JP2013100724A - Cooling device and cooling method of internal combustion engine - Google Patents

Cooling device and cooling method of internal combustion engine Download PDF

Info

Publication number
JP2013100724A
JP2013100724A JP2011243522A JP2011243522A JP2013100724A JP 2013100724 A JP2013100724 A JP 2013100724A JP 2011243522 A JP2011243522 A JP 2011243522A JP 2011243522 A JP2011243522 A JP 2011243522A JP 2013100724 A JP2013100724 A JP 2013100724A
Authority
JP
Japan
Prior art keywords
cooling water
water pump
operation state
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243522A
Other languages
Japanese (ja)
Other versions
JP5879940B2 (en
Inventor
Yoshinori Yoshimura
美紀 吉村
Akira Komatsu
明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011243522A priority Critical patent/JP5879940B2/en
Publication of JP2013100724A publication Critical patent/JP2013100724A/en
Application granted granted Critical
Publication of JP5879940B2 publication Critical patent/JP5879940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device and a cooling method of an internal combustion engine by means of which even during various kinds of operational states of a vehicle or the internal combustion engine, the internal combustion engine can be put into an optimum condition, and a fuel economy, an exhaust gas performance, and an output performance can be improved by adequately controlling a cooling water pump for which requested contents are complicated and diversified.SOLUTION: The cooling device of the internal combustion engine includes a variable cooling water pump 13 of which the discharge rate can be changed even at the same engine speed, and a control device for controlling the variable cooling water pump 13. The control device controls the operation of the variable cooling water pump 13 divided into an idle operating state, a deceleration operating state, an acceleration operating state, and other normal operating state.

Description

本発明は、自動車エンジンや産業用エンジン等の内燃機関における、可変冷却水ポンプを備えた内燃機関の冷却装置及び内燃機関の冷却方法に関し、より詳細には、内燃機関の運転状態に応じて、冷却水ポンプを内燃機関の効率が良く且つ最適となるように制御して、内燃機関の燃費性能を向上させることができる内燃機関の冷却装置及び内燃機関の冷却方法に関する。   The present invention relates to a cooling device for an internal combustion engine having a variable cooling water pump and a cooling method for the internal combustion engine in an internal combustion engine such as an automobile engine or an industrial engine, and more specifically, according to the operating state of the internal combustion engine, The present invention relates to a cooling device for an internal combustion engine and a cooling method for the internal combustion engine that can improve the fuel efficiency of the internal combustion engine by controlling the cooling water pump so that the efficiency of the internal combustion engine is good and optimal.

近年の内燃機関を使用する自動車用エンジンや産業用エンジン等における排気ガス規制は年々厳しくなってきている。これに加えて近年は世界的な地球温暖化への対応として、厳しい燃費規制も導入されている。これらに対応するため、最新の内燃機関(エンジン)はシリンダ内における燃焼を改善することで燃費を改善するための研究開発と共に、エンジン本体のフリクションを低減することで燃費を改善するための研究開発も同時に行われてきている。   In recent years, exhaust gas regulations in automobile engines, industrial engines, and the like that use internal combustion engines have become stricter year by year. In addition to this, strict fuel efficiency regulations have been introduced in recent years as a countermeasure to global warming. In order to meet these requirements, the latest internal combustion engines (engines) have research and development to improve fuel efficiency by improving combustion in the cylinder, and research and development to improve fuel efficiency by reducing engine friction. Has also been done at the same time.

しかし、内燃機関の燃費を改善する手段としてのエンジン本体における燃焼効率の向上が限界に達していることから、近年はエンジン本体のフリクション低減のための研究開発が活発化している。特に、このエンジンフリクションの低減の研究の中で、従来のままの冷却水ポンプ(ウォーターポンプ)の運転では、無駄が多く、内燃機関が必要とする最適な仕事量となっていないことが問題となっている。   However, since the improvement of the combustion efficiency in the engine body as a means for improving the fuel efficiency of the internal combustion engine has reached the limit, research and development for reducing the friction of the engine body has recently been activated. In particular, in this research on reducing engine friction, the conventional operation of the cooling water pump (water pump) is problematic in that it is wasteful and does not achieve the optimum work required by the internal combustion engine. It has become.

つまり、通常、内燃機関に使用されている冷却水ポンプは、エンジン駆動部とギヤ又はベルト等によって連結され、エンジン駆動部の動力を直接伝達されて回転駆動されている。従って、一般的に、冷却水ポンプの回転数は、エンジン回転数に比例して増加している。   That is, normally, the cooling water pump used in the internal combustion engine is connected to the engine drive unit by a gear, a belt, or the like, and is rotationally driven by directly transmitting the power of the engine drive unit. Therefore, generally, the rotation speed of the cooling water pump increases in proportion to the engine rotation speed.

一方、冷却水は内燃機関の各部分を冷却するために、冷却が必要な各部分に供給されているが、この冷却水ポンプの仕様及び流量の選定は、内燃機関の運転で一番厳しいエンジン全負荷運転条件に基づいて行われている。従って、内燃機関側に必要な冷却水の最適流量を考えると、各エンジン回転数と各エンジン負荷に応じて冷却水の流量が調整されるのが最適である。しかしながら、現状の冷却水ポンプではエンジン回転数に従って冷却水の供給量が決まってしまうために、内燃機関の運転状態によっては無駄な仕事をしていることになる。この無駄な仕事量を低減させ、燃費の改善を図ることが重要になってきている。   On the other hand, the cooling water is supplied to each part that needs to be cooled in order to cool each part of the internal combustion engine. The specification of the cooling water pump and the selection of the flow rate are the most severe engine in the operation of the internal combustion engine. This is based on full load operating conditions. Therefore, considering the optimum flow rate of the cooling water required for the internal combustion engine, it is optimal that the flow rate of the cooling water is adjusted according to each engine speed and each engine load. However, in the current cooling water pump, since the amount of cooling water supplied is determined according to the engine speed, depending on the operating state of the internal combustion engine, a wasteful work is performed. It has become important to reduce this wasteful work and improve fuel efficiency.

そのため、冷却水ポンプを同一のエンジン回転数であっても吐出量を変化できるようにするという「冷却水ポンプの可変化」による燃費の改善が注目され、近年、冷却水ポンプの可変化に関して様々な装置やシステムが開発されている。例えば、電気を動力としてモータを回転させ、その先に冷却水ポンプを取り付けて羽を回転させる電気式冷却水ポンプ、通常の冷却水ポンプの先端に電磁クラッチを取り付けた電磁クラッチ式冷却水ポンプ、通常の機械式冷却水ポンプの羽の周りを金属板で覆い仕事量を変化させる機械式可変冷却水ポンプ、冷却水路を幾つかに分割し、それぞれに温度設定を変えたサーモスタットを配置させた機械式可変冷却水システム等がある。   For this reason, attention has been paid to the improvement of fuel consumption by “variation of the cooling water pump” that enables the discharge amount of the cooling water pump to be changed even at the same engine speed. Devices and systems have been developed. For example, an electric cooling water pump in which a motor is rotated using electricity as a driving force, and a cooling water pump is attached to the tip of the motor to rotate the wings. A mechanical variable cooling water pump that covers the wings of a normal mechanical cooling water pump with a metal plate to change the amount of work, and a machine that divides the cooling water channel into several parts and arranges thermostats with different temperature settings for each. Type variable cooling water system.

これに関連して、ウォータジャケットに流入する冷却流体の流入流量を、エンジンが極冷間状態にある場合に通常時流量とし、エンジンが少冷間状態にある場合に無くしまたは通常時流量よりも低減し、エンジンが温間状態にある場合に通常時流量とし、ヒータ経路は、少なくともエンジンが極冷間状態にある場合に流通可能にするエンジンの冷却装置が提案されている(例えば、特許文献1参照。)。   In this connection, the flow rate of the cooling fluid flowing into the water jacket is the normal flow rate when the engine is in an extremely cold state, and is lost or less than the normal flow rate when the engine is in a cold state. There has been proposed an engine cooling device that reduces the normal flow rate when the engine is in a warm state and allows the heater path to flow at least when the engine is in an extremely cold state (for example, Patent Documents). 1).

このように可変冷却水ポンプの開発が進んでいるが、その一方で、内燃機関に取り付けられた各装置が冷却水ポンプに要求する冷却水の流量も複雑化している。この冷却水ポンプに要求される様々な内容としては、「燃費」「排ガス性能」「出力性能」に関係するものがあり、これらを改善するための冷却水ポンプの最適作動制御が要求されている。   As described above, the development of the variable cooling water pump is advancing. On the other hand, the flow rate of the cooling water required for the cooling water pump by each device attached to the internal combustion engine is also complicated. Various contents required for this cooling water pump are related to "fuel consumption", "exhaust gas performance", and "output performance", and optimal operation control of the cooling water pump is required to improve these. .

「燃費」を改善するためには、無駄な冷却水ポンプの作動を停止させて、冷却水ポンプを駆動するためのエンジンフリクションを低減させる必要がある。また、内燃機関の温度を迅速に上昇させて、循環油の粘性を低下させる等してエンジンフリクションの低減を図る必要があり、この面から冷却水ポンプの最適制御が必要となる。   In order to improve the “fuel consumption”, it is necessary to stop the operation of the useless cooling water pump and reduce the engine friction for driving the cooling water pump. Further, it is necessary to reduce the engine friction by rapidly increasing the temperature of the internal combustion engine and lowering the viscosity of the circulating oil. From this aspect, it is necessary to optimally control the cooling water pump.

また、「排ガス性能」に関しては、内燃機関における近年の厳しい排ガス規制に対応するためにEGRシステムが重要な役割を果たしているが、このEGRの効果にEGRクーラの冷却能力が大きな影響を及ぼしている。従って、高い排ガス性能を確保するためのEGRを適切に行うために、EGRクーラを効率良く冷却する必要があり、この面からも冷却水ポンプの最適制御が必要となる。   In terms of “exhaust gas performance”, the EGR system plays an important role in meeting the recent severe exhaust gas regulations in internal combustion engines. . Therefore, in order to appropriately perform EGR for ensuring high exhaust gas performance, it is necessary to efficiently cool the EGR cooler, and also from this aspect, optimum control of the cooling water pump is necessary.

