JP2013098427A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2013098427A
JP2013098427A JP2011241469A JP2011241469A JP2013098427A JP 2013098427 A JP2013098427 A JP 2013098427A JP 2011241469 A JP2011241469 A JP 2011241469A JP 2011241469 A JP2011241469 A JP 2011241469A JP 2013098427 A JP2013098427 A JP 2013098427A
Authority
JP
Japan
Prior art keywords
led
semiconductor light
light emitting
light
dichroic mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011241469A
Other languages
Japanese (ja)
Inventor
Kazuaki Tanmachi
和昭 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2011241469A priority Critical patent/JP2013098427A/en
Publication of JP2013098427A publication Critical patent/JP2013098427A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To solve such problems that in a conventional stacked LED device having a plurality of LED dies stacked therein, the type and the number of the LED dies to be stacked are limited, and an increase in luminance and an adjustable range of color tones are limited.SOLUTION: In an LED device 10 having a plurality of LED dies 1a to 1d stacked on a circuit board 3 having a wiring electrode, phosphor layers 2a to 2c and dichroic mirrors 6 and 7 are interposed between the LED dies 1a to 1d, and thereby reduction in the size and improvement in the luminance are achieved and stability of color tones and a change with time is achieved.

Description

本発明は表示装置のバックライトや照明装置に用いられる半導体発光装置に関し、さらに詳しくは複数の半導体発光素子を積層してパッケージ化した半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device used for a backlight of a display device or a lighting device, and more particularly to a semiconductor light emitting device in which a plurality of semiconductor light emitting elements are stacked and packaged.

近年、半導体発光素子は、長寿命で優れた駆動特性を有し、さらに小型で発光効率が良く、鮮やかな発光色を有することから、表示装置のバックライトや照明装置等に広く利用されるようになってきた。以下、特に断らない限りウェハーから切り出した状態の半導体発光素子をLEDダイと呼び、LEDダイを回路基板に実装し樹脂等で被覆しパッケージ化した半導体発光装置をLED装置と呼び区別する。   In recent years, semiconductor light-emitting elements have long life and excellent driving characteristics, are small in size, have high light emission efficiency, and have bright emission colors, so that they are widely used in backlights of display devices, lighting devices, and the like. It has become. Hereinafter, unless otherwise specified, a semiconductor light emitting device cut out from a wafer is referred to as an LED die, and a semiconductor light emitting device in which the LED die is mounted on a circuit board, covered with a resin, and packaged is referred to as an LED device.

LED装置のなかには単一の回路基板に複数のLEDダイを実装するものがある。例えば、赤色発光のLEDダイ(R−LEDダイ)、緑色発光のLEDダイ(G−LEDダイ)、青色発光のLEDダイ(B−LEDダイ)が開発されたことから、加色混合型のLED装置が実用化されている。この加色混合型のLED装置は、R−LEDダイ,G−LEDダイ,B−LEDダイを同時に発光させることによって白色の照明装置に用いられたり、R−LEDダイ,G−LEDダイ,B−LEDダイのバランスを調整することによりフルカラーで発光する表示デバイス用素子として用いられたりする。   Some LED devices have a plurality of LED dies mounted on a single circuit board. For example, a red light emitting LED die (R-LED die), a green light emitting LED die (G-LED die), and a blue light emitting LED die (B-LED die) have been developed. The device has been put into practical use. This additive color mixing type LED device can be used for a white illumination device by causing an R-LED die, a G-LED die, and a B-LED die to emit light simultaneously, or can be used for an R-LED die, a G-LED die, and a B -It may be used as an element for a display device that emits light in full color by adjusting the balance of the LED die.

加色混合型のLED装置は、ふつうR−LEDダイ,G−LEDダイ,B−LEDダイを単一の回路基板上に平面的に実装配置することが多い。このとき各色の発光が分離して見えることがあり、加色混合を行うためには発光面上に拡散板等を配置したりしていた。つまりLEDダイを分散配置し発光させていたため混色性を高くすることが難しかった。   In an additive color mixed LED device, an R-LED die, a G-LED die, and a B-LED die are usually mounted and arranged in a plane on a single circuit board. At this time, light emission of each color may appear to be separated, and in order to perform additive color mixing, a diffusion plate or the like is disposed on the light emitting surface. That is, since the LED dies are dispersedly arranged to emit light, it is difficult to increase the color mixing property.

この欠点を解決するため、R−LEDダイ,G−LEDダイ,B−LEDダイを積層配置することにより、発光点を重ね合わせて混色性を高くしたLED装置が提案されている(例えば特許文献1,特許文献2,特許文献3)。   In order to solve this drawback, there has been proposed an LED device in which R-LED dies, G-LED dies, and B-LED dies are stacked to superimpose light emission points to improve color mixing (for example, Patent Documents). 1, Patent Document 2, Patent Document 3).

特許文献1の図1に示されているLED装置は、面積の等しいR−LEDダイ,G−LEDダイ,B−LEDダイを積層配置している。このとき下層のLEDダイの発光する長波長光が、短波長光を発光する上層のLEDダイを透過する構成とし、上層のLEDダイに含まれる発光層による吸収を軽減し効率化を図っている。以上のようにしてこのLED装置は、発光効率が良く小さな実装面積でありながら、白色発光或いはフルカラー発光を可能にしている。   In the LED device shown in FIG. 1 of Patent Document 1, R-LED dies, G-LED dies, and B-LED dies having the same area are stacked. At this time, the long wavelength light emitted from the lower LED die is transmitted through the upper LED die that emits short wavelength light, and absorption by the light emitting layer included in the upper LED die is reduced to improve efficiency. . As described above, this LED device enables white light emission or full color light emission while having good luminous efficiency and a small mounting area.

