JP2013098138A - Cord-shaped heat generation line device - Google Patents

Cord-shaped heat generation line device Download PDF

Info

Publication number
JP2013098138A
JP2013098138A JP2011242714A JP2011242714A JP2013098138A JP 2013098138 A JP2013098138 A JP 2013098138A JP 2011242714 A JP2011242714 A JP 2011242714A JP 2011242714 A JP2011242714 A JP 2011242714A JP 2013098138 A JP2013098138 A JP 2013098138A
Authority
JP
Japan
Prior art keywords
wire
short
cord
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011242714A
Other languages
Japanese (ja)
Inventor
Takushi Nomura
卓志 野村
Masahiro Asakura
正博 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONGKONG TACHIBANA ELECTRONICS CO Ltd
Original Assignee
HONGKONG TACHIBANA ELECTRONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONGKONG TACHIBANA ELECTRONICS CO Ltd filed Critical HONGKONG TACHIBANA ELECTRONICS CO Ltd
Priority to JP2011242714A priority Critical patent/JP2013098138A/en
Priority to CN 201210042253 priority patent/CN103096537A/en
Publication of JP2013098138A publication Critical patent/JP2013098138A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cord-shaped heat generation line device which can obtain a highly accurate and stable temperature control function and a highly safe line short circuit protection function with little variation by alternately and spirally winding a temperature detection strand and a short circuit detection strand around the outer circumference of a polymer layer at a constant pitch regardless of one-line type cord-shaped heat generation line and separating a temperature control circuit from a line short circuit protection circuit, and is manufactured at low cost.SOLUTION: A heat generation strand 2 is spirally wound around a core 1. A polymer layer 3 is formed around the core. A temperature detection strand 4 and a short circuit detection strand 6 are alternately kept at a constant pitch and spirally wound around the outer circumference of the polymer layer 3 in the form of cutting into the polymer layer 3. An insulation coating layer 5 is further formed thereon. The temperature detection strand 4 and the short circuit detection strand 6 are spatially separated, which thereby can respectively independently perform temperature control by the temperature detection strand 4 and line short circuit protection by the short circuit detection strand 6 with high accuracy and without variations.

Description

本発明は、電気毛布、電気カーペットなどの面状採暖具に用いられるコード状発熱線装置に関する。   The present invention relates to a cord-like heating wire device used for a sheet heating device such as an electric blanket or an electric carpet.

一般に電気毛布、電気カーペットなどの面状採暖具に用いられるコード状発熱線はよく知られており、特に当初電気カーペットに用いられていたコード状発熱システムの形態は、コード状のセンサ線とコード状のヒータ線からなる2線式と呼ばれる構成であり、その構造を図3に示す。   In general, cord-like heating lines used for sheet heating devices such as electric blankets and electric carpets are well known. In particular, the cord-like heating system used for electric carpets at the beginning is composed of cord-like sensor wires and cords. The structure is called a two-wire system composed of a heater wire, and its structure is shown in FIG.

同図に於いて、コード状センサ線100はポリエステル繊維等の繊維束の巻芯1aと、巻芯1aの外周に銅または銅合金の導体を螺旋状に捻回した内側電極素線2aと、内側電極素線2aの外周に高分子感熱樹脂を押出し成形してなる高分子感熱層3aと、高分子感熱層3aの外周に銅または銅合金の導体を螺旋状に捻回した外側電極素線4aと、最外周にポリ塩化ビニル樹脂等を押出し成形した絶縁被覆層5aとからなっている。   In the figure, a cord-shaped sensor wire 100 includes a core 1a of a fiber bundle such as polyester fiber, an inner electrode wire 2a in which a copper or copper alloy conductor is spirally wound around the outer periphery of the core 1a, A polymer heat-sensitive layer 3a formed by extruding a polymer heat-sensitive resin on the outer periphery of the inner electrode wire 2a, and an outer electrode element wire in which a copper or copper alloy conductor is spirally wound on the outer periphery of the polymer heat-sensitive layer 3a. 4a and an insulating coating layer 5a formed by extruding a polyvinyl chloride resin or the like on the outermost periphery.

なお、必要に応じて外側電極素線4aと絶縁被覆層5aの間にポリエステルテープを螺旋状に捻回し、絶縁被覆層5aからの可塑剤移行に対するバリア層が設けられる場合がある。また、内側電極素線2aと外側電極素線4aが逆配置のものや、内電側極素線2aと外側電極素線4aが特殊な合金等で形成されているものが一部見受けられる。   If necessary, a polyester tape may be spirally twisted between the outer electrode wire 4a and the insulating coating layer 5a to provide a barrier layer against plasticizer migration from the insulating coating layer 5a. Some of the inner electrode wires 2a and the outer electrode wires 4a are reversely arranged, and the inner electrode side electrode wires 2a and the outer electrode wires 4a are made of a special alloy.

ここで、高分子感熱層3aの温度に対する電気的特性は、温度上昇に伴い交流インピーダンスが減少する所謂負温度係数サーミスタ特性の形を示し、感度性能を表すB定数は概ね8000Kから11000K程度を有する。なお、高分子感熱層3aは必ずしも固有の融点を持つ必要はない。   Here, the electrical characteristics with respect to the temperature of the polymer thermosensitive layer 3a show a so-called negative temperature coefficient thermistor characteristic in which the AC impedance decreases as the temperature rises, and the B constant representing the sensitivity performance is about 8000K to 11000K. . The polymer thermosensitive layer 3a does not necessarily have an inherent melting point.

このような構成のコード状センサ線100に於いて、温度変化による交流インピーダンスの変化は内側電極素線2aと外側電極素線4aの両端から電気信号として取り出され温度制御用として利用される。   In the cord-like sensor wire 100 having such a configuration, a change in AC impedance due to a temperature change is taken out as an electrical signal from both ends of the inner electrode strand 2a and the outer electrode strand 4a and used for temperature control.

次に、コード状ヒータ線101は、図3と同様の形状をしているが、使用する材料が異なる。同図に於いて、ポリエステル繊維等の繊維束の巻芯1bと、巻芯1bの外周に銅または銅合金の導体を螺旋状に捻回した発熱素線2bと、発熱素線2bの外周に高分子樹脂を押出し成形してなる高分子層3bと、高分子層3bの外周に銅或いは銅合金の導体を螺旋状に捻回した短絡検知素線4bと、最外周にポリ塩化ビニル樹脂等を押出し成形した絶縁被覆層5bとからなっている。   Next, the cord-like heater wire 101 has the same shape as that shown in FIG. 3, but the material used is different. In the figure, a core 1b of a fiber bundle such as a polyester fiber, a heating element wire 2b in which a copper or copper alloy conductor is spirally wound around the outer periphery of the winding core 1b, and an outer periphery of the heating element wire 2b. A polymer layer 3b formed by extruding a polymer resin, a short-circuit detecting element wire 4b in which a copper or copper alloy conductor is spirally wound around the outer periphery of the polymer layer 3b, a polyvinyl chloride resin or the like on the outermost periphery And an insulating coating layer 5b formed by extrusion molding.

ここで、高分子層3bは固有の融点を持ち、過熱状態になると高分子層3bは溶融し、発熱素線2bと短絡検知素線4bが接触し、所謂線間短絡保護機能の一部として働く。尚、ここで言う線間短絡保護機能とは、線間短絡時に温度ヒューズなど他の部品と組み合わせて大もとの電源を非復帰の形で遮断し、異常過熱による火災などを防止する機能を言う。   Here, the polymer layer 3b has an inherent melting point. When the polymer layer 3b is overheated, the polymer layer 3b is melted, and the exothermic element wire 2b and the short-circuit detecting element wire 4b come into contact with each other. work. Note that the line-to-line short-circuit protection function referred to here is a function that shuts off the main power supply in a non-returning manner in combination with other components such as a thermal fuse when a line short-circuit occurs, preventing a fire due to abnormal overheating. say.

尚、必要に応じて短絡検知素線4bと絶縁被覆層5bの間にポリエステルテープを螺旋状に捻回し、絶縁被覆層5bからの可塑剤移行に対するバリア層が設けられる場合がある。また、発熱素線2bと短絡検知素線4bが逆配置のものが一部見受けられる。   If necessary, a polyester tape may be spirally twisted between the short-circuit detecting element wire 4b and the insulating coating layer 5b to provide a barrier layer against plasticizer migration from the insulating coating layer 5b. In addition, a part of the heating element wire 2b and the short-circuiting detection element wire 4b are reversed.

これら2条のコード状センサ線100とコード状ヒータ線101は略平行して布線され温度制御部に接続され、図4に示す回路接続により温度制御と線間短絡保護の動作が実現される。   These two cord-like sensor wires 100 and cord-like heater wires 101 are wired substantially in parallel and connected to the temperature control unit, and the operation of temperature control and line short-circuit protection is realized by the circuit connection shown in FIG. .

図4に於いて、コード状センサ線100からの信号は抵抗器R1、R2で低電圧に分圧され、更にダイオードD3とコンデンサC1により平滑され、小さな直流成分として電圧比較器U1のマイナス端子に入力され、予め設定された温度に相当する基準電圧Vref1と比較され電圧比較器U1より出力され、電力制御スイッチSWの開閉が駆動され発熱素線2bへの通電が制御される。
ここで符号STBは、低電圧化された安定化電源であり温度制御部に供給される。(以下、同様とする。)
In FIG. 4, the signal from the cord-like sensor line 100 is divided to a low voltage by resistors R1 and R2, further smoothed by a diode D3 and a capacitor C1, and applied to the negative terminal of the voltage comparator U1 as a small DC component. The input voltage is compared with a reference voltage Vref1 corresponding to a preset temperature and output from the voltage comparator U1, and the opening / closing of the power control switch SW is driven to control energization to the heating element wire 2b.
Here, the symbol STB is a stabilized power source whose voltage is lowered, and is supplied to the temperature control unit. (The same shall apply hereinafter.)

一方、コード状ヒータ線101の線間短絡保護動作は、図4に示すように短絡検知素線4bの両端が短絡され、温度ヒューズ一体形抵抗器RF1と2つのダイオードを介して、AC100Vの各々の極に接続され、線間短絡保護回路が構成される。
ここで、F1は温度ヒューズ、RF1は温度ヒューズ一体形抵抗器、D1,D2は整流ダイオードである。
On the other hand, as shown in FIG. 4, both ends of the short-circuit detecting element wire 4b are short-circuited and the cord-like heater wire 101 is short-circuited, and each AC 100V is connected via the temperature fuse integrated resistor RF1 and two diodes. Is connected to the other pole to form a short circuit protection circuit between lines.
Here, F1 is a thermal fuse, RF1 is a thermal fuse integrated resistor, and D1 and D2 are rectifier diodes.

図4に示すコード状ヒータ線101の線間短絡保護回路の動作は次の通りである。
コード状センサ線100の接続された温度制御部が破損し制御不能に陥った場合、電力制御スイッチSWがONのままとなり、コード状ヒータ線101の発熱素線2bへの通電が連続となり全体が過熱状態になるので、高分子層3bが固有の融点で溶融し、発熱素線2bと短絡検知素線4bが接触し、「AC電源N点→2b→4b→RF1→D1→F1→AC電源H点」と「AC電源H点→F1→2b→4b→RF1→D2→AC電源N点」の2つの経路で交流半波電流が流れ、温度ヒューズ一体形抵抗器RF1が大きな電力で加熱され所定時間内に温度ヒューズが溶断し電源が遮断され、火災の発生を防止する最終的保護回路が構成される。
ここで、AC電源のH点、N点は回路図上の位置を示す呼称であり、電気的意味は含まない。尚、ダイオードD1及びD2の方向が各々逆向きに接続されても同様の動作となる。
The operation of the short circuit protection circuit between the cord-like heater wires 101 shown in FIG. 4 is as follows.
When the temperature control unit to which the cord-like sensor wire 100 is connected is damaged and becomes uncontrollable, the power control switch SW remains ON, the energization of the cord-like heater wire 101 to the heating element wire 2b is continuous, and the whole Since the polymer layer 3b is melted at an inherent melting point due to the overheating state, the exothermic element wire 2b and the short-circuit detecting element wire 4b come into contact with each other, “AC power supply N point → 2b → 4b → RF1 → D1 → F1 → AC power supply. An AC half-wave current flows through two paths of “H point” and “AC power supply H point → F1 → 2b → 4b → RF1 → D2 → AC power supply N point”, and the temperature fuse integrated resistor RF1 is heated with large electric power. In the predetermined time, the thermal fuse is blown, the power supply is shut off, and a final protection circuit is configured to prevent a fire.
Here, the H point and N point of the AC power source are names indicating positions on the circuit diagram, and do not include electrical meaning. The same operation is performed even if the diodes D1 and D2 are connected in opposite directions.