更に、「出力性能」に関しては、最近の内燃機関では高い燃費性能の内燃機関の開発競争が盛んに行われており、この一つとして、小さい排気量の内燃機関を高出力化させるという、内燃機関のダウンサイジング化が進んでいる。これにより、エンジンフリクションの大きい大型の内燃機関に代わってエンジンフリクションの小さい小型の内燃機関を搭載することが可能となり、低燃費化を図ることができる。具体的には、従来の内燃機関の全負荷性能曲線よりも上に高出力化を達成させた内燃機関の全負荷性能曲線が描けることで、燃費の改善が可能となる。   Furthermore, with regard to “output performance”, recent internal combustion engines are actively competing for development of internal combustion engines with high fuel efficiency, and one of them is that the internal combustion engine with a small displacement is increased in output. The organization is downsizing. Thereby, it becomes possible to mount a small-sized internal combustion engine with small engine friction instead of a large-sized internal combustion engine with large engine friction, and to achieve fuel efficiency reduction. Specifically, the fuel efficiency can be improved by drawing the full load performance curve of the internal combustion engine that has achieved higher output above the full load performance curve of the conventional internal combustion engine.

しかしながら、エンジン負荷が高くなることでエンジン各部の温度が上昇してしまうという問題がある。つまり、エンジン高出力化によりエンジン高負荷状態で冷却水の高流量化を要求される。これに対し、単純にこの要求のまま冷却水ポンプを大型化すると燃費が悪化するという問題が生じる。また、内燃機関が小型化したことで発進性能が不足するという問題もある。つまり、発進時には少しでもエンジンフリクションを減少したいとの要求がある。更に、車両の制動力を増強する補助ブレーキ装置に供給するために、冷却水の高圧化および高流量化が要求される場合もあるなど、冷却水ポンプに要求される内容が複雑に多様化しているという問題もある。   However, there is a problem that the temperature of each part of the engine rises as the engine load increases. That is, it is required to increase the flow rate of the cooling water in an engine high load state by increasing the engine output. On the other hand, when the size of the cooling water pump is simply increased while satisfying this requirement, there arises a problem that fuel consumption deteriorates. Another problem is that the starting performance is insufficient because the internal combustion engine is downsized. In other words, there is a demand for reducing engine friction as much as possible when starting. Furthermore, in order to supply to the auxiliary brake device that enhances the braking force of the vehicle, the cooling water pump needs to be increased in pressure and flow rate. There is also the problem of being.

つまり、冷却水ポンプの可変化が進んでいるが、冷却水ポンプに要求される内容が複雑に多様化しており、車両や内燃機関の様々な運転状態においても、内燃機関を最適な状態で運転するための冷却水ポンプの制御を行う必要があるにもかかわらず、現行の内燃機関の冷却装置及び内燃機関の冷却方法ではこれら複雑な制御に対応できていないという問題がある。   In other words, the cooling water pump is becoming more variable, but the contents required for the cooling water pump are complicated and diversified, and the internal combustion engine is operated in an optimal state even in various operating states of the vehicle and the internal combustion engine. In spite of the necessity of controlling the cooling water pump for this purpose, there is a problem that the current internal combustion engine cooling apparatus and internal combustion engine cooling method cannot cope with these complicated controls.

特開2006−266196号公報JP 2006-266196 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、要求される内容が複雑に多様化している冷却水ポンプを適切に制御することにより、車両や内燃機関の様々な運転状態においても、内燃機関を最適な状態にすることができ、燃費の改善や、排気ガス性能の改善や、出力性能の向上を図ることができる内燃機関の冷却装置及び内燃機関の冷却方法を提供することにある。   The present invention has been made in view of the above-described situation, and its object is to appropriately control various cooling water pumps whose required contents are complicated and diversified, thereby performing various operations of vehicles and internal combustion engines. A cooling device for an internal combustion engine and a cooling method for the internal combustion engine that can bring the internal combustion engine into an optimal state even in a state, and can improve fuel efficiency, exhaust gas performance, and output performance There is to do.

上記の目的を達成するための本発明の内燃機関の冷却装置は、同一のエンジン回転数であっても吐出量を変化できる可変冷却水ポンプと該可変冷却水ポンプを制御する制御装置を備えた内燃機関の冷却装置において、前記制御装置を、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて前記可変冷却水ポンプの運転の制御を行うように構成する。   In order to achieve the above object, a cooling apparatus for an internal combustion engine of the present invention includes a variable cooling water pump capable of changing a discharge amount even at the same engine speed and a control device for controlling the variable cooling water pump. In the cooling device for an internal combustion engine, the control device is configured to control the operation of the variable coolant pump separately for an idle operation state, a deceleration operation state, an acceleration operation state, and other normal operation states.

この可変冷却水ポンプとは、冷却水ポンプの回転数がエンジン回転数に比例するだけではなく、同一のエンジン回転数であってもON(運転)−OFF(運転停止)、又は、その吐出量を変化できる冷却水ポンプのことをいい、冷却水ポンプの先端に電磁式クラッチを設けてON−OFF可能にした電磁クラッチ式冷却水ポンプ、電動で回転数を任意に設定することができる電気式冷却水ポンプ(電動式冷却水ポンプ)、内燃機関の駆動軸と冷却水ポンプとの間に変速機を設けた機械式可変冷却水ポンプ等で構成することができる。従って、ここでの可変冷却水ポンプの吐出量の変化には、可変冷却水ポンプのON−OFFも含むことになる。   The variable cooling water pump is not only proportional to the engine rotation speed but also ON (operation) -OFF (operation stop) or the discharge amount even if the engine rotation speed is the same. This is a cooling water pump that can change the temperature, and an electromagnetic clutch cooling water pump that can be turned on and off by providing an electromagnetic clutch at the tip of the cooling water pump. A cooling water pump (electric cooling water pump), a mechanical variable cooling water pump provided with a transmission between the drive shaft of the internal combustion engine and the cooling water pump, or the like can be used. Therefore, the change in the discharge amount of the variable cooling water pump here includes ON-OFF of the variable cooling water pump.

この構成によれば、内燃機関の様々な運転状態に応じて、きめ細かく可変冷却水ポンプの吐出量を変化できるので、内燃機関にとって最適となる可変冷却水ポンプの総合的な制御を行うことができ、燃費の改善、排気ガス性能の改善、出力性能の向上を図ることができるようになる。   According to this configuration, the discharge amount of the variable cooling water pump can be finely changed in accordance with various operating states of the internal combustion engine, so that comprehensive control of the variable cooling water pump that is optimal for the internal combustion engine can be performed. It is possible to improve fuel efficiency, exhaust gas performance, and output performance.

また、上記の内燃機関の冷却装置において、前記可変冷却水ポンプを吐出量を増減できる可変冷却水ポンプで形成し、前記制御装置を、前記通常運転状態では、内燃機関の過熱状態を検出する温度センサの測定温度が予め設定された第1判定温度以下の場合には前記可変冷却水ポンプを第1運転状態とすると共に、前記測定温度が前記第1判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する通常運転時制御を行い、前記アイドル運転状態では、前記測定温度が予め前記第1判定温度より高く設定された第2判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が前記第2判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加するアイドル運転時制御を行い、前記減速運転状態では、燃料噴射がある場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、燃料噴射が無くなった場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する減速運転時制御を行い、前記加速運転状態では、前記測定温度が予め設定された第3判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が前記第3判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する加速運転時制御を行うように構成する。   Further, in the internal combustion engine cooling apparatus, the variable cooling water pump is formed of a variable cooling water pump capable of increasing or decreasing the discharge amount, and the control device is configured to detect a temperature at which the internal combustion engine is overheated in the normal operation state. When the measured temperature of the sensor is equal to or lower than a first determination temperature set in advance, the variable cooling water pump is set to the first operation state, and when the measured temperature exceeds the first determination temperature, the variable cooling is performed. When normal operation control is performed to increase the discharge amount of the water pump from the first operation state, and in the idle operation state, the measured temperature is equal to or lower than a second determination temperature set in advance higher than the first determination temperature The variable cooling water pump is set to the first operating state, and when the measured temperature exceeds the second determination temperature, the discharge amount of the variable cooling water pump is increased from that of the first operating state. In the decelerating operation state, the variable cooling water pump is set to the first operation state when there is fuel injection, and when there is no fuel injection, the variable cooling water pump is controlled. Control is performed during deceleration operation in which the discharge amount is increased from that in the first operation state. In the acceleration operation state, when the measured temperature is equal to or lower than a preset third determination temperature, the variable coolant pump is In addition to the one operating state, when the measured temperature exceeds the third determination temperature, the control is performed during acceleration operation in which the discharge amount of the variable cooling water pump is increased from that in the first operating state. .

この第2判定温度と第3判定温度はそれぞれ第1判定温度よりも高い温度に設定されるが、第3判定温度は第2判定温度とは関係させずに設定される。そのため、第3判定温度が第2判定温度と同じであっても、異なっていてもよい。また、この第1運転状態とは、内燃機関の運転において、必要最小限の冷却水量で冷却水の循環を行うための可変冷却水ポンプの運転状態であり、測定温度の判定時までに予め設定される運転状態である。   The second determination temperature and the third determination temperature are each set to a temperature higher than the first determination temperature, but the third determination temperature is set without being related to the second determination temperature. Therefore, the third determination temperature may be the same as or different from the second determination temperature. The first operating state is an operating state of the variable cooling water pump for circulating the cooling water with the minimum amount of cooling water in the operation of the internal combustion engine, and is set in advance by the time of determination of the measured temperature. It is a driving state.