また特許文献2の図60に示されているLED装置は、R−LEDダイ,G−LEDダイ,B−LEDダイの面積を順番に、小,中,大とし、面積が最大のB−LEDダイ上にG−LEDダイ,R−LEDダイを積層配置している。このLED装置では、下側のLEDダイが上側のLEDダイの影にならない領域に発光層を形成し、小型で高輝度の光源を実現させている。   In the LED device shown in FIG. 60 of Patent Document 2, the areas of the R-LED die, the G-LED die, and the B-LED die are sequentially set to small, medium, and large, and the B-LED having the largest area. G-LED dies and R-LED dies are stacked on the die. In this LED device, a light emitting layer is formed in a region where the lower LED die does not become a shadow of the upper LED die, thereby realizing a small and high luminance light source.

また特許文献3の図4に示されたLED装置は、B−LEDダイ上に面積の等しいR−LEDダイとB−LEDダイを積層し、各LEDダイの間にスペーサを配置している。このスペーサにより、LEDダイ間に中空部が形成され、この中空部によって各LEDダイが発する熱を空気中に放出している。このようにして特許文献3の図4に示されたLED装置は発光効率の低下を防止し、高輝度化を達成している。   In the LED device shown in FIG. 4 of Patent Document 3, an R-LED die and a B-LED die having the same area are stacked on a B-LED die, and a spacer is disposed between the LED dies. By this spacer, a hollow portion is formed between the LED dies, and heat generated by each LED die is released into the air by the hollow portion. In this manner, the LED device shown in FIG. 4 of Patent Document 3 prevents the light emission efficiency from decreasing and achieves high brightness.

特開2002−43627号公報(図1,図4)JP 2002-43627 A (FIGS. 1 and 4) 特許第3378465号公報(図60)Japanese Patent No. 3378465 (FIG. 60) 特開2011−192672号公報(図4)JP2011-192672A (FIG. 4)

上記特許文献1から3で示されていたLED装置は、LEDダイを積層することによりLED装置の小型化及び高輝度化が達成できることを示唆していた。しかしながらこれらのLED装置は、R−LEDダイ,G−LEDダイ,B−LEDダイを組合せていたため、白色化に際してR,G,Bのバランスをとることが難しいこと、各LEDダイの寿命及び経時変化が互いに異なること、及び3層構造以外の構成が考えにくいこと、が課題となっている。   The LED devices shown in Patent Documents 1 to 3 suggested that the LED device can be reduced in size and brightness by stacking LED dies. However, since these LED devices combine R-LED dies, G-LED dies, and B-LED dies, it is difficult to balance R, G, and B when whitening, and the lifetime and aging of each LED die. The problem is that the changes are different from each other and that it is difficult to conceive a configuration other than the three-layer structure.

そこで本発明は、複数の半導体発光素子を積層し小型化及び輝度向上を図るとき、色度や経時変化が安定し、積層する層の数に制限のない半導体発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a semiconductor light emitting device in which, when a plurality of semiconductor light emitting elements are stacked to achieve miniaturization and luminance improvement, chromaticity and change with time are stable, and the number of layers to be stacked is not limited. To do.

上記目的を達成するため本発明における半導体発光装置は、配線電極を有する回路基板上に複数の半導体発光素子を積層して配置し、前記半導体発光素子間に蛍光体層を介在させたことを特徴とする。   In order to achieve the above object, a semiconductor light emitting device according to the present invention is characterized in that a plurality of semiconductor light emitting elements are stacked on a circuit board having wiring electrodes, and a phosphor layer is interposed between the semiconductor light emitting elements. And

上記構成によれば、下層側の半導体発光素子から上方向に向かって出射する光の全て又は大部分が蛍光体層によって長波長側に波長変換される。この波長変換された光のうち上方に向かう光は、上層の半導体発光素子に入射するが、長波長側に波長変換されているので発光層でほとんど再吸収されず、上層の半導体発光素子を通過する。また他の蛍光体層に入射してもほとんど蛍光体により吸収されずに蛍光体層を通過する。このようにいったん長波長側に波長変換され上方に向かう光はそのまま半導体発光装置から出射する。すなわち半導体発光素子を積層しても、その半導体発光素子間に蛍光体層を備えていれば、波長変換された光を効率よく取り出すことができる。   According to the above configuration, all or most of the light emitted upward from the semiconductor light emitting element on the lower layer side is wavelength-converted to the longer wavelength side by the phosphor layer. Of the wavelength-converted light, the upward light is incident on the upper semiconductor light-emitting element, but is wavelength-converted to the longer wavelength side, so it is hardly reabsorbed by the light-emitting layer and passes through the upper semiconductor light-emitting element. To do. Moreover, even if it is incident on another phosphor layer, it passes through the phosphor layer without being absorbed by the phosphor. In this way, the light once wavelength-converted to the long wavelength side and going upward is directly emitted from the semiconductor light emitting device. That is, even if the semiconductor light emitting elements are stacked, if the phosphor layer is provided between the semiconductor light emitting elements, the wavelength-converted light can be efficiently extracted.

このとき半導体発光素子は比較的短い波長で発光すればよい。すなわち蛍光体により白色発光(又は長波長化)させているので、赤色で発光する半導体発光素子、緑色で発光する半導体発光素子、青色で発光する半導体発光素子、という3種類の半導体発光素子を準備する必要がない。このため、色のバランスがとりやすく、経時変化も均等化する。また半導体発光素子の積層数の制限がない。   At this time, the semiconductor light emitting element may emit light at a relatively short wavelength. That is, since the phosphor emits white light (or longer wavelength), three types of semiconductor light emitting devices are prepared: a semiconductor light emitting device emitting red light, a semiconductor light emitting device emitting green light, and a semiconductor light emitting device emitting blue light. There is no need to do. For this reason, it is easy to balance the colors, and the change with time is equalized. There is no limit on the number of stacked semiconductor light emitting elements.

前記複数の半導体発光素子のうち最下層の半導体発光素子と前記回路基板上の間にも蛍光体層を介在させると良い。   A phosphor layer may be interposed between the lowermost semiconductor light emitting element of the plurality of semiconductor light emitting elements and the circuit board.

