the pressure loss in the 2nd filter at the time of exhaust heat recovery can be reduced, and a fuel consumption fall can be controlled. In addition, it is possible to prevent the second filter from being burned out, which may occur when burning in a state where PM is excessively accumulated.

また、請求項7の発明によれば、酸化触媒を通過した排気をバイパス路に通過させる際に、切換手段を全開状態から全閉状態まで開度を連続的に徐変制御するので、第2のフィルタの再生開始直後では、第2のフィルタを通過する排気の流量を抑えて、圧損の大幅な上昇を抑え、再生が進行して第2のフィルタから微粒子状物質が除去され圧損が低下するに伴って第2のフィルタを通過する排気の流量を増加して、迅速な再生完了を図ることができる。   According to the invention of claim 7, when the exhaust gas that has passed through the oxidation catalyst is allowed to pass through the bypass passage, the opening degree of the switching means is continuously gradually controlled from the fully open state to the fully closed state. Immediately after the start of regeneration of the filter, the flow rate of the exhaust gas passing through the second filter is suppressed to suppress a significant increase in pressure loss, the regeneration proceeds and particulate matter is removed from the second filter, and the pressure loss decreases. Along with this, the flow rate of the exhaust gas passing through the second filter can be increased, so that rapid regeneration can be completed.

また、請求項8の発明によれば、第2のフィルタに貴金属が担持されているので、第2のフィルタにおける微粒子状物質の燃焼除去を促進させることができる。   According to the eighth aspect of the invention, since the noble metal is supported on the second filter, it is possible to promote combustion removal of the particulate matter in the second filter.

本発明の第1の実施形態の排気熱回収装置が適用されたディーゼルエンジンの吸排気系の構成図である。1 is a configuration diagram of an intake / exhaust system of a diesel engine to which an exhaust heat recovery apparatus according to a first embodiment of the present invention is applied. 本発明の第1の実施形態の排気熱回収装置の構造図である。1 is a structural diagram of an exhaust heat recovery apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態の排気熱回収装置の構造図である。It is a structural diagram of the exhaust heat recovery device of the second embodiment of the present invention. PMフィルタ再生時における開閉弁の開度の推移を示すグラフである。It is a graph which shows transition of the opening degree of the on-off valve at the time of PM filter reproduction | regeneration.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明の第1の実施形態の排気熱回収装置が適用されたディーゼルエンジン(以下、エンジン1という)の吸排気系の構成を示している。
エンジン1は、例えば車両に搭載されたコモンレール式直列多気筒のディーゼルエンジンである。エンジン1のシリンダヘッド2には、燃焼室3内に燃料を噴射する電磁式の燃料噴射弁4が気筒毎に設けられている。各燃料噴射弁4は図示しないコモンレールに接続されており、コモンレールから、高圧の燃料が供給される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an intake / exhaust system of a diesel engine (hereinafter referred to as an engine 1) to which an exhaust heat recovery apparatus according to a first embodiment of the present invention is applied.
The engine 1 is, for example, a common rail type in-line multi-cylinder diesel engine mounted on a vehicle. The cylinder head 2 of the engine 1 is provided with an electromagnetic fuel injection valve 4 for injecting fuel into the combustion chamber 3 for each cylinder. Each fuel injection valve 4 is connected to a common rail (not shown), and high-pressure fuel is supplied from the common rail.

エンジン1の吸気通路10には、吸入空気量を調節する電磁式の吸気絞り弁11と、その上流側に吸気流量を検出するエアフローセンサ12が設けられている。
エンジン1の排気通路20には、排気中の微粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ(DPF21:本発明の第1のフィルタに該当する)が備えられている。DPF21は、例えば、ハニカム担体の通路の上流側及び下流側を交互にプラグで閉鎖し、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されている。
An intake passage 10 of the engine 1 is provided with an electromagnetic intake throttle valve 11 that adjusts the intake air amount, and an airflow sensor 12 that detects an intake air flow rate upstream thereof.
The exhaust passage 20 of the engine 1 is provided with a diesel particulate filter (DPF21: corresponding to the first filter of the present invention) that collects particulate matter (PM) in the exhaust. For example, the DPF 21 is formed by alternately closing the upstream and downstream sides of the passage of the honeycomb carrier with plugs, and a catalytic noble metal such as platinum (Pt), palladium (Pd), and rhodium (Rh) on the porous wall forming the passage. Is formed.