また、内燃機関の過熱状態を検出する温度センサが複数ある場合には、それらの温度センサで検出された温度を、それぞれの温度センサに対して予め設定された判定温度と比較し、それらの一つ、又は、幾つか、又は、全部が以下の場合に、内燃機関の過熱状態を検出する温度センサの温度が予め設定された判定温度以下であると判定する。また、この判定温度以下であると判定が成立しない時には、判定温度より大きいと判定する。   In addition, when there are a plurality of temperature sensors that detect the overheating state of the internal combustion engine, the temperatures detected by these temperature sensors are compared with the judgment temperatures set in advance for the respective temperature sensors, and one of them is detected. If one, some, or all of the following are the following, it is determined that the temperature of the temperature sensor that detects the overheating state of the internal combustion engine is equal to or lower than a preset determination temperature. Further, when it is not determined that the temperature is equal to or lower than the determination temperature, it is determined that the temperature is higher than the determination temperature.

なお、この判定が、これらの温度センサの温度の内の一つでもその判定温度以下になった時に判定温度以下と判定するか、又は、これらの温度センサの温度の内の幾つかがそれぞれの判定温度以下になった時に判定温度以下と判定するか、これらの温度センサの温度の全部が各判定温度以下になった時に判定温度以下と判定するかは、本発明では特に限定しないが、実際の制御では予め設定しておく。   It should be noted that this determination is determined to be lower than the determination temperature when one of the temperatures of these temperature sensors is lower than the determination temperature, or some of the temperatures of these temperature sensors are respectively determined. Whether or not it is determined that the temperature is lower than the determination temperature or whether the temperature of all of these temperature sensors is equal to or lower than each determination temperature is not particularly limited in the present invention. This control is set in advance.

この構成によれば、通常運転状態では、内燃機関の過熱状態を検出する温度センサの測定温度が予め設定された第1判定温度以下の場合には可変冷却水ポンプを第1運転状態にしてできる限り燃費の改善を狙う。   According to this configuration, in the normal operation state, the variable cooling water pump can be brought into the first operation state when the measured temperature of the temperature sensor that detects the overheat state of the internal combustion engine is equal to or lower than the first determination temperature set in advance. Aim to improve fuel efficiency as much as possible.

そして、アイドル運転状態においても、測定温度が第2判定温度以下の場合には、エンジン全体の温度が急激に上昇することは少ないため、可変冷却水ポンプを第1運転状態にして、できる限り燃費の改善を狙う。   Even in the idling operation state, when the measured temperature is equal to or lower than the second determination temperature, the temperature of the entire engine is unlikely to rise rapidly. Therefore, the variable cooling water pump is set to the first operation state and fuel consumption is as much as possible. Aim to improve.

また、減速運転状態では、燃料噴射がある場合には、内燃機関の回転を維持するためやオイルポンプ等のアクセサリ(フリクション)の駆動のために必要な燃料が噴射されているということであり、燃料噴射のあるときには、できるだけ可変冷却水ポンプを回さない方がよいので、可変冷却水ポンプを第1運転状態にしてエンジンフリクションを低減し、燃費の低減を狙う。さらに、燃料噴射が無い場合は、可変冷却水ポンプの吐出量を第1運転状態より増加しても燃費に影響を及ぼさないため、また、内燃機関に対するダメージ低減のためにも、可変冷却水ポンプの吐出量を増加して、冷却水を循環させてエンジン全体の温度を安定させると共に、冷却で温度が低下した分だけ次の運転状態(例えば加速)での温度リミットに到達するまでの時間、即ち、冷却ポンプを回すまでの時間が長くなるため、燃費の改善を図ることができる。   Further, in the deceleration operation state, when there is fuel injection, the fuel necessary for maintaining the rotation of the internal combustion engine and for driving accessories (friction) such as an oil pump is being injected, When there is fuel injection, it is better not to rotate the variable cooling water pump as much as possible. Therefore, the variable cooling water pump is set to the first operating state to reduce engine friction and reduce fuel consumption. Further, when there is no fuel injection, the variable cooling water pump does not affect the fuel consumption even if the discharge amount of the variable cooling water pump is increased from the first operating state, and also for reducing damage to the internal combustion engine. The time to reach the temperature limit in the next operating state (for example, acceleration) as much as the temperature decreased by cooling, while the cooling water is circulated to stabilize the temperature of the entire engine, That is, since the time until the cooling pump is rotated is increased, the fuel consumption can be improved.

更に、加速運転状態においては、測定温度が第3判定温度以下では、可変冷却水ポンプを第1運転状態にしてエンジンフリクションを低減して、車両の発進動力性能、加速性能及び燃費を改善することができる。   Further, in the acceleration operation state, when the measured temperature is equal to or lower than the third determination temperature, the engine cooling is reduced by setting the variable cooling water pump to the first operation state to improve the vehicle starting power performance, acceleration performance, and fuel consumption. Can do.

但し、これらの内燃機関の各運転状態に置いても、測定温度が各判定温度を越えた場合には、可変冷却水ポンプの吐出量を第1運転状態よりも増加して内燃機関の冷却を優先する。   However, even when the internal combustion engine is in each operating state, if the measured temperature exceeds each judgment temperature, the discharge amount of the variable cooling water pump is increased from the first operating state to cool the internal combustion engine. Prioritize.

更に、上記の内燃機関の冷却装置において、前記可変冷却水ポンプの吐出量の増減を前記可変冷却水ポンプのON−OFFで行い、かつ、前記第1運転状態を前記可変冷却水ポンプの運転がOFFの状態とすると、ON−OFF制御の簡単な構成の可変冷却水ポンプを使用して、同様な効果を奏することができる。   Furthermore, in the cooling device for an internal combustion engine, the discharge amount of the variable cooling water pump is increased or decreased by turning the variable cooling water pump on and off, and the operation of the variable cooling water pump is performed in the first operation state. When in the OFF state, the same effect can be obtained by using a variable cooling water pump having a simple configuration of ON-OFF control.

そして、上記の目的を達成するための本発明の内燃機関の冷却方法は、内燃機関の冷却装置に備えた可変冷却水ポンプの吐出量を、同一のエンジン回転数であっても内燃機関の運転状態によって変化できる内燃機関の冷却方法において、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて前記可変冷却水ポンプの運転の制御を行うことを特徴とする方法である。   And the cooling method of the internal combustion engine of the present invention for achieving the above object is the operation of the internal combustion engine even when the discharge amount of the variable coolant pump provided in the cooling device of the internal combustion engine is the same engine speed. A method of cooling an internal combustion engine that can change depending on a state, wherein the operation of the variable cooling water pump is controlled by being divided into an idle operation state, a deceleration operation state, an acceleration operation state, and other normal operation states. is there.

また、上記の内燃機関の冷却方法において、前記可変冷却水ポンプを吐出量を増減して制御し、前記通常運転状態では、内燃機関の過熱状態を検出する温度センサの測定温度が予め設定された第1判定温度以下の場合には前記可変冷却水ポンプを第1運転状態とすると共に、前記測定温度が前記第1判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する通常運転時制御を行い、前記アイドル運転状態では、前記測定温度が予め前記第1判定温度より高く設定された第2判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が前記第2判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加し、前記減速運転状態では、燃料噴射がある場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、燃料噴射が無くなった場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加し、前記加速運転状態では、前記測定温度が予め設定された第3判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が予め設定された第3判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する。   In the internal combustion engine cooling method, the variable cooling water pump is controlled by increasing or decreasing the discharge amount, and in the normal operation state, a measurement temperature of a temperature sensor for detecting an overheat state of the internal combustion engine is preset. When the temperature is equal to or lower than the first determination temperature, the variable cooling water pump is set to the first operation state, and when the measured temperature exceeds the first determination temperature, the discharge amount of the variable cooling water pump is set to the first amount. Control during normal operation that increases more than the operating state is performed, and in the idle operating state, the variable cooling water pump is turned on when the measured temperature is equal to or lower than the second determination temperature set in advance higher than the first determination temperature. In the first operation state, when the measured temperature exceeds the second determination temperature, the discharge amount of the variable cooling water pump is increased from the first operation state, and in the deceleration operation state, fuel injection is performed. In some cases, the variable cooling water pump is set to the first operation state, and when fuel injection is lost, the discharge amount of the variable cooling water pump is increased from the first operation state, and the acceleration operation state is set. Then, when the measured temperature is equal to or lower than a preset third judgment temperature, the variable cooling water pump is set to the first operating state, and the measured temperature exceeds a preset third judgment temperature. The discharge amount of the variable cooling water pump is increased from that in the first operating state.

更に、上記の内燃機関の冷却方法において、前記可変冷却水ポンプの吐出量の増減を前記可変冷却水ポンプのON−OFFで行い、かつ、前記第1運転状態を前記可変冷却水ポンプの運転がOFFの状態とする。   Furthermore, in the cooling method for an internal combustion engine, the discharge amount of the variable cooling water pump is increased or decreased by turning the variable cooling water pump on and off, and the operation of the variable cooling water pump is performed in the first operating state. Set to the OFF state.

これらの内燃機関の冷却方法によれば、上記の内燃機関の冷却装置と同様な作用効果を奏することができる。   According to these internal combustion engine cooling methods, the same operational effects as the above-described internal combustion engine cooling apparatus can be obtained.

本発明に係る内燃機関の冷却装置及び内燃機関の冷却方法によれば、サーモスタット等による温度制御に加えて、可変冷却水ポンプの運転を、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて制御するので、これらの総合的な制御により、内燃機関の各部分にとっての冷却効果と、この冷却に必要な可変冷却水ポンプの駆動力を、内燃機関の運転状態に合わせて最適な状態にすることができる。   According to the internal combustion engine cooling apparatus and internal combustion engine cooling method according to the present invention, in addition to temperature control using a thermostat or the like, the variable cooling water pump is operated in an idle operation state, a deceleration operation state, an acceleration operation state, and others. Therefore, the overall control controls the cooling effect for each part of the internal combustion engine and the driving force of the variable cooling water pump necessary for this cooling into the operating state of the internal combustion engine. Together, it can be in an optimal state.