上記構成によれば、最下層の半導体発光素子から下方向に出射した光が、回路基板上の間に設けた蛍光体層によって長波長側に変換される。長波長側に変換された光のうち、そのまま上方に向かう成分、及び回路基板上面で反射され上方に向かう成分は、最下層の半導体発光素子の発光層でほとんど吸収されず、この半導体発光素子を通過し上方へ向かう。この成分が加わることにより半導体発光装置からの出射光を多くできる。   According to the said structure, the light radiate | emitted from the semiconductor light emitting element of the lowest layer is converted into the long wavelength side by the fluorescent substance layer provided between the circuit boards. Of the light converted to the long wavelength side, the component that goes up as it is and the component that is reflected by the upper surface of the circuit board and goes up are hardly absorbed by the light emitting layer of the lowermost semiconductor light emitting device. Pass through and head upward. By adding this component, the amount of light emitted from the semiconductor light emitting device can be increased.

前記複数の半導体発光素子のうち最下層の半導体発光素子は、前記回路基板上の配線電極にフリップチップ実装されていると良い。   Of the plurality of semiconductor light emitting elements, the lowermost semiconductor light emitting element is preferably flip-chip mounted on the wiring electrode on the circuit board.

上記構成によれば、最下層の半導体発光素子が回路基板上の配線電極にフリップチップ実装され、上層側の半導体発光素子が回路基板上の配線電極にワイヤーボンディングされる。フリップチップ実装は接続用のワイヤーが不要なため実装面積が小さくなるので、半導体発光装置としてはワイヤーボンディング工程の軽減と実装効率の向上が図られる。   According to the above configuration, the lowermost semiconductor light emitting element is flip-chip mounted on the wiring electrode on the circuit board, and the upper semiconductor light emitting element is wire bonded to the wiring electrode on the circuit board. Since flip chip mounting does not require a wire for connection, the mounting area is reduced, so that the semiconductor light emitting device can reduce the wire bonding process and improve the mounting efficiency.

前記複数の半導体発光素子のうち一部の半導体発光素子の下面にダイクロイックミラーを配設し、該ダイクロイックミラーが該ダイクロイックミラーを配設した前記半導体発光素子の発光波長より短い波長の光を反射し、長い波長の光を透過する特性を有すると良い。   A dichroic mirror is disposed on the lower surface of a part of the plurality of semiconductor light emitting elements, and the dichroic mirror reflects light having a wavelength shorter than the emission wavelength of the semiconductor light emitting element on which the dichroic mirror is disposed. It is preferable to have a characteristic of transmitting light having a long wavelength.

上記構成によれば、ダイクロイックミラーを配設した半導体発光素子が下方に向かって出射する短い波長の光は、ダイクロイックミラーによって反射し上方に向かう。このときダイクロイックミラーの下方にある半導体発光素子と蛍光体層による発光のうち上方に向かう成分はそのままダイクロイックミラーを通過する。この結果、実質的にダイクロイックミラーを配設した半導体発光素子から下方に向う発光成分がなくなるので半導体発光装置としての出射効率が改善する。   According to the above configuration, the short wavelength light emitted downward by the semiconductor light emitting element provided with the dichroic mirror is reflected upward by the dichroic mirror. At this time, the upward component of the light emitted from the semiconductor light emitting element and the phosphor layer below the dichroic mirror passes through the dichroic mirror as it is. As a result, the light emitting component directed downward from the semiconductor light emitting element in which the dichroic mirror is substantially disposed is eliminated, so that the emission efficiency as the semiconductor light emitting device is improved.

前記複数の半導体発光素子のうち一部の半導体発光素子の上面にダイクロイックミラーを配設し、該ダイクロイックミラーが該ダイクロイックミラーを配設した前記半導体発光素子の発光波長より短い波長の光を透過し、長い波長の光を反射する特性を有すると良い。   A dichroic mirror is disposed on an upper surface of a part of the plurality of semiconductor light emitting elements, and the dichroic mirror transmits light having a wavelength shorter than the light emission wavelength of the semiconductor light emitting element on which the dichroic mirror is disposed. It is desirable to have a characteristic of reflecting light having a long wavelength.

上記構成によれば、ダイクロイックミラーを配設した半導体発光素子が上方に向かって出射する短い波長の光は、ダイクロイックミラーを通過し、その上方にある蛍光体層に入射する。ここで蛍光体層により波長変換され下方に向かう長い波長の光はダイクロイックミラーで反射し上方に向かう。同様に、蛍光体層を介してダイクロイックミラーの上方にある半導体発光素子から下方に出射する波長の短い光が蛍光体層で長い波長の光に変換されたとき、この長波長に変換された光のうち下方に向かう成分は、ダイクロイックミラーで反射し上方へ向かう。このようにしてダイクロイックミラーで反射して上方に向かう光が加わるため半導体発光装置としての出射効率が改善する。   According to the above configuration, the light having a short wavelength emitted upward from the semiconductor light emitting element provided with the dichroic mirror passes through the dichroic mirror and enters the phosphor layer above the dichroic mirror. Here, the long wavelength light which is converted in wavelength by the phosphor layer and goes downward is reflected by the dichroic mirror and goes upward. Similarly, when light having a short wavelength emitted downward from the semiconductor light emitting element above the dichroic mirror through the phosphor layer is converted into light having a long wavelength by the phosphor layer, the light converted to this long wavelength The component going downward is reflected by the dichroic mirror and goes upward. In this way, light reflected by the dichroic mirror and added upward is added, so that the emission efficiency of the semiconductor light emitting device is improved.

上記の如く本発明の半導体発光装置によれば、小型化及び輝度向上を図るため複数の半導体発光素子を積層しても、色度や経時変化が安定し、積層する層数の制限をなくせる。   As described above, according to the semiconductor light-emitting device of the present invention, even if a plurality of semiconductor light-emitting elements are stacked in order to reduce the size and improve the luminance, the chromaticity and the change with time are stable, and the number of stacked layers can be eliminated. .

