JP2013097959A - Polarized electromagnetic relay - Google Patents

Polarized electromagnetic relay Download PDF

Info

Publication number
JP2013097959A
JP2013097959A JP2011238541A JP2011238541A JP2013097959A JP 2013097959 A JP2013097959 A JP 2013097959A JP 2011238541 A JP2011238541 A JP 2011238541A JP 2011238541 A JP2011238541 A JP 2011238541A JP 2013097959 A JP2013097959 A JP 2013097959A
Authority
JP
Japan
Prior art keywords
contact
coil
electromagnetic relay
polarized electromagnetic
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011238541A
Other languages
Japanese (ja)
Other versions
JP5895171B2 (en
Inventor
Yasuhiro Sumino
安弘 住野
Kiwamu Shibata
究 柴田
Hiroyuki Kudo
弘行 工藤
Tomohiro Ota
智浩 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011238541A priority Critical patent/JP5895171B2/en
Publication of JP2013097959A publication Critical patent/JP2013097959A/en
Application granted granted Critical
Publication of JP5895171B2 publication Critical patent/JP5895171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To make a polarized electromagnetic relay silent by reducing collision noise generated in a contact collision.SOLUTION: A polarized electromagnetic relay 1 includes a first coil 2 and a second coil 3 wound around a coil bobbin 4, a permanent magnet 5, a movable yoke 8 facing the permanent magnet 5 and driven as the first coil 2 and second coil 3 are magnetized and demagnetized, an armature 6 interlocking with the driving of the movable yoke 8, a fixed yoke 7 having a bearing 7a holding the armature 6 slidably, and contacts 9, 10 having a movable contact and a fixed contact. The polarized relay 1 has two inflection points where the positive/negative sign of a gradient changes in suction force characteristics from a start end position to a tail end position of a stroke of the movable yoke 8 in a non-magnetization state of the first coil 2 and second coil 3.

Description

本発明は、コイルに生じる磁束及び永久磁石の磁束を利用して接点機構部を開閉作動させる有極型電磁リレーに関する。   The present invention relates to a polarized electromagnetic relay that opens and closes a contact mechanism using magnetic flux generated in a coil and magnetic flux of a permanent magnet.

従来より、有極型電磁リレーは、エアコンや照明器具などの家電製品、コンピュータや産業機械など、電気を用いる多様な装置に使用されている。   2. Description of the Related Art Conventionally, polarized electromagnetic relays are used in various devices using electricity, such as home appliances such as air conditioners and lighting fixtures, computers and industrial machines.

例えば、図15(a)に示す接点機構部を有する有極型電磁リレーでは、励磁コイル151に電流を流して電磁ブロック152を励磁することによりアーマチュア153を永久磁石154の着磁方向と平行方向にスライドさせる。その結果、アーマチュア153が可動接点155を備える可動ばね156を変曲させ、離隔状態にあった可動接点155と固定接点157とを接触させる。   For example, in the polarized electromagnetic relay having the contact mechanism shown in FIG. 15A, the armature 153 is parallel to the magnetization direction of the permanent magnet 154 by flowing current through the excitation coil 151 and exciting the electromagnetic block 152. Slide to. As a result, the armature 153 deforms the movable spring 156 provided with the movable contact 155 and brings the movable contact 155 and the fixed contact 157 in the separated state into contact with each other.

次に、有極型電磁リレーの吸引力特性に関して図15(b)を参照して説明する。なお、有極型電磁リレーは、コイルによる磁束と永久磁石による磁束の相互で吸引力が得られる。   Next, the attractive force characteristics of the polarized electromagnetic relay will be described with reference to FIG. In the polarized electromagnetic relay, an attractive force can be obtained by a magnetic flux generated by a coil and a magnetic flux generated by a permanent magnet.

グラフの横軸はアーマチュア(可動ブロック)のストロークを示し、例えばSoは、ストロークの始端位置、S1は、ストロークの終端位置を示している。グラフの縦軸は可動ばねのバネ負荷力及び磁気吸引力を示している。すなわち、Foは、コイルが無励磁の場合の吸引力特性、Fsは、コイルが励磁されてアーマチュアを一端側に駆動するときの吸引力特性、Frは、コイルが励磁されてアーマチュアを他端側に駆動するときの吸引力特性を示している。また、Lは、アーマチュアの各ストローク位置において可動ばねから受けるバネ負荷力を示している。   The horizontal axis of the graph indicates the stroke of the armature (movable block), for example, So indicates the start end position of the stroke, and S1 indicates the end position of the stroke. The vertical axis of the graph indicates the spring load force and magnetic attractive force of the movable spring. That is, Fo is an attractive force characteristic when the coil is not excited, Fs is an attractive force characteristic when the coil is excited and the armature is driven to one end, and Fr is an armature that is excited when the coil is excited. Fig. 4 shows the attractive force characteristics when driving. L represents the spring load force received from the movable spring at each stroke position of the armature.

有極型電磁リレーは、このような吸引力特性を有するため、吸引力特性Fo等と、バネ負荷力Lとの均衡に基づいて可動接点と固定接点の当接、離隔を行う必要がある。例えば、有極型電磁リレーを安定作動させるために、永久磁石の磁力及びコイルの起磁力に基づく吸引力特性Fo等の形状を調整したり、可動ばねによるバネ負荷力Lにバイアスを加える。   Since the polarized electromagnetic relay has such an attractive force characteristic, the movable contact and the fixed contact must be brought into contact with and separated from each other based on the balance between the attractive force characteristic Fo and the spring load force L. For example, in order to stably operate the polarized electromagnetic relay, the shape of the attractive force characteristic Fo based on the magnetic force of the permanent magnet and the magnetomotive force of the coil is adjusted, or a bias is applied to the spring load force L by the movable spring.

そして、有極型電磁リレーでは、リレー動作時や復帰時に可動接点及び固定接点や、鉄片などの部品間に衝突が発生するために衝突音が生じる。そして、この衝突音はユーザにとって好ましいものではないため、この衝突音を低減させる種々の方法が提案されている。   In the polarized electromagnetic relay, a collision noise is generated because a collision occurs between parts such as a movable contact and a fixed contact and an iron piece during relay operation and return. Since this collision sound is not preferable for the user, various methods for reducing this collision sound have been proposed.

例えば、ダイオードを用いて、接点が閉じた後に吸引力を小さくすることにより静音化を図った電磁石が知られている(例えば、特許文献1参照)。また、接点投入動作のストローク途上で接触子ホルダの変位速度をカム制御して接点の衝突速度を減速し、接点衝突音の軽減を図るようにした電磁リレーが知られている(例えば、特許文献2参照)。   For example, an electromagnet that uses a diode to reduce noise by reducing the attractive force after the contact is closed is known (for example, see Patent Document 1). In addition, an electromagnetic relay is known in which the displacement speed of the contact holder is cam-controlled during the stroke of the contact closing operation to reduce the contact collision speed and reduce the contact collision noise (for example, Patent Documents). 2).

実開平5−4417号公報Japanese Utility Model Publication No. 5-4417 特開2011−96472号公報JP 2011-96472 A

しかしながら、従来の有極型電磁リレーでは、図15(b)に示すように、無励磁の吸引力Foとバネ負荷力Lとの力の差分が依然として大きい。このため、可動ブロックの動作速度が速くなり、可動接点及び固定接点や、鉄片など部品間の衝突音が大きくなるという問題がある。   However, in the conventional polarized electromagnetic relay, the difference in force between the non-excited attractive force Fo and the spring load force L is still large as shown in FIG. For this reason, there exists a problem that the operating speed of a movable block becomes quick and the collision noise between components, such as a movable contact and a stationary contact, and an iron piece becomes large.

また、有極型電磁リレーの接点の閉路時において負荷の種類によっては定格電流の数倍から数十倍の突入電流が流れ、接点が溶着してしまうという問題もある。   In addition, when the contacts of the polarized electromagnetic relay are closed, there is a problem that an inrush current several to several tens of times the rated current flows depending on the type of load, and the contacts are welded.

本発明は、上記課題に鑑みてなされたものであり、可動接点と固定接点などの部品間の衝突音を低減して静音化を図ることができる有極型電磁リレーを提供することを目的とする。また、リレー接点が溶着することを防止した有極型電磁リレーを提供することをも目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a polarized electromagnetic relay capable of reducing noise by reducing collision noise between components such as a movable contact and a fixed contact. To do. It is another object of the present invention to provide a polarized electromagnetic relay that prevents the relay contact from being welded.