また、DPF21の上流側の排気通路20には、酸化触媒(以下、DOC22という)が設けられている。DOC22は、例えば、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されており、排気中のCO及びHCを酸化させてCO2及びH2Oに変換させるとともに、排気中のNOを酸化させてNO2を生成する機能を有する。 The exhaust passage 20 upstream of the DPF 21 is provided with an oxidation catalyst (hereinafter referred to as DOC22). The DOC 22 is formed, for example, by supporting a catalyst noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) on a porous wall forming a passage, and oxidizes CO and HC in the exhaust. together is converted to CO 2 and H 2 O Te has a function of NO in the exhaust is oxidized to generate NO 2.

また、酸化触媒22の下流側には、酸化触媒22を通過した直後の排気温度を検出する排気温度センサ30が備えられている。DPF21の下流側には、DPF21通過直後の排気温度を検出する排気温度センサ31が設けられている。更に、DPF21の上流側と下流側との差圧を検出する差圧センサ32が設けられている。
電子コントロールユニット(以下、ECU40という)(制御手段、熱交換率検出手段、堆積量検出手段)は、エンジン1の運転制御をはじめとして総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)等を含んで構成されている。
Further, an exhaust gas temperature sensor 30 that detects the exhaust gas temperature immediately after passing through the oxidation catalyst 22 is provided on the downstream side of the oxidation catalyst 22. An exhaust gas temperature sensor 31 that detects the exhaust gas temperature immediately after passing through the DPF 21 is provided on the downstream side of the DPF 21. Further, a differential pressure sensor 32 that detects a differential pressure between the upstream side and the downstream side of the DPF 21 is provided.
An electronic control unit (hereinafter referred to as ECU 40) (control means, heat exchange rate detection means, accumulation amount detection means) is a control device for performing comprehensive control including operation control of the engine 1, and an input / output device. And a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like.

ECU40の入力側には、上述したエアフローセンサ12、排気温度センサ30,31及び差圧センサ32の他に、クランク角を検出するクランク角センサ33、アクセルペダルの踏込量を検出するアクセルポジションセンサ34、及び車速を検出する車速センサ35等が接続されており、これらセンサ類からの検出情報が入力される。
一方、ECU40の出力側には、燃料噴射弁4、吸気絞り弁11等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づきECU40において演算された燃料噴射量、燃料噴射時期等がそれぞれ出力され、これにより、適正なタイミングで吸気絞り弁11及び燃料噴射弁4等の制御が実施される。
On the input side of the ECU 40, in addition to the air flow sensor 12, the exhaust temperature sensors 30, 31 and the differential pressure sensor 32 described above, a crank angle sensor 33 for detecting the crank angle, and an accelerator position sensor 34 for detecting the depression amount of the accelerator pedal. , And a vehicle speed sensor 35 for detecting the vehicle speed are connected, and detection information from these sensors is input.
On the other hand, various output devices such as the fuel injection valve 4 and the intake throttle valve 11 are connected to the output side of the ECU 40, and the fuel calculated by the ECU 40 based on detection information from various sensors is connected to these various output devices. The injection amount, the fuel injection timing, and the like are output, and thereby the intake throttle valve 11 and the fuel injection valve 4 are controlled at an appropriate timing.

上記のようにDPF21の上流にDOC22が配置されていると、通常のエンジン運転時には、DOC22において生成されたNO2がDPF21に流入し、DPF21に捕集され堆積しているPM中の炭素成分である煤と反応してこれを酸化させる。酸化した煤はCO2となり、DPF21から除去され、これによりDPF21が連続的に再生される連続再生が行われる。 When the DOC 22 is arranged upstream of the DPF 21 as described above, NO 2 generated in the DOC 22 flows into the DPF 21 during normal engine operation, and is a carbon component in PM collected and accumulated in the DPF 21. It reacts with a certain trap to oxidize it. Oxidized soot becomes CO 2 and is removed from the DPF 21, whereby continuous regeneration is performed in which the DPF 21 is continuously regenerated.

一方、エンジン1の運転状況によっては、上記連続再生だけではDPF21の再生が十分に行われない場合がある。そこで、ECU40は、エンジン1の運転を制御してDPF21を強制再生させる機能を有している。
詳しくは、ECU40は、差圧センサ32にて検出される差圧よりDPF21におけるPMの堆積量を算出する。算出された堆積量が予め実験にて設定された許容堆積量以上となると、排気温度センサ31により検出したDPF21通過後の排気温度、即ちDPF21の温度が、強制再生温度の目標値である目標再生温度となるように強制再生温度を昇温させる。
On the other hand, depending on the operating condition of the engine 1, the DPF 21 may not be sufficiently regenerated only by the continuous regeneration. Therefore, the ECU 40 has a function of forcibly regenerating the DPF 21 by controlling the operation of the engine 1.
Specifically, the ECU 40 calculates the PM accumulation amount in the DPF 21 from the differential pressure detected by the differential pressure sensor 32. When the calculated accumulation amount is equal to or greater than the allowable accumulation amount set in advance in the experiment, the exhaust temperature after passing through the DPF 21 detected by the exhaust temperature sensor 31, that is, the temperature of the DPF 21, is a target regeneration whose target value is the forced regeneration temperature. The forced regeneration temperature is raised so as to reach the temperature.