本発明の第1実施形態におけるLED装置10の断面図である。It is sectional drawing of the LED apparatus 10 in 1st Embodiment of this invention. 図1に示すLED装置10の平面図である。It is a top view of the LED apparatus 10 shown in FIG. 本発明の第2実施形態におけるLED装置20の断面図である。It is sectional drawing of the LED apparatus 20 in 2nd Embodiment of this invention. 本発明の第3実施形態におけるLED装置30の断面図である。It is sectional drawing of the LED apparatus 30 in 3rd Embodiment of this invention. 本発明の第4実施形態におけるLED装置40の断面図である。It is sectional drawing of the LED apparatus 40 in 4th Embodiment of this invention. 本発明の第5実施形態におけるLED装置50の断面図である。It is sectional drawing of the LED apparatus 50 in 5th Embodiment of this invention. 本発明の第6実施形態におけるLED装置60の断面図である。It is sectional drawing of the LED apparatus 60 in 6th Embodiment of this invention.

(第1実施形態)
以下図面により本発明の詳細を説明する。図1,図2は本発明の第1実施形態における積層型のLED装置を示し、図1はLED装置10の断面図、図2は平面図を示し、図1は図2のA−A断面に対応している。
(First embodiment)
The details of the present invention will be described below with reference to the drawings. 1 and 2 show a stacked LED device according to a first embodiment of the present invention. FIG. 1 is a sectional view of an LED device 10, FIG. 2 is a plan view, and FIG. It corresponds to.

図1,図2において10はLED装置であり、4層のLEDダイ1a,1b1c,1dが、各LEDダイ1a〜1d間に積層された3層の蛍光体層2a,2b,2cを介して回路基板3に積層している。各LEDダイ1a〜1dは長方形の形状を有し、LEDダイ1a,1cとが同一方向に配置され、LEDダイ1a,1cに対してLEDダイ1b,1dが直交配置されている。各LEDダイ1a〜1dの短辺に設けられた電極パッドは、ワイヤー4によって回路基板3上に形成された配線電極(図示せず)に接続されている。   1 and 2, reference numeral 10 denotes an LED device, in which four layers of LED dies 1a, 1b1c, and 1d are interposed via three phosphor layers 2a, 2b, and 2c stacked between the LED dies 1a to 1d. The circuit board 3 is laminated. Each LED die 1a to 1d has a rectangular shape, the LED dies 1a and 1c are arranged in the same direction, and the LED dies 1b and 1d are arranged orthogonal to the LED dies 1a and 1c. The electrode pads provided on the short sides of the LED dies 1 a to 1 d are connected to wiring electrodes (not shown) formed on the circuit board 3 by wires 4.

上記LED装置10は、LEDダイ1a〜1cとして発光波長の短い近紫外発光のUV−LEDダイ又は青色発光のB−LEDダイを使用し、蛍光体層2a〜2cとしてLEDダイの短波長の発光を長波長の光に変換する構成とする。このようにすると下層側のLEDダイが発光した短波長の光は上層の蛍光体層によって長波長の光に変換されるので、上層のLEDダイを通過するときの吸収が軽減される。この結果、LED装置10は、最上層(又は最上層側)のLEDダイによる短波長の発光と、下層の蛍光体層によって変換された長波長の光とを混合した混色光を出射する。   The LED device 10 uses a near-ultraviolet-emitting UV-LED die or a blue-emitting B-LED die having a short emission wavelength as the LED dies 1a to 1c, and emits a short wavelength of the LED die as the phosphor layers 2a to 2c. Is converted into light having a long wavelength. In this way, the short wavelength light emitted by the lower LED die is converted into long wavelength light by the upper phosphor layer, so that absorption when passing through the upper LED die is reduced. As a result, the LED device 10 emits mixed-color light in which short-wavelength light emitted by the uppermost (or uppermost layer side) LED die and long-wavelength light converted by the lower phosphor layer are mixed.

また、蛍光体層は吸収スペクトルが発光スペクトルより短波長側にあるため、下層側の蛍光体層により波長側に変換された光が上層の蛍光体層により再吸収されづらくなる。前述のようにLEDダイとして短波長発光のLEDダイを使用し、蛍光体層で長波長変換させると、積層するLEDダイと蛍光体層の数の制限が無くなり、いろいろな組み合わせを行うことができるようになる。   Further, since the absorption spectrum of the phosphor layer is on the shorter wavelength side than the emission spectrum, the light converted to the wavelength side by the lower phosphor layer is difficult to be reabsorbed by the upper phosphor layer. As described above, when an LED die having a short wavelength emission is used as the LED die and the long wavelength conversion is performed with the phosphor layer, the number of LED die and phosphor layer to be stacked is not limited, and various combinations can be performed. It becomes like this.

例えばLED装置10は、全てのLEDダイ1a,1b,1c,1dにB−LEDダイを使用し、全ての蛍光体層2a,2b,2cにYAG蛍光体層を使用することによって、各蛍光体層2a,2b,2cによる黄色光と最上層のB−LEDダイ1dの青色光とを混色し白色光を出射することができる。すなわち構成部品としてB−LEDダイとYAG蛍光体層の2部品を用意するだけで良く、部材の管理が単純化できる。さらに積層する段数を増やすことによってLED装置としての高輝度化を達成することができる。   For example, the LED device 10 uses B-LED dies for all LED dies 1a, 1b, 1c, and 1d, and uses YAG phosphor layers for all the phosphor layers 2a, 2b, and 2c. The yellow light from the layers 2a, 2b, and 2c and the blue light of the uppermost B-LED die 1d can be mixed to emit white light. That is, it is only necessary to prepare two parts, ie, a B-LED die and a YAG phosphor layer as constituent parts, and the management of the members can be simplified. Further, by increasing the number of stacked layers, it is possible to achieve high brightness as an LED device.