上記目的を達成するために本発明は、コイルボビンに巻き回された第1コイルと、コイルボビンに巻き回された第2コイルと、前記第1コイルと第2コイルの間に配置された永久磁石と、前記永久磁石と対向して配置され、前記第1コイル及び第2コイルの励磁及び消磁に伴い往復駆動する可動ヨークと、前記可動ヨークに固定され、前記可動ヨークの駆動と連動するアーマチュアと、前記アーマチュアを摺動可能に保持する軸受けを有した固定ヨークと、前記アーマチュアによって直接駆動される可動接点及び前記アーマチュアの駆動に伴い前記可動接点と接離する固定接点を有する接点と、を備える有極型電磁リレーにおいて、前記第1コイル及び前記第2コイルが無励磁の状態において、前記可動ヨークのストロークの始端位置から終端位置まで駆動するまでの吸引力特性に、傾きの正負符号が変化する2つの変曲点を有することを特徴とするものである。   To achieve the above object, the present invention provides a first coil wound around a coil bobbin, a second coil wound around a coil bobbin, and a permanent magnet disposed between the first coil and the second coil. A movable yoke disposed opposite to the permanent magnet and driven to reciprocate in accordance with excitation and demagnetization of the first coil and the second coil, and an armature fixed to the movable yoke and interlocking with the driving of the movable yoke, A fixed yoke having a bearing that slidably holds the armature, a movable contact that is directly driven by the armature, and a contact that has a fixed contact that contacts and separates from the movable contact when the armature is driven. In the pole type electromagnetic relay, when the first coil and the second coil are in a non-excited state, the stroke ends from the start end position of the movable yoke. The suction force characteristics before the drive to the position, is characterized in that it has two inflection points sign of the slope changes.

この有極型電磁リレーにおいて、前記可動ヨークは、前記永久磁石と対向する面に、断面凹形状となる少なくとも1以上の凹部を有し、複数の磁極面が形成されることが好ましい。   In this polarized electromagnetic relay, it is preferable that the movable yoke has at least one concave portion having a concave cross section on a surface facing the permanent magnet, and a plurality of magnetic pole surfaces are formed.

この有極型電磁リレーにおいて、前記可動ヨークのストロークの中間位置において前記永久磁石と対向する前記磁極面の幅は、前記永久磁石の磁極面の幅より小さくなることが好ましい。   In this polarized electromagnetic relay, it is preferable that the width of the magnetic pole surface facing the permanent magnet at a middle position of the stroke of the movable yoke is smaller than the width of the magnetic pole surface of the permanent magnet.

この有極型電磁リレーにおいて、前記接点は、第1接点及び第2接点からなり、前記第2接点は、さらに、第2−1接点と第2−2接点を有して、前記第2−1接点の動作が完了した後、前記第2−2接点の動作を開始し、前記第2−1接点の接点材料は、前記第2−2接点の接点材料よりも高抵抗材料であることが好ましい。   In the polarized electromagnetic relay, the contact includes a first contact and a second contact, and the second contact further includes a 2-1 contact and a 2-2 contact, After the operation of one contact is completed, the operation of the 2-2 contact is started, and the contact material of the 2-1 contact is higher resistance material than the contact material of the 2-2 contact. preferable.

この有極型電磁リレーにおいて、前記第1コイル及び前記第2コイルに流す電流、並びに前記第1コイル及び第2コイルに印加する電圧を制御する制御部をさらに備え、前記制御部は、前記第1コイルに対して印加する電圧とは逆方向の波形の電圧を前記第2コイルに印加することが好ましい。   The polarized electromagnetic relay further includes a control unit that controls a current flowing through the first coil and the second coil and a voltage applied to the first coil and the second coil, and the control unit includes the first coil and the second coil. It is preferable to apply a voltage having a waveform in the opposite direction to the voltage applied to one coil to the second coil.

この有極型電磁リレーにおいて、前記第1コイル及び前記第2コイルは直列に接続され、前記制御部は、さらに、前記可動ヨークがそのストロークの中間位置で停止するように、時間制御した電圧を前記第1コイル及び前記第2コイルに印加することが好ましい。   In the polarized electromagnetic relay, the first coil and the second coil are connected in series, and the control unit further applies a time-controlled voltage so that the movable yoke stops at an intermediate position of the stroke. It is preferable to apply to the first coil and the second coil.

この有極型電磁リレーにおいて、前記第1コイル及び前記第2コイルは直列に接続され、前記制御部は、さらに、前記第1コイル及び前記第2コイルに流す励磁電流の逆電流を通電中に流すことが好ましい。   In the polarized electromagnetic relay, the first coil and the second coil are connected in series, and the control unit further applies a reverse current of an excitation current flowing through the first coil and the second coil. It is preferable to flow.

この有極型電磁リレーにおいて、前記接点は、第1接点及び第2接点からなり、前記第1接点と前記第2接点の開閉動作が同一であり、前記第2接点は、さらに、第2−1接点と第2−2接点を有して、前記第2−1接点の動作が完了した後、前記第2−2接点の動作を開始し、前記第2−1接点の接点材料は、前記第2−2接点の接点材料よりも高抵抗材料であることが好ましい。   In this polarized electromagnetic relay, the contact is composed of a first contact and a second contact, and the opening and closing operations of the first contact and the second contact are the same. After the operation of the 2-1 contact is completed, the operation of the 2-2 contact is started, and the contact material of the 2-1 contact is A high resistance material is preferable to the contact material of the 2-2 contact.

この有極型電磁リレーにおいて、前記接点は、第1接点及び第2接点からなり、前記第1接点と前記第2接点の開閉動作が同一であり、前記第1接点と前記第2接点は、並列に接続され、かつ前記第1接点の動作が完了した後、前記第2接点の動作を開始し、前記第1接点の接点材料は、前記第2接点の接点材料よりも高抵抗材料であることが好ましい。   In this polarized electromagnetic relay, the contact consists of a first contact and a second contact, and the opening and closing operations of the first contact and the second contact are the same, and the first contact and the second contact are: After being connected in parallel and completing the operation of the first contact, the operation of the second contact is started, and the contact material of the first contact is higher resistance material than the contact material of the second contact. It is preferable.

この有極型電磁リレーにおいて、前記第2接点に、双方向半導体整流素子からなる無接点リレーが直列に接続されることが好ましい。   In this polarized electromagnetic relay, it is preferable that a contactless relay composed of a bidirectional semiconductor rectifier is connected in series to the second contact.

この有極型電磁リレーにおいて、前記接点は、第1接点及び第2接点からなり、前記第1接点と前記第2接点の開閉動作が同一であり、前記第1接点と第2接点は、直列に接続され、かつ前記第1接点の動作が完了した後、前記第2接点の動作を開始することが好ましい。   In the polarized electromagnetic relay, the contact includes a first contact and a second contact, and the opening and closing operations of the first contact and the second contact are the same, and the first contact and the second contact are connected in series. It is preferable that after the operation of the first contact is completed, the operation of the second contact is started.

この有極型電磁リレーにおいて、前記第1接点と、前記第2接点及び半導体整流素子からなる無接点リレーが並列に接続されてなるハイブリッドリレーとが直列に接続されることが好ましい。   In the polarized electromagnetic relay, it is preferable that the first contact and a hybrid relay in which a contactless relay including the second contact and a semiconductor rectifying element are connected in parallel are connected in series.

この有極型電磁リレーにおいて、前記高抵抗材料はタングステンであることが好ましい。   In this polarized electromagnetic relay, the high resistance material is preferably tungsten.

本発明に係る有極型電磁リレーによれば、可動ヨークのストロークの吸引力特性に、傾きの正負符号が変化する2つの変曲点を有する。このため、可動ヨークのストロークの中間位置における駆動速度を低下させ、可動接点及び固定接点の衝突時や可動ヨークの終端位置での衝突音を低減して静音化を図ることができる。   According to the polarized electromagnetic relay of the present invention, the attractive force characteristic of the stroke of the movable yoke has two inflection points where the sign of the inclination changes. Therefore, it is possible to reduce the driving speed at the intermediate position of the stroke of the movable yoke and reduce the noise caused by the collision of the movable contact and the fixed contact or at the end position of the movable yoke.