当該強制再生は、エンジン1の運転時における燃料の主噴射の後の例えば膨張行程以降に強制再生温度となるように燃料のポスト噴射(副噴射)を行い、未燃燃料(HC、CO等)を含んだ排気を排気通路20に排出させることによって行われる。排気中に混入された未燃燃料は、DOC22に流入して酸化され、酸化の反応熱によって排気温度を上昇させる。これにより、高温の排気が排気下流側のDPF21に流入して当該DPF21に堆積したPMを加熱し燃焼させ、DPF21を強制的に再生させることが可能である。   In the forced regeneration, post-injection (sub-injection) of fuel is performed so that the forced regeneration temperature is reached after, for example, the expansion stroke after the main injection of fuel during operation of the engine 1, and unburned fuel (HC, CO, etc.) Exhaust gas containing the gas is discharged into the exhaust passage 20. The unburned fuel mixed in the exhaust flows into the DOC 22 and is oxidized, and the exhaust temperature is raised by the reaction heat of oxidation. As a result, the high-temperature exhaust gas flows into the DPF 21 on the downstream side of the exhaust gas, and the PM deposited on the DPF 21 can be heated and burned to forcibly regenerate the DPF 21.

更に、本実施形態では、排気熱を回収して有効利用するための排気熱回収装置50を備えている。
排気熱回収装置50は、DOC22とDPF21との間の排気通路20の一部である主排気通路51に対して並列に設けられたバイパス路52と、バイパス路52に設けられた熱交換器53(熱交換手段)と、主排気通路51とバイパス路52との分岐部に設けられた開閉弁54(切換手段)とにより構成されている。
Further, in the present embodiment, an exhaust heat recovery device 50 for recovering and effectively using the exhaust heat is provided.
The exhaust heat recovery device 50 includes a bypass passage 52 provided in parallel to the main exhaust passage 51 that is a part of the exhaust passage 20 between the DOC 22 and the DPF 21, and a heat exchanger 53 provided in the bypass passage 52. (Heat exchange means) and an on-off valve 54 (switching means) provided at a branch portion between the main exhaust passage 51 and the bypass passage 52.

熱交換器53は、エンジン1の冷却水が導入されており、バイパス路52を通過する排気と冷却水との間で熱交換を行う機能を有する。
開閉弁34は、ECU40により作動制御され、主排気通路51を開閉する機能を有し、主排気通路51を全開とする全開状態と主排気通路51を全閉とする全閉状態との間で切り換え可能である。バイパス通路52は主排気通路51より流路断面積が小さく、また熱交換器53が備えられているため、流路抵抗が大きいので、開閉弁54が全開状態では酸化触媒22から排出された排気の多くが主排気通路51を通過する。一方、開閉弁54が全閉状態では、酸化触媒22から排出された排気は全てバイパス通路52を通過する。したがって、開閉弁54は、酸化触媒22から排出された排気がバイパス路52、及び主排気通路51のいずれかを通過するように流路を切換える機能と同等の機能を有する。
The heat exchanger 53 is introduced with cooling water of the engine 1 and has a function of exchanging heat between the exhaust gas passing through the bypass passage 52 and the cooling water.
The on-off valve 34 is controlled by the ECU 40 and has a function of opening and closing the main exhaust passage 51, and is between a fully open state in which the main exhaust passage 51 is fully opened and a fully closed state in which the main exhaust passage 51 is fully closed. Switching is possible. The bypass passage 52 has a smaller flow passage cross-sectional area than the main exhaust passage 51 and is provided with a heat exchanger 53. Therefore, the bypass passage 52 has a larger flow passage resistance, so that the exhaust discharged from the oxidation catalyst 22 when the on-off valve 54 is fully opened. Most of them pass through the main exhaust passage 51. On the other hand, when the on-off valve 54 is fully closed, all the exhaust discharged from the oxidation catalyst 22 passes through the bypass passage 52. Therefore, the on-off valve 54 has a function equivalent to the function of switching the flow path so that the exhaust discharged from the oxidation catalyst 22 passes through either the bypass path 52 or the main exhaust path 51.