また、LED装置10において、LEDダイ1a,1b,1cをUV―LEDダイ(紫外線を発光するLEDダイ)とし、最上層のLEDダイ1dのみを青色光のB−LEDダイとし、全ての蛍光体層2a,2b,2cにYAG蛍光体層としても良い。このときも同様に高輝度白色光のLED装置を提供できる。   Further, in the LED device 10, the LED dies 1a, 1b, and 1c are UV-LED dies (LED dies that emit ultraviolet light), and only the uppermost LED die 1d is a blue-light B-LED die, and all phosphors. The layers 2a, 2b, and 2c may be YAG phosphor layers. In this case as well, a high-brightness white light LED device can be provided.

さらに、LED装置10において、LEDダイ1a,1b,1cをUV―LEDダイとし、最上層のLEDダイ1dのみを青色光のB−LEDダイとし、蛍光体層2a,2b,2cを赤色蛍光体層と緑色蛍光体層の組み合わせとしても良い。この場合、R,G,B成分のバランスがとれた高輝度白色光のLED装置を提供できる。またLEDダイ1a〜1dを全てUV−LEDダイとし、LEDダイ1d上に青色発光する蛍光体層を追加しても良い。   Further, in the LED device 10, the LED dies 1a, 1b, 1c are UV-LED dies, only the uppermost LED die 1d is a blue-light B-LED die, and the phosphor layers 2a, 2b, 2c are red phosphors. It may be a combination of a layer and a green phosphor layer. In this case, a high-luminance white light LED device in which the R, G, and B components are balanced can be provided. Alternatively, all of the LED dies 1a to 1d may be UV-LED dies, and a phosphor layer that emits blue light may be added on the LED die 1d.

(第2実施形態)
次に図3により本発明の第2実施形態のLED装置について説明する。
図3は第2実施形態のLED装置20の断面図であり、基本的構成は図1に示す第1実施形態のLED装置10と同じであり、同一要素には同一番号を付し、重複する説明を省略する。LED装置20がLED装置10と異なるところは、最下層のLEDダイ1aと回路基板3の間に第4の蛍光体層2dが挟持されていることである。LED装置20の構成においてもLED装置10の構成と同様に、全てのLEDダイ1a,1b,1c,1dにB−LEDダイを使用し、蛍光体層2a,2b,2cにYAG蛍光体層を使用することによって、各蛍光体層2a,2b,2cによる黄色光と最上層のB−LEDダイ1dの青色光の混色による白色光を出射することは同じである。
(Second Embodiment)
Next, an LED device according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a cross-sectional view of the LED device 20 of the second embodiment. The basic configuration is the same as that of the LED device 10 of the first embodiment shown in FIG. Description is omitted. The LED device 20 is different from the LED device 10 in that the fourth phosphor layer 2d is sandwiched between the lowermost LED die 1a and the circuit board 3. In the configuration of the LED device 20, as in the configuration of the LED device 10, B-LED dies are used for all the LED dies 1a, 1b, 1c, 1d, and YAG phosphor layers are used for the phosphor layers 2a, 2b, 2c. By using it, it is the same that the white light by the mixed color of the yellow light by each phosphor layer 2a, 2b, 2c and the blue light of the uppermost B-LED die 1d is emitted.

異なるところは前述のごとく最下層のLEDダイ1aと回路基板3の間に第4の蛍光体層2dを設け、この蛍光体層2dも他の蛍光体層と同様のYAG蛍光体層としたことである。この結果最下層のLEDダイ1aから回路基板3方向に向う光は蛍光体層2dで波長変換された後、回路基板3の表面で反射され、LED装置20の出射面側に戻っていく(この場合、回路基板の表面は反射特性を良くしておくことが好ましい)。したがってLED装置20はLED装置10に比較して、最下層のLEDダイ1aから回路基板3方向に向う光を有効活用でき出射効率が高くなる。   As described above, the fourth phosphor layer 2d is provided between the lowermost LED die 1a and the circuit board 3 as described above, and this phosphor layer 2d is also a YAG phosphor layer similar to the other phosphor layers. It is. As a result, the light directed from the lowermost LED die 1a toward the circuit board 3 is wavelength-converted by the phosphor layer 2d, then reflected by the surface of the circuit board 3, and returns to the emission surface side of the LED device 20 (this In this case, it is preferable that the surface of the circuit board has good reflection characteristics). Therefore, as compared with the LED device 10, the LED device 20 can effectively utilize the light directed from the lowermost LED die 1a toward the circuit board 3 and has higher emission efficiency.

(第3実施形態)
次に図4により本発明の第3実施形態のLED装置について説明する。
図4は第3実施形態のLED装置30の断面図であり、基本的構成は図1に示す第1実施形態のLED装置10と同じであり、同一要素には同一番号を付し、重複する説明を省略する。LED装置30がLED装置10と異なるところは、最上層のLEDダイ1dの上にさらに蛍光体層2eを積層してことである。
(Third embodiment)
Next, an LED device according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a cross-sectional view of the LED device 30 according to the third embodiment. The basic configuration is the same as that of the LED device 10 according to the first embodiment shown in FIG. Description is omitted. The LED device 30 is different from the LED device 10 in that a phosphor layer 2e is further laminated on the uppermost LED die 1d.

このLED装置30においては、全てのLEDダイ1a,1b,1c,1dにUV−LEDダイを使用し、蛍光体層2aを赤色蛍光体層,蛍光体層2b,2cに緑色蛍光体層、蛍光体層2eに青色蛍光体層を使用することによって、全てUV−LEDダイの発光をR,G,Bの蛍光体層により波長変換した色調の良い白色光を出射するLED装置30となる。   In this LED device 30, UV LED dies are used for all LED dies 1a, 1b, 1c, and 1d, the phosphor layer 2a is a red phosphor layer, the phosphor layers 2b and 2c are green phosphor layers, and fluorescence. By using the blue phosphor layer for the body layer 2e, the LED device 30 that emits white light with a good color tone obtained by converting the wavelength of the light emitted from the UV-LED die by the R, G, B phosphor layers.