(a)及び(b)本発明の実施の形態1に係る有極型電磁リレーの接点機構部の断面図である。(A) And (b) It is sectional drawing of the contact mechanism part of the polarized electromagnetic relay which concerns on Embodiment 1 of this invention. (a)前記有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) The circuit diagram of the contact mechanism part of the said pole type electromagnetic relay, (b) It is a graph which shows the correlation with the magnetic attraction force of the said pole type electromagnetic relay, and a spring load force. (a)同上実施の形態1の第1の変形例に係る有極型電磁リレーの接点機構部の断面図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) Sectional drawing of the contact mechanism part of the polarized electromagnetic relay which concerns on the 1st modification of Embodiment 1 same as the above, (b) Correlation with the magnetic attraction force of the said polarized electromagnetic relay and spring load force. It is a graph to show. (a)同上実施の形態1の第2の変形例に係る有極型電磁リレーの接点機構部の断面図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) Sectional drawing of the contact mechanism part of the polarized electromagnetic relay which concerns on the 2nd modification of Embodiment 1 same as the above, (b) Correlation with the magnetic attraction force of the said polarized electromagnetic relay and a spring load force. It is a graph to show. (a)同上実施の形態1の第3の変形例に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーに備わる第2接点の概略断面図、(c)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on the 3rd modification of Embodiment 1 same as the above, (b) The schematic sectional drawing of the 2nd contact with which the said polarized electromagnetic relay is equipped, (c) ) A graph showing the correlation between the magnetic attractive force and the spring load force of the polarized electromagnetic relay. (a)本発明の実施の形態2に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーに備わる制御部から第1コイルに印加される電圧波形を示す図、(c)前記制御部から第2コイルに印加される電圧波形を示す図、(d)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on Embodiment 2 of this invention, (b) The voltage waveform applied to a 1st coil from the control part with which the said polarized electromagnetic relay is equipped is shown. FIG. 4C is a diagram showing a voltage waveform applied to the second coil from the control unit, and FIG. 4D is a graph showing a correlation between the magnetic attractive force and the spring load force of the polarized electromagnetic relay. (a)同上実施の形態2の第1の変形例に係る有極型電磁リレーの接点機構部の回路図、(b)乃至(d)前記有極型電磁リレーに備わる制御部から第1コイル及び第2コイルに印加される電圧波形を示す図である。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on the 1st modification of Embodiment 2 same as the above, (b) thru | or (d) From the control part with which the said polarized electromagnetic relay is equipped, it is the 1st coil. It is a figure which shows the voltage waveform applied to a 2nd coil. (a)同上実施の形態2の第2の変形例に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーに備わる制御部から第1コイル又は第2コイルに流される電流波形を示す図である。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on the 2nd modification of Embodiment 2 same as the above, (b) From the control part with which the said polarized electromagnetic relay is equipped, the 1st coil or the 2nd coil It is a figure which shows the electric current waveform sent through. (a)本発明の実施の形態3に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフ、(c)及び(d)前記有極型電磁リレーの電源投入時における電流波形を示すグラフである。(A) A circuit diagram of a contact mechanism part of a polarized electromagnetic relay according to a third embodiment of the present invention, (b) a graph showing a correlation between a magnetic attractive force and a spring load force of the polarized electromagnetic relay; c) and (d) are graphs showing current waveforms when the polarized electromagnetic relay is powered on. (a)同上実施の形態3の第1の変形例に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフ、(c)及び(d)前記有極型電磁リレーの電源投入時における電流波形を示すグラフである。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on the 1st modification of Embodiment 3 same as the above, (b) Correlation with the magnetic attraction force of the said polarized electromagnetic relay and a spring load force. It is a graph which shows the current waveform at the time of power activation of the polarized electromagnetic relay. (a)同上実施の形態3の第2の変形例に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on the 2nd modification of Embodiment 3 same as the above, (b) Correlation with the magnetic attraction force of the said polarized electromagnetic relay and a spring load force. It is a graph to show. (a)前記有極型電磁リレーの接点機構部のカバーを外した状態での概略底面図、(b)同上有極型電磁リレーの分解斜視図である。(A) It is a schematic bottom view in the state which removed the cover of the contact mechanism part of the said polarized electromagnetic relay, (b) It is an exploded perspective view of the polarized electromagnetic relay same as the above. (a)本発明の実施の形態4に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on Embodiment 4 of this invention, (b) It is a graph which shows the correlation with the magnetic attraction force and spring load force of the said polarized electromagnetic relay. . (a)同上実施の形態4の第1の変形例に係る有極型電磁リレーの接点機構部の回路図、(b)前記有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) The circuit diagram of the contact mechanism part of the polarized electromagnetic relay which concerns on the 1st modification of Embodiment 4 same as the above, (b) Correlation with the magnetic attraction force of the said polarized electromagnetic relay and a spring load force. It is a graph to show. (a)従来の有極型電磁リレーの接点機構部の断面図、(b)従来の有極型電磁リレーの磁気吸引力とバネ負荷力との相関を示すグラフである。(A) Sectional drawing of the contact mechanism part of the conventional polarized electromagnetic relay, (b) It is a graph which shows the correlation with the magnetic attraction force and spring load force of the conventional polarized electromagnetic relay.

(実施の形態1)
本発明の実施の形態1に係る有極型電磁リレー(以下、有極リレーと記す)について図面を参照して説明する。
(Embodiment 1)
A polarized electromagnetic relay according to Embodiment 1 of the present invention (hereinafter referred to as a polarized relay) will be described with reference to the drawings.

図1に示すように、本実施の形態1に係る有極リレー1の接点機構部は、第1コイル2と、第2コイル3と、コイルボビン4と、永久磁石5と、アーマチュア6と、固定ヨーク7と、可動ヨーク8と、第1接点9と、第2接点10とを備える。なお、これら接点機構部の各部は、例えば有極リレー1の絶縁性のベース上に立設され、その組み立て後の状態においてベースにカバーが被せられた箱体形状で形成される。   As shown in FIG. 1, the contact mechanism portion of the polarized relay 1 according to the first embodiment includes a first coil 2, a second coil 3, a coil bobbin 4, a permanent magnet 5, an armature 6, and a fixed A yoke 7, a movable yoke 8, a first contact 9, and a second contact 10 are provided. In addition, each part of these contact mechanism parts is standingly arranged on the insulating base of the polarized relay 1, for example, and is formed in the box shape by which the cover was covered on the base in the state after the assembly.

第1コイル2は、起磁力を有効に働かせるために、樹脂などの絶縁材からなる円筒状のコイルボビン4に、所定回数巻き回される。第1コイル2には電源が接続され、電流が流れることでN極、S極を伴う磁束を発生する。第2コイル3は、第1コイル2と同様に、起磁力を有効に働かせるために、円筒状のコイルボビン4に、所定回数巻き回され、電源に接続されて電流が流れることで磁束を発生する。   The first coil 2 is wound a predetermined number of times around a cylindrical coil bobbin 4 made of an insulating material such as a resin in order to make the magnetomotive force work effectively. A power source is connected to the first coil 2, and a magnetic flux accompanied by an N pole and an S pole is generated when a current flows. Similarly to the first coil 2, the second coil 3 is wound around the cylindrical coil bobbin 4 a predetermined number of times and is connected to a power source to generate a magnetic flux by flowing current in order to make the magnetomotive force work effectively. .

永久磁石5は、固定ヨーク7の内部に収容された第1コイル2及び第2コイル3の間に配置され、コイル2,3による磁束との相互作用で磁気吸引力を高める部品である。永久磁石5は、例えば内側がN極、外側がS極を有するように配置される。   The permanent magnet 5 is a component that is disposed between the first coil 2 and the second coil 3 housed in the fixed yoke 7 and increases the magnetic attractive force by interaction with the magnetic flux generated by the coils 2 and 3. For example, the permanent magnet 5 is arranged so that the inside has an N pole and the outside has an S pole.

アーマチュア6は、軸受け部7aにおいて固定ヨーク7に摺動可能(図1では上下方向に摺動)に保持され、その両端部に配置された可動ばね(不図示)からバネ負荷力を受けている。アーマチュア6は、可動ヨーク8の駆動と連動し、接点9,10の可動接点を固定接点に接離してリレー回路を開閉する。なお、上述した可動ばねは、例えば長尺状に形成された板ばねであり、バネ負荷力によってアーマチュア6を付勢する。また、この可動ばねの先端には可動接点が取り付けられている。   The armature 6 is slidably held by the fixed yoke 7 in the bearing portion 7a (sliding in the vertical direction in FIG. 1), and receives a spring load force from movable springs (not shown) disposed at both ends thereof. . The armature 6 opens and closes the relay circuit by moving the movable contacts of the contacts 9 and 10 to and away from the fixed contacts in conjunction with the driving of the movable yoke 8. In addition, the movable spring mentioned above is a leaf | plate spring formed in elongate shape, for example, and the armature 6 is urged | biased by spring load force. A movable contact is attached to the tip of the movable spring.

固定ヨーク7は、有極リレー1のベースに固定され、アーマチュア6を摺動可能に保持する軸受け部7aを備える。また、固定ヨーク7は、図1においては断面コ字形状を有し、その内部空間に、コイル2,3、コイルボビン4、及び永久磁石5を収容している。   The fixed yoke 7 is fixed to the base of the polarized relay 1 and includes a bearing portion 7a that holds the armature 6 slidably. The fixed yoke 7 has a U-shaped cross section in FIG. 1 and accommodates the coils 2 and 3, the coil bobbin 4, and the permanent magnet 5 in its internal space.

可動ヨーク8は、鉄などの磁性体金属で構成され、第1コイル2及び第2コイル3の励磁、消磁、及び永久磁石5の磁束に基づき磁路を形成して、その磁気吸引力及びバネ負荷力との均衡に基づき第1コイル2又は第2コイル3に吸着又は離反する。可動ヨーク8は、その永久磁石5と対向する面において、断面が凹形状となる凹部8a,8bを有し、複数(本実施の形態1においては3つ)の磁極面8c〜8eが形成される。   The movable yoke 8 is made of a magnetic metal such as iron, forms a magnetic path based on the excitation and demagnetization of the first coil 2 and the second coil 3, and the magnetic flux of the permanent magnet 5, and its magnetic attraction force and spring. The first coil 2 or the second coil 3 is attracted or separated based on the balance with the load force. The movable yoke 8 has concave portions 8a and 8b having a concave cross section on the surface facing the permanent magnet 5, and a plurality (three in the first embodiment) of magnetic pole surfaces 8c to 8e are formed. The

第1接点9及び第2接点10は、アーマチュア6によって直接駆動される可動接点と、アーマチュア6の駆動に伴い可動接点と接離して開閉する固定接点とを有する。この可動接点は、接触抵抗の低い銀、銀パラジウム、銀ニッケルなどの接点材料を用いて形成され、例えば可動ばねの先端にかしめ固着されている。固定接点は、可動接点と同様の接点材料を用いて形成され、有極リレー1のベース内部に配置される。   The first contact 9 and the second contact 10 include a movable contact that is directly driven by the armature 6 and a fixed contact that opens and closes when the armature 6 is driven. The movable contact is formed using a contact material such as silver, silver palladium, or silver nickel having a low contact resistance, and is fixed by caulking to the tip of the movable spring, for example. The fixed contact is formed using the same contact material as that of the movable contact, and is disposed inside the base of the polarized relay 1.