従って、車両や内燃機関の様々な運転状態において、複雑かつ多様化している冷却水の供給に対して、可変冷却水ポンプを適切に制御することで対応することができ、内燃機関の燃費の改善や、排気ガス性能の改善や、出力性能の向上を図ることができる。   Therefore, in various operating states of the vehicle and the internal combustion engine, it is possible to cope with the complicated and diversified supply of the cooling water by appropriately controlling the variable cooling water pump, thereby improving the fuel consumption of the internal combustion engine. In addition, exhaust gas performance and output performance can be improved.

本発明の実施の形態の内燃機関の冷却水路の構成を示す図である。It is a figure which shows the structure of the cooling water channel of the internal combustion engine of embodiment of this invention. 本発明の第1実施の形態の内燃機関の冷却方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the cooling method of the internal combustion engine of 1st Embodiment of this invention. 本発明の第2実施の形態の内燃機関の冷却方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the cooling method of the internal combustion engine of 2nd Embodiment of this invention. 減速状態における可変冷却水ポンプの作動指示(1)と作動停止(0)を示す図である。It is a figure which shows the operation instruction | indication (1) and operation stop (0) of the variable cooling water pump in a deceleration state.

以下、本発明に係る実施の形態の内燃機関の冷却装置及び内燃機関の冷却方法について、図面を参照しながら説明する。なお、本発明は、車両搭載のディーゼルエンジンのみならず、車両搭載のその他の内燃機関や産業用の内燃機関や発電用の内燃機関等の内燃機関全般において適用できる。   DESCRIPTION OF EMBODIMENTS Hereinafter, an internal combustion engine cooling apparatus and an internal combustion engine cooling method according to embodiments of the present invention will be described with reference to the drawings. The present invention is applicable not only to a diesel engine mounted on a vehicle but also to other internal combustion engines such as other internal combustion engines mounted on a vehicle, industrial internal combustion engines, and internal combustion engines for power generation.

図1に内燃機関(エンジン)の冷却水路の構成の一例を示す。冷却水は、冷却水タンク11から冷却水供給路12を経由して可変冷却水ポンプ13によってオイルクーラ14に入り、サーモスタット15で、冷却水温度によって、冷却水流路16とラジエータ17経由で可変冷却水ポンプ13に戻ったり、冷却水流路16とラジエータ17を経由せずに、冷却水たまり18を経由して可変冷却水ポンプ13に戻ったりする。また、冷却水の一部はオイルクーラ14を冷却した後、冷却水流路19を経由してEGRクーラ20に入り、冷却水流路21を経由して可変冷却水ポンプ13に戻る。また、冷却水たまり18やEGRクーラ20にはエア抜き配管22、23が設けられている。   FIG. 1 shows an example of the configuration of a cooling water passage of an internal combustion engine (engine). The cooling water enters the oil cooler 14 from the cooling water tank 11 via the cooling water supply path 12 by the variable cooling water pump 13, and is variably cooled by the thermostat 15 via the cooling water flow path 16 and the radiator 17 according to the cooling water temperature. It returns to the water pump 13 or returns to the variable cooling water pump 13 via the cooling water pool 18 without passing through the cooling water flow path 16 and the radiator 17. A part of the cooling water cools the oil cooler 14, then enters the EGR cooler 20 via the cooling water passage 19, and returns to the variable cooling water pump 13 via the cooling water passage 21. The cooling water pool 18 and the EGR cooler 20 are provided with air venting pipes 22 and 23.

本発明の第1の実施の形態の内燃機関の冷却装置及び内燃機関の冷却方法では、可変冷却水ポンプ13を、ON−OFF制御可能に構成する。具体的には、一般的な冷却水ポンプの先端に電磁クラッチを取り付けた電磁クラッチ式冷却水ポンプの可変冷却水ポンプ13で構成する。   In the internal combustion engine cooling apparatus and internal combustion engine cooling method according to the first embodiment of the present invention, the variable coolant pump 13 is configured to be capable of ON-OFF control. Specifically, it is constituted by a variable cooling water pump 13 of an electromagnetic clutch type cooling water pump in which an electromagnetic clutch is attached to the tip of a general cooling water pump.

この電磁クラッチ式可変冷却水ポンプは、内燃機関のコンプレッサに使用されている電磁クラッチを冷却水ポンプの駆動軸に取り付けたもので、電気信号により電磁クラッチ内に設置されたマグネットが作動することでマグネットプレートが吸引し、本体が作動する装置であり、同一のエンジン回転数であっても可変冷却水ポンプ13を、ON−OFFできる装置である。この電磁クラッチ式可変冷却水ポンプでは、ONの循環運転とOFFの循環停止の2パターンのみの運転となり、OFFの運転停止の場合は、冷却水は循環しない。   This electromagnetic clutch type variable cooling water pump is an electromagnetic clutch used in a compressor of an internal combustion engine attached to a drive shaft of the cooling water pump. A magnet installed in the electromagnetic clutch is activated by an electric signal. This is a device in which the magnet plate sucks and the main body operates, and the variable cooling water pump 13 can be turned on and off at the same engine speed. In this electromagnetic clutch variable cooling water pump, only two patterns of ON circulation operation and OFF circulation stop are operated, and in the case of OFF operation stop, the cooling water does not circulate.

更に、内燃機関の温度・性能を詳細に把握するために、内燃機関の冷却が重要な部分に温度センサを設けて温度を計測して、その測定温度に基づいて、可変冷却水ポンプ13をON−OFF制御するように構成する。この温度センサとしては、例えば、冷却水温度センサ、循環オイル温度センサ、排気ガス温度センサ、EGR冷却水温度センサ、排ガス温度センサ、ヘッド温度センサ、ボディ温度センサ等がある。   Further, in order to grasp in detail the temperature and performance of the internal combustion engine, a temperature sensor is provided in a portion where cooling of the internal combustion engine is important and the temperature is measured, and the variable cooling water pump 13 is turned on based on the measured temperature. -Configure to control OFF. Examples of the temperature sensor include a cooling water temperature sensor, a circulating oil temperature sensor, an exhaust gas temperature sensor, an EGR cooling water temperature sensor, an exhaust gas temperature sensor, a head temperature sensor, and a body temperature sensor.

また、EGRクーラに温度センサを設けて、その測定温度に基づいて可変冷却水ポンプ13をON−OFF制御するように構成すると、高いEGR率を維持できて、シリンダ内の燃焼で発生するNOxの発生量を低減でき、排ガス性能を改善することができる。   If a temperature sensor is provided in the EGR cooler and the variable cooling water pump 13 is controlled to be turned on and off based on the measured temperature, a high EGR rate can be maintained and NOx generated by combustion in the cylinder can be maintained. The generation amount can be reduced, and the exhaust gas performance can be improved.

つまり、内燃機関には早く温度を高めたい箇所と逆に温度を下げたい箇所があり、また、それらは逆に温度制限のリミット条件にもなるので、これらの温度を事前のエンジン試験によって最適な箇所と温度を明らかにして制御に使用する。   In other words, internal combustion engines have parts that want to lower the temperature quickly, and conversely, they also serve as temperature limit conditions. The location and temperature are clarified and used for control.

さらに様々な内燃機関の運転モードに応じて要求される可変冷却水ポンプ13の制御に対し、事前に内燃機関の各部分に備えた各センサの検出結果とで制御マップを設定し、この制御マップを参照しながら各運転モードに合わせた細かい制御を行うことにより、内燃機関の燃費の改善、排ガス性能の改善、動力性能の改善を行うことができるようになる。   Further, for the control of the variable coolant pump 13 required in accordance with various operation modes of the internal combustion engine, a control map is set in advance with detection results of each sensor provided in each part of the internal combustion engine. By performing fine control according to each operation mode while referring to FIG. 6, it becomes possible to improve the fuel consumption of the internal combustion engine, the exhaust gas performance, and the power performance.

そして、この可変冷却水ポンプ13を制御する制御装置は、可変冷却水ポンプ13の運転を、アイドル運転時と減速運転時と加速運転時とそれ以外の通常運転時に分けて、内燃機関の過熱状態を検出する温度センサの測定温度を予め設定又は予め設定された各判定温度と比較しながら制御するように構成される。   The control device for controlling the variable cooling water pump 13 divides the operation of the variable cooling water pump 13 into the idle operation, the deceleration operation, the acceleration operation, and the other normal operation, and the overheated state of the internal combustion engine. It is configured to control the temperature measured by the temperature sensor for detecting the temperature while being set in advance or compared with each preset determination temperature.

この内燃機関の過熱状態を検出する温度センサが複数ある場合には、それらの温度センサで検出された温度を、それぞれの温度センサに対して予め設定された判定温度と比較し、それらの一つ、又は、幾つか、又は、全部がそれぞれの判定温度以下の場合に、内燃機関の過熱状態を検出する温度センサの測定温度が予め設定された判定温度以下であると判定する。また、この判定温度以下であると判定が成立しない時には、判定温度より大きいと判定する。   When there are a plurality of temperature sensors for detecting the overheat state of the internal combustion engine, the temperature detected by these temperature sensors is compared with a judgment temperature preset for each temperature sensor, and one of them is detected. Alternatively, when some or all of them are equal to or lower than the respective determination temperatures, it is determined that the measured temperature of the temperature sensor that detects the overheat state of the internal combustion engine is equal to or lower than a predetermined determination temperature. Further, when it is not determined that the temperature is equal to or lower than the determination temperature, it is determined that the temperature is higher than the determination temperature.