そして、ECU40がバイパス路52を排気が通過するように開閉弁54を作動制御することで、熱交換器53によって、バイパス路52を通過する排気と冷却水との間で熱交換が行われ、排気熱を回収することができる。
ECU40は、エンジン1の冷態始動時(例えば、冷却水温度が所定温度以下である場合)において、バイパス路52を排気が通過するように開閉弁34を閉作動制御する。これにより、エンジン1の冷却水が暖められるので、エンジン1の冷態始動時において、排気熱を利用して暖機を促し、暖機運転時間を短縮させることができる。
Then, the ECU 40 controls the opening / closing valve 54 so that the exhaust gas passes through the bypass passage 52, so that heat exchange is performed between the exhaust gas passing through the bypass passage 52 and the cooling water by the heat exchanger 53. Exhaust heat can be recovered.
The ECU 40 controls the closing of the on-off valve 34 so that the exhaust gas passes through the bypass 52 when the engine 1 is cold-started (for example, when the coolant temperature is equal to or lower than a predetermined temperature). Thereby, since the cooling water of the engine 1 is warmed, when the engine 1 is cold-started, warm-up can be promoted using exhaust heat, and the warm-up operation time can be shortened.

また、ECU40は、バイパス路52を排気が通過するように開閉弁54を作動制御して排気熱を回収しているときに、熱交換器53の熱交換率を監視する機能を有している。熱交換率は、熱交換器53における熱交換性能を表す指標であり、例えば熱交換器53を流通する冷却水の流量と、熱交換器53の上流側の冷却水温と下流側の冷却水温との差を積算して求められた熱回収量から判定すればよい。   Further, the ECU 40 has a function of monitoring the heat exchange rate of the heat exchanger 53 when the exhaust valve heat is recovered by operating the on-off valve 54 so that the exhaust gas passes through the bypass passage 52. . The heat exchange rate is an index representing the heat exchange performance in the heat exchanger 53. For example, the flow rate of the cooling water flowing through the heat exchanger 53, the cooling water temperature upstream of the heat exchanger 53, and the cooling water temperature downstream. What is necessary is just to judge from the heat recovery amount calculated | required by integrating | accumulating the difference of these.

そして、ECU40は、熱交換器53の熱交換率が許容範囲の下限値に近い所定値以下となった場合には、次回のDPF21の強制再生時において、所定時間バイパス路52を排気が通過するように開閉弁54を制御する。
これにより、熱交換率が低下した熱交換器53に対して、強制再生時に酸化触媒22から高温の排気が熱交換器53に流入し、熱交換器53に堆積したPMを燃焼除去して、熱交換器53を再生させ、熱交換器53の熱交換率を回復させることができる。
When the heat exchange rate of the heat exchanger 53 is equal to or less than a predetermined value close to the lower limit value of the allowable range, the ECU 40 causes the exhaust to pass through the bypass passage 52 for a predetermined time at the next forced regeneration of the DPF 21. Thus, the on-off valve 54 is controlled.
As a result, high-temperature exhaust gas flows from the oxidation catalyst 22 into the heat exchanger 53 at the time of forced regeneration with respect to the heat exchanger 53 having a reduced heat exchange rate, and the PM deposited on the heat exchanger 53 is burned and removed. The heat exchanger 53 can be regenerated and the heat exchange rate of the heat exchanger 53 can be recovered.

更に、熱交換器53を通過させる冷却水の流量を制御する流量制御弁を設け、熱交換器53の再生時に冷却水の流量を制限するとよい。このようにすれば、熱交換器53における熱交換量が抑えられるので、熱交換器53の再生時間の短縮化を図ることができる。
また、熱交換器53を再生することで、熱交換器53の非再生時と比較してDPF21の入口の排気温度が変化してしまうので、熱交換器53の再生時においてもDPF21が再生に適した温度となるように、ポスト噴射の噴射量を制御するとよい。このようにすれば、熱交換器53の再生時において同時にDPF21の再生も可能となり、熱交換器53及びDPF21の総再生時間を短縮することができる。
Furthermore, a flow rate control valve for controlling the flow rate of the cooling water that passes through the heat exchanger 53 may be provided, and the flow rate of the cooling water may be limited when the heat exchanger 53 is regenerated. In this way, the amount of heat exchange in the heat exchanger 53 can be suppressed, so that the regeneration time of the heat exchanger 53 can be shortened.
Further, by regenerating the heat exchanger 53, the exhaust temperature at the inlet of the DPF 21 changes compared to when the heat exchanger 53 is not regenerated, so that the DPF 21 is also regenerated when the heat exchanger 53 is regenerated. It is good to control the injection quantity of post injection so that it may become suitable temperature. In this way, when the heat exchanger 53 is regenerated, the DPF 21 can be regenerated at the same time, and the total regeneration time of the heat exchanger 53 and the DPF 21 can be shortened.

次に、図3を用いて本発明の第2の実施形態について説明する。
本発明の第2の実施形態の排気熱回収装置60は、上記第1の実施形態の排気熱回収装置50に対して、熱交換器53の上流側のバイパス路52にPMフィルタ61(第2のフィルタ)を備えたことが異なる。
PMフィルタ61は、DPF21と同様にPMを捕集する機能を有し、DPF21よりも小型で容量が低く設定されている。
Next, a second embodiment of the present invention will be described with reference to FIG.
The exhaust heat recovery device 60 according to the second embodiment of the present invention has a PM filter 61 (second filter) in the bypass path 52 upstream of the heat exchanger 53 with respect to the exhaust heat recovery device 50 according to the first embodiment. The filter is different.
The PM filter 61 has a function of collecting PM like the DPF 21, is smaller than the DPF 21, and has a lower capacity.

本実施形態では、熱交換器53の上流側にPMフィルタ61が備えられているので、熱交換器53にPMが堆積し難くなり、熱交換器53の熱交換率を維持させることができる。しかしながら、PMフィルタ61にPMが堆積するので、熱交換器53の再生の代わりにPMフィルタ61の再生を必要とする。
PMフィルタ61の再生は、ECU40により、PMフィルタ61におけるPMの堆積量を推定し、当該堆積量の推定値が許容範囲の上限値に近い所定量以上となった場合に実行される。PMフィルタ61におけるPMの堆積量の推定値は、例えば前回のPMフィルタ61の再生からPMフィルタ61を通過した排気流量の積算値に基づいて推定すればよい。排気流量の積算値は、エアフローセンサ12により検出した吸気流量と燃料噴射弁から噴射した燃料噴射量とに基づいて演算された排気流量と、開閉弁54の開度とに基づいて演算すればよい。あるいは、PMフィルタ61の再生開始を、前回のPMフィルタ61の再生からのエンジン1の運転時間に基づいて簡易的に判定してもよい。
In the present embodiment, since the PM filter 61 is provided on the upstream side of the heat exchanger 53, PM hardly accumulates in the heat exchanger 53, and the heat exchange rate of the heat exchanger 53 can be maintained. However, since PM accumulates on the PM filter 61, it is necessary to regenerate the PM filter 61 instead of regenerating the heat exchanger 53.
The regeneration of the PM filter 61 is executed when the accumulated amount of PM in the PM filter 61 is estimated by the ECU 40 and the estimated value of the accumulated amount becomes equal to or larger than a predetermined amount close to the upper limit value of the allowable range. The estimated value of the PM accumulation amount in the PM filter 61 may be estimated based on, for example, the integrated value of the exhaust flow rate that has passed through the PM filter 61 since the previous regeneration of the PM filter 61. The integrated value of the exhaust flow rate may be calculated based on the exhaust flow rate calculated based on the intake flow rate detected by the air flow sensor 12 and the fuel injection amount injected from the fuel injection valve, and the opening degree of the on-off valve 54. . Alternatively, the start of regeneration of the PM filter 61 may be simply determined based on the operation time of the engine 1 since the previous regeneration of the PM filter 61.

そして、ECU40は、PMフィルタ61におけるPMの堆積量が所定量以上となった場合には、次回のDPF21の強制再生時において、所定時間バイパス路52を排気が通過するように開閉弁54を閉作動制御する。
これにより、PMが所定量以上堆積したPMフィルタ61に対して、強制再生時に酸化触媒22から高温の排気がPMフィルタ61に流入し、PMフィルタ61に堆積したPMを燃焼除去して、PMフィルタ61を再生させることができる。よって、PMフィルタ61における圧損を低下させ、冷態始動時における燃費低下を抑制することができる。また、過度にPMが堆積した状態でPMが燃焼した場合において発生する虞のあるPMフィルタ61の焼損を、未然に防止することができる。
Then, the ECU 40 closes the on-off valve 54 so that the exhaust gas passes through the bypass passage 52 for a predetermined time during the next forced regeneration of the DPF 21 when the amount of accumulated PM in the PM filter 61 exceeds a predetermined amount. Control the operation.
As a result, high temperature exhaust gas flows from the oxidation catalyst 22 into the PM filter 61 during the forced regeneration with respect to the PM filter 61 on which PM has accumulated a predetermined amount or more, and the PM deposited on the PM filter 61 is burned and removed. 61 can be reproduced. Therefore, the pressure loss in the PM filter 61 can be reduced, and fuel consumption reduction at the time of cold start can be suppressed. Further, it is possible to prevent burning of the PM filter 61 that may occur when PM is burned in a state where PM is excessively accumulated.