次に、本実施の形態1に係る有極リレー1の接点9,10の接点機構に関して図2(a)を参照して説明する。   Next, the contact mechanism of the contacts 9 and 10 of the polarized relay 1 according to the first embodiment will be described with reference to FIG.

第1接点9は、平常時は開放状態(オフ)であり、動作時に閉成状態(オン)となる1極のa接点であり、第2接点10は、平常時は閉成状態(オン)にあり、動作時に開放状態(オフ)となる1極のb接点である。つまり、有極リレー1は、接点9,10を備えた1a―1b接点を有する。なお、図1(a)は、可動ヨーク8が第2接点10側に駆動された図、図1(b)は、可動ヨーク8が第1接点9側に駆動された図である。   The first contact 9 is a one-pole a contact that is normally open (off) and closed (ON) during operation, and the second contact 10 is normally closed (ON). And is a 1-pole b-contact that is open (off) during operation. That is, the polarized relay 1 has a 1a-1b contact provided with contacts 9 and 10. 1A is a diagram in which the movable yoke 8 is driven to the second contact 10 side, and FIG. 1B is a diagram in which the movable yoke 8 is driven to the first contact 9 side.

次に、本実施の形態1に係る有極リレー1の動作に関して説明する。第1コイル2及び第2コイル3が無励磁の時、可動ヨーク8は可動ばねによって付勢され、そのストロークの中心位置に配置(復帰)される。このとき、常開状態にある第1接点9は開成状態(オフ)にあり、常閉状態にある第2接点10は閉成状態(オン)にある。   Next, the operation of the polarized relay 1 according to the first embodiment will be described. When the first coil 2 and the second coil 3 are not excited, the movable yoke 8 is urged by the movable spring and disposed (returned) at the center position of the stroke. At this time, the first contact 9 in the normally open state is in the open state (off), and the second contact 10 in the normally closed state is in the closed state (on).

そして、第1コイル2及び第2コイル3を所定の極性に励磁すると、発生した磁束及び永久磁石5の磁気吸引力によって、可動ばねのバネ負荷力に反して可動ヨーク8が第1コイル2側に駆動させられる。すると、図1(b)に示すように、アーマチュア6の一端部が第1接点9側に駆動され、第1接点9の離隔していた可動接点が固定接点に当接する。これにより、第1接点9は、開成状態(オフ)から閉成状態(オン)になる。   When the first coil 2 and the second coil 3 are excited to a predetermined polarity, the movable yoke 8 is moved to the first coil 2 side against the spring load force of the movable spring by the generated magnetic flux and the magnetic attractive force of the permanent magnet 5. Driven. Then, as shown in FIG. 1B, one end of the armature 6 is driven to the first contact 9 side, and the movable contact separated from the first contact 9 comes into contact with the fixed contact. As a result, the first contact 9 changes from the open state (off) to the closed state (on).

一方、第2コイル3及び第1コイル2を所定の極性に励磁すると、発生した磁束及び永久磁石5の磁気吸引力によって、可動ばねのバネ負荷力に反して可動ヨーク8が第2コイル3側に可動させられる。すると、図1(a)に示すように、アーマチュア6の一端部が第2接点10側に駆動され、第2接点10は、閉成状態(オン)から開成状態(オフ)になる。   On the other hand, when the second coil 3 and the first coil 2 are excited to a predetermined polarity, the movable yoke 8 is moved to the second coil 3 side against the spring load force of the movable spring by the generated magnetic flux and the magnetic attractive force of the permanent magnet 5. It can be moved to. Then, as shown in FIG. 1A, one end of the armature 6 is driven to the second contact 10 side, and the second contact 10 changes from the closed state (on) to the open state (off).

次に、本実施の形態に係る有極リレー1の吸引力特性に関して図2(b)を参照して説明する。なお、図2(b)のグラフの横軸は可動ヨーク8のストローク位置を示し、例えばS2は、可動ヨーク8のストロークの始端位置、S3は、可動ヨーク8のストロークの終端位置を示している。図2(b)のグラフの縦軸は可動ばねのバネ負荷力及び磁気吸引力を示し、F1は、コイル2,3が無励磁の場合であり永久磁石5から受ける吸引力特性を示す。F2は、可動ヨーク8をS3側に駆動するときの吸引力特性、F3は、可動ヨーク8をS2側に駆動するときの吸引力特性を示している。また、L1は、可動ヨーク8の各ストローク位置における可動ばねによるバネ負荷力を示している。   Next, the attractive force characteristics of the polarized relay 1 according to the present embodiment will be described with reference to FIG. 2B indicates the stroke position of the movable yoke 8. For example, S2 indicates the start position of the stroke of the movable yoke 8, and S3 indicates the end position of the stroke of the movable yoke 8. FIG. . The vertical axis of the graph of FIG. 2B shows the spring load force and magnetic attractive force of the movable spring, and F1 shows the attractive force characteristics received from the permanent magnet 5 when the coils 2 and 3 are not excited. F2 indicates an attractive force characteristic when the movable yoke 8 is driven to the S3 side, and F3 indicates an attractive force characteristic when the movable yoke 8 is driven to the S2 side. L1 indicates a spring load force by the movable spring at each stroke position of the movable yoke 8.

本図に示すように、無励磁の吸引力特性F1には、傾きの正負符号が変化する点である変曲点H1,H2が2つ含まれている。具体的には、変曲点H1では、傾きの符号が正→0→負となり、変曲点H2では、傾きの符号が負→0→正と変化する。   As shown in the figure, the non-excited attractive force characteristic F1 includes two inflection points H1 and H2, which are points where the sign of the slope changes. Specifically, at the inflection point H1, the sign of the slope changes from positive → 0 → negative, and at the inflection point H2, the sign of the slope changes from negative → 0 → positive.

以上のように、可動ヨーク8は、その永久磁石5と対向する面に、凹部8a,8bを有し、複数の磁極面8c〜8eが形成される。この構成により、本実施の形態1に係る有極リレー1では、変曲点H1,H2を2つ設けるように吸引力特性の形状を調整でき、吸引力特性F1とばね負荷L1との力の差分を小さくし、可動ヨーク8の動作速度を遅くできる。すなわち、可動ヨーク8は、そのストロークの中間位置付近で確実に減速し、その結果、可動ヨーク8の中間停止動作の安定化を図り、衝突音の発生が緩和されて静音化を実現できる。   As described above, the movable yoke 8 has the recesses 8a and 8b on the surface facing the permanent magnet 5, and a plurality of magnetic pole surfaces 8c to 8e are formed. With this configuration, in the polarized relay 1 according to the first embodiment, the shape of the attractive force characteristic can be adjusted so as to provide two inflection points H1 and H2, and the force between the attractive force characteristic F1 and the spring load L1 can be adjusted. The difference can be reduced and the operation speed of the movable yoke 8 can be reduced. That is, the movable yoke 8 is surely decelerated in the vicinity of the intermediate position of the stroke, and as a result, the intermediate stop operation of the movable yoke 8 is stabilized, the generation of the collision sound is mitigated, and the silence can be realized.

(第1の変形例)
本実施の形態1の第1の変形例について、図3を参照して説明する。本変形例において、図3(a)に示すように、可動ヨーク8は、断面が凹形状となる凹部8f,8gを有し、複数の磁極面8h〜8jが形成される。そして、これら磁極面8h〜8jは、上記実施の形態1に係る可動ヨーク8の磁極面8c〜8eより図中の矢印Yで示す方向の幅が広くなっている。
(First modification)
A first modification of the first embodiment will be described with reference to FIG. In this modified example, as shown in FIG. 3A, the movable yoke 8 has concave portions 8f and 8g having a concave cross section, and a plurality of magnetic pole surfaces 8h to 8j are formed. These magnetic pole surfaces 8h to 8j are wider in the direction indicated by the arrow Y in the drawing than the magnetic pole surfaces 8c to 8e of the movable yoke 8 according to the first embodiment.

図3(b)は、本変形例に係る有極リレー1の吸引力特性F4を示し、上記実施の形態1の図2(b)に示す吸引力特性F1と同様、傾きの正負符号が変化する点である変曲点H3,H4が2つ含まれる。   FIG. 3B shows the attractive force characteristic F4 of the polarized relay 1 according to this modification, and the sign of the slope changes as in the attractive force characteristic F1 shown in FIG. 2B of the first embodiment. Two inflection points H3 and H4 are included.

従って、本変形例では、上記実施の形態1と同様に、可動ヨーク8のストロークの中間位置での動作速度が小さくなり、中間停止動作の安定化を図ることができ、接点衝突時又は部品間の衝突時の静音化を図ることが可能となる。   Therefore, in this modification, as in the first embodiment, the operation speed at the intermediate position of the stroke of the movable yoke 8 is reduced, and the intermediate stop operation can be stabilized. It is possible to reduce the noise during the collision.