また、この判定としては、次の三つの判定方法がある。一つ目は、これらの温度センサの温度の内の一つでもその判定温度以下になった時に判定温度以下と判定する。二つ目は、これらの温度センサの温度の内の幾つかがそれぞれの判定温度以下になった時に判定温度以下と判定する。三つ目は、これらの温度センサの温度の全部がそれぞれの判定温度以下になった時に判定温度以下と判定する。これらのいずれの判定方法を選択するかは、内燃機関によるが、実際の制御では、いずれかの判定方法を予め選択し、それに対応した判定温度の算出方法等の判定基準を設定しておく必要がある。   As this determination, there are the following three determination methods. First, when one of the temperatures of these temperature sensors becomes equal to or lower than the determination temperature, it is determined to be equal to or lower than the determination temperature. Second, when some of the temperatures of these temperature sensors are below the respective judgment temperatures, the temperature is judged to be below the judgment temperature. Third, when all of the temperatures of these temperature sensors are below the respective determination temperatures, it is determined that the temperature is below the determination temperature. Which of these determination methods is selected depends on the internal combustion engine, but in actual control, it is necessary to select one of the determination methods in advance and set a determination criterion such as a determination temperature calculation method corresponding thereto. There is.

この内燃機関の冷却方法について、図2の制御フローを参照しながら説明する。この図2の制御フローは内燃機関の運転開始と共に、上位に制御フローから呼ばれて、実施され、内燃機関の運転停止と共に、割り込みが生じて、上位の制御フローにリターンして、上位の制御フローの終了と共に終了するものとして示してある。   This internal combustion engine cooling method will be described with reference to the control flow of FIG. The control flow of FIG. 2 is called and executed from the upper control flow when the internal combustion engine is started. When the operation of the internal combustion engine is stopped, an interrupt occurs and the control flow returns to the upper control flow. It is shown as ending with the end of the flow.

内燃機関が運転開始されると、それと共に、図2の制御フローが呼ばれて、この制御フローがスタートし、ステップS11でエンジンの各種情報を取得する。この各種情報の中には、エンジン回転数、燃料噴射量、内燃機関の過熱状態を検出する温度センサの検出値である測定温度Tm等がある。   When the operation of the internal combustion engine is started, the control flow in FIG. 2 is called together with this, and this control flow starts. In step S11, various information on the engine is acquired. Among the various types of information, there are the engine speed, the fuel injection amount, the measured temperature Tm that is the detection value of the temperature sensor that detects the overheating state of the internal combustion engine, and the like.

制御装置は、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて制御する。そのため、図2の制御フローのステップS12のアイドル運転状態あるか否かの判定と、ステップS13の減速運転状態であるか否かの判定と、ステップS14の加速運転状態であるか否かの判定とを行う。ステップS12、S13、S14の判定でいずれも否の場合(NO)は、通常運転状態であると判定して、ステップS15に行き、通常運転時制御を行う。   The control device performs control by dividing into an idle operation state, a deceleration operation state, an acceleration operation state, and other normal operation states. Therefore, it is determined whether or not there is an idle operation state in step S12 of the control flow of FIG. 2, whether or not it is in a deceleration operation state in step S13, and whether or not it is in an acceleration operation state in step S14. And do. If all of the determinations in steps S12, S13, and S14 are negative (NO), it is determined that the operation is in the normal operation state, the process proceeds to step S15, and control during normal operation is performed.

このステップS15では、測定温度Tmが予め設定された第1判定温度Ta以下であるか否かの判定を行い、測定温度Tmが第1判定温度Ta以下の場合(YES)には、ステップS20に行き、電磁クラッチをOFFにして可変冷却水ポンプ13の運転を停止し、即ち、可変冷却水ポンプ13をOFFする制御を行い、ステップS11に戻る。   In this step S15, it is determined whether or not the measured temperature Tm is equal to or lower than a preset first determination temperature Ta. If the measured temperature Tm is equal to or lower than the first determination temperature Ta (YES), the process proceeds to step S20. Then, the electromagnetic clutch is turned off to stop the operation of the variable cooling water pump 13, that is, the variable cooling water pump 13 is turned off, and the process returns to step S11.

また、ステップS15で測定温度Tmが第1判定温度Taを超えた場合(NO)には、ステップS30に行き、エンジン回転数と燃料噴射量の検出値に基づいて、予め設定した制御マップを参照して、電磁クラッチをON−OFFして可変冷却水ポンプ13を運転及び運転停止の動作をさせる制御を行い、ステップS11に戻る。   If the measured temperature Tm exceeds the first determination temperature Ta in step S15 (NO), go to step S30 and refer to a preset control map based on the detected values of the engine speed and the fuel injection amount. Then, the electromagnetic clutch is turned on and off to control the variable cooling water pump 13 to operate and stop operation, and the process returns to step S11.

このステップS15の通常運転時制御では、測定温度Tmが第1判定温度Taを超えた場合(NO)には、ステップS30でエンジン回転数と燃料噴射量で決定されるエンジン運転状態に応じて、電磁クラッチのON−OFF動作の時間を調整し、可変冷却水ポンプ13の運転時間と停止時間を調整する。つまり、この運転状態のために用いる通常運転時制御用の「定常用の停止期間マップ」等を使用して、内燃機関の運転状態とそのときの状態にあわせて、可変冷却水ポンプ13を制御して、できるかぎり燃費の低減を狙う。   In the normal operation control of step S15, when the measured temperature Tm exceeds the first determination temperature Ta (NO), according to the engine operating state determined by the engine speed and the fuel injection amount in step S30, The time of the ON / OFF operation of the electromagnetic clutch is adjusted, and the operation time and stop time of the variable cooling water pump 13 are adjusted. That is, the variable cooling water pump 13 is controlled in accordance with the operation state of the internal combustion engine and the state at that time by using the “steady-state stop period map” or the like for normal operation control used for this operation state. And aim to reduce fuel consumption as much as possible.

この通常運転時制御は、基本的なエンジン制御マップを制御装置に入力しておき、内燃機関の運転時に、エンジン回転数センサ(図示しない)からエンジン回転数(エンジン回転速度)を検出し、燃料噴射量を検出して、事前の内燃機関の試験結果、計測結果や計算シミュレーション結果等に基づいて予め設定された基本的なエンジン制御マップに基づく可変冷却水ポンプ制御用マップを参照して、電磁クラッチのON、OFFを算出して、可変冷却水ポンプ13の運転を操作する。   In this normal operation control, a basic engine control map is input to the control device, and during operation of the internal combustion engine, an engine speed (engine speed) is detected from an engine speed sensor (not shown), and the fuel is Detecting the injection amount, refer to the variable coolant pump control map based on the basic engine control map set in advance based on the test result, measurement result, calculation simulation result, etc. The operation of the variable cooling water pump 13 is operated by calculating ON / OFF of the clutch.

これらの可変冷却水ポンプ制御用マップ(基本マップ)により、内燃機関にとって最適な状態に作動させることが可能な制御システムとなる。この制御では、この可変冷却水ポンプ制御用マップを有効に利用して可変冷却水ポンプ13を作動させることができ、必要十分な冷却水の流量で内燃機関1の各部分を冷却することができるようになる。   These variable cooling water pump control maps (basic maps) provide a control system that can be operated in an optimum state for the internal combustion engine. In this control, the variable cooling water pump control map can be effectively used to operate the variable cooling water pump 13, and each part of the internal combustion engine 1 can be cooled with a necessary and sufficient cooling water flow rate. It becomes like this.

つまり、内燃機関1の冷却が重要な部分に温度センサを設けて温度を計測して、その温度に基づいて、可変冷却水ポンプ13の吐出量を増減する制御を行うので、これにより必要十分な冷却水の流量で内燃機関1の各部分を冷却して迅速に内燃機関1にとって最適な状態にできるので、可変冷却水ポンプ13の作動効率と冷却効率を向上し、燃費を改善することができる。   In other words, a temperature sensor is provided in a portion where cooling of the internal combustion engine 1 is important, the temperature is measured, and control is performed to increase or decrease the discharge amount of the variable cooling water pump 13 based on the temperature. Since each part of the internal combustion engine 1 can be quickly cooled to the optimum state for the internal combustion engine 1 with the flow rate of the cooling water, the operating efficiency and cooling efficiency of the variable cooling water pump 13 can be improved, and fuel consumption can be improved. .

また、ステップS12の判定で、アイドル運転状態であると判定された場合(YES)は、ステップS12aに行き、アイドル運転時制御を行う。このステップS12aでは、測定温度Tmが予め設定された第2判定温度Tb以下であるか否かを判定する。この第2判定温度Tbは第1判定温度Taよりも高い温度に設定される。この判定で測定温度Tmが第2判定温度Tb以下の場合(YES)には、ステップS20に行き、電磁クラッチをOFFにして可変冷却水ポンプ13の運転を停止する制御を行い、ステップS11に戻る。また、ステップS12aの判定で、測定温度Tmが第2判定温度Tbを超えた場合(NO)には、ステップS30で可変冷却水ポンプ13をONとする制御を行い、ステップS11に戻る。   Moreover, when it determines with it being an idle driving | running state by determination of step S12 (YES), it goes to step S12a and performs control at the time of idle driving | running | working. In step S12a, it is determined whether or not the measured temperature Tm is equal to or lower than a preset second determination temperature Tb. The second determination temperature Tb is set to a temperature higher than the first determination temperature Ta. If the measurement temperature Tm is equal to or lower than the second determination temperature Tb in this determination (YES), the process goes to step S20 to perform control to turn off the electromagnetic clutch and stop the operation of the variable coolant pump 13, and return to step S11. . If the measurement temperature Tm exceeds the second determination temperature Tb (NO) in step S12a, control is performed to turn on the variable cooling water pump 13 in step S30, and the process returns to step S11.