上記線間短絡保護回路の優れている点は次の通りである。
(1)短絡検知素線4bの抵抗値は温度ヒューズ一体形抵抗器RF1よりずっと小さくでき、工業的には発熱素線2bの抵抗値以下に小さくすることも可能であり、線間短絡時の温度ヒューズ溶断時間のバラツキを非常に小さくすることもできるが、どの程度まで小さくするかはコストとの兼ね合いによる。
(2)短絡検知素線4bの両端を接続して使うことにより、短絡検知素線4bの合成抵抗は短絡位置にかかわらず両端開放の元の抵抗値の1/4以下になるので、前記第(1)項に示す短絡検知素線4bの低抵抗化を図ることは、温度ヒューズ一体形抵抗器RF1の抵抗値に対して4倍以上の大きな縮小効果をもたらす。
(3)温度ヒューズ一体形抵抗器RF1には、2つの経路で交流半波電流が流れるので、線間短絡位置や電力制御スイッチSWのON、OFF状態による消費電力のバラツキを小さくすることができるうえに、コード状ヒータ線101はコード状センサ線100と空間的に離れているので、電気的相互干渉がなく極めて安全性が高く安定した線間短絡機能を提供することができる。
The advantages of the line short circuit protection circuit are as follows.
(1) The resistance value of the short-circuit detecting element wire 4b can be made much smaller than that of the temperature fuse integrated resistor RF1, and can be industrially made smaller than the resistance value of the heat generating element wire 2b. The variation in the fusing time of the thermal fuse can be made very small, but the extent to which it is made depends on the cost.
(2) By connecting and using both ends of the short-circuit detecting element wire 4b, the combined resistance of the short-circuit detecting element wire 4b becomes equal to or less than ¼ of the original resistance value when both ends are open regardless of the short-circuit position. Reducing the resistance of the short-circuit detecting element wire 4b shown in the item (1) brings about a large reduction effect of four times or more with respect to the resistance value of the temperature fuse integrated resistor RF1.
(3) Since the AC half-wave current flows through the two paths in the temperature fuse integrated resistor RF1, variation in power consumption due to the short-circuit position between the lines and the ON / OFF state of the power control switch SW can be reduced. In addition, since the cord-like heater wire 101 is spatially separated from the cord-like sensor wire 100, it is possible to provide a highly safe and stable line-to-line short-circuit function without electrical mutual interference.

次に、図4に基づき温度ヒューズ一体形抵抗器RF1の消費電力の概略計算値を表3に示す。
ここで、発熱素線2bの抵抗値を28.6Ω、温度ヒューズ一体形抵抗器RF1の抵抗値を180Ω、短絡検知素線4bの抵抗値は温度ヒューズ一体形抵抗器RF1の抵抗値の1/2程度と云う目安及びコストとを考慮し、発熱素線2bの抵抗値の3倍程度に相当する90Ωとする。尚、ダイオードD1,D2の順方向電圧降下分は僅かなので計算から省略する(以降同様とする)。

Figure 2013098138
Next, Table 3 shows a rough calculation value of the power consumption of the temperature fuse integrated resistor RF1 based on FIG.
Here, the resistance value of the heating element wire 2b is 28.6Ω, the resistance value of the temperature fuse integrated resistor RF1 is 180Ω, and the resistance value of the short-circuit detecting element wire 4b is 1 / of the resistance value of the temperature fuse integrated resistor RF1. Considering a standard of about 2 and cost, it is set to 90Ω corresponding to about 3 times the resistance value of the heating element wire 2b. Since the forward voltage drop of the diodes D1 and D2 is small, it is omitted from the calculation (the same applies hereinafter).
Figure 2013098138

表3によれば、2線式コード状ヒータ線101(従来例1)に於いては、線間短絡位置や電力制御スイッチSWのON、OFF状態の各モードによる温度ヒューズ一体形抵抗器RF1の消費電力は、実使用上では13.9W÷9.6W=1.4倍の違いしか発生しない。   According to Table 3, in the two-wire cord-like heater wire 101 (conventional example 1), the temperature fuse integrated resistor RF1 according to each mode of the line short-circuit position and the ON / OFF state of the power control switch SW. In actual use, the difference in power consumption is only 13.9 W ÷ 9.6 W = 1.4 times.

上記は、線間短絡保護機能が電力制御スイッチSWのON、OFFに関係なく機能するので、温度ヒューズ一体形抵抗器RF1の消費電力は各モードでの最大値が有効に働くことによる。
ここで、温度ヒューズF1の溶断時間が消費エネルギーによると仮定すると、消費電力13.9Wに対し9.6Wの場合の溶断時間は1.4倍しか増加しないと予想されるが、実測された溶断時間は上記の予想に対し、概ね妥当な値が得られている。
The above is because the line short-circuit protection function functions regardless of whether the power control switch SW is ON or OFF, and therefore, the maximum value in each mode works effectively for the power consumption of the temperature fuse integrated resistor RF1.
Here, assuming that the fusing time of the thermal fuse F1 depends on the energy consumption, the fusing time in the case of 9.6 W with respect to the power consumption of 13.9 W is expected to increase only by 1.4 times. The time is generally reasonable for the above forecast.

このようにコード状センサ線とコード状ヒータ線よりなる従来の2線式コード状発熱線の形態は、温度制御機能と安全保護機能を完全に分離できる優れた構成になっており、線間短絡位置による溶断時間の差は許容できる範囲に余裕を持って収めることができ、極めて安全性の優れた形態であるが、2本の線条を使うのでコストが非常に高く経済的でない上に、高分子感熱層3aの経時変化が大きいため、長期間にわたって安定した温度制御ができないと云う大きな問題があった。
上記説明と外観や構成が類似するものとして特許文献1〜6が挙げられる。
As described above, the conventional two-wire cord-like heating wire consisting of the cord-like sensor wire and the cord-like heater wire has an excellent configuration that can completely separate the temperature control function and the safety protection function. The difference in fusing time depending on the position can be accommodated in an acceptable range, and it is an extremely safe form, but because it uses two filaments, the cost is very high and it is not economical, Since the polymer thermosensitive layer 3a has a large change over time, there has been a serious problem that stable temperature control cannot be performed over a long period of time.
Patent Documents 1 to 6 are cited as similar in appearance and configuration to the above description.

特開昭48−55480号公報JP-A-48-55480 特開昭5−3071号公報JP-A-5-3071 特開昭5−306819号公報JP-A-5-306819 特開平6−5175号公報JP-A-6-5175 特開平6−124771号公報JP-A-6-124771 特開平7−216174号公報Japanese Patent Laid-Open No. 7-216174

近年、電気毛布や電気カーペットに於いて大面積化とともに視覚や感触の面から生地やカバーが厚手になる一方、単位面積当たりのコード状発熱線の布線密度は少なめにすると云う市場の強いコストダウンと長期にわたる経時変化の少ない安定した温度制御と云う要求により、急速に1線式コード状発熱線と呼ばれる発熱線構造が普及してきたが、前記2線式に比べ異常過熱時の線間短絡保護機能にバラツキが多く、火災の発生を防止する最終的保護機能が十分な安全性を保有しておらず大きな問題になっている。   In recent years, in the electric blanket and electric carpet, with the increase in area, the fabric and cover are thicker from the viewpoint of vision and touch, while the wiring density of the cord-shaped heating wire per unit area is reduced, the strong cost of the market Due to the demand for stable temperature control with little change over time over a long period of time, a heating wire structure called a one-wire cord-like heating wire has rapidly become widespread. There are many variations in protection functions, and the final protection function that prevents the occurrence of fires does not have sufficient safety, which is a big problem.

図3に示す1線式コード状発熱線102は、ポリエステル繊維等の繊維束の巻芯1cと、巻芯1cの外周に銅または銅合金の導体を螺旋状に捻回した発熱素線2cと、発熱素線2cの外周に高分子樹脂を押出成形してなる高分子層3cと、高分子層3c外周にニッケルなどの導体を螺旋状に捻回した温度検知素線4cと、最外周にポリ塩化ビニル樹脂等を押出成形した絶縁被覆層5cとからなっている。   A one-wire cord-shaped heating wire 102 shown in FIG. 3 includes a winding core 1c of a fiber bundle such as polyester fiber, and a heating element wire 2c obtained by spirally winding a copper or copper alloy conductor around the winding core 1c. A polymer layer 3c formed by extruding a polymer resin on the outer periphery of the heating element wire 2c, a temperature detection element wire 4c in which a conductor such as nickel is spirally wound on the outer periphery of the polymer layer 3c, and an outermost periphery The insulating coating layer 5c is formed by extruding a polyvinyl chloride resin or the like.

なお、必要に応じて温度検知素線4cと絶縁被覆層5cの間にポリエステルテープを螺旋状に捻回し、絶縁被覆層5cからの可塑剤移行に対するバリア層が設けられる場合がある。また、発熱素線2cと温度検知素線4cが逆配置のものが一部見受けられる。   If necessary, a polyester tape may be spirally twisted between the temperature detection element wire 4c and the insulating coating layer 5c to provide a barrier layer against plasticizer migration from the insulating coating layer 5c. Some of the heating element wires 2c and the temperature detection element wires 4c are reversely arranged.

このような構造のコード状発熱線102に於いて、加熱による温度変化が正の温度係数を有するニッケルからなる温度検知素線4cの抵抗値を変化させ、その変化は電気信号に変換されて取り出され温度制御用として利用される。尚、ニッケル線による温度検知素線は、イオン性伝導を使う高分子感熱層と異なり、その抵抗値も温度係数も精度が高く安定しており、長期間にわたって安定した精度の高い温度制御を実現できている。   In the cord-like heating wire 102 having such a structure, the temperature change due to heating changes the resistance value of the temperature detecting element wire 4c made of nickel having a positive temperature coefficient, and the change is converted into an electric signal and taken out. It is used for temperature control. Unlike polymer thermosensitive layers that use ionic conduction, the temperature detection element using nickel wire has a highly accurate and stable resistance value and temperature coefficient, realizing stable and highly accurate temperature control over a long period of time. is made of.

コード状発熱線102に於いて、高分子層3cは固有の融点を持ち、過熱状態になると高分子層3cは溶融し、発熱素線2cと温度検知素線4cが接触する、所謂線間短絡保護機能として働く。即ち、1線式コード状発熱線102に於いては、温度検知素線4cは短絡検知素線を兼ねている。
又、高分子層3cには、温度上昇に伴いインピーダンスが減少する負温度係数サーミスタ特性を持たせたものがある。
In the cord-like heating wire 102, the polymer layer 3 c has a unique melting point, and when it is overheated, the polymer layer 3 c melts, and the heating wire 2 c and the temperature detection wire 4 c come into contact with each other, so-called line short circuit. Works as a protective function. That is, in the one-wire cord-like heating wire 102, the temperature detection wire 4c also serves as a short-circuit detection wire.
Some polymer layers 3c have a negative temperature coefficient thermistor characteristic in which the impedance decreases as the temperature rises.