(第4実施形態)
次に図5により本発明の第4実施形態のLED装置について説明する。
図5は第4実施形態のLED装置40の断面図である。LED装置40では2層のLEDダイ1a,1bの間に1層の蛍光体層2aを積層した実施形態を示している。下層のLEDダイ1aは下面電極5a.5bを有し、回路基板3の配線パターンにフリップチップ実装されており、上層のLEDダイ1bは上面に電極パッドを有し、ワイヤー4によって回路基板3の配線パターンにワイヤーボンディングされている。また、本実施形態においては図3に示すLED装置20と同様に、下面電極5a.5bの周囲におけるLEDダイ1aと回路基板3の間には蛍光体層2dが設けられている。
(Fourth embodiment)
Next, an LED device according to a fourth embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a cross-sectional view of the LED device 40 of the fourth embodiment. In the LED device 40, an embodiment in which one phosphor layer 2a is stacked between two LED dies 1a and 1b is shown. The lower-layer LED die 1a has lower surface electrodes 5a. 5b, which is flip-chip mounted on the wiring pattern of the circuit board 3. The upper LED die 1b has an electrode pad on the upper surface and is wire-bonded to the wiring pattern of the circuit board 3 by a wire 4. In the present embodiment, the lower surface electrodes 5a. A phosphor layer 2d is provided between the LED die 1a and the circuit board 3 around 5b.

上記LED装置40の構成では最下層のLEDダイ1aが回路基板3上の配線パターンにフリップチップ実装され、上層側のLEDダイ1bが回路基板3上の配線パターンにワイヤーボンディングされる。このLEDダイ1aに対してフリップチップ実装を採用することにより、接続用のワイヤーが不要となるため実装面積は小さくて良くなり、LED装置40としてはワイヤーボンディング工程の軽減と実装効率の向上が図られる。   In the configuration of the LED device 40, the lowermost LED die 1a is flip-chip mounted on a wiring pattern on the circuit board 3, and the upper LED die 1b is wire-bonded to the wiring pattern on the circuit board 3. By adopting flip-chip mounting for the LED die 1a, a connecting wire is not required, so that the mounting area can be reduced. For the LED device 40, the wire bonding process is reduced and the mounting efficiency is improved. It is done.

また、LED装置40における、LEDダイと蛍光体層の組み合わせについては、いろいろ可能であるが、一例としてはLED装置10とほぼ同様に、LEDダイ1a,1bにB−LEDダイを使用し、蛍光体層2a,2dにYAG蛍光体層を採用することによって、各蛍光体層2a,2dによる黄色光と最上層のB−LEDダイ1bの青色光の混色による白色光を効率良く出射することがきる。また、本実施形態においては2層のLEDダイ構成の事例を示したが、LEDダイ及び蛍光体層をさらに積層しても良いことは当然である。   Various combinations of LED dies and phosphor layers in the LED device 40 are possible, but as an example, B-LED dies are used for the LED dies 1a and 1b in substantially the same manner as the LED device 10, and fluorescence By adopting a YAG phosphor layer for the body layers 2a and 2d, it is possible to efficiently emit white light by mixing yellow light from the phosphor layers 2a and 2d and blue light from the uppermost B-LED die 1b. Yes. Further, in the present embodiment, an example of a two-layer LED die configuration is shown, but it is a matter of course that an LED die and a phosphor layer may be further laminated.

(第5実施形態)
次に図6により本発明第5実施形態のLED装置について説明する。
図6は本発明の第5実施形態のLED装置50の断面図であり、基本的構成は図5に示す第4実施形態のLED装置40と同じであり、同一要素には同一番号を付し、重複する説明を省略する。LED装置50がLED装置40と異なるところは、LEDダイ1bの下面にダイクロイックミラー6を配設したことであり、このダイクロイックミラー6の特性がダイクロイックミラー6を配設したLEDダイ1bの発光波長より短波長の光を反射し、長波長の光を透過する特性を有することである。
(Fifth embodiment)
Next, an LED device according to a fifth embodiment of the present invention will be described with reference to FIG.
FIG. 6 is a cross-sectional view of the LED device 50 according to the fifth embodiment of the present invention. The basic configuration is the same as that of the LED device 40 according to the fourth embodiment shown in FIG. The duplicated explanation is omitted. The LED device 50 is different from the LED device 40 in that the dichroic mirror 6 is disposed on the lower surface of the LED die 1b. It has a characteristic of reflecting short wavelength light and transmitting long wavelength light.

上記構成によれば、ダイクロイックミラー6を配設したLEDダイ1bが下方に向かって出射する短波長の光線PSは、ダイクロイックミラー6によって反射し上方に向かう。このときダイクロイックミラー6の下方にある蛍光体層2aによる発光のうち上方に向かう光線PLはそのままダイクロイックミラー6を通過する。この結果、実質的にダイクロイックミラー6を配設したLEDダイ1bから下方に向う発光成分がなくなるのでLED装置としての出射効率が改善する。   According to the above configuration, the short wavelength light beam PS emitted downward by the LED die 1b provided with the dichroic mirror 6 is reflected by the dichroic mirror 6 and travels upward. At this time, the light beam PL going upward from the light emitted by the phosphor layer 2 a below the dichroic mirror 6 passes through the dichroic mirror 6 as it is. As a result, since the light emitting component directed downward from the LED die 1b in which the dichroic mirror 6 is substantially disposed is eliminated, the emission efficiency as the LED device is improved.

(第6実施形態)
次に図7により本発明の第6実施形態のLED装置について説明する。
図7は第6実施形態のLED装置60の断面図であり、基本的構成は図6に示す第5実施形態のLED装置50と同じであり、同一要素には同一番号を付し、重複する説明を省略する。LED装置60がLED装置50と異なるところは、ダイクロイックミラー7をLEDダイ1aの上面に配設したことであり、ダイクロイックミラー7の特性が該ダイクロイックミラー7を配設したLEDダイ1aの発光波長より短い波長の光を透過し、長い波長の光を反射する特性を有することである。
(Sixth embodiment)
Next, an LED device according to a sixth embodiment of the present invention will be described with reference to FIG.
FIG. 7 is a cross-sectional view of the LED device 60 of the sixth embodiment. The basic configuration is the same as that of the LED device 50 of the fifth embodiment shown in FIG. Description is omitted. The LED device 60 is different from the LED device 50 in that the dichroic mirror 7 is disposed on the upper surface of the LED die 1a. It has a characteristic of transmitting light having a short wavelength and reflecting light having a long wavelength.

上記構成によれば、ダイクロイックミラー7を配設したLEDダイ1aが上方に向かって出射する短波長の光線PSは、ダイクロイックミラー7を通過し、その上方にある蛍光体層2aに入射し、蛍光体層2aにより波長変換される。なお蛍光体層2aにおいて光線PSにより発光し下方に向かう長波長の光(図示していない)はダイクロイックミラー7で反射し上方に向かう。同様に、蛍光体層2aを介してダイクロイックミラー7の上方にあるLEDダイ1bから下方に出射する波長の短い光PLは、蛍光体層2aで長い波長の光に変換され、この長波長に変換された光のうち下方に向かう光線PLは、ダイクロイックミラー7で反射し上方へ向かう。このようにしてダイクロイックミラー7で反射して上方に向かう光が加わるためLED装置60の出射効率が改善する。   According to the above configuration, the short wavelength light beam PS emitted upward from the LED die 1a on which the dichroic mirror 7 is disposed passes through the dichroic mirror 7 and enters the phosphor layer 2a above the dichroic mirror 7 to emit fluorescence. Wavelength conversion is performed by the body layer 2a. In the phosphor layer 2a, long wavelength light (not shown) emitted by the light beam PS and traveling downward is reflected by the dichroic mirror 7 and travels upward. Similarly, light PL having a short wavelength emitted downward from the LED die 1b above the dichroic mirror 7 through the phosphor layer 2a is converted into light having a long wavelength by the phosphor layer 2a and converted to this long wavelength. Of the emitted light, the downward light beam PL is reflected by the dichroic mirror 7 and travels upward. In this way, light reflected from the dichroic mirror 7 and added upward is added, so that the emission efficiency of the LED device 60 is improved.

上記ダイクロイックミラー6,7を備えたLED装置50,60においても、LED装置40と同様にLEDダイと蛍光体層の組み合わせについては、いろいろ可能である。例えばLED装置40と同様に、LEDダイ1a,1bともにB−LEDダイを使用し、蛍光体層2a,2dにYAG蛍光体層を採用することによって、各蛍光体層2a,2dによる黄色光と最上層のB−LEDダイ1bの青色光との混色による白色光を効率良く出射することがきる。また、本実施形態においては2層のLEDダイ構成の事例を示したが、LEDダイ及び蛍光体層をさらに多層にしても良いことは当然である。   In the LED devices 50 and 60 including the dichroic mirrors 6 and 7, various combinations of the LED die and the phosphor layer are possible as in the LED device 40. For example, similarly to the LED device 40, both the LED dies 1a and 1b use B-LED dies, and adopt a YAG phosphor layer for the phosphor layers 2a and 2d, so that yellow light from the phosphor layers 2a and 2d It is possible to efficiently emit white light by mixing with the blue light of the uppermost B-LED die 1b. In the present embodiment, an example of a two-layer LED die configuration is shown, but it is natural that the LED die and the phosphor layer may be further multilayered.

上記の如く本発明によれば、UV−LEDダイやB−LEDダイのように比較的発光波長の短いLEDダイを積層して使用し、各LEDダイ間に蛍光体層を積層する構成によって、小型化及び高輝度化を達成することができる。また積層枚数に制限がないため、配置面積を広げることなく輝度向上が可能で、しかも蛍光体層の組み合わせをいろいろ変えることによって、色調の調整もできる。さらに同一のLEDダイ及び同一の蛍光体層を使用することができるため、特性のばらつきを小さくできたり、経時変化も同じにしたりできたりするので、LED装置として製品の安定化を図れる。   As described above, according to the present invention, an LED die having a relatively short emission wavelength, such as a UV-LED die or a B-LED die, is used, and a phosphor layer is laminated between the LED dies. Miniaturization and high brightness can be achieved. Further, since there is no limit on the number of stacked layers, the luminance can be improved without increasing the arrangement area, and the color tone can be adjusted by changing various combinations of the phosphor layers. Furthermore, since the same LED die and the same phosphor layer can be used, the variation in characteristics can be reduced and the change with time can be made the same, so that the product can be stabilized as an LED device.

1a,1b,1c,1d LEDダイ
2a,2b,2c,2d,2e 蛍光体層
3 回路基板
4 ワイヤー
5a,5b 下面電極
6,7 ダイクロイックミラー
10,20,30,40,50,60 LED装置
1a, 1b, 1c, 1d LED die 2a, 2b, 2c, 2d, 2e Phosphor layer 3 Circuit board 4 Wire 5a, 5b Bottom electrode 6, 7 Dichroic mirror 10, 20, 30, 40, 50, 60 LED device

Claims (5)

配線電極を有する回路基板上に複数の半導体発光素子を積層して配置し、前記半導体発光素子間に蛍光体層を介在させたことを特徴とする半導体発光装置。   A semiconductor light emitting device comprising a plurality of semiconductor light emitting elements stacked on a circuit board having wiring electrodes, and a phosphor layer interposed between the semiconductor light emitting elements. 前記複数の半導体発光素子のうち最下層の半導体発光素子と前記回路基板上の間にも蛍光体層を介在させたことを特徴とする請求項1に記載の半導体発光装置。   2. The semiconductor light emitting device according to claim 1, wherein a phosphor layer is also interposed between a semiconductor light emitting element in the lowest layer among the plurality of semiconductor light emitting elements and the circuit board. 前記複数の半導体発光素子のうち最下層の半導体発光素子は、前記回路基板上の配線電極にフリップチップ実装されていることを特徴とする請求項1又は2に記載の半導体発光装置。   3. The semiconductor light emitting device according to claim 1, wherein a lowermost semiconductor light emitting element among the plurality of semiconductor light emitting elements is flip-chip mounted on a wiring electrode on the circuit board. 前記複数の半導体発光素子のうち一部の半導体発光素子の下面にダイクロイックミラーを配設し、該ダイクロイックミラーが該ダイクロイックミラーを配設した前記半導体発光素子の発光波長より短い波長の光を反射し、長い波長の光を透過する特性を有することを特徴とする請求項1〜3のいずれか1項に記載の半導体発光装置。   A dichroic mirror is disposed on the lower surface of a part of the plurality of semiconductor light emitting elements, and the dichroic mirror reflects light having a wavelength shorter than the emission wavelength of the semiconductor light emitting element on which the dichroic mirror is disposed. The semiconductor light-emitting device according to claim 1, wherein the semiconductor light-emitting device has a characteristic of transmitting light having a long wavelength. 前記複数の半導体発光素子のうち一部の半導体発光素子の上面にダイクロイックミラーを配設し、該ダイクロイックミラーが該ダイクロイックミラーを配設した前記半導体発光素子の発光波長より短い波長の光を透過し、長い波長の光を反射する特性を有することを特徴とする請求項1〜3のいずれか1項に記載の半導体発光装置。
A dichroic mirror is disposed on an upper surface of a part of the plurality of semiconductor light emitting elements, and the dichroic mirror transmits light having a wavelength shorter than the light emission wavelength of the semiconductor light emitting element on which the dichroic mirror is disposed. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has a characteristic of reflecting light having a long wavelength.
JP2011241469A 2011-11-02 2011-11-02 Semiconductor light-emitting device Pending JP2013098427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241469A JP2013098427A (en) 2011-11-02 2011-11-02 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241469A JP2013098427A (en) 2011-11-02 2011-11-02 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2013098427A true JP2013098427A (en) 2013-05-20

Family

ID=48620055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241469A Pending JP2013098427A (en) 2011-11-02 2011-11-02 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2013098427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070242A (en) * 2013-10-01 2015-04-13 シチズン電子株式会社 Semiconductor light-emitting device
JP2015076527A (en) * 2013-10-09 2015-04-20 シチズン電子株式会社 Led light emitting device
US10333030B2 (en) 2016-08-05 2019-06-25 Nichia Corporation Light-emitting device including reflective film and method for manufacturing light-emitting device
JP2019519909A (en) * 2016-04-29 2019-07-11 ルミレッズ ホールディング ベーフェー High brightness clear color LED light source
JP7390942B2 (en) 2020-03-13 2023-12-04 シチズン時計株式会社 LED light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510968A (en) * 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Visible light emitting display including ultraviolet light emitting diode and ultraviolet excited visible light emitting phosphor and method of manufacturing the device
JP2001267638A (en) * 2000-03-16 2001-09-28 Rabo Sufia Kk Light emitting device
JP2007067044A (en) * 2005-08-30 2007-03-15 Konica Minolta Holdings Inc Light emitting diode and its manufacturing method
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
JP2011176045A (en) * 2010-02-23 2011-09-08 Fujifilm Corp Laminated type semiconductor light-emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510968A (en) * 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Visible light emitting display including ultraviolet light emitting diode and ultraviolet excited visible light emitting phosphor and method of manufacturing the device
JP2001267638A (en) * 2000-03-16 2001-09-28 Rabo Sufia Kk Light emitting device
JP2007067044A (en) * 2005-08-30 2007-03-15 Konica Minolta Holdings Inc Light emitting diode and its manufacturing method
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
JP2011176045A (en) * 2010-02-23 2011-09-08 Fujifilm Corp Laminated type semiconductor light-emitting element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070242A (en) * 2013-10-01 2015-04-13 シチズン電子株式会社 Semiconductor light-emitting device
JP2015076527A (en) * 2013-10-09 2015-04-20 シチズン電子株式会社 Led light emitting device
JP2019519909A (en) * 2016-04-29 2019-07-11 ルミレッズ ホールディング ベーフェー High brightness clear color LED light source
JP7221052B2 (en) 2016-04-29 2023-02-13 ルミレッズ ホールディング ベーフェー Bright color LED light source
US10333030B2 (en) 2016-08-05 2019-06-25 Nichia Corporation Light-emitting device including reflective film and method for manufacturing light-emitting device
JP7390942B2 (en) 2020-03-13 2023-12-04 シチズン時計株式会社 LED light emitting device

Similar Documents

Publication Publication Date Title
JP3934590B2 (en) White light emitting device and manufacturing method thereof
JP6102273B2 (en) Light emitting device and manufacturing method thereof
KR100835063B1 (en) SURFACE LIGHT SOURCE DEVICE USING LEDs
US8310145B2 (en) Light emitting device including first and second red phosphors and a green phosphor
JP4881358B2 (en) Light emitting device
US8546834B2 (en) LED package
US8414145B2 (en) Light emitting device
JP5820217B2 (en) Backlight assembly having light emitting diode package
JP2008166825A (en) White light-emitting device, and light source module for lcd backlight using same
JP2008166782A (en) Light-emitting element
JP5285435B2 (en) Light emitting diode module
JP2009059896A (en) Light-emitting device
JP5443959B2 (en) Lighting device
JP2009512178A (en) LIGHT EMITTING MODULE AND DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
US8546824B2 (en) Light emitting device
KR20130010283A (en) White light emitting device, display apparatus and illumination apparatus
JP2005317873A (en) Light emitting diode, method for driving the same lighting device, and liquid crystal display device
JP2013098427A (en) Semiconductor light-emitting device
JP2007115928A (en) Semiconductor light-emitting device
JP2006324407A (en) Light emitting device
JP2016115941A (en) Light emitting device
KR20100076655A (en) White light emitting device
JP2008263083A (en) Planar light source, and liquid crystal display device
JP2004288760A (en) Multilayered led
JP2009529232A (en) Light emitting diode module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208