このアイドル運転状態では、内燃機関全体の温度が大きく上がることは少ないため、測定温度Tmが第2判定温度Tb以下の場合に可変冷却水ポンプ13をOFFとし、できる限り燃費の低減を狙う。   In this idling operation state, the temperature of the entire internal combustion engine is unlikely to rise significantly, so when the measured temperature Tm is equal to or lower than the second determination temperature Tb, the variable cooling water pump 13 is turned off and the fuel consumption is reduced as much as possible.

また、ステップS13の判定で、減速運転状態ではないと判定された場合(NO)、または、燃料噴射量がゼロでないと判定された場合(NO)はステップS14に行き、減速運転状態でかつ燃料噴射量がゼロであると判定された場合(YES)は、減速運転時制御を行うとして、ステップS30で可変冷却水ポンプ13をONとする制御を行い、可変冷却水ポンプ13を運転してステップS11に戻る。この減速運転状態で用いる電磁クラッチの制御マップの例を図4に示す。「1」表示がONを、「0」表示がOFFを示す。   If it is determined in step S13 that the engine is not in the deceleration operation state (NO), or if it is determined that the fuel injection amount is not zero (NO), the process goes to step S14, where the fuel cell is in the deceleration operation state and the fuel. If it is determined that the injection amount is zero (YES), the control at the time of deceleration operation is performed, the control to turn on the variable cooling water pump 13 at step S30, the variable cooling water pump 13 is operated, and the step is performed. Return to S11. An example of a control map of the electromagnetic clutch used in this deceleration operation state is shown in FIG. “1” display indicates ON, and “0” display indicates OFF.

この減速運転状態で燃料噴射が無い場合は、車両の減速時や車両を制動してエンジンブレーキを作動させている状態が多いので、制御装置から内燃機関の燃料噴射装置に実際に指示している燃料噴射量を用いることで、確実に燃料が噴射されていない車両の減速時及び制動状態を把握して、電磁クラッチをONにして可変冷却水ポンプ13を運転して内燃機関の制動力の増加の一助とすることができる。   When there is no fuel injection in this deceleration operation state, there are many states when the vehicle is decelerated or the vehicle is braked to operate the engine brake, so the control device actually instructs the fuel injection device of the internal combustion engine. By using the fuel injection amount, it is possible to grasp the deceleration state and the braking state of the vehicle to which fuel is not reliably injected, and the electromagnetic clutch is turned on to operate the variable coolant pump 13 to increase the braking force of the internal combustion engine. Can help.

つまり、冷却というのは基本的には内燃機関にとっては必要なものであるため、冷却水温度が異常に低い場合、即ち、冷却し過ぎる場合を除いては、燃費に影響のない状態では積極的に可変冷却水ポンプ13を運転して、内燃機関の温度上昇を抑え、安定させる。なお、この減速運転状態において燃料噴射が有る場合には、ステップS20で電磁クラッチをOFFにして可変冷却水ポンプ13を停止してエンジンフリクションを低減する。   In other words, since cooling is basically necessary for an internal combustion engine, it is active in a state that does not affect fuel consumption except when the cooling water temperature is abnormally low, that is, when cooling is excessive. Then, the variable cooling water pump 13 is operated to suppress and stabilize the temperature increase of the internal combustion engine. If fuel injection is present in this deceleration operation state, the electromagnetic clutch is turned off in step S20 to stop the variable coolant pump 13 to reduce engine friction.

更に、ステップS14の判定で、加速運転状態であると判定された場合(YES)は、ステップS14aに行き、加速運転時制御を行う。この加速運転状態では、測定温度Tmが予め設定された第3判定温度Tc以下であるか否かの判定を行う。この第3判定温度Tcは第1判定温度Taより高く設定されるが、第2判定温度Tbとは関係させずに設定される。そのため、第3判定温度Tcが第2判定温度Tbと同じであっても、異なっていてもよい。   Further, if it is determined in step S14 that the vehicle is in the acceleration operation state (YES), the process goes to step S14a to perform acceleration operation control. In this acceleration operation state, it is determined whether or not the measured temperature Tm is equal to or lower than a preset third determination temperature Tc. The third determination temperature Tc is set higher than the first determination temperature Ta, but is set independently of the second determination temperature Tb. Therefore, the third determination temperature Tc may be the same as or different from the second determination temperature Tb.

このステップS14aの判定で、測定温度Tmが第3判定温度Tc以下の場合(YES)には場合には、ステップS20で可変冷却水ポンプ13をOFFとする制御を行い、ステップS11に戻る。このステップS14aの判定で測定温度Tmが第3判定温度Tcを超えた場合(NO)には、ステップS30で可変冷却水ポンプ13をONとする制御を行い、ステップS11に戻る。   If it is determined in step S14a that the measured temperature Tm is equal to or lower than the third determination temperature Tc (YES), control is performed to turn off the variable coolant pump 13 in step S20, and the process returns to step S11. When the measurement temperature Tm exceeds the third determination temperature Tc in the determination in step S14a (NO), control is performed to turn on the variable cooling water pump 13 in step S30, and the process returns to step S11.

このステップS14の加速運転状態であるか否かの判定においては、燃料噴射量の所定の経過時間における増加量と閾値との比較や、単純に前後する時間における噴射量の比較等によって、内燃機関の加速状態を把握する。また、この加速判定をトリガーとして使用し、この加速判定の時刻からその後一定時間(予め設定した)を経過するまでの時刻の間を、ここでいう「加速運転状態にある」と判定するようにしてもよい。   In determining whether or not the engine is in the acceleration operation state in step S14, the internal combustion engine is compared by comparing the amount of increase in the fuel injection amount with a threshold value, the comparison of the injection amount in the time before and after, or the like. Know the acceleration state of the. In addition, this acceleration determination is used as a trigger, and during this time from the acceleration determination time until a certain time (preset) elapses, it is determined that the state is “accelerated operation state”. May be.

このステップS14で、加速運転状態であると判定された場合は、測定温度Tmによって電磁クラッチをON−OFFさせて可変冷却水ポンプ13のON(運転)又はOFF(運転停止)させる。つまり、内燃機関の加速運転状態の判定と測定温度Tmの判定に基づいて可変冷却水ポンプ13を運転又は運転停止する制御を行う。   If it is determined in step S14 that the vehicle is in the accelerated operation state, the electromagnetic clutch is turned ON / OFF according to the measured temperature Tm, and the variable cooling water pump 13 is turned ON (operation) or OFF (operation stopped). That is, control for operating or stopping the variable coolant pump 13 is performed based on the determination of the acceleration operation state of the internal combustion engine and the determination of the measured temperature Tm.

そして、加速運転状態では、測定温度Tmが第3判定温度Tc以下のときは電磁クラッチをOFFにして可変冷却水ポンプ13を停止してエンジンフリクションを低減して、車両の発進動力性能、加速性能及び燃費を改善する。また、加速運転状態で測定温度Tmが第3判定温度Tcより高い場合には、可変冷却水ポンプ13を運転して冷却水を供給して内燃機関の冷却能力を増加させる。これにより、高負荷状態の内燃機関の各部分に十分な冷却水を供給して、過熱を防止する。   In the acceleration operation state, when the measured temperature Tm is equal to or lower than the third determination temperature Tc, the electromagnetic clutch is turned off and the variable coolant pump 13 is stopped to reduce the engine friction. And improve fuel economy. Further, when the measured temperature Tm is higher than the third determination temperature Tc in the acceleration operation state, the variable cooling water pump 13 is operated to supply the cooling water to increase the cooling capacity of the internal combustion engine. Thereby, sufficient cooling water is supplied to each part of the internal combustion engine in a high load state to prevent overheating.

この図2の制御フローによれば、内燃機関の運転状態と測定温度Tm、燃料噴射量の有無によって、ステップS11〜S20、S11〜S30のいずれかを実施しては、ステップS11に戻り、ステップS11〜S20、S11〜S30のいずれかを繰り返す。そして、内燃機関の運転停止が入力されると、図2の制御フローに、ステップS40の割り込みが生じて、上位の制御フローにリターンし、内燃機関の停止に伴う上位の制御フローの終了と共に、この図2の制御フローも終了する。   According to the control flow of FIG. 2, one of steps S11 to S20 and S11 to S30 is performed depending on the operating state of the internal combustion engine, the measured temperature Tm, and the presence or absence of the fuel injection amount, and then the process returns to step S11. Any one of S11 to S20 and S11 to S30 is repeated. Then, when the operation stop of the internal combustion engine is input, an interruption of step S40 occurs in the control flow of FIG. 2, the process returns to the upper control flow, and with the end of the upper control flow accompanying the stop of the internal combustion engine, The control flow in FIG. 2 is also terminated.

この図2の制御フローに従って実施される内燃機関の冷却方法によれば、内燃機関の様々な運転状態に応じて、きめ細かく可変冷却水ポンプ13を運転(ON)又は停止(OFF)して、可変冷却水ポンプ13の吐出量を変化でき、必要に応じて冷却水をEGRクーラ等の内燃機関の各部分に供給することができるので、内燃機関にとって最適となる可変冷却水ポンプ13の総合的な制御を行うことができる。これにより、可変冷却水ポンプ13の作動効率と冷却効率が向上するので燃費を改善できる。その結果、燃費の改善、排気ガス性能の改善、出力性能の向上を図ることができる。   According to the cooling method of the internal combustion engine carried out according to the control flow of FIG. 2, the variable cooling water pump 13 is finely operated (ON) or stopped (OFF) in accordance with various operating states of the internal combustion engine. Since the discharge amount of the cooling water pump 13 can be changed and the cooling water can be supplied to each part of the internal combustion engine such as an EGR cooler as needed, the overall variable cooling water pump 13 that is optimal for the internal combustion engine Control can be performed. Thereby, since the operating efficiency and cooling efficiency of the variable cooling water pump 13 are improved, fuel consumption can be improved. As a result, it is possible to improve fuel efficiency, exhaust gas performance, and output performance.

次に、第2の実施の形態の内燃機関の冷却装置及び内燃機関の冷却方法について説明する。この第2の実施の形態の内燃機関の冷却装置及び内燃機関の冷却方法では、可変冷却水ポンプ13を、電気式冷却水ポンプなど、同一のエンジン回転数において、連続的または段階的に吐出量を変更できる可変冷却水ポンプで構成する点と、可変冷却水ポンプ13をOFFする代わりに、可変冷却水ポンプ13を第1運転状態とする点と、可変冷却水ポンプ13をONする代わりに、可変冷却水ポンプ13の吐出量を第1運転状態より増加する点とが、第1の実施の形態の内燃機関の冷却装置及び内燃機関の冷却方法と異なる。   Next, an internal combustion engine cooling device and an internal combustion engine cooling method according to a second embodiment will be described. In the internal combustion engine cooling apparatus and internal combustion engine cooling method of the second embodiment, the variable coolant pump 13 is discharged continuously or stepwise at the same engine speed, such as an electric coolant pump. Instead of turning the variable cooling water pump 13 off, instead of turning the variable cooling water pump 13 off, instead of turning on the variable cooling water pump 13, The point that the discharge amount of the variable coolant pump 13 is increased from the first operating state is different from the cooling device and the cooling method of the internal combustion engine of the first embodiment.

制御フローに関しては、第1の実施の形態の内燃機関の冷却方法の図2の制御フローのステップS20の「可変冷却水ポンプをOFFする。」とS30「可変冷却水ポンプをONする。」が、第2の実施の形態の内燃機関の冷却方法の図3の制御フローでは、ステップS20A「可変冷却水ポンプを第1運転状態とする」とS30A「可変冷却水ポンプの吐出量を第1運転状態より増加する」にそれぞれ変更となる。   With regard to the control flow, “switch the variable cooling water pump OFF” and S30 “turn the variable cooling water pump ON” in step S20 of the control flow of FIG. 2 of the cooling method for the internal combustion engine of the first embodiment. In the control flow of FIG. 3 for the cooling method of the internal combustion engine of the second embodiment, step S20A “sets the variable cooling water pump to the first operation state” and S30A “discharge amount of the variable cooling water pump to the first operation. It will be changed to “increased from state”.

このステップS20Aの第1運転状態は、内燃機関の運転において、必要最小限の冷却水量で冷却水の循環を行うための可変冷却水ポンプ13の運転であり、予め設定される運転状態である。また、ステップS30Aの可変冷却水ポンプ13の吐出量を第1運転状態より増加する制御は、可変冷却水ポンプ13の回転数変化等で吐出量を増加させる制御である。   The first operation state of step S20A is an operation of the variable cooling water pump 13 for circulating the cooling water with the minimum amount of cooling water in the operation of the internal combustion engine, and is an operation state set in advance. Further, the control for increasing the discharge amount of the variable cooling water pump 13 in step S30A from the first operation state is control for increasing the discharge amount due to a change in the rotational speed of the variable cooling water pump 13 or the like.

なお、この第2の実施の形態の制御の第1運転状態として、可変冷却水ポンプ13が停止(OFF)している状態を選択することもできるが、この場合は、第2の実施の形態の制御が第1の実施の形態の制御に近い制御になるが、第2の実施の形態の制御では可変冷却水ポンプ13を単にONするだけでなく、可変冷却水ポンプ13の吐出量を増加したり、増減したりする、よりきめ細かい制御をすることが可能となる。   In addition, although the variable cooling water pump 13 can be selected as the first operating state of the control of the second embodiment, the state where the variable cooling water pump 13 is stopped (OFF) can be selected. In this case, the second embodiment However, the control of the second embodiment not only simply turns on the variable cooling water pump 13 but also increases the discharge amount of the variable cooling water pump 13 in the control of the second embodiment. It is possible to perform finer control, such as increasing or decreasing.

従って、この構成によれば、内燃機関の様々な運転状態に応じて、可変冷却水ポンプ13の吐出量をきめ細かく変化でき、必要かつ十分な冷却水をEGRクーラ等の内燃機関の各部分に供給することができ、内燃機関にとって最適となる可変冷却水ポンプ13の総合的な制御を行うことができる。これにより、可変冷却水ポンプ13の作動効率と冷却効率が著しく向上するので燃費を著しく改善できる。その結果、燃費の改善、排気ガス性能の改善、出力性能の向上をより図ることができる。   Therefore, according to this configuration, the discharge amount of the variable cooling water pump 13 can be finely changed according to various operating states of the internal combustion engine, and necessary and sufficient cooling water is supplied to each part of the internal combustion engine such as an EGR cooler. Therefore, it is possible to perform comprehensive control of the variable coolant pump 13 that is optimal for the internal combustion engine. Thereby, since the operating efficiency and cooling efficiency of the variable cooling water pump 13 are remarkably improved, the fuel consumption can be remarkably improved. As a result, it is possible to further improve fuel consumption, exhaust gas performance, and output performance.

上記の内燃機関の冷却装置及び内燃機関の冷却方法によれば、サーモスタット等による温度制御に加えて、可変冷却水ポンプ13の運転を、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて制御するので、これらの総合的な制御により、内燃機関の各部分にとっての冷却効果と、この冷却に必要な可変冷却水ポンプの駆動力を、内燃機関の運転状態に合わせて最適な状態にすることができる。   According to the internal combustion engine cooling device and the internal combustion engine cooling method described above, in addition to temperature control using a thermostat or the like, the variable cooling water pump 13 is operated in an idle operation state, a deceleration operation state, an acceleration operation state, and other operations. Since control is performed separately for the normal operating state, these comprehensive controls make the cooling effect for each part of the internal combustion engine and the driving force of the variable cooling water pump necessary for this cooling match the operating state of the internal combustion engine. In an optimal state.

また、上記の可変冷却水ポンプ13の制御により、低温始動時及び低温運転状態における燃費の改善、車両の発進動力性能と加速性能の改善、内燃機関の暖機時間の低減による燃費の改善、加速判定を使用した可変冷却水ポンプ13の仕事量の低減制御による燃費の改善、燃料を噴射しない減速状態における可変冷却水ポンプ13の積極的な作動制御による燃費の改善等を図ることができる。   In addition, the control of the variable cooling water pump 13 improves the fuel consumption at low temperature start and low temperature operation, improves the starting power performance and acceleration performance of the vehicle, improves the fuel consumption by reducing the warm-up time of the internal combustion engine, and accelerates. It is possible to improve the fuel consumption by reducing the work amount of the variable cooling water pump 13 using the determination, and improving the fuel consumption by actively operating the variable cooling water pump 13 in a deceleration state where fuel is not injected.

本発明の内燃機関の冷却装置及び内燃機関の冷却方法は、サーモスタット等による温度制御に加えて、可変冷却水ポンプの運転を、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて制御して、これらの総合的な制御により、内燃機関の各部分にとっての冷却効果と、この冷却に必要な冷却水ポンプの駆動力を、内燃機関の運転状態に合わせて最適な状態にすることができるので、自動車に搭載する内燃機関や建設機械用や発電用の内燃機関等の広範囲の内燃機関において利用できる。   The internal combustion engine cooling apparatus and internal combustion engine cooling method according to the present invention includes a variable cooling water pump operation in an idle operation state, a deceleration operation state, an acceleration operation state, and other normal operations in addition to temperature control using a thermostat or the like. The control is divided into states, and through these comprehensive controls, the cooling effect for each part of the internal combustion engine and the driving force of the cooling water pump necessary for this cooling are optimally matched to the operating state of the internal combustion engine. Therefore, it can be used in a wide range of internal combustion engines such as internal combustion engines mounted on automobiles, construction machinery, and power generation internal combustion engines.

11 冷却水タンク
12 冷却水供給路
13 可変冷却水ポンプ
14 オイルクーラ
15 サーモスタット
17 ラジエータ
18 冷却水たまり
20 EGRクーラ
11 Cooling water tank 12 Cooling water supply path 13 Variable cooling water pump 14 Oil cooler 15 Thermostat 17 Radiator 18 Cooling water pool 20 EGR cooler

Claims (6)