1線式コード状発熱線102の温度制御と線間短絡保護の動作は、図5に示すような回路接続で実現される。
温度制御動作は、温度検知素線4cの抵抗変化が、抵抗器R1とR2で分圧され電圧比較器U1のマイナス端子に入力され、予め設定された温度に相当する基準電圧Vref1と比較され電圧比較器U1より出力され、電力制御スイッチSWの開閉が駆動され発熱素線2cへの通電が制御される。
ここで符号STBは、低電圧化された安定化電源であり温度制御部に供給される。
The temperature control and line short-circuit protection operation of the one-wire cord-shaped heating wire 102 is realized by circuit connection as shown in FIG.
In the temperature control operation, the resistance change of the temperature detection element wire 4c is divided by resistors R1 and R2, input to the negative terminal of the voltage comparator U1, and compared with a reference voltage Vref1 corresponding to a preset temperature. Output from the comparator U1, the opening and closing of the power control switch SW is driven, and energization to the heating element wire 2c is controlled.
Here, the symbol STB is a stabilized power source whose voltage is lowered, and is supplied to the temperature control unit.

線間短絡保護動作は、温度検知素線4cの両端にダイオードD1とD2のアノードが各々接続され、ダイオードD1,D2のカソードはまとめて温度ヒューズ一体形抵抗器RF1の一端に接続され、温度ヒューズ一体形抵抗器RF1の他端がAC100Vの一端に接続されて構成される。   In the line short-circuit protection operation, the anodes of the diodes D1 and D2 are respectively connected to both ends of the temperature detection element wire 4c, and the cathodes of the diodes D1 and D2 are connected together to one end of the temperature fuse integrated resistor RF1. The other end of the integrated resistor RF1 is connected to one end of AC100V.

ここで、前記温度制御部が破損し制御不能に陥った場合は、電力制御スイッチSWがONのままとなり、発熱素線2cへの通電が連続となり全体が過熱状態になるので、高分子層3cが固有の融点で溶融し、発熱素線2cと温度検知素線4cが接触し、「AC電源N点→2c→4c→D1又はD2→RF1→F1→AC電源H点」の経路で電流が流れ、温度ヒューズ一体形抵抗器RF1が加熱され所定時間内に温度ヒューズが溶断し電源が遮断され、火災の発生を防止する最終的保護回路が構成される。   Here, when the temperature control unit is damaged and becomes uncontrollable, the power control switch SW remains ON, energization to the heating element wire 2c is continued, and the whole is overheated, so that the polymer layer 3c Is melted at a specific melting point, the heating element wire 2c and the temperature detection element wire 4c come into contact with each other, and the current flows through the path of “AC power supply N point → 2c → 4c → D1 or D2 → RF1 → F1 → AC power supply H point”. The thermal fuse integrated resistor RF1 is heated, the thermal fuse is blown out within a predetermined time, the power supply is shut off, and a final protection circuit for preventing the occurrence of a fire is formed.

上記の線間短絡機能の中で特に重要な点は、コード状発熱線102のどの位置で線間短絡が発生してもバラツキの少ない状態で保護機能が働かなければならないことである。この要求を満たすため、図5に示す回路接続に於いて、温度検知素線4cと温度ヒューズ一体形抵抗器RF1の抵抗値を下げる方向で線間短絡位置の影響を低減し、温度ヒューズ一体形抵抗器RF1の均一な加熱による温度ヒューズF1の均一な溶断時間を確保する努力が払われてきたが、短絡検知素線を兼ねる温度検知素線4cの抵抗値を、温度ヒューズ一体形抵抗器RF1の抵抗値より小さくすることは経済的に不可能に近い。   Of particular importance in the above-described line-to-line short-circuit function is that the protective function must operate in a state where there is little variation regardless of the position of the cord-like heating wire 102 where a line-to-line short-circuit occurs. In order to satisfy this requirement, in the circuit connection shown in FIG. 5, the influence of the short-circuit position between the lines is reduced in the direction of decreasing the resistance value of the temperature detection element wire 4c and the temperature fuse integrated resistor RF1, and the temperature fuse integrated type. Efforts have been made to ensure a uniform fusing time of the thermal fuse F1 by uniform heating of the resistor RF1, but the resistance value of the temperature detection wire 4c, which also serves as a short-circuit detection wire, is changed to a temperature fuse integrated resistor RF1. It is economically impossible to make it smaller than the resistance value.

図5に基づき温度ヒューズ一体形抵抗器RF1の消費電力の概略計算値を表3に示してある。ここで、温度検知素線4cの抵抗値を60℃で1176Ω、温度ヒューズ一体形抵抗器RF1の抵抗値を180Ω、発熱素線2cの抵抗を28.6Ωとする。また、その他の条件は2線式の場合と同様である。   Table 3 shows a rough calculation value of the power consumption of the temperature fuse integrated resistor RF1 based on FIG. Here, the resistance value of the temperature detection element wire 4c is 1176Ω at 60 ° C., the resistance value of the temperature fuse integrated resistor RF1 is 180Ω, and the resistance value of the heating element wire 2c is 28.6Ω. Other conditions are the same as in the case of the two-wire system.

表3によれば、1線式コード状発熱線102(従来例2)に於いては、線間短絡位置や電力制御スイッチSWのON、OFF状態の各モードによる温度ヒューズ一体形抵抗器RF1の消費電力は、実使用上では13.9W/1.9W=7.3倍の違いが発生する。ここで、温度ヒューズF1の溶断時間が消費エネルギーによると仮定すると、消費電力13.9Wに対し、1.9Wの場合の溶断時間は7.3倍になると予想されるが、実測された溶断時間は予想に対し概ね妥当な値が得られている。   According to Table 3, in the one-wire cord-like heating wire 102 (conventional example 2), the temperature fuse integrated resistor RF1 in each mode of the line short-circuit position and the ON / OFF state of the power control switch SW is used. In actual use, there is a difference of 13.9 W / 1.9 W = 7.3 times in power consumption. Here, assuming that the fusing time of the thermal fuse F1 depends on the energy consumption, the fusing time in the case of 1.9 W is expected to be 7.3 times the power consumption 13.9 W, but the actually measured fusing time is Is generally reasonable to the expectation.

更に、温度検知素線4cの60℃の前記抵抗値1176Ωを1/2の588Ωまで下げると云う極端な場合を想定し、電力制御スイッチSWがOFFの期間について試算すると、温度ヒューズ一体形抵抗器RF1の消費電力は3.9W程度となり、溶断時間は13.9W/3.9W=3.6倍にまで短縮されると予想され許容範囲に近づく。   Further, assuming an extreme case where the resistance value 1176Ω of the temperature detection element 4c at 60 ° C. is reduced to 588Ω, which is ½, the thermal control integrated resistor is calculated when the power control switch SW is OFF. The power consumption of RF1 is about 3.9 W, and the fusing time is expected to be shortened to 13.9 W / 3.9 W = 3.6 times and approaches the allowable range.

しかしながら、温度検知素線4cの抵抗値を1/2にすれば、その温度信号は半減してしまうので、温度検知素線4cに流す電流を2倍にしなければならず、それは低電圧化する定電化電源部の発熱を増大させ、温度制御器の収納ケースの表面温度を上げ、使用上の違和感と安全上の問題を発生させる。   However, if the resistance value of the temperature detection element wire 4c is halved, the temperature signal is halved. Therefore, the current flowing through the temperature detection element wire 4c must be doubled, which lowers the voltage. Increases the heat generation of the constant electrified power supply, raises the surface temperature of the storage case of the temperature controller, and causes discomfort and safety problems in use.

次に、1線式コード状発熱線の別の構造として、図6のような構造の発熱線が提案されている(特許文献5)。   Next, as another structure of the one-wire cord-shaped heating wire, a heating wire having a structure as shown in FIG. 6 has been proposed (Patent Document 5).

同図に於いて、ポリエステル繊維等の繊維束の巻芯1dと、巻芯1dの外周に銅または銅合金の導体を螺旋状に捻回した発熱素線2dと、発熱素線2dの外周に高分子感熱樹脂を押出し成形してなる高分子感熱層3dと、高分子感熱層3dの外周には絶縁被覆された温度検知素線4dと裸の過熱検知素線6dが相互の間隔を設けて一定のピッチで螺旋巻きされ、その外周が絶縁被覆層5dで絶縁されコード状発熱線103とされている。ここで高分子感熱層3dは、温度の上昇に伴いインピーダンスが減少する所謂負温度係数サーミスタ特性を有するものである。   In the drawing, a core 1d of a fiber bundle such as a polyester fiber, a heating element wire 2d in which a copper or copper alloy conductor is spirally wound around the outer periphery of the winding core 1d, and an outer periphery of the heating element wire 2d. A polymer thermosensitive layer 3d formed by extruding a polymer thermosensitive resin, and a temperature detecting element wire 4d and a bare overheat detecting element element 6d are provided on the outer periphery of the polymer thermosensitive layer 3d with an interval between them. It is spirally wound at a constant pitch, and its outer periphery is insulated with an insulating coating layer 5d to form a cord-like heating wire 103. Here, the polymer thermosensitive layer 3d has a so-called negative temperature coefficient thermistor characteristic in which the impedance decreases as the temperature rises.

図6の構造図に基づき、絶縁被覆された温度検知素線4dは他の部分と電気的に独立しており、純粋な温度検知信号のみを検出できるとともに、高分子感熱層3dの過熱信号は発熱素線2dと過熱検知素線6dの間から温度検知信号の混入なく純粋に過熱信号を検出できるので、過熱が進み高分子感熱層3dが溶融し発熱素線2dと過熱検知素線6dとが接触する所謂線間短絡の発生よりずっと手前の温度で前記過熱信号により発熱素線2dへの通電を遮断し、線間短絡を防止できることが示されている。   Based on the structural diagram of FIG. 6, the insulated temperature detection element wire 4 d is electrically independent from the other portions, and can detect only a pure temperature detection signal, and the overheat signal of the polymer thermosensitive layer 3 d is Since the overheat signal can be detected purely between the exothermic element wire 2d and the overheat detection element line 6d without mixing the temperature detection signal, the overheating proceeds and the polymer thermosensitive layer 3d melts, and the exothermic element line 2d and the overheat detection element line 6d It is shown that the overheating signal can cut off the energization of the heating element wire 2d at a temperature much before the occurrence of a so-called line short circuit where the wire contacts, thereby preventing the line short circuit.

この様子を図7の回路図で具体的に更に詳しく説明する。
同図に於いて、絶縁被覆された温度検知素線4dからの信号は、抵抗器R1及びR2で分圧され電圧比較器U1−Aのマイナス端子に入力され、予め設定された温度に相当する基準電圧Vref1と比較され電圧比較器U1−Aより出力され、電力制御スイッチSWの開閉が駆動され発熱素線2dへの通電が制御される。
This will be described in more detail with reference to the circuit diagram of FIG.
In the figure, the signal from the temperature detecting element wire 4d coated with insulation is divided by resistors R1 and R2 and input to the negative terminal of the voltage comparator U1-A, which corresponds to a preset temperature. Compared with the reference voltage Vref1 and output from the voltage comparator U1-A, the opening and closing of the power control switch SW is driven to control the energization to the heating element wire 2d.

次に、過熱検知素線6dからの信号は抵抗器R2及びR3で分圧され電圧比較器U1−Bのマイナス端子に入力され、線間短絡の発生よりずっと手前の予め設定された温度に相当する基準電圧Vref2と比較され電圧比較器U1−Bより出力され、電力制御スイッチSWの開閉が駆動され発熱素線2dへの通電が制御される。
このように、高分子感熱層3dが溶融し発熱素線2dと過熱検知素線6d間の線間短絡の発生以前にそれを予防できるとするのが特許文献5の主目的である。
Next, the signal from the overheat detection element 6d is divided by resistors R2 and R3 and input to the negative terminal of the voltage comparator U1-B, which corresponds to a preset temperature long before the occurrence of a short circuit between lines. Is compared with the reference voltage Vref2 and output from the voltage comparator U1-B, and the opening / closing of the power control switch SW is driven to control the energization to the heating element wire 2d.
As described above, the main purpose of Patent Document 5 is that the polymer thermosensitive layer 3d is melted and can be prevented before the occurrence of a short circuit between the exothermic element wire 2d and the overheat detecting element wire 6d.

しかし、前述のような予防措置を講じても温度制御部が故障する場合もあり、高分子感熱層3dが溶融し発熱素線2dと過熱検知素線6dの間で線間短絡が発生した場合に備え線間短絡保護回路を設けることはできるが、「信号分離」と云う前記の主目的を堅持したまま可能となる線間短絡保護用の回路接続は、図7に示すように図3及び図5で説明した普及形の1線式コード状発熱線102を使った場合と同様にしか構成できず、バラツキの少ない線間短絡保護動作を得ることはできない。   However, even if the above-mentioned precautions are taken, the temperature control unit may break down, and when the polymer thermosensitive layer 3d melts and a line short circuit occurs between the heating element wire 2d and the overheat detection element wire 6d. The circuit connection for the line short-circuit protection that enables the above-mentioned main purpose of “signal separation” can be provided as shown in FIG. It can be configured only in the same manner as the case where the popular one-wire cord-like heating wire 102 described in FIG. 5 is used, and a line-to-line short-circuit protection operation with little variation cannot be obtained.

勿論、過熱検知素線6dについて2線式のように2つの経路で交流半波電流が流れる感度の高い線間短絡保護専用として利用することも可能であるが、主目的の過熱信号による線間短絡の予防回路は構成できなくなる。従って、特許文献5の目的である温度検知素線4dの絶縁被覆処理はその機能を発揮する必要がなくなるので、特許文献5の構造で過熱検知素線を短絡検知素線専用として使用することは、極めて不経済とならざるを得ない矛盾を生じる。   Of course, the overheat detection element 6d can be used exclusively for line-to-line short-circuit protection with high sensitivity in which an AC half-wave current flows through two paths as in the two-wire type. A short circuit prevention circuit cannot be constructed. Therefore, since the insulation coating process of the temperature detection element 4d which is the object of Patent Document 5 does not need to exhibit its function, it is not possible to use the overheat detection element exclusively for the short-circuit detection element with the structure of Patent Document 5. This creates a contradiction that must be extremely uneconomical.

本発明の目的は、1線式コード状発熱線でありながら、各々の部分が好適な材質で構成された温度検知素線および短絡検知素線を高分子層の外周に交互に一定のピッチを保ち、且つ高分子層に食込む形で螺旋状に巻き、温度制御回路と線間短絡保護回路とを強固に分離することにより、精度が高く安定した温度制御機能とバラツキが少なく安全性の高い線間短絡保護機能を得ることができ、経済的にも優れたコード状発熱線装置を提供することにある。   The object of the present invention is to provide a constant pitch alternately on the outer circumference of the polymer layer with a temperature detection wire and a short-circuit detection wire, each of which is made of a suitable material, although it is a one-wire cord-like heating wire. Highly accurate and stable temperature control function with less variation and high safety by keeping the temperature control circuit and the line short circuit protection circuit tightly wound and spirally wound into the polymer layer An object of the present invention is to provide a cord-like heating wire device which can obtain a line short-circuit protection function and is economically excellent.

前記目的を達成するために、本発明による請求項1記載のコード状発熱線装置は、巻芯に所定のピッチで螺旋巻きされ両端に交流が印加される発熱素線、前記発熱素線上に密着配置され、所定の温度で溶融する高分子層、前記高分子層の外周に相互の間隔を設けて一定のピッチを保ち、且つ前記高分子層に食込む形で螺旋巻きされた温度検知素線と短絡検知素線とからなる2条の導体、及び前記2条の導体を絶縁する被覆層を具備したコード状発熱線装置であって、前記短絡検知素線の両端が温度ヒューズ一体形抵抗器の一端に接続され、前記抵抗器の他端が2つのダイオードを介して各々AC電源の両極に接続され、前記発熱素線と前記短絡検知素線が任意の位置で短絡した場合、前記発熱素線側に印加される交流が短絡した部分を通じ前記短絡検知素線に接続した線を通って前記温度ヒューズ一体形抵抗器に流れる経路が形成され、該経路に溶断にいたる大きさの電流が流れ加熱し、短時間で温度ヒューズを切断し安全性を確保することを特徴とする。   In order to achieve the above object, a cord-like heating wire device according to claim 1 according to the present invention is a heating element wire spirally wound around a winding core at a predetermined pitch, and an alternating current is applied to both ends, and is closely attached to the heating element wire. A polymer layer that is arranged and melts at a predetermined temperature, and a temperature detection element that is spirally wound so as to bite into the polymer layer while maintaining a constant pitch on the outer periphery of the polymer layer to maintain a constant pitch A cord-like heating wire device comprising two conductors composed of a wire and a short-circuit detecting element, and a coating layer that insulates the two conductors. When the other end of the resistor is connected to both poles of the AC power source via two diodes, and the heating element wire and the short-circuit detection element wire are short-circuited at an arbitrary position, the heating element Before the AC applied to the wire side is short-circuited A path is formed through the wire connected to the short-circuit detection element wire to the thermal fuse integrated resistor, and a current of the magnitude leading to fusing flows through the path to heat, and the thermal fuse is cut in a short time for safety. It is characterized by ensuring.

本発明による請求項2記載のコード状発熱線装置は、巻芯の外周に相互の間隔を設けて一定のピッチを保ち螺旋巻きされた温度検知素線と短絡検知素線とからなる2条の導体、前記2条の導体が食込むよう押圧成形された高分子層、所定の温度で溶融する前記高分子層の外周に所定のピッチで螺旋巻きされ両端に交流が印加される発熱素線及び前記発熱素線を絶縁する被覆層を具備したコード状発熱線装置であって、前記短絡検知素線の両端が温度ヒューズ一体形抵抗器の一端に接続され、前記抵抗器の他端が2つのダイオードを介して各々AC電源の両極に接続され、前記発熱素線と前記短絡検知素線が任意の位置で短絡した場合、前記発熱素線側に印加される交流が短絡した部分を通じ前記短絡検知素線に接続した線を通って前記温度ヒューズ一体形抵抗器に流れる経路が形成され、該経路に溶断にいたる大きさの電流が流れ加熱し、短時間で温度ヒューズを切断し安全性を確保することを特徴とする。   According to a second aspect of the present invention, there is provided a cord-like heating wire device comprising two temperature sensing wires and a short-circuiting sensing wire which are spirally wound with a constant pitch between the outer circumferences of the core. A conductor, a polymer layer press-molded to bite into the two conductors, a heating element wire spirally wound at a predetermined pitch on the outer periphery of the polymer layer that melts at a predetermined temperature, and alternating current applied to both ends; A cord-like heating wire device having a coating layer for insulating the heating wire, wherein both ends of the short-circuit detection wire are connected to one end of a temperature fuse integrated resistor, and the other end of the resistor is two When the heating element wire and the short-circuit detection element wire are short-circuited at an arbitrary position, each connected to both poles of an AC power source via a diode, the short-circuit detection is performed through a portion where an alternating current applied to the heating element side is short-circuited. Through the wire connected to the element wire. Is formed a path flowing through the chromatography's integral resistors, heated flow magnitude of the current leading to fusing to said path, characterized in that to ensure a short time to cut the thermal fuse safety.

本発明による請求項3記載のコード状発熱線装置は、請求項1または2記載のコード状発熱線装置に於いて、前記温度検知素線と前記短絡検知素線は各々厚さ或いは直径の10%以上50%以下が高分子層に食込む形で螺旋巻きされることを特徴とする。   According to a third aspect of the present invention, there is provided the cord-like heating wire device according to the first or second aspect, wherein each of the temperature detection wire and the short-circuit detection wire has a thickness or a diameter of 10 mm. % Or more and 50% or less is spirally wound so as to bite into the polymer layer.

本発明による請求項4記載のコード状発熱線装置は、請求項1,2または3記載のコード状発熱線装置に於いて、前記高分子層はポリアミド樹脂とポリアミド・エラストマーとの混和物からなり、溶融温度が130℃以上190℃以下であることを特徴とする。   According to a fourth aspect of the present invention, there is provided the cord-like heating wire device according to the first, second or third aspect, wherein the polymer layer is made of a mixture of polyamide resin and polyamide elastomer. The melting temperature is 130 ° C. or higher and 190 ° C. or lower.

本発明による請求項5記載のコード状発熱線装置は、請求項1,2,3または4記載のコード状発熱線装置に於いて、前記温度検知素線は正の温度係数を有する金属線であることを特徴とする。   The cord-like heating wire device according to claim 5 of the present invention is the cord-like heating wire device according to claim 1, 2, 3 or 4, wherein the temperature detecting element wire is a metal wire having a positive temperature coefficient. It is characterized by being.

本発明による請求項6記載のコード状発熱線装置は、請求項1乃至5のいずれか記載のコード状発熱線装置に於いて、前記2つのダイオードは、その同極側が温度ヒューズ一体形抵抗器の一端に接続され、前記ダイオードの各々の他極側がAC電源の各極へ接続され、前記温度ヒューズ一体形抵抗器の他端が短絡検知素線の両端に接続されることを特徴とする。   The cord-like heating wire device according to claim 6 of the present invention is the cord-like heating wire device according to any one of claims 1 to 5, wherein the two diodes have a temperature fuse integrated resistor on the same polarity side. The other pole side of each of the diodes is connected to each pole of an AC power source, and the other end of the temperature fuse integrated resistor is connected to both ends of a short-circuit detecting element wire.

本発明による請求項7記載のコード状発熱線装置は、請求項1乃至6のいずれか記載のコード状発熱線装置に於いて、前記短絡検知素線は、その抵抗値が温度ヒューズ一体形抵抗器の抵抗値以下であることを特徴とする。   The cord-like heating wire device according to claim 7 of the present invention is the cord-like heating wire device according to any one of claims 1 to 6, wherein the resistance value of the short-circuit detecting element wire is a resistance integrated with a temperature fuse. It is less than the resistance value of the vessel.

以下、本発明の構成につき詳細に説明する。
本発明のコード状発熱線装置に用いられる芯線は、ポリエステル繊維束、ポリイミド繊維束、ガラス繊維束などであるが、耐熱性、柔軟性及びコストの面からポリエステル繊維束が好適であり、用途に応じて耐熱性、柔軟性に優れた繊維束であれば特に限定されないし、また多種繊維の混合束であってもよい。
Hereinafter, the configuration of the present invention will be described in detail.
The core wire used in the cord-like heating wire device of the present invention is a polyester fiber bundle, a polyimide fiber bundle, a glass fiber bundle, etc., but a polyester fiber bundle is preferable from the viewpoint of heat resistance, flexibility and cost, and is suitable for use. Accordingly, the fiber bundle is not particularly limited as long as it is excellent in heat resistance and flexibility, and may be a mixed bundle of various fibers.

本発明のコード状発熱線装置に用いられる所定のピッチで螺旋巻きされた発熱素線は、材質として純銅線や銅と錫の合金線、または銅と銀の合金線などがあり、形状は丸線状や薄板状にすることも可能であり、それらは単線のままであったり、撚線にされたり、或いは多条に引き揃えられて螺旋巻きされるが、所定の寸法で所定の抵抗値を得るために、材質や形状の選択は何ら限定されるものではない。
ここで、発熱素線は、発熱のために電流を流す導体であるが、線間短絡時に短絡検知素線と接触する一方の電極として働くことも担う。
The heating element wire spirally wound at a predetermined pitch used in the cord-like heating wire device of the present invention includes a pure copper wire, an alloy wire of copper and tin, or an alloy wire of copper and silver, and the shape is round. It can also be made into a linear shape or a thin plate shape, and they remain as a single wire, are stranded, or are spirally wound in multiple lines, but with a predetermined size and a predetermined resistance value Therefore, selection of the material and shape is not limited at all.
Here, the heating element wire is a conductor through which a current flows to generate heat, but also serves as one electrode that contacts the short-circuit detection element wire when a line short-circuit occurs.

本発明のコード状発熱線装置に用いられる温度検知素線と短絡検知素線は、その表面が絶縁されず裸のまま高分子層の外周に相互の間隔を設けて一定のピッチで螺旋巻きされるが、各々の素線の厚さ或いは直径の10%以上50%以下が高分子層に食込んだ形で螺旋巻きされ、上部の絶縁被覆層で強固に固定されるので、コード状発熱線が屈曲ストレスを受けても絶縁被覆されていない温度検知素線と過熱検知素線同士が接触しないようになっている。   The temperature detection element wire and the short-circuit detection element wire used in the cord-like heating wire device of the present invention are spirally wound at a constant pitch with a mutual interval around the outer periphery of the polymer layer with the surface thereof being uninsulated and bare. However, since 10% or more and 50% or less of the thickness or diameter of each strand is spirally wound into the polymer layer and firmly fixed by the upper insulating coating layer, the cord-like heating wire Even if the wire is subjected to bending stress, the temperature detection element wire and the overheat detection element wire that are not covered with insulation do not come into contact with each other.

本発明のコード状発熱線装置に用いられる高分子層は、電気毛布や電気カーペットなどの製品の表面温度やコード状発熱線の耐熱温度より、高分子層の溶融温度は130℃以上190℃以下、好ましくは150℃〜170℃で比較的急な溶融特性を示すポリアミド樹脂とポリアミド・エラストマーとの混和物が好適である。   The polymer layer used in the cord-like heating wire device of the present invention has a melting temperature of 130 ° C. or more and 190 ° C. or less from the surface temperature of products such as electric blankets and electric carpets and the heat resistance temperature of the cord-like heating wire. Preferably, a blend of a polyamide resin and a polyamide elastomer exhibiting relatively steep melting characteristics at 150 ° C. to 170 ° C. is suitable.

ここで、高分子層の溶融温度が130℃以下では、通常の温度制御に於いて発熱素線のピーク温度が瞬間的に120℃付近まで上昇する場合があり、これが繰り返し発生すると短期間で発熱素線と短絡検知素線が短絡してしまう可能性が高くなり、190℃以上では、発熱素線の過熱が進み発煙やコゲの発生が増加するので適切ではない。   Here, when the melting temperature of the polymer layer is 130 ° C. or less, the peak temperature of the exothermic wire may instantaneously rise to around 120 ° C. under normal temperature control, and when this occurs repeatedly, heat is generated in a short period of time. There is a high possibility that the element wire and the short-circuit detecting element are short-circuited. At 190 ° C. or higher, the heating element wire is overheated and smoke and kogation increase, which is not appropriate.

また、温度検知素線と短絡検知素線の高分子層への食込み量と前記両素線を覆う絶縁被覆層の成形温度及び圧力との関係から、高分子層の溶融温度は前記と同じく130℃以上190℃以下、好ましくは150℃〜170℃の範囲が好適である。   In addition, the melting temperature of the polymer layer is 130 as described above from the relationship between the amount of biting of the temperature detection wire and the short-circuit detection wire into the polymer layer and the molding temperature and pressure of the insulating coating layer covering the both wires. The range of from 150 ° C. to 190 ° C., preferably from 150 ° C. to 170 ° C. is suitable.

更に、前記絶縁被覆層の成形温度が低目の場合でも前記高分子層への食込みを十分深くするため、本発明のコード状発熱線装置に用いられるポリアミド樹脂とポリアミド・エラストマーの混和物に、ポリアルキレン・オキサイドを加えても良いし、前記高分子層には導電剤を配合し、温度上昇に伴い電気的インピーダンスが減少する所謂負温度係数サーミスタ特性を持たせてもよい。   Furthermore, in order to deepen the bite into the polymer layer even when the molding temperature of the insulating coating layer is low, the mixture of polyamide resin and polyamide elastomer used in the cord-like heating wire device of the present invention, Polyalkylene oxide may be added, or a conductive agent may be blended in the polymer layer so as to have a so-called negative temperature coefficient thermistor characteristic in which the electrical impedance decreases with increasing temperature.

なお、万一温度検知素線と短絡検知素線が接触するような場合でも、短絡検知素線はダイオードと温度ヒューズ一体形抵抗器を介してAC電源に接続されているので、温度検知素線の接触状態を制御回路が容易に検出し電源を遮断し安全を確保することができる。
従って、本発明による温度検知素線は、図6のように絶縁被覆する細密な工程はまったく必要ない。
本発明の図2に於いて温度検知素線と短絡検知素線間の短絡の有無によるR2の端子電圧は、適切な平滑回路を通して短絡なしの場合、約0.9V,短絡ありの場合、0.4〜0.5Vとなり、明確な弁別比を確保することができる。
Even if the temperature detection wire and the short-circuit detection wire are in contact with each other, the short-circuit detection wire is connected to the AC power source via the diode and the temperature fuse integrated resistor. Therefore, the control circuit can easily detect the contact state, shut off the power source, and ensure safety.
Therefore, the temperature detecting element according to the present invention does not require a detailed process of insulating coating as shown in FIG.
In FIG. 2 of the present invention, the terminal voltage of R2 due to the presence or absence of a short circuit between the temperature detection wire and the short detection wire is about 0.9V when there is no short circuit through an appropriate smoothing circuit, and 0 when there is a short circuit. .4 to 0.5 V, and a clear discrimination ratio can be secured.

本発明のコード状発熱線装置に用いられる温度検知素線は、正の温度係数を有する金属線であれば特に限定されないが、金属の中では温度係数が比較的高めで、伸線加工や巻線加工などの機械的ストレスを受けても抵抗値や温度係数が安定しているニッケルが利用され、正の温度係数を有し温度に対する抵抗特性が直線的で再現性に優れ経時変化の少ない温度検知素線とされる。   The temperature detection element wire used in the cord-like heating wire device of the present invention is not particularly limited as long as it is a metal wire having a positive temperature coefficient, but among metals, the temperature coefficient is relatively high, and wire drawing and winding are performed. Nickel, which has a stable resistance value and temperature coefficient even when subjected to mechanical stress such as wire processing, has a positive temperature coefficient, linear resistance characteristics with respect to temperature, excellent reproducibility, and little change over time It is considered as a detection element wire.

本発明のコード状発熱線装置に用いられる2つのダイオードは、その同極性側が温度ヒューズ一体形抵抗器の一端に接続され、前記ダイオードの他極性側の各々がAC電源の各極に接続されるともに、前記温度ヒューズ一体形抵抗器の他端が短絡検知素線の両端に接続され、線間短絡時には前記温度ヒューズ一体形抵抗器へ2つの経路からの交流半波電流が流れ大きな電力印加による迅速な溶断が可能な線間短絡保護回路を構成する。ここで、前述の極性接続基準を保てば、前記2つのダイオードの正逆方向は特に限定されるものではない。   The two diodes used in the cord-shaped heating wire device of the present invention have the same polarity side connected to one end of the temperature fuse integrated resistor, and the other polarity side of the diode is connected to each pole of the AC power source. In both cases, the other end of the temperature fuse integrated resistor is connected to both ends of a short-circuit detecting element wire, and when the line is short-circuited, an AC half-wave current flows from the two paths to the temperature fuse integrated resistor and a large amount of power is applied. Configure a line-to-line short-circuit protection circuit that enables quick fusing. Here, as long as the above-described polarity connection reference is maintained, the forward and reverse directions of the two diodes are not particularly limited.

本発明のコード状発熱線装置に用いられる短絡検知素線は、その抵抗値が温度ヒューズ一体形抵抗器の抵抗値以下、好ましくは温度ヒューズ一体形抵抗器の抵抗値の1/2以下が好適である。本発明の場合、短絡検知素線の抵抗値は温度ヒューズ一体形抵抗器RF1の抵抗値よりずっと小さくでき、工業的には発熱素線の抵抗値以下に小さくすることも可能であるが、どの程度まで小さくするかはコストとの兼ね合いによる。   The resistance value of the short-circuit detecting element wire used in the cord-like heating wire device of the present invention is preferably equal to or less than the resistance value of the temperature fuse integrated resistor, preferably less than 1/2 the resistance value of the temperature fuse integrated resistor. It is. In the case of the present invention, the resistance value of the short-circuit detecting element wire can be much smaller than the resistance value of the temperature fuse integrated resistor RF1, and industrially, it can be made smaller than the resistance value of the heating element wire. Whether it is reduced to the extent depends on the cost.

温度検知素線と短絡検知素線の外周に密着して電気絶縁性が高く、しなやかで且つ安価な塩化ビニル樹脂などの絶縁被覆層が押出し成形などにより形成され、コード状発熱線装置となる。   A cord-like heating wire device is formed by extruding an insulating coating layer such as a vinyl chloride resin that is intimately adhered to the outer periphery of the temperature detection wire and the short-circuit detection wire, has high electrical insulation, and is flexible and inexpensive.

本発明によるコード状発熱線装置によれば、温度検知素線と短絡検知素線が高分子層の外周に相互の間隔を設けて一定のピッチ保ち、且つ前記高分子層に食込む形で螺旋巻きされているので、発熱素線と短絡検知素線との間の線間短絡検知は、温度検知素線とは関係なく短絡検知素線単独で検知でき、迅速でバラツキの少ない線間短絡保護機能を働かせ、局部的な発煙やコゲを防止することができる。   According to the cord-like heating wire device of the present invention, the temperature detection wire and the short-circuit detection wire are spirally formed in such a manner that they are spaced apart from each other on the outer periphery of the polymer layer to maintain a constant pitch and bite into the polymer layer. Because it is wound, the short-circuit detection between the heating element and the short-circuit detection element can be detected by the short-circuit detection element alone, regardless of the temperature detection element, and the line-to-line short-circuit protection is quick and has little variation. Functions can be prevented to prevent local smoke and burns.

本発明によるコード状発熱線装置によれば、温度検知素線と短絡検知素線が高分子層の厚さ或いは直径の10%以上50%以下、好ましくは20%以上40%以下が高分子層に食込んで螺旋巻きされ、上部の絶縁被覆層で強固に固定されるので、コード状発熱線が屈曲ストレスを受けても絶縁被覆されていない温度検知素線と短絡検知素線同士が接触しないようにすることができる。   According to the cord-like heating wire device according to the present invention, the temperature detection wire and the short-circuit detection wire are 10% to 50%, preferably 20% to 40% of the thickness or diameter of the polymer layer. Since it is wound spirally and firmly fixed by the upper insulation coating layer, even if the cord-like heating wire is subjected to bending stress, the temperature detection strand and the short-circuit detection strand are not in contact with each other Can be.

本発明によるコード状発熱線装置によれば、高分子層の溶融温度が130℃以上190℃以下、好ましくは150℃以上170℃以下で比較的急峻な溶融特性を示すポリアミド樹脂とポリアミド・エラストマーとの混和物から成っているので、食込み量や溶融温度、溶融時間に関し適切な品種と配合を選択することにより、最終的な線間短絡保護機能を柔軟に確保することができる。   According to the cord-like heating wire device of the present invention, a polyamide resin and a polyamide elastomer exhibiting relatively steep melting characteristics when the melting temperature of the polymer layer is 130 ° C. or higher and 190 ° C. or lower, preferably 150 ° C. or higher and 170 ° C. or lower. Thus, the final line-to-line short-circuit protection function can be flexibly ensured by selecting appropriate varieties and blends for the amount of biting, melting temperature, and melting time.

本発明によるコード状発熱線装置によれば、温度検知素線は正の温度係数を有する金属線であるため温度係数は小さいが、温度対抵抗特性が直線的で高分子感熱層に比べ経時変化が非常に小さいので、精密で安定性があり再現性に優れた温度制御が可能となる。   According to the cord-like heating wire device of the present invention, the temperature sensing element is a metal wire having a positive temperature coefficient, so the temperature coefficient is small, but the temperature-resistance characteristic is linear and changes with time compared to the polymer thermosensitive layer. Is very small, so temperature control with high precision, stability, and reproducibility is possible.

本発明によるコード状発熱線装置によれば、2つのダイオードは、その同極性側が温度ヒューズ一体形抵抗器の一端に接続され、前記ダイオードの他極性側の各々がAC電源の各極に接続され、前記温度ヒューズ一体形抵抗器の他端が短絡検知素線の両端に接続され、線間短絡時には温度ヒューズ一体形抵抗器に2つの経路からの交流半波電流が流れ、大きな電力印加による線間短絡保護回路を構成できるので、温度ヒューズの溶断時間は短縮され、安全性の大幅な向上を確保することができる。   According to the cord-like heating wire device of the present invention, the two diodes have the same polarity side connected to one end of the temperature fuse integrated resistor, and the other polarity side of the diode is connected to each pole of the AC power source. The other end of the temperature fuse integrated resistor is connected to both ends of the short-circuit detecting element. When the line is short-circuited, an AC half-wave current flows from the two paths to the temperature fuse integrated resistor, and a line due to large power application Since the short-circuit protection circuit can be configured, the fusing time of the thermal fuse is shortened, and a significant improvement in safety can be ensured.

本発明によるコード状発熱線装置によれば、短絡検知素線は、その抵抗値が温度ヒューズ一体形抵抗器の抵抗値以下、好ましくは1/2以下とされるので、不要な抵抗損失分が低減され、線間短絡位置や電力制御スイッチのON、OFF状態の影響を受け難く、バラツキの少ない溶断時間を実現し大幅な安全性の向上を図ることができる。   According to the cord-like heating wire device according to the present invention, the resistance value of the short-circuit detecting element wire is set to be equal to or less than the resistance value of the temperature fuse integrated resistor, and preferably 1/2 or less. Therefore, it is less affected by the short-circuit position between the lines and the ON / OFF state of the power control switch, and can realize a fusing time with little variation and can greatly improve safety.

本発明によるコード状発熱線装置の実施の形態を示す図で、発熱線の一部を省略して示した構造図である。It is a figure which shows embodiment of the cord-shaped heating wire apparatus by this invention, and is the structure figure which abbreviate | omitted and showed a part of heating wire. 本発明によるコード状発熱線装置の回路部分の実施の形態を示す回路図である。It is a circuit diagram which shows embodiment of the circuit part of the cord-shaped heating wire apparatus by this invention. 2線式の従来例1と1線式の従来例2のコード状発熱線の一例を示す図で、発熱線の一部を省略して示した構造図である。It is a figure which shows an example of the cord-shaped heat generating line of the conventional example 1 of 2 lines type, and the conventional example 2 of 1 line type, Comprising: It is the structure figure which abbreviate | omitted a part of heat generating line. 2線式の従来例1のコード状発熱線の回路部分の一例を示す回路図である。It is a circuit diagram which shows an example of the circuit part of the cord-shaped exothermic line of the 2 wire type prior art example 1. 1線式の従来例2のコード状発熱線の回路部分の一例を示す回路図である。It is a circuit diagram which shows an example of the circuit part of the cord-shaped heating wire of the conventional example 2 of 1 wire type. 1線式の従来例3のコード状発熱線の一例を示す図で、発熱線の一部を省略して示した構造図である。It is a figure which shows an example of the code | cord | chord heat | fever wire of the 1 line type prior art example 3, Comprising: It is the structure figure which abbreviate | omitted a part of heat | fever wire. 1線式の従来例3のコード状発熱線の回路部分の一例を示す回路図である。It is a circuit diagram which shows an example of the circuit part of the cord-shaped heat generating line of the conventional example 3 of a 1-wire system.

以下、図面などを参照して本発明によるコード状発熱線の実施の形態を更に詳しく説明する。なお、本発明はその要旨を逸脱しない限り、以下の内容に限定されるものではない。
図1は、本発明の実施形態にかかるコード状発熱線1Hの一方端を示すもので、絶縁被膜層および高分子層などを一部省略して示した図である。
Hereinafter, embodiments of the cord-like heating wire according to the present invention will be described in more detail with reference to the drawings. In addition, this invention is not limited to the following content, unless it deviates from the summary.
FIG. 1 shows one end of a cord-like heating wire 1H according to an embodiment of the present invention, and is a view in which a part of an insulating coating layer and a polymer layer are omitted.

このコード状発熱線1Hは、ガラス繊維またはポリエステル繊維等の繊維束の巻芯1と、巻芯1の外周に銅或いは銅合金の平角導体を螺旋状に捻回した発熱素線2と、発熱素線2の外周に高分子感熱樹脂を押出し成形してなる高分子層3と、高分子層3の外周には相互の間隔を設けて一定のピッチで螺旋巻きされた温度検知素線4と短絡検知素線6と、最外周にポリ塩化ビニル等を押出し成形した絶縁被覆層5とから構成されている。   The cord-shaped heating wire 1H includes a winding core 1 of a fiber bundle such as glass fiber or polyester fiber, a heating element wire 2 in which a rectangular conductor of copper or copper alloy is spirally wound around the outer periphery of the winding core 1, and heat generation. A polymer layer 3 formed by extruding a polymer thermosensitive resin on the outer periphery of the strand 2, and a temperature detection strand 4 spirally wound at a constant pitch on the outer periphery of the polymer layer 3 with mutual spacing It is comprised from the short circuit detection strand 6 and the insulation coating layer 5 which extruded polyvinyl chloride etc. in the outermost periphery.

ここで、高分子層3はポリアミド樹脂の中でも吸水率の小さいナイロン12とポリアミド・エラストマーの混和物が好ましく、絶縁被覆層5の成形温度が低目の場合は、前記混和物にポリエチレン・グリコールやポリエチレン・オキサイド等のポリアルキレン・オキサイドを添加し、高分子層3の軟化点を下げてもよい。これらの材料をニーダー、または多軸押出機にて混練し、混和物としての高分子層3が得られる。尚、これらの材料は一度に投入され混練される場合もあるが、順次投入され、複数回にわたり混練される場合もある。   Here, among the polyamide resins, the polymer layer 3 is preferably a blend of nylon 12 having a low water absorption rate and a polyamide / elastomer, and when the molding temperature of the insulating coating layer 5 is low, the blend may include polyethylene glycol or Polyalkylene oxide such as polyethylene oxide may be added to lower the softening point of the polymer layer 3. These materials are kneaded by a kneader or a multi-screw extruder to obtain a polymer layer 3 as an admixture. These materials may be charged and kneaded at one time, but may be sequentially charged and kneaded a plurality of times.

又、高分子層3の外周には、温度検知素線4と短絡検知素線6とからなる2条の導体が、各々厚さ或いは直径の10%以上50%以下の部分が高分子層3に食込む状態で相互の間隔を設けて一定のピッチで螺旋巻きされる。この食込みの深さは通常巻線機のテンション管理により実現されるが、その手段のみならず絶縁被覆層5の押出し圧力を調整することにより、定量的に安定した食込み量を得ることができ、本発明を量産化に導く重要な工法であり核心の一つである。
尚、食込み量を決定するには絶縁被覆層の押出温度の調整と云う手段もあるが、押出温度は絶縁被覆層の材質により最適な流動性を確保する重要な手段であり、これを任意に変更することは好ましくない。
Further, on the outer periphery of the polymer layer 3, two conductors composed of the temperature detection element wire 4 and the short circuit detection element wire 6, each of which is 10% to 50% of the thickness or diameter of the polymer layer 3. In a state where they are bitten into each other, they are spirally wound at a constant pitch with a mutual interval. The depth of this biting is usually realized by tension management of the winding machine, but by adjusting not only the means but also the extrusion pressure of the insulating coating layer 5, a quantitatively stable biting amount can be obtained, It is an important construction method that leads the present invention to mass production and is one of the core.
In order to determine the amount of biting, there is a means of adjusting the extrusion temperature of the insulating coating layer, but the extrusion temperature is an important means of ensuring optimum fluidity depending on the material of the insulating coating layer, and this can be arbitrarily set. It is not preferable to change.

また、絶縁被覆層5のポリ塩化ビニル樹脂混和物に含まれる可塑剤が高分子層3へ移行するのを防止するため、温度検知素線4及び短絡検知素線6と絶縁被覆層5の間にポリエステルテープを縦添え形成したバリア層を設けてもよい。   Further, in order to prevent the plasticizer contained in the polyvinyl chloride resin mixture of the insulating coating layer 5 from moving to the polymer layer 3, the temperature detecting element 4, the short-circuit detecting element 6, and the insulating covering layer 5 A barrier layer in which a polyester tape is vertically attached may be provided.

図1に示した実施形態についての諸データは次の通りである。
巻芯1の材質 :ポリエステル繊維束
発熱素線2の材質 :0.7%錫銅合金
発熱素線2の寸法 :断面0.060×0.420mm(平角導体)、ピッチ0.86mm
高分子層3の材質 :表1
高分子層3の寸法 :厚さ0.33mm
温度検知素線4の材質 :ニッケル
温度検知素線4の寸法 :断面径φ0.080mm(丸線状の導体)、ピッチ0.86mm
短絡検知素線6の材質 :0.7%錫銅合金
短絡検知素線6の寸法 :断面径φ0.083mm(丸線状の導体)、ピッチ0.86mm
絶縁被覆層5の材質 :ポリ塩化ビニル樹脂混和物
絶縁被覆層5の寸法 :厚さ0.4mm
Various data on the embodiment shown in FIG. 1 is as follows.
Material of the core 1: Polyester fiber bundle Material of the heating element wire 2: 0.7% tin copper alloy Dimensions of the heating element wire 2: Cross section 0.060 × 0.420 mm (flat conductor), pitch 0.86 mm
Material of polymer layer 3: Table 1
Dimension of polymer layer 3: thickness 0.33 mm
Material of temperature detection element wire 4: Nickel Dimensions of temperature detection element element 4: Section diameter φ0.080 mm (round wire conductor), pitch 0.86 mm
Material of short-circuit detecting element wire 6: 0.7% tin copper alloy Dimensions of short-circuit detecting element element 6: Section diameter φ0.083 mm (round conductor), pitch 0.86 mm
Material of insulating coating layer 5: Polyvinyl chloride resin admixture Dimensions of insulating coating layer 5: thickness 0.4 mm

尚、ポリ塩化ビニル樹脂混和物は、耐熱グレードのポリ塩化ビニル樹脂を用いた電源電線用の市販の混和物である(VM−163、アプコ製)、ポリアミド樹脂は、市販のナイロン12(3020X15、UBE製)及びポリアミド12エラストマー(9048X1、UBE製)を使用した。   The polyvinyl chloride resin blend is a commercially available blend for power wires using heat-resistant polyvinyl chloride resin (VM-163, manufactured by Apco), and the polyamide resin is commercially available nylon 12 (3020X15, UBE) and polyamide 12 elastomer (9048X1, UBE) were used.

表1に示す3種類の実施例と2種類の従来例の各材料をニーダーまたは2軸押出機で混練し、図1に示す構造のコード状発熱線1Hとし、これを36mの長さに切断し測定用の試料とした。

Figure 2013098138
The materials of the three types of examples shown in Table 1 and the two types of conventional examples are kneaded with a kneader or a twin screw extruder to form a cord-shaped heating wire 1H having the structure shown in FIG. 1, which is cut to a length of 36 m. A sample for measurement was used.
Figure 2013098138

本発明の実施例に関する回路構成を図2に示し、各部品の電気的な値とその動作を簡単に説明する。
同図に於いて、全長36mのコード状発熱線1Hの構成要素である発熱素線2の抵抗値は28.6Ω、温度検知素線4の抵抗値は60℃で1176Ω(温度係数は0.44%/℃)、短絡検知素線6の抵抗値90Ω、温度ヒューズ一体形抵抗器RF1の抵抗値は180Ωである。3は高分子層、R1,R2,R3は固定抵抗であり、R1=1.5KΩF,R2=470ΩF,R3=10KΩである。C1は電解コンデンサであり、C1=10μF,耐圧16V、D1,D2は整流ダイオード1N4004、U1は電圧比較器、SWは電圧比較器U1の結果により発熱素線2への通電を制御する電力制御スイッチであり、STBはAC100Vから温度制御部へ直流Vcc=5Vを供給する安定化回路部である。
A circuit configuration relating to an embodiment of the present invention is shown in FIG. 2, and the electrical values and operations of each component will be briefly described.
In the figure, the resistance value of the heating element wire 2 which is a component of the cord-shaped heating wire 1H having a total length of 36 m is 28.6Ω, and the resistance value of the temperature detection element wire 1 is 1176Ω at 60 ° C. (the temperature coefficient is 0. 0). 44% / ° C.), the resistance value of the short-circuit detecting element 6 is 90Ω, and the resistance value of the temperature fuse integrated resistor RF1 is 180Ω. 3 is a polymer layer, R1, R2, and R3 are fixed resistors, and R1 = 1.5 KΩF, R2 = 470ΩF, and R3 = 10 KΩ. C1 is an electrolytic capacitor, C1 = 10 μF, withstand voltage 16V, D1 and D2 are rectifier diodes 1N4004, U1 is a voltage comparator, and SW is a power control switch for controlling energization to the heating element wire 2 according to the result of the voltage comparator U1. STB is a stabilization circuit unit that supplies DC Vcc = 5V from AC 100V to the temperature control unit.

図2の回路の動作はつぎの通りである。
温度制御動作は、温度検知素線4の抵抗変化が、抵抗器R1とR2で分圧され電圧比較器U1のマイナス端子に入力され、予め設定された温度に相当する基準電圧Vref1と比較され電圧比較器U1より出力され、電力制御スイッチSWの開閉が駆動され発熱素線2への通電が制御される。
The operation of the circuit of FIG. 2 is as follows.
In the temperature control operation, the resistance change of the temperature detection wire 4 is divided by resistors R1 and R2, and input to the negative terminal of the voltage comparator U1, and compared with a reference voltage Vref1 corresponding to a preset temperature. Output from the comparator U1, the opening and closing of the power control switch SW is driven, and energization to the heating element wire 2 is controlled.

線間短絡保護動作は、短絡検知素線6の両端が温度ヒューズ一体形抵抗器RF1の一端に接続され、温度ヒューズ一体形抵抗器RF1の他端にはダイオードD1とD2の各々のアノードが接続され、ダイオードD1,D2のカソード側が各々AC電源の各極へ接続され、線間短絡が発生した場合には、温度ヒューズ一体形抵抗器RF1に2つの経路で交流半波電流が流れる。   In the line short-circuit protection operation, both ends of the short-circuit detecting element 6 are connected to one end of the temperature fuse integrated resistor RF1, and the anodes of the diodes D1 and D2 are connected to the other end of the temperature fuse integrated resistor RF1. When the cathode sides of the diodes D1 and D2 are connected to the respective poles of the AC power source and a short circuit between the lines occurs, an AC half-wave current flows through the temperature fuse integrated resistor RF1 through two paths.

図2に基づき温度ヒューズ一体形抵抗器RF1の消費電力の概略計算値を表3に示してある。表3によれば、本発明による実施例1、2及び3のコード状発熱線1Hに於いては、線間短絡位置や電力制御スイッチSWのON、OFF状態による温度ヒューズ一体形抵抗器RF1の消費電力は、2線式の場合と同じく実使用上では13.9W÷9.6W=1.4倍の違いしか発生しないと見積もられる。   Table 3 shows a rough calculation value of the power consumption of the thermal fuse integrated resistor RF1 based on FIG. According to Table 3, in the cord-like heating wire 1H of Examples 1, 2, and 3 according to the present invention, the temperature fuse integrated resistor RF1 depending on the short-circuit position between the wires and the ON / OFF state of the power control switch SW. As in the case of the two-wire system, the power consumption is estimated to produce only a difference of 13.9 W ÷ 9.6 W = 1.4 times in actual use.

[温度制御試験]
36mのコード状発熱線1Hは、交差しないよう広げられ、上下をフェルトなどの断熱材で覆われ測定に供される。
温度検知素線4の平均温度が65℃で制御されるよう、予め電圧比較器U1のプラス入力電圧Vref1を設定し、通電により温度制御されたコード状発熱線1Hの中央位置の表面に直接温度センサを接触させて温度を測定した。その結果を表2に示す。

Figure 2013098138
[Temperature control test]
The 36 m cord-like heating wire 1H is spread so as not to intersect, and the upper and lower sides are covered with a heat insulating material such as felt for measurement.
The positive input voltage Vref1 of the voltage comparator U1 is set in advance so that the average temperature of the temperature detection element 4 is controlled at 65 ° C., and the temperature is directly applied to the surface of the central position of the cord-like heating wire 1H whose temperature is controlled by energization. The temperature was measured by contacting the sensor. The results are shown in Table 2.
Figure 2013098138

[線間短絡保護試験]
コード状発熱線1Hの過熱による高分子層3の溶融に伴う発熱素線2と短絡検知素線6の間の線間短絡試験は擬似的に次のように実施した。図2の回路図に於いて、電力制御スイッチSWを表2の状態にし、発熱素線2と短絡検知素線6の片端A2とH2の間を強制的に短絡した場合と、発熱素線2と短絡検知素線6の各々の中央部を強制的に短絡した場合について温度ヒューズF1の溶断時間を測定した。
実施例1,2,3と従来例1(発熱素線2bと短絡検知素線4bの短絡による),2(発熱素線2cと温度検知素線4cによる)についてそれらの溶断時間を表2に示す。
[Short line protection test between lines]
A line-to-line short-circuit test between the heating element wire 2 and the short-circuit detection element wire 6 accompanying the melting of the polymer layer 3 due to overheating of the cord-like heating wire 1H was performed in a pseudo manner as follows. In the circuit diagram of FIG. 2, the power control switch SW is set to the state shown in Table 2, and one end A2 and H2 of the heating element wire 2 and the short-circuit detection element wire 6 is forcibly short-circuited, and the heating element wire 2 The fusing time of the thermal fuse F1 was measured for the case where the center part of each of the short-circuit detecting wires 6 was forcibly short-circuited.
Table 2 shows the fusing time of Examples 1, 2, 3 and Conventional Example 1 (due to a short circuit between the heating element wire 2b and the short-circuit detection element wire 4b) and 2 (according to the heating element wire 2c and the temperature detection element wire 4c). Show.

[素線の食込み量の測定]
実施例1,2,3及び従来例1,2に於いて、高分子層3(従来例1,2ではそれぞれ3b,3c)への温度検知素線4(従来例2では4c)と短絡検知素線6(従来例1では4b)の食込み量について、その断面を投影機で測定し素線径に対する平均的食込み量の百分率を表2に示す。また、180度屈曲試験1万回での前記両素線の接触の有無を表2に同時に示す。
[Measurement of the amount of wire biting]
In Examples 1, 2, and 3 and Conventional Examples 1 and 2, temperature detection element wire 4 (4c in Conventional Example 2) and short circuit detection to polymer layer 3 (3b and 3c in Conventional Examples 1 and 2, respectively) Table 2 shows the percentage of the average bite amount with respect to the wire diameter of the wire 6 (4b in the conventional example 1), the cross section of which was measured with a projector. Table 2 shows the presence / absence of contact between the two wires in the 180-degree bending test 10,000 times.

[溶融温度試験]
コード状発熱線1Hの過熱による高分子層3の溶融・短絡試験は次のように実施した。長さ0.5mに切断したコード状発熱線1Hの中央部を弛ませた状態で両端を固定して恒温槽に入れ、1℃/1分のレートで昇温する。尚、発熱素線2と短絡検知素線6には延長線が接続され、恒温槽外で抵抗計に接続される。昇温過程で前記抵抗計がゼロオームとなり短絡を検知した時の恒温槽温度を読み取って溶融温度とした。実施例1,2,3と従来例1(高分子層3b),2(高分子層3c)についての溶融温度を表2に示してある。
[Melting temperature test]
The melting / short circuit test of the polymer layer 3 by overheating the cord-shaped heating wire 1H was performed as follows. Both ends are fixed in a state where the central portion of the cord-shaped heating wire 1H cut to a length of 0.5 m is slackened, and the temperature is raised at a rate of 1 ° C./1 minute. Note that an extension wire is connected to the heating element wire 2 and the short-circuit detection element wire 6, and is connected to an ohmmeter outside the thermostat. During the temperature raising process, the resistance meter became zero ohms, and the temperature of the thermostatic chamber when the short circuit was detected was read as the melting temperature. Table 2 shows the melting temperatures for Examples 1, 2, and 3 and Conventional Example 1 (polymer layer 3b) and 2 (polymer layer 3c).

各測定値についての評価はつぎの通りである。
[温度制御試験の評価]
表2の表面温度のバラツキを見ると、実施例と従来例の間には大きな差は見られず、本発明によりコード状発熱線の構造が変わっても、温度制御性能は従来に遜色ないことが実証できた。
Evaluation for each measured value is as follows.
[Evaluation of temperature control test]
Looking at the variation in surface temperature in Table 2, there is no significant difference between the example and the conventional example, and even if the structure of the cord-like heating wire is changed according to the present invention, the temperature control performance is comparable to the conventional one. Was able to prove.

[線間短絡保護試験の評価]
2線式の従来例1の温度ヒューズ溶断時間の値は伝統を引き継ぐ優れた値を示したが、1線式の従来例2はコード状発熱線の中央部の線間短絡に於いて、問題となっている値、溶断時間が遅い189秒を再現した。これに対し、本発明による実施例1,2,3の何れも2線式の従来例1と同様に、コード状発熱線の端部の線間短絡と中央部の線間短絡との間で大きなバラツキのない値を示し、高い安全性を確保したことを実証できた。
[Evaluation of line-to-line short-circuit protection test]
The value of the thermal fuse fusing time of the conventional example 1 of the two-wire type showed an excellent value that inherited the tradition, but the conventional example 2 of the one-wire type had a problem in the short circuit between the central portions of the cord-like heating wires. The value of 189 seconds with a slow fusing time was reproduced. On the other hand, in each of the first, second, and third embodiments according to the present invention, similarly to the conventional example 1 of the two-wire type, between the line short circuit at the end of the cord-like heating wire and the line short circuit at the center. It showed a value with no large variation, demonstrating that high safety was secured.

[溶融温度試験の評価]
表2の高分子層3(従来例1,2では3b,3c)の溶融温度を見ると、実施例1,2,3は、従来例1,2より低温側で溶融している。これはポリアミド・エラストマーの配合によるものであり、早めの溶融による早めの線間短絡を誘導しており、従来より安全性の向上を確保したことを実証できた。
[素線の食込み量の評価]
表1及び表2を対比すると、食込み量は素線の螺旋巻きテンションより、絶縁被覆層の押出し圧力、即ち押出しダイス径や押出し速度の調整により確実な値を得ることができ、その確実性と信頼性は屈曲試験の結果から十分に実証することができた。
[Evaluation of melting temperature test]
Looking at the melting temperature of the polymer layer 3 in Table 2 (3b and 3c in Conventional Examples 1 and 2), Examples 1, 2, and 3 are melted on the lower temperature side than Conventional Examples 1 and 2. This is due to the blending of polyamide and elastomer, which induces early line-to-line short-circuiting due to early melting, demonstrating that safety has been improved compared to the prior art.
[Evaluation of the amount of wire biting]
Comparing Table 1 and Table 2, the amount of biting can be obtained by adjusting the extrusion pressure of the insulating coating layer, that is, the extrusion die diameter and the extrusion speed, from the helical winding tension of the strands. The reliability can be fully verified from the results of the bending test.

以上の実施例1,2,3は、巻芯に発熱素線を螺旋巻きし、その周囲を密着配置した高分子層の外周に相互の間隔を設けて一定のピッチを保ち、かつ高分子層に食込む形で温度検知素線と短絡検知素線とを螺旋巻きしその周囲に絶縁被膜層を形成する構造のコード状発熱線について説明したが、他の実施例として巻芯の外周に相互の間隔を設けて一定のピッチを保ち螺旋巻きされた温度検知素線と短絡検知素線とからなる2条の導体、前記2条の導体が食込むよう押圧成形された高分子層、所定の温度で溶融する前記高分子層の外周に所定のピッチで螺旋巻きされた発熱素線及び前記発熱素線を絶縁する被覆層を具備したコード状発熱線でも適用することができる。
この、他の実施例は、実施例1,2,3の発熱素線と、温度検知素線および短絡検知素線の配置位置が内外逆であり、回路は図2に示す構成を採用するものである。
In the above-described Examples 1, 2, and 3, the heating element wire is spirally wound around the winding core, and the outer periphery of the polymer layer arranged in close contact with the periphery thereof is spaced apart from each other to maintain a constant pitch, and the polymer layer The cord-shaped heating wire has a structure in which the temperature detection element wire and the short-circuit detection element element are spirally wound so as to dig into the wire and an insulating coating layer is formed around the temperature detection element wire. Two conductors composed of a temperature detecting element wire and a short-circuit detecting element element that are spirally wound with a constant pitch and a polymer layer that is press-molded so that the two conductor elements bite, It can also be applied to a heating element wire spirally wound at a predetermined pitch on the outer periphery of the polymer layer that melts at a temperature and a cord-like heating wire provided with a coating layer that insulates the heating element wire.
In this other embodiment, the arrangement positions of the heating element wires, the temperature detection element wires, and the short circuit detection element elements of the first, second, and third embodiments are reversed, and the circuit adopts the configuration shown in FIG. It is.

以上説明したように本発明によれば、1線式コード状発熱線でありながら、各々が好適な材質で構成された温度検知素線、および短絡検知素線が高分子層の外周に交互に一定のピッチを保ち、且つ高分子層に食込む形で螺旋状に巻かれ上部の絶縁被覆層で強固に分離固定されるので、温度制御回路では精度の高い安定した温度制御機能が得られるとともに、線間短絡保護回路では抵抗の高い温度検知素線をまったく介さず、短絡検知素線の低抵抗値化によりバラツキの少ない安全性の高い線間短絡保護機能が得られ、経済的にも優れたコード状発熱線装置を提供することが出来る。   As described above, according to the present invention, the temperature detection wires and the short-circuit detection wires each made of a suitable material are alternately arranged on the outer periphery of the polymer layer while being a one-wire cord-like heating wire. Maintaining a constant pitch and spirally wound into the polymer layer and firmly separated and fixed by the upper insulating coating layer, the temperature control circuit provides a highly accurate and stable temperature control function. The line short-circuit protection circuit does not go through high-resistance temperature detection wires at all, and the low resistance value of the short-circuit detection wires provides a highly safe line-to-line short-circuit protection function with little variation. A cord-like heating wire device can be provided.

電気毛布、電気カーペットなどの面状採暖具に用いられるコード状発熱線装置である。   It is a cord-shaped heating wire device used for a surface heating device such as an electric blanket or an electric carpet.

1 巻芯
1H コード状発熱線
2 発熱素線
3 高分子層
4 温度検知素線
5 絶縁被覆層
6 短絡検知素線
DESCRIPTION OF SYMBOLS 1 Winding core 1H Code-like heating wire 2 Heating strand 3 Polymer layer 4 Temperature detection strand 5 Insulation coating layer 6 Short-circuit detection strand

Claims (7)

巻芯に所定のピッチで螺旋巻きされ両端に交流が印加される発熱素線、前記発熱素線上に密着配置され、所定の温度で溶融する高分子層、前記高分子層の外周に相互の間隔を設けて一定のピッチを保ち、且つ前記高分子層に食込む形で螺旋巻きされた温度検知素線と短絡検知素線とからなる2条の導体、及び前記2条の導体を絶縁する被覆層を具備したコード状発熱線装置であって、
前記短絡検知素線の両端が温度ヒューズ一体形抵抗器の一端に接続され、前記抵抗器の他端が2つのダイオードを介して各々AC電源の両極に接続され、
前記発熱素線と前記短絡検知素線が任意の位置で短絡した場合、前記発熱素線側に印加される交流が短絡した部分を通じ前記短絡検知素線に接続した線を通って前記温度ヒューズ一体形抵抗器に流れる経路が形成され、該経路に溶断にいたる大きさの電流が流れ加熱し、短時間で温度ヒューズを切断し安全性を確保することを特徴とするコード状発熱線装置。
A heating element wire that is spirally wound around the winding core at a predetermined pitch and applied with alternating current at both ends, a polymer layer that is closely disposed on the heating element wire and melts at a predetermined temperature, and a gap between the outer circumferences of the polymer layer 2 conductors comprising a temperature detection element wire and a short-circuit detection element element spirally wound so as to bite into the polymer layer, and a coating for insulating the two conductors A cord-like heating wire device comprising a layer,
Both ends of the short-circuit detection element wire are connected to one end of a temperature fuse integrated resistor, and the other end of the resistor is connected to both poles of an AC power source via two diodes,
When the heating element wire and the short-circuit detection element are short-circuited at an arbitrary position, the temperature fuse is integrated through a line connected to the short-circuit detection element through a portion where an alternating current applied to the heating element line is short-circuited. A cord-like heating wire device characterized in that a path flowing through the resistor is formed, a current of a magnitude that leads to fusing flows through the path and heats, and a thermal fuse is cut in a short time to ensure safety.
巻芯の外周に相互の間隔を設けて一定のピッチを保ち螺旋巻きされた温度検知素線と短絡検知素線とからなる2条の導体、前記2条の導体が食込むよう押圧成形された高分子層、所定の温度で溶融する前記高分子層の外周に所定のピッチで螺旋巻きされ両端に交流が印加される発熱素線及び前記発熱素線を絶縁する被覆層を具備したコード状発熱線装置であって、
前記短絡検知素線の両端が温度ヒューズ一体形抵抗器の一端に接続され、前記抵抗器の他端が2つのダイオードを介して各々AC電源の両極に接続され、
前記発熱素線と前記短絡検知素線が任意の位置で短絡した場合、前記発熱素線側に印加される交流が短絡した部分を通じ前記短絡検知素線に接続した線を通って前記温度ヒューズ一体形抵抗器に流れる経路が形成され、該経路に溶断にいたる大きさの電流が流れ加熱し、短時間で温度ヒューズを切断し安全性を確保することを特徴とするコード状発熱線装置。
Two conductors composed of a temperature detection element wire and a short-circuit detection element element that are spirally wound with a constant pitch provided on the outer periphery of the winding core, and press-molded so that the two conductor elements are bitten. Cord-like heat generation comprising a polymer layer, a heating element wire spirally wound around the outer periphery of the polymer layer that melts at a predetermined temperature, with alternating current applied to both ends, and a coating layer that insulates the heating element wire A wire device,
Both ends of the short-circuit detection element wire are connected to one end of a temperature fuse integrated resistor, and the other end of the resistor is connected to both poles of an AC power source via two diodes,
When the heating element wire and the short-circuit detection element are short-circuited at an arbitrary position, the temperature fuse is integrated through a line connected to the short-circuit detection element through a portion where an alternating current applied to the heating element line is short-circuited. A cord-like heating wire device characterized in that a path flowing through the resistor is formed, a current of a magnitude that leads to fusing flows through the path and heats, and a thermal fuse is cut in a short time to ensure safety.
請求項1または2記載のコード状発熱線装置に於いて、
前記温度検知素線と前記短絡検知素線は各々厚さ或いは直径の10%以上50%以下が高分子層に食込む形で螺旋巻きされることを特徴とするコード状発熱線装置。
The cord-like heating wire device according to claim 1 or 2,
The cord-like heating wire device, wherein the temperature detection wire and the short-circuit detection wire are each spirally wound so that 10% or more and 50% or less of the thickness or the diameter of the wire is caught in the polymer layer.
請求項1,2または3記載のコード状発熱線装置に於いて、
前記高分子層はポリアミド樹脂とポリアミド・エラストマーとの混和物からなり、溶融温度が130℃以上190℃以下であることを特徴とするコード状発熱線装置。
In the cord-like heating wire device according to claim 1, 2, or 3,
The cord-like heating wire device, wherein the polymer layer is made of a mixture of a polyamide resin and a polyamide-elastomer, and has a melting temperature of 130 ° C or higher and 190 ° C or lower.
請求項1,2,3または4記載のコード状発熱線装置に於いて、
前記温度検知素線は正の温度係数を有する金属線であることを特徴とするコード状発熱線装置。
In the cord-like heating wire device according to claim 1, 2, 3, or 4,
The cord-like heating wire device, wherein the temperature detection wire is a metal wire having a positive temperature coefficient.
請求項1乃至5のいずれか記載のコード状発熱線装置に於いて、
前記2つのダイオードは、その同極側が温度ヒューズ一体形抵抗器の一端に接続され、前記ダイオードの各々の他極側がAC電源の各極へ接続され、前記温度ヒューズ一体形抵抗器の他端が短絡検知素線の両端に接続されることを特徴とするコード状発熱線装置。
In the cord-shaped heating wire device according to any one of claims 1 to 5,
The two diodes have the same polarity side connected to one end of a thermal fuse integrated resistor, the other pole side of each of the diodes connected to each pole of an AC power source, and the other end of the temperature fuse integrated resistor A cord-like heating wire device connected to both ends of a short-circuit detection element wire.
請求項1乃至6のいずれか記載のコード状発熱線装置に於いて、
前記短絡検知素線は、その抵抗値が温度ヒューズ一体形抵抗器の抵抗値以下であることを特徴とするコード状発熱線装置。
In the cord-like heating wire device according to any one of claims 1 to 6,
The cord-like heating wire device, wherein the resistance value of the short-circuit detecting element wire is equal to or less than the resistance value of the temperature fuse integrated resistor.
JP2011242714A 2011-11-04 2011-11-04 Cord-shaped heat generation line device Pending JP2013098138A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011242714A JP2013098138A (en) 2011-11-04 2011-11-04 Cord-shaped heat generation line device
CN 201210042253 CN103096537A (en) 2011-11-04 2012-02-22 Linear heating wire device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242714A JP2013098138A (en) 2011-11-04 2011-11-04 Cord-shaped heat generation line device

Publications (1)

Publication Number Publication Date
JP2013098138A true JP2013098138A (en) 2013-05-20

Family

ID=48208496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242714A Pending JP2013098138A (en) 2011-11-04 2011-11-04 Cord-shaped heat generation line device

Country Status (2)

Country Link
JP (1) JP2013098138A (en)
CN (1) CN103096537A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902382B2 (en) 2017-04-12 2021-07-14 日本発條株式会社 Heater unit
JP2018181586A (en) 2017-04-12 2018-11-15 日本発條株式会社 Sheath heater
JP7360942B2 (en) * 2017-07-26 2023-10-13 株式会社クラベ Cord heater, sheet heater, and method for manufacturing sheet heaters
CN109526080A (en) * 2018-12-17 2019-03-26 裕鸽电器(深圳)有限公司 A kind of PTC line with heating function and the heat generating device with PTC line with heating function

Also Published As

Publication number Publication date
CN103096537A (en) 2013-05-08

Similar Documents

Publication Publication Date Title
EP0125913B1 (en) Flexible heating wire
JP2704430B2 (en) Electric heating cable and method of assembling the same
US9320084B2 (en) Heater wire safety circuit
US5185594A (en) Temperature sensing cable device and method of making same
JPS6091584A (en) Electric heater for preventing overheated state and temperature sensitive electric sensor used therefor
US6737610B1 (en) Stranded heater wire with sensor
JP2013098138A (en) Cord-shaped heat generation line device
JP5562678B2 (en) Heat sensitive wire and method for producing the same
US9089010B2 (en) Heater wire safety circuit
JP2013134851A (en) Cord type heating wire device
JP2007531203A (en) Heating blanket
JP2014102922A (en) Temperature control device for warming
JP5511756B2 (en) Temperature controller for heating
JP5822884B2 (en) Temperature control device for heating
JP2013038005A (en) Cord-like heating wire
JP6228950B2 (en) Temperature control device for heating
JP5562677B2 (en) Cord heater and surface heater with temperature detection function
JPH0810622B2 (en) Electric carpet
JP5499576B2 (en) Heater wire and warmer with heater wire
JPH0425679B2 (en)
JP3179605B2 (en) Corded heater and corded heater assembly
JP2010003569A (en) Heater wire
JPH05326120A (en) Temperature sensitive electric wire
JPH0684587A (en) Thermosensitive heater
CN112816089A (en) Thermal sensing wire and thermal sensing technology