(第2の変形例)
本実施の形態1の第2の変形例について、図4を参照して説明する。本変形例において、図4(a)に示すように、可動ヨーク8は、断面が凹形状となる凹部8k,8lを有し、複数の磁極面8m〜8oが形成される。そして、凹部8k,8lに挟まれ、可動ヨーク8がストロークの中間位置に配置されるときに永久磁石5と対向する磁極面8nの矢印Y方向の幅は、永久磁石5の磁極面5aの幅より小さくなる。
(Second modification)
A second modification of the first embodiment will be described with reference to FIG. In this modified example, as shown in FIG. 4A, the movable yoke 8 has concave portions 8k and 8l having a concave cross section, and a plurality of magnetic pole surfaces 8m to 8o are formed. The width in the arrow Y direction of the magnetic pole surface 8n that is sandwiched between the recesses 8k and 8l and faces the permanent magnet 5 when the movable yoke 8 is disposed at the middle position of the stroke is the width of the magnetic pole surface 5a of the permanent magnet 5. Smaller.

図4(b)は、本変形例に係る有極リレー1の吸引力特性F5を示し、上記実施の形態1の図2(b)に示す吸引力特性F1乃至F3と同様、傾きの正負符号が変化する点である変曲点H5,H6が2つ含まれる。また、変曲点H5,H6の傾きの変化は、上述した変曲点H1〜H4に比較して大きくなっている。   FIG. 4B shows the attractive force characteristic F5 of the polarized relay 1 according to this modification, and the sign of the inclination is the same as the attractive force characteristics F1 to F3 shown in FIG. 2B of the first embodiment. Two inflection points H5 and H6 are included. Moreover, the change of the inclination of the inflection points H5 and H6 is larger than the inflection points H1 to H4 described above.

従って、本変形例2では、上記実施の形態1の効果に加えて、可動ヨーク8のストロークの中間位置での減速効果をより大きく得ることができ、可動ヨーク8の中間位置での停止動作の安定化を図り、より効果的に静音化を実現できる。   Therefore, in the second modification, in addition to the effect of the first embodiment, it is possible to obtain a greater deceleration effect at the intermediate position of the stroke of the movable yoke 8, and the stopping operation at the intermediate position of the movable yoke 8. Stabilization can be achieved and noise reduction can be achieved more effectively.

(第3の変形例)
本実施の形態1の第3の変形例について、図5を参照して説明する。本変形例において、有極リレー1の第2接点10は、図5(a)及び図5(b)に示すように、第2−1接点10aと第2−2接点10bを有し、第2−1接点10aの動作が完了した後、第2−2接点10bの動作を開始する。そして、第2−1接点10aの接点材料は、第2−2接点10bよりも高抵抗材料であるタングステンや銀タングステンなどが用いられる。銀タングステンは、硬度、融点が高く、耐アーク性に優れ、溶着に対して強い材料である。
(Third Modification)
A third modification of the first embodiment will be described with reference to FIG. In the present modification, the second contact 10 of the polarized relay 1 has a 2-1 contact 10a and a 2-2 contact 10b, as shown in FIGS. 5 (a) and 5 (b). After the operation of the 2-1 contact 10a is completed, the operation of the 2-2 contact 10b is started. The contact material of the 2-1 contact 10a is tungsten, silver tungsten, or the like, which is a higher resistance material than the 2-2 contact 10b. Silver tungsten is a material having high hardness and melting point, excellent arc resistance, and strong against welding.

通常、有極リレー1の接点をオンしたときに定常電流よりも大きな突入電流が流れる。例えば、トランス、モータ、ランプなどの負荷では定格電流の数倍から数十倍の突入電流が流れるため、接点の接触面及びその近傍が溶融固着して開離困難となる溶着を起こす場合がある。   Usually, an inrush current larger than a steady current flows when the contact of the polarized relay 1 is turned on. For example, an inrush current that is several to several tens of times the rated current flows in loads such as transformers, motors, lamps, etc., so that the contact surface of the contact and its vicinity may melt and adhere, causing welding that becomes difficult to separate. .

本変形例では、図5(c)に示すように、第2−1接点10aをオンにした後、第2−2接点10bがオンされるため、第2−1接点10aに通電される突入電流の通電時間T1が、1つの接点構成の場合より短くなる。また、第2−1接点10aに突入電流が流れるため、第2−2接点10bに突入電流が流れることをできるだけ防止できる。従って、本変形例では、上記実施の形態1の効果に加えて、第2接点10の耐溶着性を向上できる。   In this modified example, as shown in FIG. 5C, since the 2-2 contact 10b is turned on after the 2-1 contact 10a is turned on, the 2-1 contact 10a is energized. The current application time T1 is shorter than in the case of one contact configuration. Moreover, since the inrush current flows through the 2-1 contact 10a, it is possible to prevent the inrush current from flowing through the 2-2 contact 10b as much as possible. Therefore, in this modification, in addition to the effect of the first embodiment, the welding resistance of the second contact 10 can be improved.

(実施の形態2)
本発明の実施の形態2に係る有極リレーについて、図6を参照して説明する。なお、上記実施の形態1に係る有極リレーと同様の構成には同一の符号を付し、その詳細な説明は省略する(以下同様)。
(Embodiment 2)
A polarized relay according to Embodiment 2 of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure similar to the polarized relay which concerns on the said Embodiment 1, and the detailed description is abbreviate | omitted (hereinafter the same).

本実施の形態2に係る有極リレーは、図6(a)に示すように、第1コイル2及び第2コイル3に流す電流、並びに第1コイル2及び第2コイル3に印加する電圧を制御する制御部11を備える。具体的には、制御部11は、図6(b)及び図6(c)に示すように、第1コイル2に対して印加する矩形波の電圧とは逆方向の電圧波形を第2コイル3に印加する。なお、第1コイル2及び第2コイル3の巻き回し方向は同じである。   As shown in FIG. 6A, the polarized relay according to the second embodiment has a current that flows through the first coil 2 and the second coil 3 and a voltage that is applied to the first coil 2 and the second coil 3. The control part 11 to control is provided. Specifically, as shown in FIG. 6B and FIG. 6C, the control unit 11 generates a voltage waveform in a direction opposite to the rectangular wave voltage applied to the first coil 2 in the second coil. 3 is applied. Note that the winding directions of the first coil 2 and the second coil 3 are the same.

この場合、第1コイル2及び第2コイル3に発生する磁束の向きが逆方向となり、可動ヨークのストロークの中間位置において逆制動が働き、確実に可動ヨークをそのストロークの中間位置で停止できる。なお、図6(d)は、図6(a)に示す接点機構を有する有極リレーにおける第1接点9がオフになる時点と、第2接点10が投入される時点との関係を示す。   In this case, the directions of the magnetic fluxes generated in the first coil 2 and the second coil 3 are reversed, reverse braking works at an intermediate position of the stroke of the movable yoke, and the movable yoke can be reliably stopped at the intermediate position of the stroke. FIG. 6D shows the relationship between the time when the first contact 9 is turned off and the time when the second contact 10 is turned on in the polarized relay having the contact mechanism shown in FIG.

以上のように、本実施の形態2において、制御部11は、第2コイル3に、第1コイル2に対して印加する電圧とは逆方向の電圧波形を印加する。このため、可動ヨークの動きを逆制動し、可動ヨークのストロークの中間位置での停止を確実に図ることができる。従って、可動ヨークの速度低減にて衝撃音の発生が抑制され、更なる静音化を図ることが可能となる。なお、第1コイル2及び第2コイル3の巻き回し方向が逆の場合、制御部11は、第1コイル2及び第2コイル3に同方向電圧波形を印加することで同様の効果が得られる。   As described above, in the second embodiment, the control unit 11 applies a voltage waveform in the opposite direction to the voltage applied to the first coil 2 to the second coil 3. For this reason, it is possible to reversely brake the movement of the movable yoke and reliably stop the movable yoke at the intermediate position of the stroke. Therefore, the generation of impact sound is suppressed by reducing the speed of the movable yoke, and further noise reduction can be achieved. In addition, when the winding direction of the 1st coil 2 and the 2nd coil 3 is reverse, the control part 11 obtains the same effect by applying the same direction voltage waveform to the 1st coil 2 and the 2nd coil 3. .

(第1の変形例)
本実施の形態2の第1の変形例について、図7を参照して説明する。本変形例において、図7(a)に示すように、低消費電力化を図るため、第1コイル2と第2コイル3とは直列に接続される。そして、例えば、図7(b)に示すように、制御部11からの電圧印加時間が長すぎると可動ヨークの中間停止が無くなり、図7(d)に示すように、電圧印加時間が短すぎると可動ヨークが動作を開始しない。従って、制御部11は、図7(c)に示すように、電圧印加時間を、可動ヨークがストロークの中間位置で停止するように時間調整する。この制御部11により、本変形例1では、上記実施の形態2の効果に加え、低消費電流化をも図ることが可能となる。
(First modification)
A first modification of the second embodiment will be described with reference to FIG. In the present modification, as shown in FIG. 7A, the first coil 2 and the second coil 3 are connected in series in order to reduce power consumption. For example, if the voltage application time from the control unit 11 is too long as shown in FIG. 7B, the intermediate stop of the movable yoke is lost, and the voltage application time is too short as shown in FIG. 7D. And the movable yoke does not start operation. Therefore, as shown in FIG. 7C, the control unit 11 adjusts the voltage application time so that the movable yoke stops at the middle position of the stroke. With this control unit 11, in the first modification, in addition to the effect of the second embodiment, it is possible to reduce the current consumption.

(第2の変形例)
本実施の形態2の第2の変形例について、図8を参照して説明する。本変形例において、図8(a)に示すように、有極リレーの回路構成は、上記変形例1と同様となる。制御部11は、図8(b)に示すように励磁電流を通電中に逆電流を流す。このため、第1コイル2及び第2コイル3への通電時間が長くなり可動ヨークの速度が大きくなるような場合でも、電流を時間制御するのではなく逆電流を流すことで可動ヨークを逆制動して、可動ヨークがストロークの中間位置で停止するように調整する。従って、本変形例2では、可動ヨークのストロークの中間位置での停止動作の更なる安定化を図り、静音化を実現できる。
(Second modification)
A second modification of the second embodiment will be described with reference to FIG. In this modification, as shown in FIG. 8A, the circuit configuration of the polarized relay is the same as that of Modification 1. As shown in FIG. 8B, the control unit 11 causes a reverse current to flow while energizing the excitation current. For this reason, even when the energization time to the first coil 2 and the second coil 3 becomes long and the speed of the movable yoke increases, the movable yoke is reverse braked by flowing a reverse current instead of controlling the current over time. Then, the movable yoke is adjusted so as to stop at the middle position of the stroke. Therefore, in the second modification, the stop operation at an intermediate position of the stroke of the movable yoke can be further stabilized and the noise can be reduced.

(実施の形態3)
本発明の実施の形態3に係る有極リレーについて、図9を参照して説明する。上述のように、有極リレーの接点を閉成したときに定常状態よりも大きな突入電流が流れる。例えば、トランス、モータなどの負荷では定格電流の数倍から数十倍の突入電流が流れ、接点の接触面及びその近傍が溶融固着して開離困難となる溶着を引き起こす場合がある。
(Embodiment 3)
A polarized relay according to Embodiment 3 of the present invention will be described with reference to FIG. As described above, an inrush current larger than that in the steady state flows when the contact of the polarized relay is closed. For example, in a load such as a transformer or a motor, an inrush current that is several to several tens of times the rated current flows, and the contact surface of the contact and its vicinity may be melted and fixed to cause welding that becomes difficult to separate.

本実施の形態3に係る有極リレーの第2接点10は、図9(a)に示すように、第2−1接点10aと第2−2接点10bを有し、第2−1接点10aの動作が完了した後、第2−2接点10bの動作を開始する。また、第1コイル2及び第2コイル3は直列に接続される。   As shown in FIG. 9A, the second contact 10 of the polarized relay according to the third embodiment has a 2-1 contact 10a and a 2-2 contact 10b, and a 2-1 contact 10a. After the operation is completed, the operation of the 2-2 contact 10b is started. The first coil 2 and the second coil 3 are connected in series.

第1接点9及び第2接点10は開閉動作が同じである。すなわち、図9(b)に示すように、第1接点10は、リフトオフ方式の接点であり、点11aよりストロークが図中の右方向の範囲でオンとなる。第2−1接点10aは、点11bよりストロークが図中の右方向の範囲でオンとなり、第2−2接点10bは、点11cよりストロークが図中の右方向の範囲でオンとなる。また、第2−1接点10a及び第2−2接点10bは、負荷と電源とを完全に切り離すための両切リレーとして働く。   The first contact 9 and the second contact 10 have the same opening / closing operation. That is, as shown in FIG. 9B, the first contact 10 is a lift-off type contact, and the stroke is turned on in a rightward range in the figure from the point 11a. The 2-1 contact point 10a is turned on in the range of the right direction in the figure from the point 11b, and the 2-2 contact point 10b is turned on in the range of the right direction in the figure from the point 11c. Moreover, the 2-1 contact 10a and the 2-2 contact 10b function as a double cut relay for completely disconnecting the load and the power source.

図9(c)及び図9(d)は、負荷の種類が異なる場合の突入電流A,Bの波形を示している。そして、本実施の形態3に係る有極リレーでは、上述のように第1接点9、第2−1接点10a、及び第2−2接点10bの順番に閉成されるため、各接点における突入電流の通電期間を短くし、第2接点10の耐溶着性を更に向上できる。   FIGS. 9C and 9D show waveforms of inrush currents A and B when the types of loads are different. In the polarized relay according to the third embodiment, the first contact 9, the 2-1 contact 10a, and the 2-2 contact 10b are closed in this order as described above. It is possible to shorten the current application period and further improve the welding resistance of the second contact 10.

(第1の変形例)
本実施の形態3の第1の変形例について、図10を参照して説明する。本変形例において、図10(a)に示すように、有極リレーの第1接点9と第2接点10とは並列で接続される。また、第1接点9の接点材料は、タングステンなど第2接点10の接点材料よりも高抵抗材料となる。
(First modification)
A first modification of the third embodiment will be described with reference to FIG. In this modification, as shown in FIG. 10A, the first contact 9 and the second contact 10 of the polarized relay are connected in parallel. Further, the contact material of the first contact 9 is a higher resistance material than the contact material of the second contact 10 such as tungsten.

第1コイル2及び第2コイル3は直列に接続され、第1接点9及び第2接点10は開閉動作が同じである。このため、第1接点9、第2接点10の順番に閉成される。すなわち、図10(b)に示すように、第1接点9は、リフトオフ方式の接点であり、点12aより可動ヨークのストロークが図中の右の範囲でオンとなり、第2接点10は、点12bより可動ヨークのストロークが図中の右の範囲でオンとなる。   The first coil 2 and the second coil 3 are connected in series, and the first contact 9 and the second contact 10 have the same opening / closing operation. For this reason, the first contact 9 and the second contact 10 are closed in this order. That is, as shown in FIG. 10B, the first contact 9 is a lift-off type contact, and the stroke of the movable yoke is turned on in the right range in the drawing from the point 12a, and the second contact 10 is From 12b, the stroke of the movable yoke is turned on in the right range in the figure.

図10(c)及び図10(d)は、負荷の種類が異なる場合の突入電流A,Bの波形を示す。本変形例に係る有極リレーでは、第1接点9がオンされて期間L3の後に第2接点10がオンされるため第2接点10に突入電流が流れることがない。このため、第2接点10の耐溶着性を更に向上して、更に有極リレーの長寿命化を図ることが可能となる。   FIGS. 10C and 10D show waveforms of inrush currents A and B when the types of loads are different. In the polarized relay according to this modification, since the first contact 9 is turned on and the second contact 10 is turned on after the period L3, no inrush current flows through the second contact 10. For this reason, it becomes possible to further improve the welding resistance of the second contact 10 and to further extend the life of the polarized relay.

(第2の変形例)
本実施の形態3の第2の変形例について、図11及び図12を参照して説明する。本変形例では、図11(a)に示すように、有極リレーの第1接点9と第2接点10とは開閉動作が同じ接点機構(a接点)が2極直列で接続された2a接点となり、第1コイル2及び第2コイル3は直列で接続されている。また、図11(b)に示すように、第1接点9は、リフトオフ方式の接点であり、点13aより可動ヨークのストロークが図中の右の範囲でオンとなり、第2接点10は、点13bより可動ヨークのストロークが図中の右の範囲でオンとなる。すなわち、第1接点9の動作が完了した後、第2接点10の動作が開始する。
(Second modification)
A second modification of the third embodiment will be described with reference to FIGS. In this modification, as shown in FIG. 11 (a), the first contact 9 and the second contact 10 of the polarized relay are the 2a contact in which the contact mechanism (a contact) having the same opening / closing operation is connected in two poles in series. Thus, the first coil 2 and the second coil 3 are connected in series. Further, as shown in FIG. 11B, the first contact 9 is a lift-off type contact, and the stroke of the movable yoke is turned on in the right range in the figure from the point 13a, and the second contact 10 is From 13b, the stroke of the movable yoke is turned on in the right range in the figure. That is, after the operation of the first contact 9 is completed, the operation of the second contact 10 is started.

次に、本変形例に係る有極リレーの接点機構部の構造に関して図12を参照して説明する。有極リレー1のコイル2,3は固定ヨーク7に収容され、固定ヨーク7の軸受け部からその端部が突出されたアーマチュア6がコイル2,3の励磁及び消磁に伴い駆動する。本変形例に係る有極リレー1は、アーマチュア6によってベース15に設けられた軸受け部15aを中心に回動する可動ブロック14を備え、この可動ブロック14には図中で下方に突出した突出部14a,14bが設けられる。   Next, the structure of the contact mechanism part of the polarized relay according to this modification will be described with reference to FIG. The coils 2 and 3 of the polarized relay 1 are accommodated in the fixed yoke 7, and the armature 6 whose end protrudes from the bearing portion of the fixed yoke 7 is driven as the coils 2 and 3 are excited and demagnetized. The polarized relay 1 according to this modification includes a movable block 14 that rotates around a bearing portion 15a provided on a base 15 by an armature 6, and the movable block 14 has a protruding portion that protrudes downward in the figure. 14a and 14b are provided.

第1接点9は、リフトオフ方式の接点であり、アーマチュア6の駆動に伴い突出部14bが矢印Y1の方向に移動することで接触ばね16bが固定接点から開離されてオフ状態となる。一方、第2接点10は、フレクシャ方式の接点であり、アーマチュア6の駆動に伴い突出部14aが矢印Y2の方向に移動することで接触ばね16aが固定接点に接触してオン状態となる。なお、端子17は、有極リレーの完成状態でカバー18の下面から突出し電源及び負荷に接続される。   The first contact 9 is a lift-off contact, and the protrusion 14b moves in the direction of the arrow Y1 as the armature 6 is driven, so that the contact spring 16b is separated from the fixed contact and is turned off. On the other hand, the second contact 10 is a flexure-type contact, and as the armature 6 is driven, the protrusion 14a moves in the direction of the arrow Y2, so that the contact spring 16a contacts the fixed contact and is turned on. The terminal 17 protrudes from the lower surface of the cover 18 in a completed state of the polarized relay and is connected to a power source and a load.

このため、本変形例では、上記実施の形態3の効果に加えて、単一の接点機構部にて、2つの接点9,10を開閉制御でき、省部品化及び低コスト化を図ることができる。   For this reason, in this modified example, in addition to the effect of the third embodiment, the two contact points 9 and 10 can be controlled to open and close by a single contact mechanism unit, so that parts saving and cost reduction can be achieved. it can.

(実施の形態4)
本発明の実施の形態4に係る有極リレーについて、図13を参照して説明する。本実施の形態4に係る有極リレーは、図13(a)に示すように、第1接点9と、第2接点10及び半導体整流素子からなる無接点リレー20が並列に接続されたハイブリッドリレー21とが直列に接続されている。なお、この無接点リレー20は、機械的リレーを有せず、内部はトライアック、抵抗器などの半導体・電子部品で構成されており、信号や電力の入り切りはこれらの電子回路で電子的に行うものである。
(Embodiment 4)
A polarized relay according to Embodiment 4 of the present invention will be described with reference to FIG. As shown in FIG. 13A, the polarized relay according to the fourth embodiment is a hybrid relay in which a first contact 9, a contactless relay 20 including a second contact 10 and a semiconductor rectifying element are connected in parallel. 21 is connected in series. The contactless relay 20 does not have a mechanical relay, and is internally composed of semiconductor / electronic components such as a triac and a resistor. Signals and electric power are turned on and off electronically using these electronic circuits. Is.

図13(b)は、有極リレーの吸引力特性を示し、第1接点9は、リフトオフ方式の接点であり、点22aより可動ヨークのストロークが図中の右の範囲でオンとなり、第2接点10は、点22bより可動ヨークのストロークが図中の右の範囲でオンとなる。   FIG. 13B shows the attractive force characteristics of the polarized relay. The first contact 9 is a lift-off type contact, and the stroke of the movable yoke is turned on in the right range in the figure from the point 22a. The contact 10 is turned on when the stroke of the movable yoke is on the right side in the figure from the point 22b.

従って、本実施の形態4に係る有極リレーはハイブリッドリレー21を備えるため、スイッチ投入時に、電源から負荷に流れる突入電流を無接点リレー20に流し、機械式スイッチである第2接点10に大きな突入電流を流れるのを回避できる。このため、有極リレーを小型化できると共に、第2接点10の溶着などによる寿命低減を抑制できる。   Therefore, since the polarized relay according to the fourth embodiment includes the hybrid relay 21, when the switch is turned on, an inrush current flowing from the power source to the load is caused to flow to the non-contact relay 20, and the second contact 10 that is a mechanical switch is large. It is possible to avoid flowing inrush current. For this reason, while being able to miniaturize a polarized relay, the lifetime reduction by welding of the 2nd contact 10 etc. can be controlled.

(第1の変形例)
本実施の形態4の第1の変形例について、図14を参照して説明する。本変形例において、図14(a)に示すように、第1接点9と第2接点10とが並列に接続されると共に、第1接点9及び双方向半導体整流素子からなる無接点リレー23が直列に接続されている。図14(b)は、有極リレーの吸引力特性を示し、第1接点9は、リフトオフ方式の接点であり、点24aより可動ヨークのストロークが図中の右の範囲でオンとなり、第2接点10は、点24bより可動ヨークのストロークが図中の右の範囲でオンとなる。従って、本変形例に係る有極リレーは、上記実施の形態4の効果に加えて、有極リレーを小型化して、有極リレーの長寿命開閉を実現できる。
(First modification)
A first modification of the fourth embodiment will be described with reference to FIG. In the present modification, as shown in FIG. 14A, the first contact 9 and the second contact 10 are connected in parallel, and the contactless relay 23 including the first contact 9 and the bidirectional semiconductor rectifier element is provided. Connected in series. FIG. 14 (b) shows the attractive force characteristics of the polarized relay. The first contact 9 is a lift-off type contact, and the stroke of the movable yoke is turned on in the right range in the figure from the point 24a. The contact 10 is turned on when the stroke of the movable yoke from the point 24b is in the right range in the figure. Therefore, in addition to the effects of the fourth embodiment, the polarized relay according to the present modification can reduce the size of the polarized relay and realize long-life switching of the polarized relay.

なお、本発明は、上記実施の形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、上記各実施の形態に係る有極リレー1は、第1コイル2及び第2コイル3を用いた二巻線形を用いているが、コイルを一巻線形とした有極リレーにも本願発明を応用できる。   The present invention is not limited to the configuration of the embodiment described above, and various modifications can be made without departing from the spirit of the invention. For example, the polarized relay 1 according to each of the above embodiments uses a two-winding type using the first coil 2 and the second coil 3, but the invention is also applied to a polarized relay having a single-winding coil. Can be applied.

1 有極型電磁リレー
2 第1コイル
3 第2コイル
4 コイルボビン
5 永久磁石
5a 磁極面
6 アーマチュア
7 固定ヨーク
8 可動ヨーク
8a,8b 凹部
8c,8d,8e 磁極面
9 第1接点
10 第2接点
11 制御部
20,23 無接点リレー
21 ハイブリッドリレー
DESCRIPTION OF SYMBOLS 1 Polarized electromagnetic relay 2 1st coil 3 2nd coil 4 Coil bobbin 5 Permanent magnet 5a Magnetic pole surface 6 Armature 7 Fixed yoke 8 Movable yoke 8a, 8b Recessed part 8c, 8d, 8e Magnetic pole surface 9 1st contact 10 2nd contact 11 Control unit 20, 23 Solid state relay 21 Hybrid relay

Claims (13)

コイルボビンに巻き回された第1コイルと、
コイルボビンに巻き回された第2コイルと、
前記第1コイルと第2コイルの間に配置された永久磁石と、
前記永久磁石と対向して配置され、前記第1コイル及び第2コイルの励磁及び消磁に伴い往復駆動する可動ヨークと、
前記可動ヨークに固定され、前記可動ヨークの駆動と連動するアーマチュアと、
前記アーマチュアを摺動可能に保持する軸受けを有した固定ヨークと、
前記アーマチュアによって直接駆動される可動接点及び前記アーマチュアの駆動に伴い前記可動接点と接離する固定接点を有する接点と、を備える有極型電磁リレーにおいて、
前記第1コイル及び前記第2コイルが無励磁の状態において、前記可動ヨークのストロークの始端位置から終端位置まで駆動するまでの吸引力特性に、傾きの正負符号が変化する2つの変曲点を有する、ことを特徴とする有極型電磁リレー。
A first coil wound around a coil bobbin;
A second coil wound around a coil bobbin;
A permanent magnet disposed between the first coil and the second coil;
A movable yoke disposed opposite to the permanent magnet and driven to reciprocate with the excitation and demagnetization of the first coil and the second coil;
An armature fixed to the movable yoke and interlocking with the driving of the movable yoke;
A fixed yoke having a bearing for slidably holding the armature;
A polarized electromagnetic relay comprising: a movable contact directly driven by the armature; and a contact having a fixed contact that comes in contact with and separates from the movable contact as the armature is driven.
In the state where the first coil and the second coil are not excited, two inflection points where the sign of the slope changes in the attractive force characteristics until the movable yoke is driven from the start position to the end position of the stroke. A polarized electromagnetic relay characterized by comprising:
前記可動ヨークは、前記永久磁石と対向する面に、断面凹形状となる少なくとも1以上の凹部を有し、複数の磁極面が形成される、ことを特徴とする請求項1記載の有極型電磁リレー。   2. The polarized type according to claim 1, wherein the movable yoke has at least one concave portion having a concave cross section on a surface facing the permanent magnet, and a plurality of magnetic pole surfaces are formed. Electromagnetic relay. 前記可動ヨークのストロークの中間位置において前記永久磁石と対向する前記磁極面の幅は、前記永久磁石の磁極面の幅より小さくなる、ことを特徴とする請求項2記載の有極型電磁リレー。   The polarized electromagnetic relay according to claim 2, wherein a width of the magnetic pole surface facing the permanent magnet at an intermediate position of the stroke of the movable yoke is smaller than a width of the magnetic pole surface of the permanent magnet. 前記接点は、第1接点及び第2接点からなり、
前記第2接点は、さらに、第2−1接点と第2−2接点を有して、前記第2−1接点の動作が完了した後、前記第2−2接点の動作を開始し、
前記第2−1接点の接点材料は、前記第2−2接点の接点材料よりも高抵抗材料である、ことを特徴とする請求項1記載の有極型電磁リレー。
The contact consists of a first contact and a second contact,
The second contact further includes a 2-1 contact and a 2-2 contact. After the operation of the 2-1 contact is completed, the operation of the 2-2 contact is started.
2. The polarized electromagnetic relay according to claim 1, wherein the contact material of the 2-1 contact is a higher resistance material than the contact material of the 2-2 contact.
前記第1コイル及び前記第2コイルに流す電流、並びに前記第1コイル及び第2コイルに印加する電圧を制御する制御部をさらに備え、
前記制御部は、前記第1コイルに対して印加する電圧とは逆方向の波形の電圧を前記第2コイルに印加する、ことを特徴とする請求項1乃至4のいずれか一項に記載の有極型電磁リレー。
A control unit for controlling a current applied to the first coil and the second coil and a voltage applied to the first coil and the second coil;
5. The control unit according to claim 1, wherein the control unit applies a voltage having a waveform opposite to a voltage applied to the first coil to the second coil. 6. Polarized electromagnetic relay.
前記第1コイル及び前記第2コイルは直列に接続され、
前記制御部は、さらに、前記可動ヨークがそのストロークの中間位置で停止するように、時間制御した電圧を前記第1コイル及び前記第2コイルに印加する、ことを特徴とする請求項5記載の有極型電磁リレー。
The first coil and the second coil are connected in series,
6. The control unit according to claim 5, further comprising applying a time-controlled voltage to the first coil and the second coil so that the movable yoke stops at an intermediate position of the stroke. Polarized electromagnetic relay.
前記第1コイル及び前記第2コイルは直列に接続され、
前記制御部は、さらに、前記第1コイル及び前記第2コイルに流す励磁電流の逆電流を通電中に流す、ことを特徴とする請求項5記載の有極型電磁リレー。
The first coil and the second coil are connected in series,
The polarized electromagnetic relay according to claim 5, wherein the control unit further causes a reverse current of an exciting current to flow through the first coil and the second coil to flow during energization.
前記接点は、第1接点及び第2接点からなり、
前記第1接点と前記第2接点の開閉動作が同一であり、
前記第2接点は、さらに、第2−1接点と第2−2接点を有して、前記第2−1接点の動作が完了した後、前記第2−2接点の動作を開始し、
前記第2−1接点の接点材料は、前記第2−2接点の接点材料よりも高抵抗材料である、ことを特徴とする請求項1乃至7のいずれか一項に記載の有極型電磁リレー。
The contact consists of a first contact and a second contact,
The opening and closing operations of the first contact and the second contact are the same,
The second contact further includes a 2-1 contact and a 2-2 contact. After the operation of the 2-1 contact is completed, the operation of the 2-2 contact is started.
8. The polarized electromagnetic wave according to claim 1, wherein the contact material of the 2-1 contact is a higher resistance material than the contact material of the 2-2 contact. relay.
前記接点は、第1接点及び第2接点からなり、
前記第1接点と前記第2接点の開閉動作が同一であり、
前記第1接点と前記第2接点は、並列に接続され、かつ前記第1接点の動作が完了した後、前記第2接点の動作を開始し、
前記第1接点の接点材料は、前記第2接点の接点材料よりも高抵抗材料である、ことを特徴とする請求項1乃至7のいずれか一項に記載の有極型電磁リレー。
The contact consists of a first contact and a second contact,
The opening and closing operations of the first contact and the second contact are the same,
The first contact and the second contact are connected in parallel, and after the operation of the first contact is completed, the operation of the second contact is started,
8. The polarized electromagnetic relay according to claim 1, wherein the contact material of the first contact is a material having a higher resistance than the contact material of the second contact.
前記第2接点に、双方向半導体整流素子からなる無接点リレーが直列に接続される、ことを特徴とする請求項9記載の有極型電磁リレー。   The polarized electromagnetic relay according to claim 9, wherein a contactless relay composed of a bidirectional semiconductor rectifying element is connected in series to the second contact. 前記接点は、第1接点及び第2接点からなり、
前記第1接点と前記第2接点の開閉動作が同一であり、
前記第1接点と第2接点は、直列に接続され、かつ前記第1接点の動作が完了した後、前記第2接点の動作を開始する、ことを特徴とする請求項1乃至7のいずれか一項に記載の有極型電磁リレー。
The contact consists of a first contact and a second contact,
The opening and closing operations of the first contact and the second contact are the same,
The first contact and the second contact are connected in series, and the operation of the second contact is started after the operation of the first contact is completed. The polarized electromagnetic relay according to one item.
前記第1接点と、前記第2接点及び半導体整流素子からなる無接点リレーが並列に接続されてなるハイブリッドリレーとが直列に接続される、ことを特徴とする請求項11記載の有極型電磁リレー。   The polarized electromagnetic according to claim 11, wherein the first contact and a hybrid relay in which a contactless relay including the second contact and a semiconductor rectifying element are connected in parallel are connected in series. relay. 前記高抵抗材料はタングステンである、ことを特徴とする請求項4,8及び9のいずれか一項に記載の有極型電磁リレー。   The polarized electromagnetic relay according to claim 4, wherein the high-resistance material is tungsten.
JP2011238541A 2011-10-31 2011-10-31 Polarized electromagnetic relay Active JP5895171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238541A JP5895171B2 (en) 2011-10-31 2011-10-31 Polarized electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238541A JP5895171B2 (en) 2011-10-31 2011-10-31 Polarized electromagnetic relay

Publications (2)

Publication Number Publication Date
JP2013097959A true JP2013097959A (en) 2013-05-20
JP5895171B2 JP5895171B2 (en) 2016-03-30

Family

ID=48619709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238541A Active JP5895171B2 (en) 2011-10-31 2011-10-31 Polarized electromagnetic relay

Country Status (1)

Country Link
JP (1) JP5895171B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157493A (en) * 2016-03-04 2017-09-07 三菱電機株式会社 Electromagnetic actuator and electromagnetic relay using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830367U (en) * 1971-08-16 1973-04-13
JPS60257108A (en) * 1984-06-01 1985-12-18 Matsushita Electric Works Ltd Tri-stable type electromagnet device
JPH0668765A (en) * 1992-08-24 1994-03-11 Matsushita Electric Works Ltd Contact point opening and closing device
JPH11219645A (en) * 1998-01-30 1999-08-10 Matsushita Electric Works Ltd Hybrid relay
WO2004088696A1 (en) * 2003-03-31 2004-10-14 Nec Lamilion Energy Ltd. Relay contact welding detection method and apparatus
JP2007311345A (en) * 2006-05-15 2007-11-29 Schneider Electric Industries Sas Electronic controller for electromagnetic device and electric switch unit
JP2011119228A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Hybrid relay

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830367U (en) * 1971-08-16 1973-04-13
JPS60257108A (en) * 1984-06-01 1985-12-18 Matsushita Electric Works Ltd Tri-stable type electromagnet device
JPH0668765A (en) * 1992-08-24 1994-03-11 Matsushita Electric Works Ltd Contact point opening and closing device
JPH11219645A (en) * 1998-01-30 1999-08-10 Matsushita Electric Works Ltd Hybrid relay
WO2004088696A1 (en) * 2003-03-31 2004-10-14 Nec Lamilion Energy Ltd. Relay contact welding detection method and apparatus
JP2007311345A (en) * 2006-05-15 2007-11-29 Schneider Electric Industries Sas Electronic controller for electromagnetic device and electric switch unit
JP2011119228A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Hybrid relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157493A (en) * 2016-03-04 2017-09-07 三菱電機株式会社 Electromagnetic actuator and electromagnetic relay using the same

Also Published As

Publication number Publication date
JP5895171B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP4392555B2 (en) Single-coil solenoid with a permanent magnet and a permanent magnet, its manufacturing method, non-magnetic switch for single-coil solenoid, single-coil solenoid kit
RU2547815C2 (en) Bistable electromagnetic drive
WO2012073780A1 (en) Latching relay
JP2006262695A (en) Actuator using permanent magnet
JP4667664B2 (en) Power switchgear
JP2015079672A (en) Electromagnetic relay
KR20090115950A (en) Hybrid electromagnetic actuator
WO2019181359A1 (en) Electromagnetic relay
JP5446780B2 (en) Electromagnetic relay
JP2010092746A (en) Driving circuit for solenoid operation mechanism
JP5895171B2 (en) Polarized electromagnetic relay
CN112074924B (en) Electromagnetic relay and control method thereof
JP6422457B2 (en) Electromagnetic actuator and electromagnetic relay using the same
JP4722601B2 (en) Electromagnetic operation mechanism, power switch using the same, and power switch
KR102507410B1 (en) Latching Relay Apparatus
JP4580814B2 (en) Electromagnetic actuator
JP4601693B2 (en) Electromagnetic relay
EP2197012A1 (en) Electromagnet for an electrical contactor
JP2011077141A (en) Electromagnet device and electromagnetic relay using the same
JP2019046719A (en) Electromagnetic relay
JPH06260070A (en) Electromagnetic relay
JP2010212016A (en) Electromagnet device
JP2009016514A (en) Electromagnetic actuator, and switching apparatus using the same
KR100206996B1 (en) Electromagnetic relay
JP2016025169A (en) Operating unit or power switching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R151 Written notification of patent or utility model registration

Ref document number: 5895171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151