同一のエンジン回転数であっても吐出量を変化できる可変冷却水ポンプと該可変冷却水ポンプを制御する制御装置を備えた内燃機関の冷却装置において、前記制御装置を、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて前記可変冷却水ポンプの運転の制御を行うように構成したことを特徴とする内燃機関の冷却装置。   In a cooling device for an internal combustion engine having a variable cooling water pump capable of changing a discharge amount even at the same engine speed and a control device for controlling the variable cooling water pump, the control device includes an idle operation state and a deceleration operation. A cooling apparatus for an internal combustion engine, which is configured to control the operation of the variable coolant pump separately for a state, an acceleration operation state, and a normal operation state other than that. 前記可変冷却水ポンプを吐出量を増減できる可変冷却水ポンプで形成し、
前記制御装置を、
前記通常運転状態では、内燃機関の過熱状態を検出する温度センサの測定温度が予め設定された第1判定温度以下の場合には前記可変冷却水ポンプを第1運転状態とすると共に、
前記測定温度が前記第1判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する通常運転時制御を行い、
前記アイドル運転状態では、前記測定温度が予め前記第1判定温度より高く設定された第2判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が前記第2判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加するアイドル運転時制御を行い、
前記減速運転状態では、燃料噴射がある場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、燃料噴射が無くなった場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する減速運転時制御を行い、
前記加速運転状態では、前記測定温度が予め設定された第3判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が前記第3判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する加速運転時制御を行うように構成したことを特徴とする請求項1記載の内燃機関の冷却装置。
The variable cooling water pump is formed with a variable cooling water pump that can increase or decrease the discharge amount,
The control device;
In the normal operation state, when the measured temperature of the temperature sensor for detecting the overheat state of the internal combustion engine is equal to or lower than the first determination temperature set in advance, the variable cooling water pump is set to the first operation state,
When the measured temperature exceeds the first determination temperature, performing a control during normal operation to increase the discharge amount of the variable cooling water pump from the first operation state,
In the idle operation state, when the measured temperature is equal to or lower than a second determination temperature set higher than the first determination temperature in advance, the variable cooling water pump is set to the first operation state, and the measured temperature is When the second determination temperature is exceeded, the idle operation control is performed to increase the discharge amount of the variable cooling water pump from the first operation state,
In the deceleration operation state, when there is fuel injection, the variable cooling water pump is set to the first operation state, and when fuel injection is not performed, the discharge amount of the variable cooling water pump is set to the first operation state. Control during deceleration operation that increases more than
In the accelerated operation state, when the measured temperature is equal to or lower than a preset third determination temperature, the variable cooling water pump is set to the first operation state, and the measured temperature exceeds the third determination temperature. 2. The cooling apparatus for an internal combustion engine according to claim 1, wherein in this case, the control is performed during acceleration operation in which the discharge amount of the variable cooling water pump is increased from the first operation state.
前記可変冷却水ポンプの吐出量の増減を前記可変冷却水ポンプのON−OFFで行い、かつ、前記第1運転状態を前記可変冷却水ポンプの運転がOFFの状態とすることを特徴とする請求項2記載の内燃機関の冷却装置。   The discharge amount of the variable cooling water pump is increased or decreased by turning on and off the variable cooling water pump, and the operation state of the variable cooling water pump is turned off in the first operation state. Item 3. A cooling device for an internal combustion engine according to Item 2. 内燃機関の冷却装置に備えた可変冷却水ポンプの吐出量を、同一のエンジン回転数であっても内燃機関の運転状態によって変化できる内燃機関の冷却方法において、アイドル運転状態と減速運転状態と加速運転状態とそれ以外の通常運転状態に分けて前記可変冷却水ポンプの運転の制御を行うことを特徴とする内燃機関の冷却方法。   In a cooling method for an internal combustion engine in which the discharge amount of a variable coolant pump provided in the cooling device for the internal combustion engine can be changed according to the operation state of the internal combustion engine even at the same engine speed, the idle operation state, the deceleration operation state, and the acceleration A cooling method for an internal combustion engine, wherein the operation of the variable cooling water pump is controlled separately for an operation state and a normal operation state other than the operation state. 前記可変冷却水ポンプの吐出量を増減して制御し、
前記通常運転状態では、内燃機関の過熱状態を検出する温度センサの測定温度が予め設定された第1判定温度以下の場合には前記可変冷却水ポンプを第1運転状態とすると共に、
前記測定温度が前記第1判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加する通常運転時制御を行い、
前記アイドル運転状態では、前記測定温度が予め前記第1判定温度より高く設定された第2判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が前記第2判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加し、
前記減速運転状態では、燃料噴射がある場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、燃料噴射が無くなった場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加し、
前記加速運転状態では、前記測定温度が予め設定された第3判定温度以下の場合には前記可変冷却水ポンプを前記第1運転状態とすると共に、前記測定温度が前記第3判定温度を超えた場合には前記可変冷却水ポンプの吐出量を前記第1運転状態よりも増加することを特徴とする請求項4記載の内燃機関の冷却方法。
Increase and decrease the discharge amount of the variable cooling water pump to control,
In the normal operation state, when the measured temperature of the temperature sensor for detecting the overheat state of the internal combustion engine is equal to or lower than the first determination temperature set in advance, the variable cooling water pump is set to the first operation state,
When the measured temperature exceeds the first determination temperature, performing a control during normal operation to increase the discharge amount of the variable cooling water pump from the first operation state,
In the idle operation state, when the measured temperature is equal to or lower than a second determination temperature set higher than the first determination temperature in advance, the variable cooling water pump is set to the first operation state, and the measured temperature is When the second determination temperature is exceeded, the discharge amount of the variable cooling water pump is increased from the first operating state,
In the deceleration operation state, when there is fuel injection, the variable cooling water pump is set to the first operation state, and when fuel injection is not performed, the discharge amount of the variable cooling water pump is set to the first operation state. More than
In the accelerated operation state, when the measured temperature is equal to or lower than a preset third determination temperature, the variable cooling water pump is set to the first operation state, and the measured temperature exceeds the third determination temperature. 5. The cooling method for an internal combustion engine according to claim 4, wherein the discharge amount of the variable cooling water pump is increased in comparison with the first operating state.
前記可変冷却水ポンプの吐出量の増減を前記可変冷却水ポンプのON−OFFで行い、かつ、前記第1運転状態を前記可変冷却水ポンプの運転がOFFの状態とすることを特徴とする請求項5記載の内燃機関の冷却方法。   The discharge amount of the variable cooling water pump is increased or decreased by turning on and off the variable cooling water pump, and the operation state of the variable cooling water pump is turned off in the first operation state. Item 6. The cooling method for an internal combustion engine according to Item 5.
JP2011243522A 2011-11-07 2011-11-07 Cooling device for internal combustion engine and cooling method for internal combustion engine Expired - Fee Related JP5879940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243522A JP5879940B2 (en) 2011-11-07 2011-11-07 Cooling device for internal combustion engine and cooling method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243522A JP5879940B2 (en) 2011-11-07 2011-11-07 Cooling device for internal combustion engine and cooling method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013100724A true JP2013100724A (en) 2013-05-23
JP5879940B2 JP5879940B2 (en) 2016-03-08

Family

ID=48621546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243522A Expired - Fee Related JP5879940B2 (en) 2011-11-07 2011-11-07 Cooling device for internal combustion engine and cooling method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5879940B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053720A (en) * 2016-09-26 2018-04-05 いすゞ自動車株式会社 Cooling system for internal combustion engine
CN111734616A (en) * 2020-07-06 2020-10-02 潍柴动力股份有限公司 Electric control water pump control method and ECU
CN111779562A (en) * 2020-06-23 2020-10-16 广西玉柴机器股份有限公司 Engine cooling system and method
CN113027599A (en) * 2021-03-30 2021-06-25 一汽奔腾轿车有限公司 Cooling system of post-operation supercharger and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171020A (en) * 1981-04-11 1982-10-21 Mazda Motor Corp Controlling device of water pump of engine
JPS5874824A (en) * 1981-10-29 1983-05-06 Nissan Motor Co Ltd Cooling device of engine
JP2006266196A (en) * 2005-03-25 2006-10-05 Mazda Motor Corp Cooling device of engine
JP2009202662A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Hybrid vehicle
JP2011001933A (en) * 2009-06-22 2011-01-06 Fuji Heavy Ind Ltd Water pump controller
WO2011021511A1 (en) * 2009-08-21 2011-02-24 トヨタ自動車株式会社 Control device for variable water pump
JP2011047394A (en) * 2009-08-28 2011-03-10 Hyundai Motor Co Ltd Clutch water pump, and device and method for controlling the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171020A (en) * 1981-04-11 1982-10-21 Mazda Motor Corp Controlling device of water pump of engine
JPS5874824A (en) * 1981-10-29 1983-05-06 Nissan Motor Co Ltd Cooling device of engine
JP2006266196A (en) * 2005-03-25 2006-10-05 Mazda Motor Corp Cooling device of engine
JP2009202662A (en) * 2008-02-26 2009-09-10 Nissan Motor Co Ltd Hybrid vehicle
JP2011001933A (en) * 2009-06-22 2011-01-06 Fuji Heavy Ind Ltd Water pump controller
WO2011021511A1 (en) * 2009-08-21 2011-02-24 トヨタ自動車株式会社 Control device for variable water pump
JP2011047394A (en) * 2009-08-28 2011-03-10 Hyundai Motor Co Ltd Clutch water pump, and device and method for controlling the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053720A (en) * 2016-09-26 2018-04-05 いすゞ自動車株式会社 Cooling system for internal combustion engine
CN111779562A (en) * 2020-06-23 2020-10-16 广西玉柴机器股份有限公司 Engine cooling system and method
CN111734616A (en) * 2020-07-06 2020-10-02 潍柴动力股份有限公司 Electric control water pump control method and ECU
CN111734616B (en) * 2020-07-06 2022-04-26 潍柴动力股份有限公司 Electric control water pump control method and ECU
CN113027599A (en) * 2021-03-30 2021-06-25 一汽奔腾轿车有限公司 Cooling system of post-operation supercharger and control method thereof

Also Published As

Publication number Publication date
JP5879940B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
KR101241213B1 (en) Electric water pump control system and method thereof
US7953520B2 (en) Cooling fan controller for controlling revolving fan based on fluid temperature and air temperature
WO2002046587A2 (en) Method of controlling a variable speed fan
WO2013093997A1 (en) Cooling system control device
CN103797224A (en) Control device for electric water pump
JP5879940B2 (en) Cooling device for internal combustion engine and cooling method for internal combustion engine
KR20110063167A (en) Variable water pump control system and method
KR101294424B1 (en) Water Cooling type Turbo Charger System and Operation Method thereof
US20040103862A1 (en) Engine temperature control apparatus and method
JP6148787B2 (en) Control device for internal combustion engine and control method for cooling device
JP2008184996A (en) Cooling control device
JP5230702B2 (en) Cooling device for water-cooled internal combustion engine
US9170570B2 (en) Cooling apparatus for internal combustion engine
JP5121899B2 (en) Electric water pump control device
US10012227B2 (en) Fluid supply device
JP2012021426A (en) Control apparatus of internal combustion engine
JP2012031811A (en) Device for controlling electric water pump
JP5027289B2 (en) Engine cooling system
JP2006161745A (en) Control device for vehicle
KR20180055174A (en) Control method of engine having coolant control valve unit, and the control system
KR20080054139A (en) Split cooling circuit of engine and control method for driving cooling fan thereof
JP2006242070A (en) Control device for vehicle
JP2014231824A (en) Engine cooling device
JP2006037883A (en) Cooling system of internal combustion engine
KR101526422B1 (en) Apparatus and method for preventing thermal shock of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5879940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees