JP2013096821A - Fatigue degree detecting strain gauge - Google Patents

Fatigue degree detecting strain gauge Download PDF

Info

Publication number
JP2013096821A
JP2013096821A JP2011239422A JP2011239422A JP2013096821A JP 2013096821 A JP2013096821 A JP 2013096821A JP 2011239422 A JP2011239422 A JP 2011239422A JP 2011239422 A JP2011239422 A JP 2011239422A JP 2013096821 A JP2013096821 A JP 2013096821A
Authority
JP
Japan
Prior art keywords
fatigue
strain
fatigue level
strain gauge
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011239422A
Other languages
Japanese (ja)
Other versions
JP5893342B2 (en
Inventor
Kiyotaka Kurashima
清高 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2011239422A priority Critical patent/JP5893342B2/en
Publication of JP2013096821A publication Critical patent/JP2013096821A/en
Application granted granted Critical
Publication of JP5893342B2 publication Critical patent/JP5893342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fatigue degree detecting strain gauge for measuring strain of a structural material and predicting fatigue breakdown locally generated in the structural material.SOLUTION: The fatigue degree detecting strain gauge includes: a strain detection part 130 in which a strand 131 and an adjacent strand are connected through a folding tab 132; a folding line part 140 connected in series to the strain detection part 130 in a state that a strand 141 and an adjacent strand are connected through a folding tab 142; a bypass part 160 forming a route different from the folding line part 140 and the strain detection part 130 and configured such that one end is connected to one terminal part through the folding tab 141 of the folding line part 140 and the strain detection part 130 and other end is connected to the other terminal part; and a fatigue degree detection part 150 connected to the folding tab 142 of the folding line part 140. Respective folding tabs are connected to the bypass part 160 through the fatigue degree detection part 150, and the fatigue degree of the structural material to which the fatigue degree detecting strain gauge is stuck is detected from a degree of rupture of the fatigue degree detection part 150.

Description

本発明は、構造材のひずみを測定できると共に、構造材に局所的に生じる疲労破壊の兆候を事前に予測できる疲労度検出ひずみゲージに関する。   The present invention relates to a fatigue level detecting strain gauge capable of measuring strain of a structural material and predicting in advance signs of fatigue fracture locally occurring in the structural material.

例えば、構造材のひずみを測定するひずみゲージは一般に知られている(特許文献1参照)。このひずみゲージは、位置決め用マークを備えた起歪体の正確な位置にひずみ受感素子と位置合わせ用マークを備えた平板状のベースを貼付することで、ひずみゲージの出力から構造材内のひずみの蓄積度合いを算出し、構造材の疲労破壊の兆候を予測するようになっている。   For example, a strain gauge for measuring the strain of a structural material is generally known (see Patent Document 1). This strain gauge attaches a plate-like base with a strain sensing element and an alignment mark to the exact position of a strain generating body with a positioning mark. The degree of strain accumulation is calculated to predict signs of fatigue failure of structural materials.

特開2010−169616号公報JP 2010-169616 A

上述のひずみゲージは、一般に機械構造材と同等の十分な機械的特性を有する。そのため、機械強度や疲労強度が機械構造材より低い梁や柱、橋脚、鉄塔、橋げた等の一般構造材において、特に疲労破壊し易い梁の根元や溶接部分、切欠き部分に単一のひずみゲージを疲労度検出ひずみセンサとして用いようとすると、データロガー等を介してひずみの出力トレンドを長期間に亘って収集しなければならず、その検出データを集積するためのデータ量が膨大となりデータ管理と処理が大変である。   The above-described strain gauge generally has sufficient mechanical properties equivalent to a mechanical structural material. Therefore, in general structural materials such as beams, columns, bridge piers, steel towers, bridges, etc., whose mechanical strength and fatigue strength are lower than those of mechanical structural materials, a single strain gauge is used at the base, welded portion, and notched portion of a beam that is particularly susceptible to fatigue failure. Is used as a strain sensor for fatigue detection, strain output trends must be collected over a long period of time via a data logger, etc., and the amount of data for accumulating the detected data becomes enormous. And processing is difficult.

また、単一のひずみゲージを例えば産業用機械に用いる機械構造材の比較的疲労強度が弱い溶接部や構造材の断面形状が急激に変化して応力集中が生じ易い部位に利用しようとしても、上述した一般構造材と同様の問題が生じる。   In addition, even when trying to use a single strain gauge for a part where a stress concentration is likely to occur due to a sudden change in the cross-sectional shape of a welded part or a structural material having a relatively low fatigue strength of a mechanical structural material used in an industrial machine, for example. Problems similar to those of the general structural material described above arise.

そこで、このような問題を回避するために、本発明の出願時に未だ公知ではないが、図9に示すような本発明に関連する疲労度検出ひずみゲージ900が提案されている。このひずみゲージ900の構成は、ひずみ検出部930と、ひずみ検出部930と直列に接続した導通部940と、導通部940と並列に接続した疲労度検出部950を有し、疲労度検出部950の折り返しタブ952とストランド951との間が疲労により破断することでひずみゲージの抵抗が高くなり、疲労の進み度合いを段階的に検出するようになっている。   Therefore, in order to avoid such a problem, a fatigue degree detection strain gauge 900 related to the present invention as shown in FIG. 9 has been proposed, which is not yet known at the time of filing the present invention. The strain gauge 900 includes a strain detection unit 930, a conduction unit 940 connected in series with the strain detection unit 930, and a fatigue level detection unit 950 connected in parallel with the conduction unit 940. When the folded tab 952 and the strand 951 are broken by fatigue, the resistance of the strain gauge is increased, and the progress of fatigue is detected stepwise.

しかしながら、このような構成を有する疲労度検出ひずみゲージ900の場合、構造材の疲労がさほど進んでいない段階でその疲労を検出しようとすると、その僅かな疲労に対応して疲労度検出部が破断するように折り返しタブの長さを長くする必要があり、疲労度検出部950の破断する位置が応力集中部から離れてしまい、迅速かつ的確な疲労度の検出に適さなくなる。   However, in the case of the fatigue detection strain gauge 900 having such a configuration, if an attempt is made to detect the fatigue when the fatigue of the structural material has not progressed so much, the fatigue detection unit breaks in response to the slight fatigue. Thus, it is necessary to increase the length of the folded tab, and the breakage position of the fatigue level detection unit 950 moves away from the stress concentration portion, which makes it unsuitable for rapid and accurate detection of the fatigue level.

また、係る疲労度検出ひずみゲージ900の場合、疲労度検出部950が端子部側に形成されているため、局所的に応力集中が生じる場所に疲労度検出部950を配置させると、端子部921,922(920)もこの近傍に配置するようになる。その結果、構造材の応力集中に伴って例えば端子部920のハンダ接合部にも応力を発生させてしまい、疲労度検出ひずみゲージ900の信頼性を長期間保つ観点で好ましくない。   Further, in the case of the fatigue level detection strain gauge 900, since the fatigue level detection unit 950 is formed on the terminal side, when the fatigue level detection unit 950 is arranged at a place where stress concentration locally occurs, the terminal unit 921 is provided. , 922 (920) are also arranged in the vicinity. As a result, stress is generated also at, for example, the solder joint portion of the terminal portion 920 with the stress concentration of the structural material, which is not preferable from the viewpoint of maintaining the reliability of the fatigue degree detection strain gauge 900 for a long period of time.

一方、端子部920が応力集中の影響を受けないように端子部920を局所的な応力集中部から離間させた状態で疲労度検出ひずみゲージ900を配置すると、疲労度検出部950も応力集中部から離れるため、迅速かつ的確な疲労度の検出の観点で好ましくない。   On the other hand, if the fatigue degree detection strain gauge 900 is arranged in a state where the terminal part 920 is separated from the local stress concentration part so that the terminal part 920 is not affected by the stress concentration, the fatigue degree detection part 950 is also a stress concentration part. Therefore, it is not preferable from the viewpoint of detecting the degree of fatigue quickly and accurately.

本発明は、構造材のひずみを測定できると共に、構造材に局所的に生じる疲労破壊の兆候を事前にかつ的確に予測可能な疲労度検出ひずみゲージを提供することにある。   An object of the present invention is to provide a fatigue degree detection strain gauge capable of measuring strain of a structural material and predicting a fatigue fracture sign locally generated in the structural material in advance and accurately.

上述した課題を解決するために、本発明の請求項1に記載の疲労度検出ひずみゲージは、
構造物の疲労度を抵抗体の抵抗値の電気的な変化を検出することにより適切に行うことが可能な疲労度検出ひずみゲージであって、
ストランドと隣接するストランドとが平行に配置され折り返しタブを介して接続されるひずみ検出部と、
ストランドと隣接するストランドとが平行に配置され折り返しタブを介して接続され、前記ひずみ検出部と直列接続された折り返し線路部と、
前記折り返し線路部及びひずみ検出部と別経路をなし、一端が前記端子部の一方の端子部に前記折り返し線路部の折り返しタブ及びひずみ検出部を介して繋がると共に、他端が前記端子部の他方の端子部に繋がるバイパス部と、
前記折り返し線路部の平行に配置された各折り返しタブに接続されている疲労度検出部と、
を有し、前記平行に配置されている各折り返しタブが前記疲労度検出部を介して前記バイパス部に接続されており、
前記疲労度検出部の破断度合いから前記疲労度検出ひずみゲージが貼られた構造材の疲労度を検出することを特徴としている。
In order to solve the above-described problem, a fatigue degree detection strain gauge according to claim 1 of the present invention is provided.
A fatigue degree detection strain gauge capable of appropriately performing the fatigue degree of a structure by detecting an electrical change in the resistance value of a resistor,
A strain detecting unit in which the strand and the adjacent strand are arranged in parallel and connected via a folded tab;
A strand and an adjacent strand are arranged in parallel and connected via a folded tab, and a folded line portion connected in series with the strain detector,
The return line part and the strain detection part form a separate path, and one end is connected to one terminal part of the terminal part via a return tab and a strain detection part of the return line part, and the other end is the other end of the terminal part. A bypass section connected to the terminal section of
A fatigue degree detection unit connected to each folded tab arranged in parallel to the folded line portion;
Each folded tab arranged in parallel is connected to the bypass part via the fatigue detection part,
The fatigue level of the structural material to which the fatigue level detection strain gauge is attached is detected from the degree of breakage of the fatigue level detection unit.

請求項1に係る疲労度検出ひずみゲージがこのような構成を有することで、構造材の局所的に応力集中が生じる場所に疲労度検出部を配置することができ、迅速かつ的確な疲労度の検出が可能となる。特に並列する折り返しタブが疲労度検出部を介してバイパス部に接続されていることから、並列する折り返し部の端部にそれぞれ疲労度検出部を介してバイパス部を平行に延在させることができる。これによって、フィルム状部材の先端側に疲労度検出部を極力近づけて配置させることができるようになるので、構造材の疲労の進み度合いをより正確に検出することができるようになる。   With the fatigue level detection strain gauge according to claim 1 having such a configuration, the fatigue level detection unit can be disposed at a place where stress concentration locally occurs in the structural material, and the fatigue level can be quickly and accurately determined. Detection is possible. In particular, since the parallel folded tabs are connected to the bypass part via the fatigue detection part, the bypass parts can be extended in parallel to the end parts of the parallel folded parts via the fatigue detection part, respectively. . As a result, the fatigue level detection unit can be disposed as close as possible to the front end side of the film-like member, so that the progress of fatigue of the structural material can be detected more accurately.

また、本願の関連出願のような疲労度検出のために折り返しタブの長さを長くする必要がないため、疲労度検出部のフィルム状部材長手方向の長さを先端側に詰めることができ、その結果、疲労度検出部をさらに応力集中部に近づけることができる。   In addition, since it is not necessary to lengthen the length of the folded tab for fatigue level detection as in the related application of the present application, the length in the longitudinal direction of the film-like member of the fatigue level detection unit can be reduced to the tip side, As a result, the fatigue level detection unit can be brought closer to the stress concentration unit.

また、疲労度検出部が端子部側に形成されていないため、局所的に応力集中が生じる場所に疲労度検出部を配置させても、応力集中に伴って例えば端子部のハンダ接合部に応力を生じさせないようにでき、疲労度検出ひずみゲージ自体に悪影響を及ぼすこともない。   In addition, since the fatigue level detection part is not formed on the terminal part side, even if the fatigue level detection part is arranged in a place where stress concentration occurs locally, for example, stress is applied to the solder joint of the terminal part due to the stress concentration. This does not adversely affect the fatigue detection strain gauge itself.

また、構造材の疲労破壊の兆候を予測するために、ひずみの出力トレンドを長期間に亘って収集する必要もなく、膨大なデータ量の管理と処理に煩わされることもない。また、疲労度検出部が疲労により破断することで疲労度検出ひずみゲージの抵抗値が急に高くなり、段階的に変化することで構造材の疲労破壊が予測し易くなる。   Further, in order to predict the signs of fatigue failure of the structural material, it is not necessary to collect strain output trends over a long period of time, and the management and processing of an enormous amount of data are not bothered. Further, when the fatigue level detecting portion breaks due to fatigue, the resistance value of the fatigue level detecting strain gauge suddenly increases, and when it changes stepwise, fatigue fracture of the structural material can be easily predicted.

また、本発明の請求項2に係る疲労度検出ひずみゲージは、請求項1に記載の疲労度検出ひずみゲージにおいて、
前記バイパス部の一端が前記端子部の一方の端子部に前記折り返し線路部の折り返しタブ及び前記ひずみ検出部を介して繋がる代わりに、前記バイパス部の一端が前記折り返し線路部の折り返しタブを介して一方の端子部に繋がると共に、前記ひずみ検出部が前記折り返し線路部と前記端子部を介して長手方向に並んで配置されていることを特徴としている。
Moreover, the fatigue degree detection strain gauge according to claim 2 of the present invention is the fatigue degree detection strain gauge according to claim 1,
Instead of connecting one end of the bypass part to one terminal part of the terminal part via the return tab of the return line part and the strain detection part, one end of the bypass part is connected via the return tab of the return line part. While being connected to one terminal part, the said distortion | strain detection part is arrange | positioned along with the return | turnback line part and the said terminal part along with the longitudinal direction, It is characterized by the above-mentioned.

請求項1の作用に加えて、バイパス部の一端が折り返し線路部の折り返しタブを介して一方の端子部に繋がると共に、ひずみ検出部の両端が端子部に直接繋がっているので、フィルム状部材上でのひずみ検出部の配置場所を自由に選択できる。例えば、ひずみ検出部を疲労度検出部や折り返し線路部と端子部との間に配置することで、ひずみ検出部を構造材の応力集中部が最も大きい場所からひずみ検出部を離すことができ、ひずみ検出部の長期に亘る信頼性を維持できる。   In addition to the action of claim 1, one end of the bypass portion is connected to one terminal portion via the return tab of the return line portion, and both ends of the strain detection portion are directly connected to the terminal portion. The location of the strain detection unit at can be freely selected. For example, by disposing the strain detection unit between the fatigue detection unit or the folded line unit and the terminal unit, the strain detection unit can be separated from the place where the stress concentration part of the structural material is the largest, Long-term reliability of the strain detector can be maintained.

また、本発明の請求項3に係る疲労度検出ひずみゲージは、請求項1に記載の疲労度検出ひずみゲージにおいて、
前記疲労度検出部は、当該疲労度検出部が所定の応力によって破断する幅を段階的に大きく形成してなることを特徴としている。
Moreover, the fatigue degree detection strain gauge according to claim 3 of the present invention is the fatigue degree detection strain gauge according to claim 1,
The fatigue level detection unit is characterized in that a width at which the fatigue level detection unit is broken by a predetermined stress is increased stepwise.

請求項3に係る疲労度検出ひずみゲージがこのような構成を有することで、構造材の疲労度合いに応じて疲労度検出部が段階的に破断する。そのため、構造材の疲労の進み度合いを段階的に検出することができる。   When the fatigue level detection strain gauge according to claim 3 has such a configuration, the fatigue level detection unit breaks in stages according to the level of fatigue of the structural material. Therefore, the progress of fatigue of the structural material can be detected in stages.

また、本発明の請求項4に係る疲労度検出ひずみゲージは、請求項1に記載の疲労度検出ひずみゲージにおいて、
前記折り返し線路部の折り返しタブの縁部と前記疲労度検出部の縁部とで形成される角部又は前記バイパス部の縁部と前記疲労度検出部の縁部とで形成される角部のうち、少なくとも何れか一方の角部は各縁部を接線とするR形状をなし、かつ前記R形状は前記疲労度検出部ごとに段階的に大きく形成してなることを特徴としている。
Moreover, the fatigue degree detection strain gauge according to claim 4 of the present invention is the fatigue degree detection strain gauge according to claim 1,
The corner formed by the edge of the folded tab of the folded line section and the edge of the fatigue detection section or the corner formed by the edge of the bypass section and the edge of the fatigue detection section Among them, at least one of the corners has an R shape with each edge as a tangent, and the R shape is formed to increase stepwise for each fatigue level detection unit.

請求項4に係る疲労度検出ひずみゲージがこのような構成を有することで、構造材の疲労による疲労度検出部の破断の起点箇所が、疲労度検出ひずみゲージと折り返し線路部の接続部に存在する請求項1に記載の疲労度検出ひずみゲージと異なり、疲労度検出部とバイパス部の接続部にも存在するため、請求項1に記載の疲労度検出ひずみゲージと比較して更に破断しやすい構成となっている。そのため、構造材の疲労破壊をより早く予測することができる。また、構造材の疲労度合いに応じて疲労度検出部が段階的に破断する。そのため、構造材の疲労の進み度合いを段階的に検出することができる。   Since the fatigue level detection strain gauge according to claim 4 has such a configuration, the starting point of the fracture of the fatigue level detection unit due to fatigue of the structural material exists at the connection between the fatigue level detection strain gauge and the folded line unit. Unlike the fatigue detection strain gauge according to claim 1, the fatigue detection strain gauge is present in the connecting portion between the fatigue detection portion and the bypass portion, and therefore more easily broken than the fatigue detection strain gauge according to claim 1. It has a configuration. Therefore, the fatigue failure of the structural material can be predicted more quickly. Further, the fatigue level detection unit breaks in stages according to the fatigue level of the structural material. Therefore, the progress of fatigue of the structural material can be detected in stages.

特に、疲労度検出部の幅部変えることなく折り返しタブと疲労度検出部と隣接する疲労度検出部とバイパス部とによって囲まれた空間の角部のR形状をその曲率が段階的に変わるように疲労度検出部を形成しているので、構造材の疲労度が大きくなるにつれて曲率が大きい角部から破断が開始し、構造材の疲労の進み具合に応じて順次各角部から疲労度検出部を破断させていくことができる。   In particular, the curvature of the R shape of the corner of the space surrounded by the folded tab, the fatigue detection unit, the adjacent fatigue detection unit, and the bypass unit can be changed stepwise without changing the width of the fatigue detection unit. As the fatigue level of the structural material increases, fracture starts at the corner where the curvature is large, and the fatigue level is detected from each corner sequentially according to the progress of fatigue of the structural material. The part can be broken.

前記折り返し線路部の折り返しタブの縁部と前記疲労度検出部の縁部とで形成される角部又は前記バイパス部の縁部と前記疲労度検出部の縁部とで形成される角部のうち、少なくとも何れか一方の角部は各縁部を接線とするR形状をなし、かつ前記R形状は前記疲労度検出部ごとに段階的に大きく形成してなることを特徴とする請求項1に記載の疲労度検出ひずみゲージ。   The corner formed by the edge of the folded tab of the folded line section and the edge of the fatigue detection section or the corner formed by the edge of the bypass section and the edge of the fatigue detection section 2. At least one of the corners has an R shape with each edge as a tangent, and the R shape is formed to increase stepwise for each fatigue level detection unit. Fatigue level detection strain gauge described in 1.

また、本発明の請求項5に係る疲労度検出ひずみゲージは、請求項1に記載の疲労度検出ひずみゲージにおいて、
前記バイパス部は、前記各疲労度検出部に対応して位置する当該バイパス部の幅を段階的に大きく形成し、当該バイパス部が前記疲労度検出部の代わりに所定の応力によって破断するようになっており、前記疲労度検出部の破断度合いから前記疲労度検出ひずみゲージが貼られた構造材の疲労度を検出する代わりに前記バイパス部の破断度合いから前記疲労度検出ひずみゲージが貼られた構造材の疲労度を検出するようになったことを特徴としている。
Moreover, the fatigue degree detection strain gauge according to claim 5 of the present invention is the fatigue degree detection strain gauge according to claim 1,
The bypass part is formed so that the width of the bypass part located corresponding to each fatigue degree detection part is increased stepwise, and the bypass part is broken by a predetermined stress instead of the fatigue degree detection part. The fatigue degree detection strain gauge is attached from the rupture degree of the bypass part instead of detecting the fatigue degree of the structural material to which the fatigue degree detection strain gauge is attached from the rupture degree of the fatigue degree detection part. It is characterized by detecting the degree of fatigue of structural materials.

請求項5に係る疲労度検出ひずみゲージがこのような構成を有することで、構造材のねじり方向に加わる応力や請求項1に記載の疲労度検出ひずみゲージで疲労度を計測する方向とは異なる方向に加わる引っ張り応力等の応力集中による構造材の疲労破壊を予測することができる。また、構造材の疲労度合いに応じて疲労度検出部が段階的に破断する。そのため、構造材の疲労の進み度合いを段階的に検出することができる。   The fatigue detection strain gauge according to claim 5 has such a configuration, so that the stress applied in the torsional direction of the structural material and the direction in which the fatigue detection strain gauge according to claim 1 measures the fatigue are different. It is possible to predict fatigue failure of a structural material due to stress concentration such as tensile stress applied in the direction. Further, the fatigue level detection unit breaks in stages according to the fatigue level of the structural material. Therefore, the progress of fatigue of the structural material can be detected in stages.

本発明によると、構造材のひずみを測定できると共に、構造材に局所的に生じる疲労破壊の兆候を事前にかつ的確に予測可能な疲労度検出ひずみゲージを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to measure the distortion | strain of a structural material, the fatigue degree detection strain gauge which can predict the sign of the fatigue fracture which arises locally in a structural material in advance and exactly can be provided.

本発明の第1の実施形態に係る疲労度検出ひずみゲージを示す平面図である。It is a top view which shows the fatigue degree detection strain gauge which concerns on the 1st Embodiment of this invention. 図1に示した疲労度検出ひずみゲージの疲労度検出用の折り返しタブ及びバイパス並びにこれら両者間に接続された疲労度検出部を拡大して示す平面図である。It is a top view which expands and shows the folding tab and bypass for fatigue degree detection of the fatigue degree detection strain gauge shown in FIG. 1, and the fatigue degree detection part connected between both. 第1の実施形態に係る疲労度検出ひずみゲージを構造材に取付けた状態を概略的に示す斜視図である。It is a perspective view which shows roughly the state which attached the fatigue degree detection strain gauge which concerns on 1st Embodiment to the structural material. 第1の実施形態に係る疲労度検出ひずみゲージの第1変形例であり、疲労度検出部を拡大して示す平面図(図4(a))と図4(a)に示した疲労度検出ひずみゲージに対応する回路図(図4(b))である。FIG. 4 is a first modified example of the fatigue level detection strain gauge according to the first embodiment, and is an enlarged plan view showing the fatigue level detection unit (FIG. 4A) and fatigue level detection shown in FIG. It is a circuit diagram (Drawing 4 (b)) corresponding to a strain gauge. 第1の実施形態に係る疲労度検出ひずみゲージの第2変形例の疲労度検出部を拡大して示す平面図(図5(a)と、第3変形例の疲労度検出部を拡大して示す平面図(図5(b)である。The top view which expands and shows the fatigue degree detection part of the 2nd modification of the fatigue degree detection strain gauge concerning a 1st embodiment (Drawing 5 (a), and the fatigue degree detection part of the 3rd modification) FIG. 6 is a plan view (FIG. 5B). 第1の実施形態に係る疲労度検出ひずみゲージの第4変形例の疲労度検出部を拡大して示す平面図である。It is a top view which expands and shows the fatigue degree detection part of the 4th modification of the fatigue degree detection strain gauge which concerns on 1st Embodiment. 第1の実施形態に係る疲労度検出ひずみゲージの第5変形例の疲労度検出部を拡大して示す平面図である。It is a top view which expands and shows the fatigue detection part of the 5th modification of the fatigue detection strain gauge which concerns on 1st Embodiment. 本発明の第2の実施形態に係る疲労度検出ひずみゲージを一部ブロックで示す平面図である。It is a top view which shows the fatigue degree detection strain gauge which concerns on the 2nd Embodiment of this invention in a partial block. 本発明に関連する疲労度検出ひずみゲージを示す平面図である。It is a top view which shows the fatigue degree detection strain gauge relevant to this invention.

本実施形態に係る疲労度検出ひずみゲージは、構造物の疲労度を抵抗体の抵抗値の電気的な変化を検出することにより適切に行うことが可能な疲労度検出ひずみゲージである。この疲労度検出ひずみゲージは、ストランドと隣接するストランドとが平行に配置され折り返しタブを介して接続されるひずみ検出部と、ストランドと隣接するストランドとが平行に配置され折り返しタブを介して接続され前記ひずみ検出部と直列接続された折り返し線路部と、折り返し線路部及びひずみ検出部と別経路をなし、一端が前記端子部の一方の端子部に折り返し線路部の折り返しタブ及びひずみ検出部を介して繋がると共に、他端が端子部の他方の端子部に繋がるバイパス部と、折り返し線路部の折り返しタブに接続されている疲労度検出部と、を有している。そして、平行に配置されている各々の折り返しタブが疲労度検出部を介してバイパス部に接続されており、疲労度検出部の破断度合いから疲労度検出ひずみゲージが貼られた構造材の疲労度を検出するようになっている。   The fatigue degree detection strain gauge according to the present embodiment is a fatigue degree detection strain gauge capable of appropriately performing the fatigue degree of a structure by detecting an electrical change in the resistance value of the resistor. This strain detection strain gauge has a strain detection unit in which a strand and an adjacent strand are arranged in parallel and connected via a folded tab, and a strand and an adjacent strand are arranged in parallel and connected through a folded tab. The folded line section connected in series with the strain detecting section, the folded line section, and the strain detecting section form a separate path, and one end thereof is connected to one terminal section of the terminal section via the folded tab of the folded line section and the strain detecting section. And the other end of the terminal portion is connected to the other terminal portion, and the fatigue detection portion is connected to the folded tab of the folded line portion. And each folded tab arranged in parallel is connected to the bypass part through the fatigue degree detection part, and the fatigue degree of the structural material to which the fatigue degree detection strain gauge is attached from the degree of fracture of the fatigue degree detection part Is supposed to be detected.

以下、本発明の第1の実施形態に係る疲労度検出ひずみゲージについて図面に基づいて説明する。図1は、本発明の第1の実施形態に係る疲労度検出ひずみゲージを示す平面図である。また、図2は、図1に示した疲労度検出ひずみゲージの疲労度検出用の折り返しタブ及びバイパス部並びにこれら両者間に接続された疲労度検出部を拡大して示す平面図である。なお、以下の説明においては、図1におけるフィルム状部材の垂直方向を長手方向とし、水平方向を幅方向とする。また、図1におけるフィルム状部材の上側を先端側、下側を基端側とする。   Hereinafter, a fatigue level detection strain gauge according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing a fatigue level detecting strain gauge according to the first embodiment of the present invention. FIG. 2 is an enlarged plan view showing a fatigue tab of the fatigue detection strain gauge shown in FIG. 1 and a bypass tab for detecting the fatigue and a fatigue detection unit connected between them. In the following description, the vertical direction of the film-like member in FIG. 1 is the longitudinal direction, and the horizontal direction is the width direction. Moreover, let the upper side of the film-like member in FIG. 1 be a front end side, and let the lower side be a base end side.

本実施形態に係る疲労度検出ひずみゲージ100は、例えば建造物の梁や柱、橋脚、鉄塔、橋げた等の一般構造材のひずみ及び疲労度を検出するのに用いられ、可撓性を有する絶縁体の樹脂材からなるフィルム状部材110と、フィルム状部材110にパターニングされた金属箔からなる電気抵抗体、と電気抵抗体の端部に接続された端子部120等から構成されている。そして、電気抵抗体は、端子部121,122(120)と、ひずみ検出部130と、折り返し線路部140と、疲労度検出部150と、バイパス部160とから構成されている。   The fatigue detection strain gauge 100 according to the present embodiment is used to detect strain and fatigue of general structural materials such as beams and columns of buildings, piers, steel towers, bridges, etc., and has flexible insulation. It comprises a film-like member 110 made of a body resin material, an electric resistor made of a metal foil patterned on the film-like member 110, a terminal part 120 connected to the end of the electric resistor, and the like. The electrical resistor includes terminal portions 121 and 122 (120), a strain detection portion 130, a folded line portion 140, a fatigue level detection portion 150, and a bypass portion 160.

フィルム状部材110は、樹脂製部材からなり可撓性を有し矩形状をなしている。   The film-like member 110 is made of a resin member, has flexibility, and has a rectangular shape.

端子部120(121,122)は、フィルム状部材110の基端側であって幅方向一方の側(図1中左側)の端部近傍に形成された一方の端子部121と他方の側(図1中右側)の端部近傍に形成された他方の端子部122からなる。端子部120にはここでは図示しない電線がハンダ付けされ、ひずみ検出部130、折り返し線路部140、疲労度検出部150、及びバイパス部160からなる電気抵抗体の抵抗値の変化を外部に出力し、図示しない演算制御手段で疲労度検出ひずみゲージ100が貼られた構造材のひずみや疲労度を検出するようになっている。   The terminal part 120 (121, 122) is one terminal part 121 formed on the base end side of the film-like member 110 and near the end part on one side in the width direction (left side in FIG. 1) and the other side ( It consists of the other terminal portion 122 formed in the vicinity of the end portion on the right side in FIG. An electric wire (not shown) is soldered to the terminal portion 120, and a change in the resistance value of the electric resistor composed of the strain detecting portion 130, the folded line portion 140, the fatigue degree detecting portion 150, and the bypass portion 160 is output to the outside. The strain and fatigue level of the structural material to which the fatigue level detection strain gauge 100 is affixed are detected by a calculation control means (not shown).

ひずみ検出部130は、フィルム状部材110の幅方向一方の側(図1中左側)の端部近傍からフィルム状部材110の幅方向中央近傍までの幅であって、フィルム状部材110の先端部近傍から一方の端子部121近傍に亘る領域に形成されている。   The strain detection unit 130 is a width from the vicinity of the end of one side in the width direction of the film-like member 110 (left side in FIG. 1) to the vicinity of the center of the film-like member 110 in the width direction, and the tip of the film-like member 110 It is formed in a region extending from the vicinity to the vicinity of one terminal portion 121.

ひずみ検出部130は、本実施形態では線幅の細い金属箔が一定の長さでそれぞれ端部側において何度も同一方向に折り返され、前記一定の長さの各延在部が僅かな間隔だけ隔てて互いに平行に配置されたいわゆるつづら折り形状(以下、単に「つづら折り」形状とする)をなしている。なお、ひずみ検出部130の各延在部はフィルム状部材110の長手方向に延在している。   In the present embodiment, the strain detection unit 130 has a thin metal foil with a constant length and is folded back in the same direction many times on the end side, and each extension portion with the constant length is slightly spaced. They are so-called zigzag folded shapes (hereinafter simply referred to as “zigzag folded” shapes) arranged in parallel with each other. In addition, each extending part of the strain detection unit 130 extends in the longitudinal direction of the film-like member 110.

また、ひずみ検出部130の一端は、一方の端子部121と接続し、その他端は折り返し線路部140に接続している。   In addition, one end of the strain detection unit 130 is connected to one terminal unit 121, and the other end is connected to the folded line unit 140.

より詳細には、ひずみ検出部130は、複数のストランド(ゲージ受感部)131(上述した延在部)と折り返しタブ132(上述した折り返し部)から構成され、ひずみ検出部130に引っ張りのひずみが生じることで、ひずみ検出部130の抵抗値が増し、電気抵抗体全体としての抵抗値も上がるようになっている。なお、ひずみ検出部130の折り返しタブ132とストランド131とが接続される部分における折り返しタブ132の内側部分の形状は、曲率が連続的に徐々に変わる曲線形状をしており、疲労による破断が生じ難い形状となっている。   More specifically, the strain detection unit 130 includes a plurality of strands (gauge sensing units) 131 (the above-described extension portion) and a folding tab 132 (the above-described folding unit), and the strain detection unit 130 has a tensile strain. As a result, the resistance value of the strain detector 130 increases and the resistance value of the entire electrical resistor increases. In addition, the shape of the inner part of the folding tab 132 in the portion where the folding tab 132 and the strand 131 of the strain detection unit 130 are connected has a curved shape in which the curvature gradually and continuously breaks due to fatigue. It has a difficult shape.

折り返し線路部140は、フィルム状部材110の幅方向他方の側(図1中右側)端部近傍からフィルム状部材110の幅方向中央近傍までの幅であって、フィルム状部材110の先端部近傍から他方の端子部122近傍に亘る領域に形成されている。   The folded line portion 140 is a width from the vicinity of the other end (right side in FIG. 1) in the width direction of the film-like member 110 to the vicinity of the center in the width direction of the film-like member 110, and in the vicinity of the front end portion of the film-like member 110. To the other terminal portion 122.

折り返し線路部140は、ひずみ検出部130と同様の構成を有しており、線幅の細い金属箔がつづら折り形状をなしている。そして、その折り返し線路部140の一方の端部先端側(図1中左側端部先端側)が疲労度検出部150を介してバイパス部160に接続し、他方の端部先端側(図1中幅方向右側端部先端側)は端子部122及びバイパス部160に接続している。また、折り返し線路部140の一方の端部基端側(図1中左側端部基端側)は、ひずみ検出部130の一方の端部に接続している。   The folded line portion 140 has the same configuration as that of the strain detecting portion 130, and a metal foil having a narrow line width forms a zigzag shape. Then, one end tip side (the left end tip side in FIG. 1) of the folded line portion 140 is connected to the bypass part 160 via the fatigue degree detection unit 150, and the other end tip side (in FIG. 1). The front end side in the width direction right end portion) is connected to the terminal portion 122 and the bypass portion 160. Further, one end base end side (the left end base end side in FIG. 1) of the folded line portion 140 is connected to one end of the strain detection unit 130.

より具体的には、折り返し線路部140は、複数のストランド141と折り返しタブ142から構成され、ストランド141はフィルム状部材110の長手方向に延在している。また、折り返し線路部140の折り返しタブ142とストランド141とが接続される部分における折り返しタブ142の内側部分の形状は、連続的に曲率が徐々に変わる曲線形状をしており、疲労による破断が生じ難い形状となっている。これによって、疲労度検出部150が全て破断した際は、バイパス部160には電流が流れず、折り返し線路部140にだけ電流が流れることになり、電気抵抗体全体としての抵抗値が上がるようになっている。   More specifically, the folded line portion 140 includes a plurality of strands 141 and folded tabs 142, and the strands 141 extend in the longitudinal direction of the film-like member 110. Further, the shape of the inner portion of the folded tab 142 in the portion where the folded tab 142 and the strand 141 of the folded line portion 140 are connected has a curved shape in which the curvature gradually changes continuously, and fracture due to fatigue occurs. It has a difficult shape. As a result, when the fatigue detection unit 150 is all broken, no current flows through the bypass unit 160, and only a current flows through the folded line unit 140, so that the resistance value of the entire electrical resistor increases. It has become.

疲労度検出部150は、図2に示すように折り返し線路部140の先端側の各折り返しタブ142の先端からそれぞれ延在形成されている。なお、各疲労度検出部150の一方(図2中右側)の側縁部150mは、これに対応する折り返し線路部140の一方(図2中右側)の側縁部140mと連続して直線状をなしている。疲労度検出部150は、本実施形態では線幅の細い金属箔からなり、長手方向に沿って形成された長さの短い延在部から構成されている。そして、疲労度検出部150は、本実施形態の場合、全て同一幅となっており、それぞれがフィルム状部材110の長手方向に沿って延在し、その基端側端部は上述した通り折り返し線路部140の先端側の折り返しタブ142に接続すると共に、各先端側端部は後述するバイパス部160に接続している。   As shown in FIG. 2, the fatigue level detection unit 150 is formed to extend from the tip of each folded tab 142 on the tip side of the folded line portion 140. In addition, one side edge part 150m of each fatigue degree detection part 150 (right side in FIG. 2) is continuously linear with one side edge part 140m (right side in FIG. 2) of the corresponding folded line part 140. I am doing. In the present embodiment, the fatigue level detection unit 150 is made of a metal foil having a thin line width, and is composed of an extended portion having a short length formed along the longitudinal direction. In the case of this embodiment, the fatigue level detection units 150 all have the same width, each extends along the longitudinal direction of the film-like member 110, and its proximal end is folded as described above. In addition to being connected to the folded tab 142 on the distal end side of the line portion 140, each distal end end portion is connected to a bypass portion 160 described later.

バイパス部160は、折り返し線路部140より更に先端側であって折り返し線路部140の先端側各折り返しタブ142と全て等距離だけ離間した位置を通るようにフィルム部材110の幅方向に延在している。   The bypass portion 160 extends further in the width direction of the film member 110 so as to pass through a position that is further on the distal end side than the folded line portion 140 and spaced apart from each folded tab 142 on the distal end side of the folded line portion 140 by an equal distance. Yes.

バイパス部160は、線幅の細い金属箔からなり、幅方向一端側(図中左側)は、疲労度検出部150を介して折り返し線路部140の幅方向一端(図2における最も左側の疲労度検出部150)と接続し、他端側(図中右側)は、図1中最も右側の折り返し線路部140及び端子部122と接続している。また、各折り返し線路部140は、各折り返しタブ142において各疲労度検出部150を介してバイパス部160に接続されている。なお、バイパス部自体の電気抵抗は極めて低く、このバイパス部160にひずみが生じてもバイパス部160の抵抗値が変化することはなく、電気抵抗体全体としての抵抗値も変化しないようになっている。   The bypass portion 160 is made of a metal foil having a thin line width, and one end in the width direction (left side in the drawing) is one end in the width direction of the folded line portion 140 via the fatigue detection portion 150 (the leftmost fatigue level in FIG. 2). The other end side (the right side in the figure) is connected to the rightmost folded line part 140 and the terminal part 122 in FIG. Each folded line section 140 is connected to the bypass section 160 via each fatigue level detecting section 150 at each folded tab 142. The electrical resistance of the bypass section itself is extremely low, and even if the bypass section 160 is distorted, the resistance value of the bypass section 160 does not change, and the resistance value of the electrical resistor as a whole does not change. Yes.

本実施形態では、疲労度検出部150が構造材の局所的に生じる応力集中部かその近傍に位置するように疲労度検出ひずみゲージ100が接着剤等を介して構造材に貼られるようになっている。そして、全ての疲労度検出部150と折り返し線路部140の折り返しタブ142との間が破断すると、バイパス部160に電流が一切流れなくなると共に、折り返し線路部140にのみ電流が流れるようになる。これによって、電気抵抗体全体の抵抗値が一気に上がり、構造材の局所的な疲労破壊を迅速かつ的確に予測することを可能にしている。   In the present embodiment, the fatigue level detection strain gauge 100 is attached to the structural material via an adhesive or the like so that the fatigue level detection unit 150 is located at or near the stress concentration portion that occurs locally in the structural material. ing. When all the fatigue level detection units 150 and the folded tabs 142 of the folded line unit 140 are broken, no current flows through the bypass unit 160 and only a current flows through the folded line unit 140. As a result, the resistance value of the entire electrical resistor is increased at a stretch, and it is possible to quickly and accurately predict local fatigue failure of the structural material.

この際、疲労度検出部150のうち一部が破断した場合であっても、それなりに電気抵抗体全体の抵抗値に変化が生じるので、この抵抗器の変化に基づいて構造材の疲労度合いが若干進んだことを検出することも考えられる。   At this time, even if a part of the fatigue level detection unit 150 is broken, the resistance value of the entire electrical resistor changes as it is. Therefore, the degree of fatigue of the structural material is determined based on the change of the resistor. It may be possible to detect a slight progress.

なお、本実施形態に係る疲労度検出ひずみゲージ100は、疲労度検出部150を利用して疲労度を検出できる電気抵抗式の疲労度検出ひずみゲージであるが、上述した構成を有することで構造材の疲労度検出にのみ特化したものではなく、ひずみ検出部130にひずみが生じた場合にひずみ検出部130の抵抗値が変化し、その変化した値から構造材のひずみを検出することも可能としている。   The fatigue level detection strain gauge 100 according to the present embodiment is an electrical resistance type fatigue level detection strain gauge that can detect the fatigue level by using the fatigue level detection unit 150, but has the structure described above. It is not only specialized in detecting the fatigue level of the material, but when the strain is detected in the strain detector 130, the resistance value of the strain detector 130 changes, and the strain of the structural material can be detected from the changed value. It is possible.

続いて、上述した疲労度検出ひずみゲージ100の具体的な使用方法について説明する。図3は、第1の実施形態に係る疲労度検出ひずみゲージを構造材に取付けた状態を概略的に示す斜視図である。図3において2つの疲労度検出ひずみゲージ100A,100Bが一般構造材としての柱11と梁12の連結部に貼り付けられている。   Then, the specific usage method of the fatigue degree detection strain gauge 100 mentioned above is demonstrated. FIG. 3 is a perspective view schematically showing a state in which the fatigue detection strain gauge according to the first embodiment is attached to a structural material. In FIG. 3, two fatigue degree detection strain gauges 100 </ b> A and 100 </ b> B are affixed to a connecting portion between a column 11 and a beam 12 as a general structural material.

2つの疲労度検出ひずみゲージ100A,100Bがこのように柱11と梁12に貼り付けられているので、構造材の柱11や梁12に曲げ荷重や引張り荷重が作用し、疲労の程度が予め想定された疲労度に達すると、ひずみ検出部130の最も近くに位置する(即ち、図1における最も左側の)疲労度検出部150を含む少なくとも何れか1つ若しくは全部の疲労度検出部150と折り返し線路部140との接続部が破断する。そして、電気抵抗体の抵抗値を測定することで構造材の疲労が規定の疲労度に達したことが分かり、構造材の疲労破壊の予測に役立てることができる。   Since the two strain level detecting strain gauges 100A and 100B are attached to the column 11 and the beam 12 in this way, a bending load or a tensile load acts on the column 11 or the beam 12 of the structural material, and the degree of fatigue is previously determined. When the assumed fatigue level is reached, at least any one or all of the fatigue level detection units 150 including the fatigue level detection unit 150 located closest to the strain detection unit 130 (that is, the leftmost side in FIG. 1) The connection portion with the folded line portion 140 is broken. Then, by measuring the resistance value of the electrical resistor, it can be understood that the fatigue of the structural material has reached a prescribed fatigue level, which can be used for prediction of fatigue failure of the structural material.

上述した本実施形態に係る疲労度検出ひずみゲージ100は、疲労度検出部150とひずみ検出部130を併せ持っているので、以下のような本発明特有の使用方法が可能となる。具体的には、例えば本実施形態に係る疲労度検出ひずみゲージ100を車両の多く通行する橋脚の一般構造材に備えた場合、橋脚の完成直後からしばらくの間、ひずみ検出部130から構造材のひずみ度合いのトレンドを収集し、橋脚を構成する構造材の車両通行に伴うひずみ度合いの傾向を検出することができる。   Since the fatigue level detection strain gauge 100 according to the present embodiment described above has both the fatigue level detection unit 150 and the strain detection unit 130, the following usage methods specific to the present invention are possible. Specifically, for example, when the fatigue level detection strain gauge 100 according to the present embodiment is provided in a general structural material of a pier that passes a lot of vehicles, for a while from the completion of the pier, the strain detection unit 130 detects the structural material. The trend of the degree of strain can be collected, and the tendency of the degree of strain accompanying the vehicle traffic of the structural material constituting the pier can be detected.

本実施形態に係る疲労度検出ひずみゲージがこのような構成を有することで、構造材の局所的に応力集中が生じる場所に疲労度検出部150を配置することができ、迅速かつ的確な疲労度の検出が可能となる。特に平行に配置されている折り返しタブ142が疲労度検出部150を介してバイパス部160に接続されていることから、平行に配置された各折り返しタブ142の端部にそれぞれ疲労度検出部150を介してバイパス部160をフィルム状部材先端縁部に対して平行に延在させることができる。これによって、フィルム状部材110の先端側に疲労度検出部150を極力近づけて配置させることができるようになるので、構造材の疲労の進み度合いをより正確に検出することができるようになる。   Since the fatigue level detection strain gauge according to the present embodiment has such a configuration, the fatigue level detection unit 150 can be disposed at a place where stress concentration locally occurs in the structural material, and the fatigue level can be quickly and accurately determined. Can be detected. In particular, since the folded tabs 142 arranged in parallel are connected to the bypass unit 160 via the fatigue level detecting unit 150, the fatigue level detecting units 150 are respectively connected to the end portions of the folded tabs 142 arranged in parallel. The bypass part 160 can be extended in parallel to the film-like member leading edge. As a result, the fatigue level detection unit 150 can be disposed as close as possible to the distal end side of the film-like member 110, so that the progress of fatigue of the structural material can be detected more accurately.

また、図9に示す本願の関連出願のように、疲労度検出部の構造としては、隣接するストランド間を折り返しタブ952で接続する構造が一般的であり、この場合、折り返しタブ952の長さLが一定の長さを有することになる。一方、本実施形態の場合、上述した構成から明らかなように疲労度検出部に折り返しタブが設けられていない。従って、仮に関連出願の疲労度検出部952を応力集中部側に配置した場合に比べて、本実施形態の場合の方が、疲労度検出部150を応力集中部により近づけることができる。   Further, as a related application of the present application shown in FIG. 9, the structure of the fatigue degree detection unit is generally a structure in which adjacent strands are connected by folded tabs 952, and in this case, the length of the folded tabs 952. L will have a certain length. On the other hand, in the case of the present embodiment, as is apparent from the above-described configuration, the folding tab is not provided in the fatigue level detection unit. Therefore, it is possible to bring the fatigue level detection unit 150 closer to the stress concentration unit in the case of the present embodiment than when the fatigue level detection unit 952 of the related application is arranged on the stress concentration unit side.

また、疲労度検出部150が端子部側に形成されていないため、局所的に応力集中が生じる場所に疲労度検出部150を配置させても、応力集中に伴って例えば端子部120のハンダ接合部に応力を生じさせないようにでき、疲労度検出ひずみゲージ自体に悪影響を及ぼすこともない。   In addition, since the fatigue level detection unit 150 is not formed on the terminal side, even if the fatigue level detection unit 150 is disposed at a place where stress concentration occurs locally, for example, solder bonding of the terminal unit 120 is performed along with the stress concentration. It is possible to prevent the stress from being generated in the portion, and it does not adversely affect the fatigue detection strain gauge itself.

なお、上述の実施形態のような疲労度検出ひずみゲージの使用方法は、一般構造材を橋脚に用いた場合に限定されず、例えば多層階の建造物の骨組みをなす一般構造材に適用しても良い。これによって、建造物の完成直後しばらくの間、構造材のひずみ度合いのトレンドをひずみ検出部130で検出することで、建造物の完成後における構造材のひずみ度合いの変化を分析することができる。   In addition, the usage method of the fatigue | exhaustion degree detection strain gauge like the above-mentioned embodiment is not limited to the case where a general structural material is used for a bridge pier, For example, it applies to the general structural material which makes the framework of a multi-story building. Also good. Thereby, for a while immediately after the building is completed, the strain detection unit 130 detects the trend of the degree of distortion of the structural material, whereby the change in the degree of distortion of the structural material after the building is completed can be analyzed.

また、疲労度検出部150の破断により構造材の疲労破壊を予測した場合、その直後のしばらくの間、構造材のひずみ度合いのトレンドをひずみ検出部130から収集することで、どのような現象により構造材の疲労破壊が近づいているかを把握することができる。一方、疲労度検出部150が破断に至らなくても、例えば建造物の上層階に産業機械などの重量物を設置した場合などにおいて、その重量物の設置直後からしばらくの間、構造材のひずみ度合いのトレンドをひずみ検出部130から収集することで、重量物の設置が構造材に与える影響を分析することができる。   In addition, when a fatigue failure of a structural material is predicted due to the breakage of the fatigue level detection unit 150, by collecting a trend of the degree of strain of the structural material from the strain detection unit 130 for a while immediately after that, by what phenomenon It is possible to grasp whether the fatigue failure of the structural material is approaching. On the other hand, even if the fatigue detection unit 150 does not break, for example, when a heavy object such as an industrial machine is installed on the upper floor of a building, the distortion of the structural material for a while immediately after the installation of the heavy object. By collecting the trend of the degree from the strain detection unit 130, it is possible to analyze the influence of the installation of heavy objects on the structural material.

なお、ひずみ検出部の配置位置は、上述の実施形態に限定されず、図8に示すように疲労度検出部よりもフィルム部材基端側に配置しても良い。これによって、ひずみ検出部が構造材の疲労により受ける影響を小さくすることができる。この構成については、第2の実施形態として後に詳細に説明する。   In addition, the arrangement | positioning position of a distortion | strain detection part is not limited to the above-mentioned embodiment, You may arrange | position to a film member base end side rather than a fatigue degree detection part, as shown in FIG. Thereby, the influence which a distortion | strain detection part receives by the fatigue of a structural material can be made small. This configuration will be described in detail later as a second embodiment.

続いて、疲労度検出ひずみゲージの各種変形例について説明する。この各種変形例は、第1の実施形態における疲労度検出部150の形状を部分的に変形させたものである。   Next, various modifications of the fatigue level detection strain gauge will be described. These various modifications are obtained by partially deforming the shape of the fatigue level detection unit 150 in the first embodiment.

最初に、上述した実施形態に係る疲労度検出部の第1変形例について説明する。なお、上述した実施形態と同等の構成に関しては、対応する符号を付して詳細な説明を省略する。図4(a)は、第1の実施形態に係る疲労度検出ひずみゲージの第1変形例であり、疲労度検出部250を拡大して示す平面図である。   Initially, the 1st modification of the fatigue detection part which concerns on embodiment mentioned above is demonstrated. In addition, about the structure equivalent to embodiment mentioned above, a corresponding code | symbol is attached | subjected and detailed description is abbreviate | omitted. FIG. 4A is a first modification of the fatigue level detection strain gauge according to the first embodiment, and is an enlarged plan view showing the fatigue level detection unit 250.

なお、図4(a)における折り返し線路部240に関しては、ここでは説明の都合上、図中左から第1の折り返し線路部240A、第2の折り返し線路部240B、第3の折り返し線路部240Cとし、これらにそれぞれ接続された疲労度検出部250を第1の疲労度検出部250A、第2の疲労度検出部250B、第3の疲労度検出部250Cとする。なお、図4(a)は、疲労度検出部250のひずみ検出部側に配置された一部を示したもので、図4(a)の右側に図1に対応する疲労度検出部250が更に形成されている。   For convenience of explanation, the folded line section 240 in FIG. 4A is referred to as a first folded line section 240A, a second folded line section 240B, and a third folded line section 240C from the left in the figure. The fatigue level detection unit 250 connected to each of them is referred to as a first fatigue level detection unit 250A, a second fatigue level detection unit 250B, and a third fatigue level detection unit 250C. 4A shows a part of the fatigue detection unit 250 arranged on the strain detection unit side, and the fatigue detection unit 250 corresponding to FIG. 1 is on the right side of FIG. 4A. Further formed.

第1変形例に係る疲労度検出部250(250A,250B,250C,・・・)は、図4(a)に示すように各疲労度検出部250の幅が他端側(図中右側)に向かって段階的に広くなっている。具体的には、図中左側に位置する第1の疲労度検出部250Aの幅W1が最も狭く、第2の疲労度検出部250Bの幅W2、第3の疲労度検出部250Cの幅W3の順に広くなっていく。これによって、構造材の疲労度が高まるにつれて疲労度検出部250と折り返し線路部240の間が疲労度検出部250の幅の狭い順に断線し、電気抵抗体の抵抗値が段階的に上昇する。そして、この抵抗値の段階的な変化を検出することで、構造材の疲労の進み度合いを段階的に検出することができるようになる。   In the fatigue level detection unit 250 (250A, 250B, 250C,...) According to the first modification, the width of each fatigue level detection unit 250 is the other end side (right side in the figure) as shown in FIG. It is getting wider step by step. Specifically, the width W1 of the first fatigue level detector 250A located on the left side in the drawing is the narrowest, the width W2 of the second fatigue level detector 250B, and the width W3 of the third fatigue level detector 250C. It gets wider in order. As a result, as the fatigue level of the structural material increases, the fatigue level detection unit 250 and the folded line portion 240 are disconnected from each other in order of decreasing width of the fatigue level detection unit 250, and the resistance value of the electrical resistor increases stepwise. And by detecting the step change of this resistance value, it becomes possible to detect the progress of the fatigue of the structural member step by step.

以上の説明を回路図に基いて説明する。図4(b)は、図4(a)に示した疲労度検出ひずみゲージに対応する回路図である。ここで、図4(b)の回路図を図4(a)に示す構成に対応させて説明する。   The above description will be described based on a circuit diagram. FIG. 4B is a circuit diagram corresponding to the fatigue level detection strain gauge shown in FIG. Here, the circuit diagram of FIG. 4B will be described in correspondence with the configuration shown in FIG.

図4(a)の疲労度検出部250Aから250Bに至るまでの第1の折り返し線路部240Aにおける右側のストランド241とこれに連なる第2の折り返し線路部240Bにおける左側のストランド241の抵抗を図4(b)中のR1、図4(a)の疲労度検出部250Bから250Cに至るまでの第2の折り返し線路部240Bにおける右側のストランド241とこれに連なる第3の折り返し線路部240Cにおける左側のストランド241の抵抗を図4(b)中のR2、図4(a)の疲労度検出部250Cからここでは図示しない図中右側に隣接する疲労度検出部に至るまでの第3の折り返し線路部240Cにおける右側のストランド241とこれに連なるここでは図示しない図中右側に隣接する折り返し線路部における左側のストランドの抵抗を図4(b)中のR3とする。また、構造材に疲労が生じておらず何れの疲労度検出部250も破断していない状態の抵抗は図4(b)中のRhとする。   FIG. 4 shows the resistance of the right strand 241 in the first folded line portion 240A and the left strand 241 in the second folded line portion 240B connected to the first folded line portion 240A from the fatigue level detecting portions 250A to 250B in FIG. R1 in FIG. 4B, the right strand 241 in the second folded line portion 240B from the fatigue level detecting portion 250B to 250C in FIG. 4A and the left side in the third folded line portion 240C connected thereto. The resistance of the strand 241 is R2 in FIG. 4B, the third folded line portion from the fatigue level detection unit 250C in FIG. 4A to the fatigue level detection unit adjacent to the right side in the drawing not shown here. The right side strand 241 in 240C and the left side strand in the folded line portion adjacent to the right side in the drawing (not shown here) connected thereto. The de of the resistor and R3 in FIG. 4 (b). Further, the resistance in a state where the structural material is not fatigued and none of the fatigue level detection parts 250 is broken is Rh in FIG. 4B.

ここで、構造材に疲労が生じていない状態の時は、電流は抵抗Rh、第1の疲労度検出部250A、バイパス部260を通る。また、構造材が第1段階の疲労度に達し第1の疲労度検出部250Aとこれに対応する折り返し線路部240Aの接続部が破断した場合は、電流は抵抗Rh、R1、第2の疲労度検出部250B、バイパス部260を通り、電気抵抗体の抵抗値が1段階上昇する。また、構造材の疲労が更に進んで構造材が第2の疲労段階に達し、第1の疲労度検出部250A及び第2の疲労度検出部250Bとこれらに対応する折り返し線路部240A,240Bの接続部がそれぞれ破断した場合は、電流は抵抗Rh、R1、R2、第3の疲労度検出部250C、バイパス部260を通り、電気抵抗体の抵抗値が更に1段階上昇して2段階目に達する。また、構造材の疲労が更に進んで構造材が第3の疲労段階に達し、第1の疲労度検出部250A、第2の疲労度検出部250B、及び第3の疲労度検出部250Cとこれらに対応する折り返し線路部240A,240B,240Cの全ての接続部が破断した場合は、電流は抵抗Rh、R1、R2、R3、バイパス部260を通り、電気抵抗体の抵抗値が更に1段階上昇して3段階目に達する。以降疲労度が高まるにつれてこのような段階的な破断現象及びこれに対応する電気抵抗体の抵抗値の段階的な上昇が生じる。そして、このような抵抗値の段階的な変化を検出することで、構造材の疲労度を段階的に検出することができるようになる。   Here, when the structural material is not fatigued, the current passes through the resistance Rh, the first fatigue level detection unit 250A, and the bypass unit 260. In addition, when the structural material reaches the first stage fatigue level and the connection portion between the first fatigue level detection unit 250A and the corresponding folded line portion 240A breaks, the current is the resistance Rh, R1, the second fatigue level. The resistance value of the electrical resistor increases by one step through the degree detector 250B and the bypass unit 260. Further, the fatigue of the structural material further progresses and the structural material reaches the second fatigue stage, and the first fatigue level detection unit 250A and the second fatigue level detection unit 250B and the corresponding folded line portions 240A and 240B In the case where each of the connecting portions is broken, the current passes through the resistances Rh, R1, R2, the third fatigue level detection unit 250C, and the bypass unit 260, and the resistance value of the electric resistor further increases by one level and reaches the second level. Reach. Further, the fatigue of the structural material further progresses and the structural material reaches the third fatigue stage, and the first fatigue level detection unit 250A, the second fatigue level detection unit 250B, and the third fatigue level detection unit 250C and these When all the connection parts of the folded line parts 240A, 240B, and 240C corresponding to rupture, the current passes through the resistances Rh, R1, R2, R3, and the bypass part 260, and the resistance value of the electric resistor further increases by one step. And reach the third stage. Thereafter, as the degree of fatigue increases, such a stepwise fracture phenomenon and a corresponding stepwise increase in the resistance value of the electric resistor occur. And by detecting such a step change in resistance value, the fatigue level of the structural material can be detected step by step.

次に、上述した実施形態に係る疲労度検出部の第2変形例について説明する。なお、上述した第1の変形例と同等の構成に関しては、対応する符号を付して詳細な説明を省略する。図5(a)は、第1の実施形態に係る疲労度検出ひずみゲージの第2変形例の疲労度検出部350を拡大して示す平面図である。   Next, a second modification of the fatigue level detection unit according to the above-described embodiment will be described. In addition, about the structure equivalent to the 1st modification mentioned above, a corresponding code | symbol is attached | subjected and detailed description is abbreviate | omitted. FIG. 5A is an enlarged plan view showing a fatigue level detection unit 350 of a second modification of the fatigue level detection strain gauge according to the first embodiment.

第2変形例に係る疲労度検出部350は、折り返しタブ342の先端側縁部342eと疲労度検出部350A(350B)と隣接する疲労度検出部350B(350C)とバイパス部360とによってそれぞれ囲まれた空間の角部であって折り返しタブ側角部が、R形状を段階的に大きく形成してなることを特徴としている。なお、以下の記載に対応する図においては、説明の理解の容易化を図るために、Rの大きさ及び変化度合いを誇張して示している。   The fatigue level detection unit 350 according to the second modification is surrounded by the front end side edge portion 342e of the folded tab 342, the fatigue level detection unit 350A (350B), the fatigue level detection unit 350B (350C), and the bypass unit 360, respectively. The corner portion of the space, which is the folded tab side corner portion, is characterized in that the R shape is formed in a stepwise manner. In the figures corresponding to the following description, the magnitude and the degree of change of R are exaggerated to facilitate understanding of the description.

具体的には、第2変形例に係る疲労度検出部350は、図5(a)に示すように各疲労度検出部350の縁部350mとこれに対応する折り返し線路部340の折り返しタブ342の先端側縁部342eとの接続部c1,c2,c3の曲率半径が、ほぼ0から段階的に大きくなっている。即ち、この接続部c1,c2,c3の凹んだR形状が一端側(図5(a)中右側)に向かって段階的に大きくなっている。   Specifically, the fatigue level detection unit 350 according to the second modification includes an edge portion 350m of each fatigue level detection unit 350 and a return tab 342 of the return line portion 340 corresponding thereto as shown in FIG. The radii of curvature of the connecting portions c1, c2, c3 with the leading end side edge portion 342e are gradually increased from zero. That is, the concave R shape of the connection portions c1, c2, and c3 increases stepwise toward one end side (the right side in FIG. 5A).

これによって、構造材の疲労度が高まるにつれて疲労度検出部350と折り返し線路部340の接続部c1,c2,c3における凹んだR形状が小さい順に断線し、電気抵抗体の抵抗値が段階的に上昇する。そして、この抵抗値の段階的な変化を検出することで、構造材の疲労度を段階的に検出することができる。   As a result, as the fatigue level of the structural material increases, the concave R shapes in the connection portions c1, c2, and c3 of the fatigue level detection unit 350 and the folded line portion 340 are disconnected in ascending order, and the resistance value of the electric resistor is stepwise. To rise. And the fatigue degree of a structural material is detectable in steps by detecting this change in resistance in steps.

次に、上述した実施形態に係る疲労度検出部の第3変形例について説明する。なお、上述した各変形例と同等の構成に関しては、対応する符号を付して詳細な説明を省略する。図5(b)は、第1の実施形態に係る疲労度検出ひずみゲージの第3変形例の疲労度検出部450を拡大して示す平面図である。   Next, a third modification of the fatigue level detection unit according to the above-described embodiment will be described. In addition, about the structure equivalent to each modification mentioned above, a corresponding code | symbol is attached | subjected and detailed description is abbreviate | omitted. FIG. 5B is an enlarged plan view showing the fatigue level detection unit 450 of the third modification of the fatigue level detection strain gauge according to the first embodiment.

第3変形例に係る疲労度検出部450は、図5(b)に示すように、折り返し線路部440の幅方向中央部に接続されている。そして、折り返しタブ442と疲労度検出部450A(450B)と隣接する疲労度検出部450B(450C)とバイパス部460とによって囲まれた空間の角部であって折り返しタブ側角部が、R形状を段階的に大きく形成してなることを特徴としている。   As shown in FIG. 5B, the fatigue level detection unit 450 according to the third modification is connected to the center portion in the width direction of the folded line portion 440. And the corner | angular part of the space enclosed by the folding | turning tab 442 and the fatigue detection part 450A (450B) and the adjacent fatigue degree detection part 450B (450C) and the bypass part 460, and the folding tab side corner | angular part are R shape. Is characterized by being formed in a stepwise manner.

具体的には、各疲労度検出部450の縁部450mとこれに対応する折り返し線路部440の折り返しタブ442の先端側縁部442eとの接続部d1,d2,d3の曲率半径が、ほぼ0から段階的に大きくなっている。即ち、この接続部d1,d2,d3の凹んだR形状が一端側(図5(b)中右側)に向かって段階的に大きくなっている。これによって、構造材の疲労度が高まるにつれて疲労度検出部450と折り返し線路部440の接続部d1,d2,d3における凹んだR形状が小さい順に断線し、電気抵抗体の抵抗値が段階的に上昇する。そして、この抵抗値の段階的な変化を検出することで、構造材の疲労度を段階的に検出することができるようになる。   Specifically, the radii of curvature of the connection portions d1, d2, d3 between the edge portion 450m of each fatigue level detection portion 450 and the tip side edge portion 442e of the return line portion 442 of the return line portion 440 corresponding to this are substantially 0. It is getting bigger gradually. That is, the concave R shape of the connecting portions d1, d2, and d3 increases stepwise toward one end side (the right side in FIG. 5B). As a result, as the fatigue level of the structural material increases, the concave R shapes in the connection portions d1, d2, and d3 of the fatigue level detection portion 450 and the folded line portion 440 are disconnected in ascending order, and the resistance value of the electric resistor is stepwise. To rise. And by detecting the step change of the resistance value, the fatigue level of the structural material can be detected step by step.

なお、各疲労度検出部450は、折り返し線路部440の幅方向中央部に接続されているので、疲労による破断の起点が、各疲労度検出部450の縁部450mとこれに対応する折り返し線路部440の折り返しタブ442の先端側縁部442eとの接続部の両側に2箇所形成され、疲労度検出部450が破断し易くなる。その結果、構造材の疲労を初期の段階から検出できる。   In addition, since each fatigue degree detection part 450 is connected to the center part of the width direction of the return line part 440, the starting point of the fracture | rupture by fatigue is the edge part 450m of each fatigue degree detection part 450, and the return line corresponding to this Two portions are formed on both sides of the connecting portion of the portion 440 with the distal end side edge portion 442e of the folded tab 442, and the fatigue degree detecting portion 450 is easily broken. As a result, the fatigue of the structural material can be detected from the initial stage.

また、本変形例は、疲労度検出部450における破断開始点が第2変形例の場合よりも多い(2倍になる)ので、構造材の疲労度に応じた破断を確実に行うようにし、構造材の疲労の進み度合いに応じてこれを段階的に確実に検出する。   Further, in this modified example, the fracture start point in the fatigue level detection unit 450 is larger (doubled) than in the second modified example, so that the fracture according to the fatigue level of the structural material is surely performed, This is reliably detected step by step according to the progress of fatigue of the structural material.

次に、上述した実施形態に係る疲労度検出部の第4変形例について説明する。なお、上述した各変形例と同等の構成に関しては、対応する符号を付して詳細な説明を省略する。図6は、第1の実施形態に係る疲労度検出ひずみゲージの第4変形例の疲労度検出部550を拡大して示す平面図である。   Next, the 4th modification of the fatigue detection part which concerns on embodiment mentioned above is demonstrated. In addition, about the structure equivalent to each modification mentioned above, a corresponding code | symbol is attached | subjected and detailed description is abbreviate | omitted. FIG. 6 is an enlarged plan view showing a fatigue level detection unit 550 of a fourth modification of the fatigue level detection strain gauge according to the first embodiment.

第4変形例に係る疲労度検出部550は、図6に示すように折り返し線路部540の幅方向中央部に接続されている。また、第2変形例及び第3変形例と同様に、折り返しタブ542と疲労度検出部550A(550B)と隣接する疲労度検出部550B(550C)とバイパス部560とによって囲まれた空間の角部e1,e2,e3,f1,f2,f3が、R形状を段階的に大きく形成してなることを特徴としている。   The fatigue level detection unit 550 according to the fourth modification is connected to the central portion in the width direction of the folded line portion 540 as shown in FIG. Similarly to the second and third modifications, the corner of the space surrounded by the folding tab 542, the fatigue detection unit 550A (550B), the adjacent fatigue detection unit 550B (550C), and the bypass unit 560. The portions e1, e2, e3, f1, f2, and f3 are characterized in that the R shape is increased stepwise.

具体的には、各疲労度検出部550の縁部550mとこれに対応する折り返し線路部540の折り返しタブの先端側縁部542eとの角部e1,e2,e3の曲率半径及び各疲労度検出部550の縁部550mとこれに対応するバイパス部560の縁部560mとの角部f1,f2,f3の曲率半径が、ほぼ0から段階的に大きくなっている。即ち、この角部e1,e2,e3,f1,f2,f3の凹んだR形状が一端側(図中右側)に向かって段階的に大きくなっている。そのため、各疲労度検出部550は、疲労による破断の起点となる箇所を疲労度検出部550と折り返し線路部540及びバイパス部560との接続部両側に合計4箇所形成することができ、疲労度検出部550が破断し易くなる。その結果、構造材の疲労を初期の段階から検出できる。   Specifically, the curvature radii of the corners e1, e2, and e3 between the edge portion 550m of each fatigue detection portion 550 and the corresponding end portion 542e of the return tab of the return line portion 540 and each fatigue detection are detected. The curvature radii of corners f1, f2, and f3 between the edge portion 550m of the portion 550 and the corresponding edge portion 560m of the bypass portion 560 are gradually increased from zero. That is, the concave R shape of the corners e1, e2, e3, f1, f2, and f3 is gradually increased toward one end side (right side in the figure). Therefore, each fatigue level detection unit 550 can form a total of four locations on the both sides of the connection portion between the fatigue level detection unit 550, the folded line portion 540, and the bypass portion 560, as the starting point of fracture due to fatigue. The detection unit 550 is easily broken. As a result, the fatigue of the structural material can be detected from the initial stage.

また、構造材の疲労度が高まるにつれて疲労度検出部550と折り返し線路部540の接続部及び疲労度検出部550とバイパス部560の接続部における凹んだR形状が小さい順に断線し、電気抵抗体の抵抗値が段階的に上昇する。そして、この抵抗値の段階的な変化を検出することで、構造材の疲労度を段階的に検出することができるようになる。   Further, as the fatigue level of the structural material increases, the connection between the fatigue level detection unit 550 and the folded line portion 540 and the concave R shape at the connection level between the fatigue level detection unit 550 and the bypass unit 560 are disconnected in ascending order, The resistance value increases gradually. And by detecting the step change of the resistance value, the fatigue level of the structural material can be detected step by step.

また、本変形例によると、第2変形例よりも破断開始点が4倍になり、第3変形例よりも破断開始点が2倍になるので、構造材の疲労度に応じた破断を確実に行うようにし、構造材の疲労の進み度合いに応じてこれを段階的に確実に検出する。   In addition, according to the present modification, the fracture start point is quadrupled compared to the second modification, and the fracture start point is doubled compared to the third modification, so that the fracture according to the fatigue level of the structural material is ensured. This is reliably detected step by step according to the progress of fatigue of the structural material.

次に、上述した実施形態に係る疲労度検出部の第5変形例について説明する。なお、上述した各種変形例と同等の構成に関しては、対応する符号を付して詳細な説明を省略する。図7は、第1の実施形態に係る疲労度検出ひずみゲージの第5変形例の疲労度検出部を拡大して示す平面図である。   Next, a fifth modification of the fatigue detection unit according to the above-described embodiment will be described. In addition, about the structure equivalent to the various modifications mentioned above, a corresponding code | symbol is attached | subjected and detailed description is abbreviate | omitted. FIG. 7 is an enlarged plan view showing a fatigue level detection unit of a fifth modification of the fatigue level detection strain gauge according to the first embodiment.

第5変形例に係る疲労度検出部650(650A,650B,650C,・・・)は、図7に示すように各疲労度検出部650A,650B,650Cに対応して位置するバイパス部660の幅が他端側(図中右側)に向かって段階的に広くなっている。具体的には、図中左側に位置する第1のバイパス部660Aの幅H1が最も狭く、第2のバイパス部660Bの幅H2、第3のバイパス部660Cの幅H3の順に広くなっていく。これによって、構造材の疲労度が高まるにつれてバイパス部660の幅の狭い順に断線し、電気抵抗体の抵抗値が段階的に上昇する。そして、この抵抗値の段階的な変化を検出することで、構造材の疲労の進み度合いを段階的に検出することができるようになる。   As shown in FIG. 7, the fatigue level detectors 650 (650A, 650B, 650C,...) According to the fifth modified example include the bypass units 660 positioned corresponding to the fatigue level detectors 650A, 650B, 650C. The width is gradually increased toward the other end side (right side in the figure). Specifically, the width H1 of the first bypass portion 660A located on the left side in the drawing is the narrowest, and the width H2 of the second bypass portion 660B and the width H3 of the third bypass portion 660C increase in this order. As a result, as the fatigue level of the structural material increases, the bypass portion 660 is disconnected in order of increasing width, and the resistance value of the electrical resistor increases stepwise. And by detecting the step change of this resistance value, it becomes possible to detect the progress of the fatigue of the structural member step by step.

続いて、本発明の第2の実施形態に係る疲労度検出ひずみゲージについて図面に基づいて説明する。図8は、本発明の第2の実施形態に係る疲労度検出ひずみゲージ100’を示す平面図である。なお、以下の説明における長手方向、幅方向、先端側、基端側は第1の実施形態と同様とする。   Subsequently, a fatigue level detection strain gauge according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a plan view showing a fatigue degree detecting strain gauge 100 ′ according to the second embodiment of the present invention. In the following description, the longitudinal direction, the width direction, the distal end side, and the proximal end side are the same as those in the first embodiment.

本実施形態に係る疲労度検出ひずみゲージ100’は、可撓性を有する絶縁体の樹脂材からなるフィルム状部材110’と、フィルム状部材110’にパターニングされた金属箔からなる電気抵抗体と、電気抵抗体の端部に接続する端子部120’等から構成されている。そして、電気抵抗体は、ひずみ検出部130’と、折り返し線路部140’と、疲労度検出部150’と、バイパス部160’とから構成されている。   A fatigue detection strain gauge 100 ′ according to the present embodiment includes a film-like member 110 ′ made of an insulating resin material having flexibility, and an electric resistor made of a metal foil patterned on the film-like member 110 ′. The terminal portion 120 ′ is connected to the end of the electric resistor. The electrical resistor includes a strain detection unit 130 ′, a folded line unit 140 ′, a fatigue level detection unit 150 ′, and a bypass unit 160 ′.

フィルム状部材110’は、樹脂製部材からなり可撓性を有し矩形状をなしている。   The film-like member 110 'is made of a resin member, has flexibility, and has a rectangular shape.

端子部120’は、フィルム状部材110’の基端側であって幅方向において両端近傍にそれぞれ形成されている。端子部120’にはここでは図示しない電線がハンダ付けされ、ひずみ検出部130’の抵抗値の変化を外部に出力すると共に、折り返し線路部140’、疲労度検出部150’、及びバイパス部160’からなる電気抵抗体の抵抗値の変化を外部に出力し、図示しない演算制御手段で疲労度検出ひずみゲージ100’が貼られた構造材のひずみや疲労度を検出するようになっている。   The terminal portion 120 ′ is formed on the base end side of the film-like member 110 ′ and in the vicinity of both ends in the width direction. An electric wire (not shown) is soldered to the terminal portion 120 ′ to output a change in resistance value of the strain detecting portion 130 ′ to the outside, and the folded line portion 140 ′, the fatigue degree detecting portion 150 ′, and the bypass portion 160. The change in the resistance value of the electrical resistor composed of “is output to the outside, and the strain and fatigue level of the structural material to which the fatigue level detection strain gauge 100 ′ is attached are detected by a calculation control means (not shown).

ひずみ検出部130’は、ここではブロック図で示すが、その構成は第1の実施形態と同様になっている。なお、本実施形態では、ひずみ検出部130’と折り返し線路部140’とが共通の端子部120’ を介して長手方向に並んで配置されている。   The strain detector 130 ′ is shown here in a block diagram, but its configuration is the same as that of the first embodiment. In the present embodiment, the strain detection unit 130 ′ and the folded line unit 140 ′ are arranged side by side in the longitudinal direction via the common terminal unit 120 ′.

折り返し線路部140’は、フィルム状部材110’の幅方向一側(図8中左側)端部近傍からフィルム状部材110’の幅方向他側(図8中右側)であって、フィルム状部材110’の先端部近傍から他方の端子部122’近傍に亘る領域に形成されている。   The folded line portion 140 ′ is on the other side in the width direction (right side in FIG. 8) of the film-like member 110 ′ from the vicinity of the end portion on the one side in the width direction (left side in FIG. 8) of the film-like member 110 ′. It is formed in a region extending from the vicinity of the tip portion of 110 ′ to the vicinity of the other terminal portion 122 ′.

折り返し線路部140’は、線幅の細い金属箔がつづら折り形状をなしている。そして、その折り返し線路部140’の一方の端部先端側(図8中左側端部先端側)が疲労度検出部150’を介してバイパス部160’に接続し、他方の端部先端側(図8中幅方向右側端部先端側)が端子部122’及びバイパス部160’に接続している。また、折り返し線路部140’の一方の端部基端側(図8中左側端部基端側)は、端子部121’に接続している。なお、折り返し線路部140’のストランド141’はフィルム状部材110’の長手方向に延在している。   The folded line portion 140 'is formed in a folded shape with a thin metal foil. Then, one end front end side (the left end front end side in FIG. 8) of the folded line section 140 ′ is connected to the bypass section 160 ′ via the fatigue detection section 150 ′, and the other end front end side ( 8 is connected to the terminal portion 122 ′ and the bypass portion 160 ′. Further, one end portion base end side (the left end base end side in FIG. 8) of the folded line portion 140 'is connected to the terminal portion 121'. The strand 141 ′ of the folded line portion 140 ′ extends in the longitudinal direction of the film-like member 110 ′.

より具体的には、折り返し線路部140’は、複数のストランド141’と折り返しタブ142’から構成されている。また、折り返し線路部の折り返しタブ142’とストランド141’とが接続される部分の折り返しタブ142’の内側部分の形状は、連続的に曲率が徐々に変わる曲線形状をしており、疲労による破断が生じ難い形状となっている。これによって、疲労度検出部150’が全て破断した際は、バイパス部160’には電流が流れず、折り返し線路部140’にだけ電流が流れることになり、電気抵抗体全体としての抵抗値が上がるようになっている。   More specifically, the folded line portion 140 'includes a plurality of strands 141' and a folded tab 142 '. In addition, the shape of the inner portion of the folded tab 142 ′ where the folded tab 142 ′ and the strand 141 ′ of the folded line portion are connected has a curved shape in which the curvature gradually and continuously breaks due to fatigue. The shape is difficult to occur. As a result, when all of the fatigue detection units 150 ′ are broken, current does not flow through the bypass unit 160 ′, but current flows only through the folded line unit 140 ′, and the resistance value of the entire electrical resistor is reduced. It is going to go up.

疲労度検出部150’は、第1の実施形態における図2に示すように折り返し線路部の先端側の各折り返しタブ142’の先端にそれぞれ形成されている。疲労度検出部150’は、本実施形態では線幅の細い金属箔からなり、長手方向に沿って形成された長さの短い延在部から構成されている。そして、疲労度検出部150’は、本実施形態の場合、全て同一幅となっており、それぞれがフィルム状部材110’の長手方向にそって延在し、その基端側端部は上述した通り折り返し線路部140’の先端側の折り返しタブ142’と接続すると共に、各先端側端部は後述するバイパス部160’にそれぞれ接続している。なお、各疲労度検出部150’の一方(図8中右側)の側縁部は、各折り返し線路部140’の一方(図8中右側)の側縁部とはそのつなぎ目に段部(幅方向のずれ)を有することなく直線状に繋がっている。また、疲労度検出部150’が破断する際には、全ての疲労度検出部150’が一度に破断するようになっており、構造材の疲労度合いが高まっているのを確実に検出する。なお、疲労度検出部150’ の一部が破断したことを電気抵抗体の抵抗値の変化から検出し、構造材の疲労が進行し始めたことを検出しても良い。   As shown in FIG. 2 in the first embodiment, the fatigue level detection unit 150 ′ is formed at the tip of each folding tab 142 ′ on the tip side of the folding line portion. In the present embodiment, the fatigue level detection unit 150 ′ is made of a metal foil having a thin line width, and is formed of an extended portion having a short length formed along the longitudinal direction. In the case of the present embodiment, the fatigue level detection parts 150 ′ all have the same width, each extends along the longitudinal direction of the film-like member 110 ′, and the proximal end part thereof has been described above. While connecting with the return | turnback tab 142 'at the front end side of street return track | line part 140', each front end side edge part is connected to bypass part 160 'mentioned later, respectively. Note that one side edge (right side in FIG. 8) of each fatigue level detection unit 150 ′ is stepped (width) at the joint with one side edge (right side in FIG. 8) of each folded line portion 140 ′. It is connected in a straight line without any deviation in direction. Further, when the fatigue level detection unit 150 ′ breaks, all the fatigue level detection units 150 ′ are broken at a time, and it is reliably detected that the degree of fatigue of the structural material is increased. Note that it may be detected that the fatigue of the structural material has started to progress by detecting that a part of the fatigue degree detection unit 150 'is broken from a change in the resistance value of the electric resistor.

バイパス部160’は、折り返し線路部140’より更に先端側であって折り返し線路部140’の各折り返しタブ142’と全て等距離だけ離間した位置を通るようにフィルム部材110’の幅方向に延在している。バイパス部160’は、線幅の細い金属箔からなり、幅方向一端側(図中左側)は、折り返し線路部140’の幅方向一端と接続され、他端側(図中右側)は、端子部122’と接続されている。また、折り返し線路部140’の各折り返しタブ142’は、それぞれ対応する各疲労度検出部150’を介してバイパス部160’に接続されている。なお、バイパス部自体の電気抵抗は極めて低く、このバイパス部160’にひずみが生じてもバイパス部160’の抵抗値が変化することはなく、電気抵抗体全体としての抵抗値も変化しないようになっている。   The bypass portion 160 ′ extends further in the width direction of the film member 110 ′ so as to pass through a position further away from each of the folded tabs 142 ′ of the folded line portion 140 ′ by an equal distance further from the folded line portion 140 ′. Exist. The bypass portion 160 ′ is made of a thin metal foil, one end in the width direction (left side in the figure) is connected to one end in the width direction of the folded line portion 140 ′, and the other end side (right side in the figure) is a terminal. Connected to the section 122 '. Further, each folded tab 142 ′ of the folded line section 140 ′ is connected to the bypass section 160 ′ via the corresponding fatigue level detecting section 150 ′. The electrical resistance of the bypass part itself is extremely low, and even if the bypass part 160 ′ is distorted, the resistance value of the bypass part 160 ′ does not change and the resistance value of the electrical resistor as a whole does not change. It has become.

そして、本実施形態においても共通の端子部120’でひずみ検出部130’の抵抗値の変化により構造材のひずみを検出すると共に、折り返し線路部140’、疲労度検出部150’、及びバイパス部160’からなる電気抵抗体の抵抗値の変化から構造材の疲労度を検出する。   And also in this embodiment, while detecting the distortion | strain of a structural material by the change of the resistance value of the distortion | strain detection part 130 'with the common terminal part 120', the return | turnback track | line part 140 ', the fatigue degree detection part 150', and a bypass part The degree of fatigue of the structural material is detected from the change in the resistance value of the electric resistor 160 ′.

このような構成によっても第1の実施形態と同等の作用を発揮することができる。即ち、構造材の局所的に応力集中が生じる場所に疲労度検出部を配置することができ、迅速かつ的確な疲労度の検出が可能となる。更には、構造材のひずみを検出できると共に、構造材の疲労度を検出して、疲労度を予測することができる。   Even with such a configuration, an action equivalent to that of the first embodiment can be exhibited. That is, the fatigue level detection unit can be arranged at a location where stress concentration locally occurs in the structural material, and the fatigue level can be detected quickly and accurately. Furthermore, the strain of the structural material can be detected, and the fatigue level of the structural material can be detected to predict the fatigue level.

また、第2の実施形態に係る疲労度検出ひずみゲージ100’は、バイパス部160’の一端が折り返し線路部140’の折り返しタブ142’を介して一方の端子部121’に繋がっているので、フィルム状部材上でのひずみ検出部130’の配置場所を自由に選択できる。ひずみ検出部130’の両端を端子部120’に直接繋げることができるので、フィルム状部材上におけるひずみ検出部のレイアウトの自由度を向上させることができ、ひずみ検出部130’を疲労度検出部150’や折り返し線路部140’と端子部120’との間に配置することができる。その結果、構造材の応力集中部が最も大きい場所からひずみ検出部130’を離すことができ、ひずみ検出部130’の長期に亘る信頼性を維持できる。   Further, in the fatigue detection strain gauge 100 ′ according to the second embodiment, one end of the bypass portion 160 ′ is connected to one terminal portion 121 ′ via the folded tab 142 ′ of the folded line portion 140 ′. The location of the strain detector 130 'on the film member can be freely selected. Since both ends of the strain detector 130 ′ can be directly connected to the terminal portion 120 ′, the degree of freedom of the layout of the strain detector on the film-like member can be improved, and the strain detector 130 ′ can be used as a fatigue detector. 150 'or the folded line portion 140' and the terminal portion 120 '. As a result, the strain detector 130 ′ can be separated from the place where the stress concentration portion of the structural material is the largest, and the long-term reliability of the strain detector 130 ′ can be maintained.

以上説明した実施形態及び各変形例に係る金属箔の配置パターンはあくまで一例であり、本発明を逸脱しない範囲で様々な変形例が適用可能であることは言うまでもない。   The arrangement pattern of the metal foil according to the embodiment and each modification described above is merely an example, and it goes without saying that various modifications can be applied without departing from the present invention.

なお、第1及び第2の実施形態で疲労度検出部150(150’)が破断する際に、図1及び図8において最も左側に位置する疲労度検出部150(150’)を必ず破断させるためには、この疲労度検出部150(150’)に適当な切れ込みを入れてその疲労度検出部の幅が狭まるようにしておくのが良い。   In addition, when the fatigue detection unit 150 (150 ′) is broken in the first and second embodiments, the fatigue detection unit 150 (150 ′) located on the leftmost side in FIGS. 1 and 8 is surely broken. For this purpose, it is preferable that the fatigue degree detection unit 150 (150 ′) is appropriately cut so that the width of the fatigue degree detection unit is narrowed.

また、疲労度検出ひずみゲージのフィルム状部材は、これに形成されたひずみ検出部及び疲労度検出部がその役割を果たすのであれば、必ずしも樹脂製ではなくても良く、可撓性を有していなくても良い。   Further, the film-like member of the fatigue level detection strain gauge may not necessarily be made of resin and has flexibility as long as the strain detection unit and the fatigue level detection unit formed thereon play a role. It does not have to be.

また、上述した実施形態及びその各変形例に係る疲労度検出ひずみゲージの適用例としては、柱と梁からなる一般構造材を紹介したが、その適用対象としてこのようなものに限定されるものではなく、例えば一般構造材の溶接部分や形状が急激に変化する(形状係数が急激に変化する)部分など、局所的に応力集中が生じ易い部分に適用可能である。同様にひずみゲージと同様の機械的性質を有する機械構造材であっても溶接部分や形状が急激に変化する部分など、局所的に応力集中が生じ易い部分に上述した実施形態及びその各変形例に係る疲労度検出ひずみゲージを適用可能である。   In addition, as an application example of the fatigue detection strain gauge according to the above-described embodiment and its modifications, a general structural material composed of columns and beams has been introduced, but the application target is limited to such a thing. Instead, for example, the present invention can be applied to a portion where stress concentration is likely to occur locally, such as a welded portion of a general structural material or a portion where the shape changes abruptly (the shape factor changes abruptly). Similarly, the above-described embodiment and its modifications are included in parts where stress concentration is likely to occur locally, such as a welded part or a part whose shape changes suddenly even if it is a mechanical structural material having the same mechanical properties as a strain gauge. The fatigue degree detection strain gauge according to the present invention can be applied.

100(100A,100B),100’ 疲労度検出ひずみゲージ
110,110’ フィルム状部材
121,122(120),121’,122’(120’) 端子部
130,130’ ひずみ検出部
140,140’ 折り返し線路部
141,141’ ストランド
142,142’ 折り返しタブ
150,150’ 疲労度検出部
160,160’ バイパス部
240 折り返し線路部
250 疲労度検出部
260 バイパス部
340 折り返し線路部
350 疲労度検出部
360 バイパス部
440 折り返し線路部
450 疲労度検出部
460 バイパス部
540 折り返し線路部
550 疲労度検出部
560 バイパス部
640 折り返し線路部
650 疲労度検出部
660 バイパス部
100 (100A, 100B), 100 ′ Fatigue degree detection strain gauge 110, 110 ′ Film-like member 121, 122 (120), 121 ′, 122 ′ (120 ′) Terminal portion 130, 130 ′ Strain detection portion 140, 140 ′ Folded line part 141, 141 ′ Strand 142, 142 ′ Folded tab 150, 150 ′ Fatigue degree detecting part 160, 160 ′ Bypass part 240 Folded line part 250 Fatigue degree detecting part 260 Bypass part 340 Folded line part 350 Fatigue degree detecting part 360 Bypass section 440 Folded line section 450 Fatigue level detection section 460 Bypass section 540 Folded line section 550 Fatigue level detection section 560 Bypass section 640 Folded line section 650 Fatigue level detection section 660 Bypass section

Claims (5)

構造物の疲労度を抵抗体の抵抗値の電気的な変化を検出することにより適切に行うことが可能な疲労度検出ひずみゲージであって、
ストランドと隣接するストランドとが平行に配置され折り返しタブを介して接続されるひずみ検出部と、
ストランドと隣接するストランドとが平行に配置され折り返しタブを介して接続され、前記ひずみ検出部と直列接続された折り返し線路部と、
前記折り返し線路部及びひずみ検出部と別経路をなし、一端が前記端子部の一方の端子部に前記折り返し線路部の折り返しタブ及びひずみ検出部を介して繋がると共に、他端が前記端子部の他方の端子部に繋がるバイパス部と、
前記折り返し線路部の平行に配置された各折り返しタブに接続されている疲労度検出部と、
を有し、前記平行に配置されている各折り返しタブが前記疲労度検出部を介して前記バイパス部に接続されており、
前記疲労度検出部の破断度合いから前記疲労度検出ひずみゲージが貼られた構造材の疲労度を検出することを特徴とする疲労度検出ひずみゲージ。
A fatigue degree detection strain gauge capable of appropriately performing the fatigue degree of a structure by detecting an electrical change in the resistance value of a resistor,
A strain detecting unit in which the strand and the adjacent strand are arranged in parallel and connected via a folded tab;
A strand and an adjacent strand are arranged in parallel and connected via a folded tab, and a folded line portion connected in series with the strain detector,
The return line part and the strain detection part form a separate path, and one end is connected to one terminal part of the terminal part via a return tab and a strain detection part of the return line part, and the other end is the other end of the terminal part. A bypass section connected to the terminal section of
A fatigue degree detection unit connected to each folded tab arranged in parallel to the folded line portion;
Each folded tab arranged in parallel is connected to the bypass part via the fatigue detection part,
A fatigue level detection strain gauge, wherein the fatigue level of a structural material to which the fatigue level detection strain gauge is attached is detected from the degree of breakage of the fatigue level detection unit.
前記バイパス部の一端が前記端子部の一方の端子部に前記折り返し線路部の折り返しタブ及び前記ひずみ検出部を介して繋がる代わりに、前記バイパス部の一端が前記折り返し線路部の折り返しタブを介して一方の端子部に繋がると共に、前記ひずみ検出部が前記折り返し線路部と前記端子部を介して長手方向に並んで配置されていることを特徴とする請求項1に記載の疲労度検出ひずみゲージ。   Instead of connecting one end of the bypass part to one terminal part of the terminal part via the return tab of the return line part and the strain detection part, one end of the bypass part is connected via the return tab of the return line part. 2. The fatigue degree detecting strain gauge according to claim 1, wherein the strain detecting part is connected to one terminal part, and the strain detecting part is arranged side by side in the longitudinal direction via the folded line part and the terminal part. 前記疲労度検出部は、当該疲労度検出部が所定の応力によって破断する幅を段階的に大きく形成してなることを特徴とする請求項1に記載の疲労度検出ひずみゲージ。   2. The fatigue degree detection strain gauge according to claim 1, wherein the fatigue degree detection unit is formed so that a width at which the fatigue detection part is broken by a predetermined stress is increased stepwise. 3. 前記折り返し線路部の折り返しタブの縁部と前記疲労度検出部の縁部とで形成される角部又は前記バイパス部の縁部と前記疲労度検出部の縁部とで形成される角部のうち、少なくとも何れか一方の角部は各縁部を接線とするR形状をなし、かつ前記R形状は前記疲労度検出部ごとに段階的に大きく形成してなることを特徴とする請求項1に記載の疲労度検出ひずみゲージ。   The corner formed by the edge of the folded tab of the folded line section and the edge of the fatigue detection section or the corner formed by the edge of the bypass section and the edge of the fatigue detection section 2. At least one of the corners has an R shape with each edge as a tangent, and the R shape is formed to increase stepwise for each fatigue level detection unit. Fatigue level detection strain gauge described in 1. 前記バイパス部は、前記各疲労度検出部に対応して位置するバイパス部の幅を段階的に大きく形成し、当該バイパス部が前記疲労度検出部の代わりに所定の応力によって破断するようになっており、前記疲労度検出部の破断度合いから前記疲労度検出ひずみゲージが貼られた構造材の疲労度を検出する代わりに前記バイパス部の破断度合いから前記疲労度検出ひずみゲージが貼られた構造材の疲労度を検出することを特徴とする請求項1に記載の疲労度検出ひずみゲージ。

The bypass part is formed so that the width of the bypass part corresponding to each fatigue level detection part is increased stepwise, and the bypass part is broken by a predetermined stress instead of the fatigue level detection part. Instead of detecting the fatigue level of the structural material to which the fatigue level detection strain gauge is pasted from the degree of fracture of the fatigue level detection unit, the structure in which the fatigue level detection strain gauge is pasted from the level of fracture of the bypass unit The fatigue degree detection strain gauge according to claim 1, wherein the fatigue degree of the material is detected.

JP2011239422A 2011-10-31 2011-10-31 Fatigue level detection strain gauge Active JP5893342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239422A JP5893342B2 (en) 2011-10-31 2011-10-31 Fatigue level detection strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239422A JP5893342B2 (en) 2011-10-31 2011-10-31 Fatigue level detection strain gauge

Publications (2)

Publication Number Publication Date
JP2013096821A true JP2013096821A (en) 2013-05-20
JP5893342B2 JP5893342B2 (en) 2016-03-23

Family

ID=48618908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239422A Active JP5893342B2 (en) 2011-10-31 2011-10-31 Fatigue level detection strain gauge

Country Status (1)

Country Link
JP (1) JP5893342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375765B2 (en) * 2016-04-15 2019-08-06 Hewlett-Packard Development Company, L.P. 3-dimensional printed load cell parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218214A (en) * 1994-01-28 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd Strain gauge having doubled function as fatigue aging-monitor
JPH10239045A (en) * 1997-02-26 1998-09-11 Mitsubishi Heavy Ind Ltd Measuring gauge
JPH10311761A (en) * 1997-05-12 1998-11-24 Nkk Corp Pasting-type fatigue gage
JP2001272319A (en) * 2000-03-27 2001-10-05 Nkk Corp Fatigue damage prognosis device and method therefor
JP2010169616A (en) * 2009-01-26 2010-08-05 A & D Co Ltd Strain gage and load cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218214A (en) * 1994-01-28 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd Strain gauge having doubled function as fatigue aging-monitor
JPH10239045A (en) * 1997-02-26 1998-09-11 Mitsubishi Heavy Ind Ltd Measuring gauge
JPH10311761A (en) * 1997-05-12 1998-11-24 Nkk Corp Pasting-type fatigue gage
JP2001272319A (en) * 2000-03-27 2001-10-05 Nkk Corp Fatigue damage prognosis device and method therefor
JP2010169616A (en) * 2009-01-26 2010-08-05 A & D Co Ltd Strain gage and load cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375765B2 (en) * 2016-04-15 2019-08-06 Hewlett-Packard Development Company, L.P. 3-dimensional printed load cell parts

Also Published As

Publication number Publication date
JP5893342B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5893337B2 (en) Fatigue level detection strain gauge
CN108139283B (en) Flexible antenna sensor and method for manufacturing same
EP3553485A1 (en) Torque sensor
JP3342467B2 (en) Crack-type fatigue detecting element, method of manufacturing the same, and damage estimation method using crack-type fatigue detecting element
US7379632B1 (en) Fiber optic Bragg grating strain gauge for application on structures with compliant surface covering
JP5802101B2 (en) Fatigue level detection strain gauge
JP5893342B2 (en) Fatigue level detection strain gauge
JP5192095B2 (en) Strain sensor
JP2015155103A (en) Resistance welding device and resistance welding method
JP6866667B2 (en) Traffic condition monitoring equipment, vehicle monitoring system, traffic condition monitoring method, and traffic condition monitoring program
JP2008274684A (en) Inspection device of buckling restricting brace
JP6914077B2 (en) Strain gauge for measuring stress intensity factor with crack monitoring function, stress intensity factor calculation method and crack monitoring method
JP5484227B2 (en) Strain gauge for hot spot stress measurement and hot spot stress measurement sensor device
KR100798100B1 (en) Fatigue Load Level Detecting Gauge
US11592377B2 (en) Fatigue life sensor for measuring repetitive loads applied to a structure based upon cracks propagating from crack initiation features of the sensor
KR102186967B1 (en) Welded strain sensor for curved surfaces
JP2007315810A (en) Repeated stress sensor
KR101994824B1 (en) Inspection device of optical fiber unit and manufacturing method of optical fiber unit
KR20130135473A (en) Multi-direction strain sensor with fbgs of tape type
JP2009264856A (en) Strain gauge for measuring hot-spot stress
JP2008191077A (en) Wind force monitor
JP6661348B2 (en) Strain gauge
JP6536815B2 (en) Stress gauge and steel provided with the same
KR101384549B1 (en) Method and apparatus for judging ultimate strength reduction in channel bolted connection with curling
JP2005180926A (en) Fatigue sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350