更に、排気熱回収装置60において、開閉弁54の開度を連続的に制御するとよい。具体的には、ECU40によって、開閉弁54が全開状態から全閉状態まで開度を連続的に制御可能とする。全開状態から全閉状態までの遷移については、PMフィルタ61に堆積したPM堆積量に基づいて連続的に開度制御することが望ましいが、簡略化のため経過時間に基づいて制御してもよい。   Further, in the exhaust heat recovery device 60, the opening degree of the on-off valve 54 may be continuously controlled. Specifically, the opening degree of the on-off valve 54 can be continuously controlled by the ECU 40 from the fully open state to the fully closed state. As for the transition from the fully open state to the fully closed state, it is desirable to continuously control the opening degree based on the PM accumulation amount accumulated on the PM filter 61, but for simplification, it may be controlled based on the elapsed time. .

図4は、PMフィルタ61の再生時における開閉弁54の開度の推移を示すグラフである。
ECU40は、PMフィルタ61の再生時において、図4に示すように、再生開始から全閉にするのではなく、徐々に開度を低下させるようにしている。
これは、比較的容量の少ないPMフィルタ61にPMが堆積した状態で多量に排気を通過させると、圧損が大幅に上昇するので、エンジン1の出力が大きく変化してドライバビリティが低下するとともに燃費低下を招く虞があるためである。また、堆積したPMが急激に燃焼し、PMフィルタ61の溶損を招く虞があることも考慮されている。
FIG. 4 is a graph showing the transition of the opening degree of the on-off valve 54 during regeneration of the PM filter 61.
When the PM filter 61 is regenerated, the ECU 40 gradually decreases the opening rather than fully closing from the start of regeneration as shown in FIG.
This is because if a large amount of exhaust gas is allowed to pass through the PM filter 61 having a relatively small capacity, the pressure loss increases significantly, so that the output of the engine 1 changes greatly, the drivability is reduced and the fuel consumption is reduced. This is because there is a risk of lowering. In addition, it is considered that the accumulated PM may burn rapidly and may cause melting of the PM filter 61.

このように開閉弁54の開度を徐々に全閉にすることで、PMフィルタ61の再生開始直後では、PMフィルタ61を通過する排気の流量を抑えて、圧損の大幅な上昇を抑え、再生が進行してPMフィルタ61からPMが除去され圧損が低下するに伴ってPMフィルタ61を通過する排気の流量を増加して、迅速な再生完了を図ることができる。
また、以上の実施形態において、熱交換器53やPMフィルタ61に、プラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を担持させるとよい。このようにすれば、熱交換器53やPMフィルタ61の再生時におけるPMの燃焼除去を促進させ、再生時間を短縮することができる。更に、熱交換器53やPMフィルタ61にセリウム(Ce)等の希土類を担持させるとよい。これにより、希土類の酸素貯蔵能力を利用して、再生時における酸素の安定した供給を図ることができ、再生時間の更なる短縮を図ることができる。
By gradually closing the opening of the on-off valve 54 in this way, immediately after the start of regeneration of the PM filter 61, the flow rate of the exhaust gas passing through the PM filter 61 is suppressed, and a significant increase in pressure loss is suppressed and regeneration is performed. As the pressure advances and PM is removed from the PM filter 61 and the pressure loss is reduced, the flow rate of the exhaust gas passing through the PM filter 61 is increased, so that rapid regeneration can be completed.
Further, in the above embodiment, the heat exchanger 53 and the PM filter 61 may be loaded with a noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh). In this way, it is possible to promote combustion removal of PM during regeneration of the heat exchanger 53 and the PM filter 61, and to shorten the regeneration time. Furthermore, it is preferable that the heat exchanger 53 and the PM filter 61 carry a rare earth such as cerium (Ce). Thereby, it is possible to stably supply oxygen during regeneration by utilizing the oxygen storage capacity of rare earth, and further shorten the regeneration time.

以上で発明の実施形態の説明を終えるが、本発明の形態は上記実施形態に限定されるものではない。
例えば上記実施形態では、主排気通路51を開閉する開閉弁54によって、排気の流路を切換えているが、バイパス路52に開閉弁を設けてもよいし、主排気通路51とバイパス路52の下流側との接続部に開閉弁を設けてもよい。
Although the description of the embodiment of the invention is finished as above, the embodiment of the present invention is not limited to the above embodiment.
For example, in the above embodiment, the exhaust flow path is switched by the open / close valve 54 that opens and closes the main exhaust passage 51, but an open / close valve may be provided in the bypass passage 52, or the main exhaust passage 51 and the bypass passage 52 may be provided. You may provide an on-off valve in the connection part with a downstream.

また、本実施形態では、熱交換器53によってエンジン1の冷却水を暖め、排気の熱を冷態始動時における暖機に利用しているが、始動時だけでなく通常運転時に暖房等の用途に利用したり、あるいは冷却水以外の熱媒体を介して排気の熱エネルギーをその他の機器や用途に利用したりしてもよい。   In this embodiment, the cooling water of the engine 1 is warmed by the heat exchanger 53, and the heat of the exhaust is used for warming up at the time of cold start. The heat energy of the exhaust gas may be used for other devices and applications through a heat medium other than cooling water.

1 エンジン
20 排気通路
21 DPF
22 DOC
40 ECU
50、60 排気熱回収装置
52 バイパス路
53 熱交換器
54 開閉弁
61 PMフィルタ
1 Engine 20 Exhaust passage 21 DPF
22 DOC
40 ECU
50, 60 Exhaust heat recovery device 52 Bypass path 53 Heat exchanger 54 On-off valve 61 PM filter

Claims (8)

排気通路に排気中の微粒子状物質を捕集する第1のフィルタを備えるとともに、前記第1のフィルタの上流側の前記排気通路に排気中の成分に対して酸化能を有する酸化触媒を備えたエンジンの排気熱回収装置であって、
前記酸化触媒と前記第1のフィルタとの間の前記排気通路に並列に接続されたバイパス路と、
前記バイパス路に備えられ、前記バイパス路を通過する排気と熱媒体との間で熱交換させる熱交換手段と、
前記酸化触媒を通過した排気の流入先を、前記バイパス路に並列した前記排気通路と前記バイパス路との間で切換える切換手段と、
少なくとも前記切換手段を作動制御する制御手段と、
を備えたことを特徴とするエンジンの排気熱回収装置。
The exhaust passage is provided with a first filter for collecting particulate matter in the exhaust gas, and the exhaust passage upstream of the first filter is provided with an oxidation catalyst capable of oxidizing components in the exhaust gas. An exhaust heat recovery device for an engine,
A bypass path connected in parallel to the exhaust passage between the oxidation catalyst and the first filter;
A heat exchanging means provided in the bypass passage for exchanging heat between the exhaust gas passing through the bypass passage and the heat medium;
Switching means for switching an inflow destination of the exhaust gas that has passed through the oxidation catalyst between the exhaust passage and the bypass passage in parallel with the bypass passage;
Control means for controlling the operation of at least the switching means;
An exhaust heat recovery device for an engine characterized by comprising:
前記制御手段は、前記第1のフィルタの再生時には、前記酸化触媒を通過した排気が前記バイパス路に並列した前記排気通路を通過するように、前記切換手段を作動制御することを特徴とする請求項1に記載のエンジンの排気熱回収装置。   The control means controls the operation of the switching means so that, when the first filter is regenerated, the exhaust gas that has passed through the oxidation catalyst passes through the exhaust gas passage in parallel with the bypass passage. Item 2. An exhaust heat recovery apparatus for an engine according to Item 1. 前記熱交換手段の熱交換率を検出する熱交換率検出手段を備え、
前記制御手段は、前記熱交換率を制御可能であって、前記第1のフィルタの再生時において、前記切換手段を作動制御して前記酸化触媒を通過した排気を前記バイパス路に通過させる場合には、前記熱交換率検出手段により検出された熱交換率を所定値以下とすることを特徴とする請求項2に記載のエンジンの排気熱回収装置。
A heat exchange rate detecting means for detecting a heat exchange rate of the heat exchange means;
The control means is capable of controlling the heat exchange rate and, when regenerating the first filter, controlling the operation of the switching means to pass the exhaust gas that has passed through the oxidation catalyst to the bypass passage. The exhaust heat recovery device for an engine according to claim 2, wherein the heat exchange rate detected by the heat exchange rate detection means is set to a predetermined value or less.
前記熱交換手段には、貴金属が担持されていることを特徴とする請求項3に記載のエンジンの排気熱回収装置。   The exhaust heat recovery apparatus for an engine according to claim 3, wherein a precious metal is supported on the heat exchange means. 前記熱交換手段の上流側の前記バイパス路に、排気中の微粒子状物質を捕集する第2のフィルタを備えたことを特徴とする請求項1〜4のいずれか1項に記載のエンジンの排気熱回収装置。   The engine according to any one of claims 1 to 4, wherein a second filter that collects particulate matter in the exhaust gas is provided in the bypass passage upstream of the heat exchange means. Exhaust heat recovery device. 前記第2のフィルタにおける微粒子状物質の堆積量を検出する堆積量検出手段を備え、
前記制御手段は、前記堆積量検出手段により検出した微粒子状物質の堆積量が所定量以上である場合には、前記第1のフィルタの再生時において、前記酸化触媒を通過した排気が前記バイパス路を通過するように、前記切換手段を作動制御することを特徴とする請求項5に記載のエンジンの排気熱回収装置。
A deposition amount detecting means for detecting a deposition amount of the particulate matter in the second filter;
When the accumulation amount of the particulate matter detected by the accumulation amount detection unit is equal to or greater than a predetermined amount, the control unit causes the exhaust gas that has passed through the oxidation catalyst during the regeneration of the first filter to pass through the bypass path. 6. The engine exhaust heat recovery apparatus according to claim 5, wherein the operation of the switching means is controlled so as to pass through the engine.
前記制御手段は、前記酸化触媒を通過した排気を前記バイパス路に通過させる場合には、前記切換手段を全開状態から全閉状態まで開度を連続的に徐変制御することを特徴とする請求項6に記載のエンジンの排気熱回収装置。   The control means, when allowing the exhaust gas that has passed through the oxidation catalyst to pass through the bypass passage, continuously and gradually controls the opening degree of the switching means from a fully open state to a fully closed state. Item 7. An exhaust heat recovery apparatus for an engine according to Item 6. 前記第2のフィルタには、貴金属が担持されていることを特徴とする請求項6に記載のエンジンの排気熱回収装置。   The exhaust heat recovery apparatus for an engine according to claim 6, wherein a precious metal is supported on the second filter.
JP2011244379A 2011-11-08 2011-11-08 Engine exhaust heat recovery device Expired - Fee Related JP5761517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244379A JP5761517B2 (en) 2011-11-08 2011-11-08 Engine exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244379A JP5761517B2 (en) 2011-11-08 2011-11-08 Engine exhaust heat recovery device

Publications (2)

Publication Number Publication Date
JP2013100758A true JP2013100758A (en) 2013-05-23
JP5761517B2 JP5761517B2 (en) 2015-08-12

Family

ID=48621573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244379A Expired - Fee Related JP5761517B2 (en) 2011-11-08 2011-11-08 Engine exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP5761517B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145882A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Exhaust emission control system for internal combustion engine
JP2018159272A (en) * 2017-03-22 2018-10-11 日産自動車株式会社 Control method for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023000482A1 (en) 2022-02-24 2023-08-24 Mercedes-Benz Group AG A system for controlling the temperature of a particulate filter of an exhaust aftertreatment unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330936A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2006207428A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Thermoelectric generator
JP2008115728A (en) * 2006-11-01 2008-05-22 Mazda Motor Corp Exhaust emission control device and exhaust emission control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330936A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2006207428A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Thermoelectric generator
JP2008115728A (en) * 2006-11-01 2008-05-22 Mazda Motor Corp Exhaust emission control device and exhaust emission control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145882A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Exhaust emission control system for internal combustion engine
JP2018159272A (en) * 2017-03-22 2018-10-11 日産自動車株式会社 Control method for internal combustion engine

Also Published As

Publication number Publication date
JP5761517B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP4673226B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3988776B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3992057B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4017010B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4665633B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176571A (en) Exhaust emission control device of internal combustion engine
JP2006274986A (en) Exhaust gas aftertreatment device
JP2004162675A (en) Exhaust emission control device for diesel engine
JP2010031833A (en) Exhaust emission control device for diesel engine
JP5830832B2 (en) Filter regeneration device
JP5316041B2 (en) Engine exhaust purification system
WO2016125738A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP5761517B2 (en) Engine exhaust heat recovery device
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2004150416A (en) Regeneration method for particulate filter
JP2007154729A (en) Exhaust emission control device for internal combustion engine
JP2010169052A (en) Exhaust emission control device for internal combustion engine
JP4012037B2 (en) Exhaust purification equipment
JP5228877B2 (en) Exhaust gas purification system and exhaust gas purification method
JP3900934B2 (en) Diesel engine exhaust purification system
JP5858224B2 (en) Exhaust purification device regenerator
JP2005315189A (en) Exhaust gas aftertreatment device for diesel engine
JP2005307744A (en) Exhaust emission control device
JP4998109B2 (en) Exhaust gas purification system and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R151 Written notification of patent or utility model registration

Ref document number: 5761517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees