JP2013096359A - Fuel injection control device of internal combustion engine - Google Patents

Fuel injection control device of internal combustion engine Download PDF

Info

Publication number
JP2013096359A
JP2013096359A JP2011242110A JP2011242110A JP2013096359A JP 2013096359 A JP2013096359 A JP 2013096359A JP 2011242110 A JP2011242110 A JP 2011242110A JP 2011242110 A JP2011242110 A JP 2011242110A JP 2013096359 A JP2013096359 A JP 2013096359A
Authority
JP
Japan
Prior art keywords
injection
amount
injection amount
fuel
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011242110A
Other languages
Japanese (ja)
Other versions
JP5854203B2 (en
Inventor
Kunimi Kanayama
訓己 金山
Michihiro Hatake
道博 畠
Toshihiro Takeuchi
敏広 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011242110A priority Critical patent/JP5854203B2/en
Publication of JP2013096359A publication Critical patent/JP2013096359A/en
Application granted granted Critical
Publication of JP5854203B2 publication Critical patent/JP5854203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent drivability and noise from getting worse, while well cleaning an exhaust with a catalyst.SOLUTION: A fuel allocation ratio to pre-injection is set at 1.0 and a corrected pre-injection amount Qpmod is calculated (S10). When the corrected pre-injection amount Qpmod is larger than a single pre-correction lower limit Qpsmin, the fuel allocation ratio to the pre-injection is set at 1.0 and a corrected main injection amount Qmmod is set at a main injection amount Qm before correction (S12, S14-S16). When the corrected pre-injection amount Qpmod is the single pre-correction lower limit Qpsmin or smaller, the corrected pre-injection amount Qpmod is calculated (S12, S18). When the corrected pre-injection amount Qpmod is larger than a pre-injection amount lower limit Qpmin, the corrected main injection amount Qmmod is calculated (S20, S22). When the corrected pre-injection amount Qpmod is the pre-injection amount lower limit Qpmin or smaller, the corrected pre-injection amount Qpmod is set at the pre-injection amount lower limit Qpmin, and the fuel allocation ratio to pre-injection and corrected main injection amount Qmmod are calculated (S20, S24-S26).

Description

本発明は、内燃機関の燃料噴射制御装置に係り、特に、筒内ポスト噴射に伴うトルク増加の補正を行う技術に関する。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a technique for correcting torque increase associated with in-cylinder post injection.

従来より、ディーゼルエンジンでは、エンジンの運転状態に応じて燃料噴射弁からの燃料噴射時期及び燃料噴射量を調整する燃料噴射制御が行われている。また、ディーゼルエンジンの排気系には、エンジンからの排気に含まれる微粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ(DPF)や、炭化水素(THC)、窒素酸化物(NOx)を捕集或いは酸化還元する酸化触媒(DOC)、NOxトラップ触媒(NTC)等が備えられている。そして、これらの酸化触媒及びNOxトラップ触媒が、高い浄化率を得るためには触媒を所定の活性温度以上に昇温する必要がある。触媒が活性温度よりも低温である状態では触媒の浄化率が極めて低くなり、排気浄化機能が十分に発揮されないこととなる。さらに、NOxトラップ触媒での排気浄化機能の発揮においては触媒上或いは周辺部を還元雰囲気とすることも求められる。   Conventionally, in a diesel engine, fuel injection control is performed to adjust the fuel injection timing and the fuel injection amount from the fuel injection valve in accordance with the operating state of the engine. The diesel engine exhaust system also captures diesel particulate filters (DPF) that collect particulate matter (PM) contained in the exhaust from the engine, hydrocarbons (THC), and nitrogen oxides (NOx). An oxidation catalyst (DOC) that collects or redox, a NOx trap catalyst (NTC), and the like are provided. In order for these oxidation catalyst and NOx trap catalyst to obtain a high purification rate, it is necessary to raise the temperature of the catalyst to a predetermined activation temperature or higher. When the catalyst is at a temperature lower than the activation temperature, the purification rate of the catalyst is extremely low, and the exhaust purification function is not fully exhibited. Furthermore, in order to exhibit the exhaust purification function of the NOx trap catalyst, it is also required that the catalyst or the surrounding part be a reducing atmosphere.

そこで、エンジンの膨張行程後期から排気行程において燃料噴射弁より燃料を噴射する所謂ポスト噴射を行い、排気系に未燃燃料を供給して酸化触媒やNOxトラップ触媒の触媒上或いは周辺部で未燃燃料を燃焼させ、触媒を活性温度以上に昇温させるとともに還元雰囲気を作り出す燃料噴射制御が知られている。
しかしながら、例えばエンジンの冷間始動直後のように排気系に存在する熱エネルギが少ないような場合には、酸化触媒やNOxトラップ触媒の触媒上或いは周辺部で未燃燃料を十分に燃焼させることができないことがある。
Therefore, so-called post-injection is performed in which fuel is injected from the fuel injection valve in the exhaust stroke from the latter stage of the engine expansion stroke, and unburned fuel is supplied to the exhaust system so that it remains unburned on or around the catalyst of the oxidation catalyst or NOx trap catalyst. Fuel injection control is known in which fuel is burned, the temperature of a catalyst is raised to an activation temperature or higher, and a reducing atmosphere is created.
However, when there is little heat energy present in the exhaust system, for example, immediately after the cold start of the engine, unburned fuel can be sufficiently burned on or around the oxidation catalyst or NOx trap catalyst. There are things that cannot be done.

そこで、未燃燃料の着火性を向上させる手法として、例えばポスト噴射の以前に噴射されるメイン噴射での燃料噴射量を増量し、燃焼室内から排出される排気の温度を上昇させて排気系を酸化触媒やNOxトラップ触媒の触媒上或いは周辺部で未燃燃料を燃焼可能な温度としている。
しかしながら、メイン噴射での噴射量は、エンジンの出力トルクに大きく影響を及ぼすため、このようにメイン噴射での燃料噴射量を増量すると、エンジンのトルクが増大し、ドライバビリティが悪化することとなる。
Therefore, as a technique for improving the ignitability of unburned fuel, for example, the amount of fuel injection in the main injection injected before the post injection is increased, and the temperature of the exhaust discharged from the combustion chamber is increased to increase the exhaust system. The temperature is such that the unburned fuel can be combusted on or around the catalyst of the oxidation catalyst or the NOx trap catalyst.
However, since the injection amount in the main injection greatly affects the output torque of the engine, increasing the fuel injection amount in the main injection in this manner increases the engine torque and deteriorates drivability. .

このようなことから、噴射された燃料の燃焼エネルギがエンジントルクに変換されることなく、大部分が排気の熱エネルギとして得られるようメイン噴射の実行後にポスト噴射に先行して燃料を噴射し燃焼させるエキゾーストヒート噴射を実施し、エキゾーストヒート噴射がエンジントルクに変換されるような場合には、同行程のメイン噴射の噴射量を減量することで、エンジントルクの増大を抑制しつつ、排気系を昇温させる技術が開発されている(特許文献1)。   For this reason, the fuel is injected before the post-injection and burned after the main injection so that most of the combustion energy of the injected fuel is obtained as exhaust heat energy without being converted into engine torque. If the exhaust heat injection is performed and the exhaust heat injection is converted into engine torque, the injection amount of the main injection in the same stroke is reduced to suppress the increase of the engine torque and the exhaust system. A technique for raising the temperature has been developed (Patent Document 1).

国際公開第WO2009/090941 A1号International Publication No. WO2009 / 090941 A1

しかしながら、本願発明者の実験によると、図7に示すように、ポスト噴射なし(図中黒塗り記号)に対して膨張行程後期に燃料を噴射するポスト噴射を行うことでも(白抜き記号)、プレ噴射或いはメイン噴射の熱発生量が増加することが確認された。これは、特許文献1で示されたエキゾーストヒート噴射が主噴射の熱エネルギにより同一サイクル内で着火・燃焼することによるエンジントルクへの変換とは異なる理由によるものである。即ち、膨張行程後期で噴射されるポスト噴射を行うと噴射された燃料の全てが排気行程で排出されず、燃料の一部が筒内に残存し次行程に持ち越され次行程のメイン噴射以前のプレ噴射或いはメイン噴射で燃焼される持ち越し燃料の発生が確認された。   However, according to the experiment by the inventor of the present application, as shown in FIG. 7, even with post-injection in which fuel is injected in the later stage of the expansion stroke (black symbol in the figure) without post-injection (black symbol in the figure), It was confirmed that the heat generation amount of the pre-injection or the main injection increases. This is because the exhaust heat injection disclosed in Patent Document 1 is different from the conversion to engine torque caused by ignition and combustion within the same cycle by the heat energy of the main injection. That is, when post injection is performed in the later stage of the expansion stroke, all of the injected fuel is not discharged in the exhaust stroke, and part of the fuel remains in the cylinder and is carried over to the next stroke before the main injection in the next stroke. It was confirmed that carry-over fuel burned by pre-injection or main injection was generated.

このように、持ち越し燃料の発生は、次行程のプレ噴射及びメイン噴射の熱発生量を増加させ、熱発生量の増加はエンジンのトルクの上昇や燃焼音の増加に繋がり、ポスト噴射の有無でトルク変化が発生しドライバビリティを悪化させるとともに騒音を増大させることとなる。
本発明は、この様な問題を解決するためになされたもので、その目的とするところは、触媒での排気浄化を良好に行いつつ、ドライバビリティや騒音の悪化を防止することのできる内燃機関の燃料噴射制御装置を提供することにある。
Thus, the generation of carry-over fuel increases the heat generation amount of the pre-injection and main injection in the next stroke, and the increase in the heat generation amount leads to an increase in engine torque and an increase in combustion noise. A torque change is generated, drivability is deteriorated and noise is increased.
The present invention has been made to solve such a problem, and an object of the present invention is an internal combustion engine that can prevent deterioration of drivability and noise while performing exhaust purification with a catalyst satisfactorily. An object of the present invention is to provide a fuel injection control device.

上記の目的を達成するために、請求項1の内燃機関の燃料噴射制御装置では、排気浄化手段を有する圧縮自己着火式内燃機関の1サイクル中に、燃料噴射手段からプレ噴射、前記プレ噴射よりも噴射量の多いメイン噴射及び排気系に未燃燃料を供給するポスト噴射を含む複数回の燃料噴射を順に実施可能な内燃機関の燃料噴射制御装置において、前記ポスト噴射量に基づき、前記ポスト噴射の次行程への持ち越し燃料によるトルク増加量を算出し、前記トルク増加量に基づき少なくとも次行程の前記プレ噴射量を補正するトルク補正手段を備えることを特徴とする。   In order to achieve the above object, in the fuel injection control apparatus for an internal combustion engine according to claim 1, pre-injection from the fuel injection means during one cycle of the compression self-ignition internal combustion engine having exhaust purification means, In a fuel injection control device for an internal combustion engine capable of sequentially performing a plurality of fuel injections including a main injection with a large injection amount and a post injection for supplying unburned fuel to an exhaust system, the post injection is based on the post injection amount. And a torque correction means for calculating a torque increase amount due to the carry-over fuel to the next stroke and correcting at least the pre-injection amount in the next stroke based on the torque increase amount.

また、請求項2の内燃機関の燃料噴射制御装置では、請求項1において、前記トルク補正手段は、前記ポスト噴射量より算出される前記トルク増加量に基づいて、前記持ち越し燃料の全てが前記プレ噴射により噴射された燃料の燃焼時に燃焼可能である場合には、前記トルク増加量に応じて前記プレ噴射量を補正することを特徴とする。
また、請求項3の内燃機関の燃料噴射制御装置では、請求項1或いは2において、前記トルク補正手段は、前記トルク増加量に基づき次行程の前記プレ噴射量と前記メイン噴射量とを補正可能であって、前記ポスト噴射量より算出される前記トルク増加量に基づいて、前記持ち越し燃料の全てが前記プレ噴射により噴射された燃料の燃焼時に燃焼不可能である場合には前記プレ噴射量に加え前記メイン噴射量の補正を行うことを特徴とする。
Further, in the fuel injection control apparatus for an internal combustion engine according to claim 2, in claim 1, the torque correction unit is configured to cause all of the carry-over fuel to be generated based on the torque increase amount calculated from the post injection amount. When combustion is possible at the time of combustion of the fuel injected by injection, the pre-injection amount is corrected according to the torque increase amount.
Further, in the fuel injection control device for an internal combustion engine according to claim 3, in claim 1 or 2, the torque correction means can correct the pre-injection amount and the main injection amount in the next stroke based on the torque increase amount. And, based on the torque increase amount calculated from the post-injection amount, when all of the carry-over fuel is not combustible during combustion of the fuel injected by the pre-injection, the pre-injection amount is set. In addition, the main injection amount is corrected.

また、請求項4の内燃機関の燃料噴射制御装置では、請求項1乃至3のいずれか1項において、前記トルク補正手段は、前記トルク増加量に基づき次行程の前記プレ噴射量と前記メイン噴射量とを補正可能であって、噴射量補正後の前記プレ噴射により噴射された燃料が燃焼可能である場合には前記プレ噴射量の補正によるトルク補正量をメイン噴射量の補正によるトルク補正量以上とすることを特徴とする。   According to a fourth aspect of the present invention, there is provided a fuel injection control apparatus for an internal combustion engine according to any one of the first to third aspects, wherein the torque correcting means is configured to determine the pre-injection amount and the main injection in the next stroke based on the torque increase amount. When the fuel injected by the pre-injection after the injection amount correction is combustible, the torque correction amount by correcting the pre-injection amount is changed to the torque correction amount by correcting the main injection amount. It is characterized by the above.

請求項1の発明によれば、ポスト噴射量に基づき、ポスト噴射の次行程への持ち越し燃料によるトルク増加量を算出し、当該トルク増加量に基づき持ち越し燃料の影響が表れ易い次行程のプレ噴射量を補正するようにしているので、持ち越し燃料によるトルク増加量に基づきプレ噴射量を補正して、プレ噴射で発生するトルクを減少させ、ポスト噴射の持ち越し燃料によるトルク増加を抑制させることができる。これにより、ポスト噴射による排気浄化手段の制御を行い排気浄化を良好に行いつつ、持ち越し燃料でのトルク増加によるドライバビリティや騒音の悪化を防止することができる。   According to the first aspect of the present invention, the torque increase amount due to the carry-over fuel to the next stroke of the post-injection is calculated based on the post-injection amount, and the pre-injection of the next stroke in which the influence of the carry-over fuel easily appears based on the torque increase amount. Since the amount is corrected, it is possible to correct the pre-injection amount based on the torque increase amount due to the carry-over fuel, reduce the torque generated by the pre-injection, and suppress the torque increase due to the post-injection carry-over fuel. . Thereby, it is possible to prevent the deterioration of drivability and noise due to an increase in the torque of the carry-over fuel, while controlling the exhaust purification means by post injection and performing the exhaust purification well.

また、請求項2の発明によれば、ポスト噴射量より算出されるトルク増加量に基づいて、持ち越し燃料の全てがプレ噴射の期間中に燃焼可能である場合にはプレ噴射量のみ補正を行うようにしている。
このように、持ち越し燃料の全てがプレ噴射の燃焼期間中に燃焼可能である場合にトルク変化への寄与度が大きいプレ噴射を補正することで、例えば持ち越し燃料によるトルク増加に対して少ない噴射量の補正量で対応することができる。
According to the second aspect of the invention, only the pre-injection amount is corrected based on the torque increase amount calculated from the post-injection amount when all of the carry-over fuel is combustible during the pre-injection period. I am doing so.
In this way, when all of the carry-over fuel is combustible during the combustion period of the pre-injection, by correcting the pre-injection that greatly contributes to the torque change, for example, a small injection amount with respect to the torque increase due to the carry-over fuel It is possible to cope with this amount of correction.

また、請求項3の発明によれば、持ち越し燃料の全てがプレ噴射の期間中に燃焼不可能である場合にプレ噴射量に加えメイン噴射量を補正することで、プレ噴射量を確保してプレ噴射の燃焼を確実に行うことが可能となり、メイン噴射の着火遅れを抑制することができる。よって、メイン噴射の着火遅れにより燃焼が急激に行われることに伴う燃焼音の悪化を防止することができる。   According to the invention of claim 3, when all of the carry-over fuel is not combustible during the pre-injection period, the pre-injection amount is secured by correcting the main injection amount in addition to the pre-injection amount. Pre-injection combustion can be performed reliably, and the ignition delay of main injection can be suppressed. Therefore, it is possible to prevent the combustion noise from deteriorating due to the rapid combustion due to the ignition delay of the main injection.

また、請求項4の発明によれば、噴射量補正後のプレ噴射により噴射された燃料が燃焼可能である場合にはプレ噴射量の補正によるトルク補正量をメイン噴射量の補正によるトルク補正量以上としており、プレ燃焼が成立する範囲においてなるべくトルク補正への影響が大きなプレ噴射量の補正量を大きくすることで、同じトルク増加量に対する補正であっても噴射量の補正量を小さくすることができるので噴射量の制御を容易にすることができる。   According to the invention of claim 4, when the fuel injected by the pre-injection after the injection amount correction is combustible, the torque correction amount by the correction of the pre-injection amount is changed to the torque correction amount by the correction of the main injection amount. As described above, by increasing the correction amount of the pre-injection amount that has a large influence on the torque correction as much as possible within the range where pre-combustion is established, the correction amount of the injection amount can be reduced even when correcting the same torque increase amount. Therefore, it is possible to easily control the injection amount.

本発明に係る内燃機関の燃料噴射制御装置が適用されたエンジンの概略構成図である。1 is a schematic configuration diagram of an engine to which a fuel injection control device for an internal combustion engine according to the present invention is applied. ECUが実行する燃料噴射制御のフローチャートである。It is a flowchart of the fuel injection control which ECU performs. ポスト噴射量とトルク増加量の関係を示す図である。It is a figure which shows the relationship between post injection amount and torque increase amount. トルク増加量とプレ噴射補正量の関係を示す図である。It is a figure which shows the relationship between torque increase amount and pre injection correction amount. トルク増加量とメイン噴射量補正量の関係を示す図である。It is a figure which shows the relationship between torque increase amount and main injection amount correction amount. トルク補正後のプレ噴射量での各噴射への配分割合を示す図である。It is a figure which shows the distribution ratio to each injection in the pre-injection amount after torque correction. プレ噴射量と各噴射での熱発生量の関係を示す図である。It is a figure which shows the relationship between the pre-injection amount and the heat generation amount in each injection.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、内燃機関の燃料噴射制御装置が適用されたエンジンの概略構成図である。
図1に示すように、エンジン(内燃機関)1は、多気筒の筒内直接噴射式内燃機関(例えばコモンレール式ディーゼルエンジン)であり、詳しくは、コモンレールに蓄圧された高圧燃料を各気筒の燃料噴射ノズル(燃料噴射手段)2に供給し、任意の噴射時期及び噴射量で当該燃料噴射ノズル2から各気筒の燃焼室3内に噴射可能な構成を成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an engine to which a fuel injection control device for an internal combustion engine is applied.
As shown in FIG. 1, an engine (internal combustion engine) 1 is a multi-cylinder direct injection internal combustion engine (for example, a common rail diesel engine). Specifically, high pressure fuel accumulated in the common rail is used as fuel for each cylinder. The fuel is supplied to the injection nozzle (fuel injection means) 2 and can be injected from the fuel injection nozzle 2 into the combustion chamber 3 of each cylinder at an arbitrary injection timing and injection amount.

エンジン1の各気筒には、上下摺動可能なピストン4が設けられている。そして、当該ピストン4は、コンロッド5を介してクランクシャフト6に連結されている。また、クランクシャフト6の一端部には回転速度を検出するクランク角センサ7と図示しないフライホイールが設けられている。
燃焼室3には、インテークポート8とエキゾーストポート9とが連通されている。
Each cylinder of the engine 1 is provided with a piston 4 that can slide up and down. The piston 4 is connected to the crankshaft 6 via a connecting rod 5. A crank angle sensor 7 for detecting the rotational speed and a flywheel (not shown) are provided at one end of the crankshaft 6.
An intake port 8 and an exhaust port 9 are communicated with the combustion chamber 3.

インテークポート8には、燃焼室3と当該インテークポート8との連通と遮断を行うインテークバルブ10が設けられている。また、エキゾーストポート9には、燃焼室3と当該エキゾーストポート9との連通と遮断とを行うエキゾーストバルブ11が設けられている。
インテークポート8の上流には、最上流から吸入された新気中のゴミを取り除くエアークリーナ12、排気のエネルギを利用し吸入された新気を圧縮するターボチャージャ13の図示しないコンプレッサハウジングと、圧縮され高温となった新気を冷却するインタークーラ14と、新気の流量を調整する電子制御スロットルバルブ15と、吸入した空気を各気筒に分配するインテークマニフォールド16とがそれぞれ連通するように設けられている。また、電子制御スロットルバルブ15には、スロットルバルブの開き度合を検出するスロットルポジションセンサ17が備えられている。
The intake port 8 is provided with an intake valve 10 for communicating and blocking between the combustion chamber 3 and the intake port 8. In addition, the exhaust port 9 is provided with an exhaust valve 11 for performing communication and blocking between the combustion chamber 3 and the exhaust port 9.
Upstream of the intake port 8, an air cleaner 12 that removes dust in the fresh air sucked from the most upstream, a compressor housing (not shown) of a turbocharger 13 that compresses the sucked fresh air using the energy of the exhaust, and a compression An intercooler 14 that cools the fresh air that has become hot, an electronically controlled throttle valve 15 that adjusts the flow rate of the fresh air, and an intake manifold 16 that distributes the intake air to each cylinder are provided to communicate with each other. ing. The electronically controlled throttle valve 15 is provided with a throttle position sensor 17 for detecting the degree of opening of the throttle valve.

エアークリーナ12の下流でありターボチャージャ13のコンプレッサハウジングの上流には、燃焼室3に吸入される新気の量を検出するエアーフローセンサ18が通路内に突出するように設けられている。また、燃焼室3に吸入される吸入空気の圧力を検出するブーストセンサ19と、該吸入空気の温度を検出する吸気温度センサ20とがインテークマニフォールド16内に突出するように設けられている。   An air flow sensor 18 for detecting the amount of fresh air sucked into the combustion chamber 3 is provided so as to protrude into the passage downstream of the air cleaner 12 and upstream of the compressor housing of the turbocharger 13. Further, a boost sensor 19 for detecting the pressure of intake air sucked into the combustion chamber 3 and an intake temperature sensor 20 for detecting the temperature of the intake air are provided so as to protrude into the intake manifold 16.

エキゾーストポート9の下流には、各気筒から排出される排気をまとめるエキゾーストマニフォールド21と、ターボチャージャ13に排気を導入する図示しないタービンハウジングと、排気管22とが連通するように設けられている。
排気管22には、上流から順番に排気中の炭化水素(THC)或いは一酸化炭素(CO)等の被酸化成分を酸化する酸化触媒(排気浄化手段)23と、排気中の窒素酸化物(NOx)を吸蔵還元するNOxトラップ触媒(排気浄化手段)24と、排気中の黒鉛を主成分とする微粒子状物資(PM)を捕集し燃焼させるディーゼルパティキュレートフィルタ(排気浄化手段)25とが連通するように設けられている。
Downstream of the exhaust port 9, an exhaust manifold 21 that collects exhaust discharged from each cylinder, a turbine housing (not shown) that introduces exhaust into the turbocharger 13, and an exhaust pipe 22 are provided so as to communicate with each other.
The exhaust pipe 22 includes an oxidation catalyst (exhaust purification means) 23 for oxidizing an oxidizable component such as hydrocarbon (THC) or carbon monoxide (CO) in the exhaust in order from upstream, and nitrogen oxide ( NOx trap catalyst (exhaust gas purification means) 24 for storing and reducing NOx), and diesel particulate filter (exhaust gas purification means) 25 for collecting and burning particulate matter (PM) mainly composed of graphite in the exhaust gas. It is provided to communicate.

NOxトラップ触媒24は、排気中のNOxを一時的に吸蔵し、排気をリッチ空燃比とするNOxパージ処理を行うことで吸蔵したNOxを還元してNOxを浄化する。さらに、NOxトラップ触媒24は、排気中の硫黄分(S)を吸着し、NOxの浄化性能が悪化することから、排気をリッチ空燃比として吸着した硫黄分を脱離するSパージ処理を行う必要がある。また、ディーゼルパティキュレートフィルタ25は、リッチ空燃比とした排気を酸化触媒23で酸化し高温の排気として、当該高温の排気を流入させることで堆積したPMを燃焼除去するPM燃焼処理を行うことでPMによる詰まりを解消する。   The NOx trap catalyst 24 temporarily stores NOx in the exhaust gas, and performs NOx purge processing for setting the exhaust gas to a rich air-fuel ratio, thereby reducing the stored NOx and purifying NOx. Further, since the NOx trap catalyst 24 adsorbs the sulfur content (S) in the exhaust and the NOx purification performance deteriorates, it is necessary to perform an S purge process for desorbing the adsorbed sulfur with the exhaust as a rich air-fuel ratio. There is. The diesel particulate filter 25 oxidizes the exhaust gas having a rich air-fuel ratio with the oxidation catalyst 23 to perform high temperature exhaust gas, and performs PM combustion processing for removing the accumulated PM by inflowing the high temperature exhaust gas. Eliminate clogging with PM.

排気管22のターボチャージャ13の下流にあたり、排気の温度を検出する排気温度センサ26が排気管22内に突出するように設けられている。
排気管22のNOxトラップ触媒24の下流でありディーゼルパティキュレートフィルタ25の上流には、排気中の酸素比率である酸素濃度を検出するA/Fセンサ27が通路内に突出するように設けられている。
An exhaust temperature sensor 26 that detects the temperature of exhaust gas is provided in the exhaust pipe 22 so as to protrude into the exhaust pipe 22 downstream of the turbocharger 13 of the exhaust pipe 22.
An A / F sensor 27 that detects the oxygen concentration, which is the oxygen ratio in the exhaust gas, is provided so as to protrude into the passage downstream of the NOx trap catalyst 24 in the exhaust pipe 22 and upstream of the diesel particulate filter 25. Yes.

インテークマニフォールド16とエキゾーストマニフォールド21には、それぞれが連通するように排気の一部を吸気へ戻すEGR通路28が設けられている。また、EGR通路28には、排気が吸気に戻る量、即ちEGR量を調整するEGRバルブ29と、吸気へ戻す排気を冷やすEGRクーラ30とが設けられている。
そして、燃料噴射ノズル2、クランク角センサ7、スロットルポジションセンサ17、エアーフローセンサ18、ブーストセンサ19、吸気温度センサ20、排気温度センサ26、A/Fセンサ27及びEGRバルブ29等の各種装置や各種センサ類は、エンジン1の総合的な制御を行うための制御装置であって入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成される電子コントロールユニット(ECU)(トルク補正手段)40と電気的に接続されており、当該ECU40は各種センサ類からの各情報に基づき各種装置を作動制御する。
The intake manifold 16 and the exhaust manifold 21 are provided with an EGR passage 28 for returning a part of the exhaust gas to the intake air so as to communicate with each other. The EGR passage 28 is provided with an EGR valve 29 for adjusting the amount of exhaust gas returning to intake air, that is, an EGR amount, and an EGR cooler 30 for cooling the exhaust gas returning to intake air.
Various devices such as the fuel injection nozzle 2, the crank angle sensor 7, the throttle position sensor 17, the air flow sensor 18, the boost sensor 19, the intake air temperature sensor 20, the exhaust gas temperature sensor 26, the A / F sensor 27, and the EGR valve 29, The various sensors are control devices for performing overall control of the engine 1, and include an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a timer, a central processing unit (CPU), and the like. Are electrically connected to an electronic control unit (ECU) (torque correction means) 40, and the ECU 40 controls the operation of various devices based on information from various sensors.

ECU40の入力側には、クランク角センサ7、スロットルポジションセンサ17、エアーフローセンサ18、ブーストセンサ19、吸気温度センサ20、排気温度センサ26及びA/Fセンサ27等のセンサ類が電気的に接続されており、これら各種装置及び各種センサ類からの検出情報が入力される。
一方、ECU40の出力側には、燃料噴射ノズル2及びEGRバルブ29が電気的に接続されている。
Sensors such as a crank angle sensor 7, a throttle position sensor 17, an air flow sensor 18, a boost sensor 19, an intake air temperature sensor 20, an exhaust gas temperature sensor 26, and an A / F sensor 27 are electrically connected to the input side of the ECU 40. Detection information from these various devices and various sensors is input.
On the other hand, the fuel injection nozzle 2 and the EGR valve 29 are electrically connected to the output side of the ECU 40.

これより、ECU40は、各センサの検出値に基づき、燃料噴射ノズル2からのプレ噴射、メイン噴射及びアフタ噴射の燃料噴射量及び噴射時期及びEGRバルブ29の開度を最適に制御する。また、ECU40は、各センサの検出値に基づき、車両の運転状況を判別し排気中の硫黄分或いはNOxのNOxトラップ触媒24への吸着量、或いはディーゼルパティキュレートフィルタ25に堆積したPMの堆積量を判別して、硫黄或いはNOxのパージ処理或いはPMの燃焼処理を行うべく排気をリッチ空燃比とするために膨張行程後期に燃料を燃焼室3に噴射するポスト噴射を制御する。   Thus, the ECU 40 optimally controls the fuel injection amounts and injection timings of the pre-injection, main injection and after-injection from the fuel injection nozzle 2 and the opening degree of the EGR valve 29 based on the detection values of the respective sensors. Further, the ECU 40 discriminates the driving state of the vehicle based on the detection value of each sensor, and adsorbs the sulfur content in the exhaust or NOx to the NOx trap catalyst 24 or the accumulated amount of PM accumulated on the diesel particulate filter 25. And post-injection in which fuel is injected into the combustion chamber 3 at the latter stage of the expansion stroke in order to set the exhaust to a rich air-fuel ratio to perform sulfur or NOx purge processing or PM combustion processing.

次にECU40での燃料噴射制御について説明する。
図2は、ECU40が実行する燃料噴射制御のフローチャートである。また、図3は、ポスト噴射量とトルク増加量の関係を示す図であり、横軸はポスト噴射量を、縦軸はトルク増加量ΔTを示す。図4は、トルク増加量とプレ補正量の関係を示す図であり、横軸はトルク増加量ΔTを、縦軸はプレ補正量、詳しくは次行程のプレ噴射での噴射量の補正量を示す。図5は、トルク増加量とメイン補正量の関係を示す図であり、横軸はトルク増加量ΔTを、縦軸はメイン補正量、詳しくは次行程のメイン噴射での噴射量の補正量を示す。また、図3、4及び5は、それぞれ予め試験等で確認されECU40に記憶されている。図6は、補正後のプレ噴射量での各噴射への配分割合を示す図であり、横軸は補正後プレ噴射量Qpmodを、縦軸は上段がプレ噴射への配分割合ratioを、下段がメイン噴射への配分割合(1-ratio)を示す。図中のプレ噴射量下限Qpminは安定したプレ燃焼を行うことのできる下限のプレ噴射量を、プレ単独補正下限Qpsminはポスト噴射の持ち越し燃料をプレ噴射の期間中に燃えきることのできる下限のプレ噴射量を示す。また、図6は、予め試験にて図7のようなプレ噴射量変化によるプレ噴射及びメイン噴射での熱発生量より設定されるものである。
Next, fuel injection control in the ECU 40 will be described.
FIG. 2 is a flowchart of fuel injection control executed by the ECU 40. FIG. 3 is a diagram showing the relationship between the post injection amount and the torque increase amount, in which the horizontal axis indicates the post injection amount and the vertical axis indicates the torque increase amount ΔT. FIG. 4 is a diagram showing the relationship between the torque increase amount and the pre-correction amount. The horizontal axis represents the torque increase amount ΔT, the vertical axis represents the pre-correction amount, and more specifically, the injection amount correction amount in the pre-injection of the next stroke. Show. FIG. 5 is a diagram showing the relationship between the torque increase amount and the main correction amount. The horizontal axis represents the torque increase amount ΔT, the vertical axis represents the main correction amount, and more specifically, the correction amount of the injection amount in the main injection in the next stroke. Show. 3, 4 and 5 are each confirmed in advance by a test or the like and stored in the ECU 40. FIG. 6 is a diagram showing the distribution ratio to each injection at the corrected pre-injection amount, where the horizontal axis represents the corrected pre-injection amount Qpmod, the vertical axis represents the distribution ratio ratio to the pre-injection, and the lower Indicates the distribution ratio (1-ratio) to the main injection. The pre-injection amount lower limit Qpmin in the figure is the lower limit pre-injection amount at which stable pre-combustion can be performed, and the pre-single correction lower limit Q psmin is the lower limit at which the post-injection carryover fuel can be burned during the pre-injection period. Indicates the pre-injection amount. FIG. 6 is set in advance from the amount of heat generated in the pre-injection and main injection due to the change in the pre-injection amount as shown in FIG.

図2に示すルーチンは、NOxパージ処理、Sパージ処理或いはPM燃焼処理時のポスト噴射の実施毎に行われる。
図2に示すように、ステップS10では、プレ噴射への配分割合ratioを1.0と仮定し下記式(1)にプレ噴射への配分割合ratioに1.0を代入して、補正後プレ噴射量Qpmodを算出する。そして、ステップS12に進む。
The routine shown in FIG. 2 is performed every time post injection is performed during NOx purge processing, S purge processing, or PM combustion processing.
As shown in FIG. 2, in step S10, the pre-injection distribution ratio ratio is assumed to be 1.0, and 1.0 is substituted into the pre-injection distribution ratio ratio in the following equation (1) to obtain a corrected pre-injection amount. Qpmod is calculated. Then, the process proceeds to step S12.

Qpmod=Qp−ΔT×ratio/ΔTqp・・・・・・・・・・(1)
Qpmod:補正後プレ噴射量
Qp:補正前プレ噴射量
ΔT:ポスト噴射の持ち越し燃料によるトルク増加量(ポスト噴射量に基づいて図3を用いて求められる。)
ΔTqp:プレ補正量単位当たりのトルク増加量(図4中の傾きの逆数に相当し、あらかじめ算出される。)
ステップS12では、ステップS10で算出された補正後プレ噴射量Qpmodがプレ単独補正下限Qpsminより大きいか、否かを判別する。判別結果が真(Yes)で補正後プレ噴射量Qpmodがプレ単独補正下限Qpsminより大きければ、補正後プレ噴射量Qpmodでポスト噴射の持ち越し燃料をプレ噴射の期間中に燃えきることができる図4(I)の範囲であるとして、ステップS14に進む。判別結果が否(No)で補正後プレ噴射量Qpmodがプレ単独補正下限Qpsmin以下であれば、補正後プレ噴射量Qpmodでポスト噴射の持ち越し燃料をプレ噴射の期間中に燃えきることのできない、即ちポスト噴射の持ち越し燃料をメイン噴射の期間まで持ち越してしまう図4(II)或いは(III)の範囲であるとして、ステップS18に進む。
Qpmod = Qp-ΔT × ratio / ΔTqp (1)
Qpmod: post-correction pre-injection amount Qp: pre-correction pre-injection amount ΔT: torque increase amount due to carry-over fuel of post injection (determined using FIG. 3 based on post-injection amount)
ΔTqp: Torque increase amount per unit of pre-correction amount (corresponding to the reciprocal of the slope in FIG. 4 and calculated in advance)
In step S12, it is determined whether or not the corrected pre-injection amount Qpmod calculated in step S10 is larger than the pre-single correction lower limit Qpsmin. If the determination result is true (Yes) and the corrected pre-injection amount Qpmod is larger than the pre-single correction lower limit Qpsmin, the post-injection carryover fuel can be burned during the pre-injection period with the corrected pre-injection amount Qpmod. Assuming that the range is (I), the process proceeds to step S14. If the determination result is no (No) and the corrected pre-injection amount Qpmod is equal to or less than the pre-single correction lower limit Qpsmin, the post-injection carryover fuel cannot be burned during the pre-injection period with the corrected pre-injection amount Qpmod. That is, assuming that the carry-over fuel of the post injection is carried over to the period of the main injection, the process proceeds to step S18, assuming that it is within the range of FIG. 4 (II) or (III).

ステップS14では、プレ噴射への配分割合ratioを1.0とする。そして、ステップS16に進む。
ステップS16では、ポスト噴射の持ち越し燃料をプレ噴射の期間中で燃えきることができるとして、補正後メイン噴射量Qmmodを補正前メイン噴射量Qmとする。即ち、メイン噴射量Qmは補正しない。そして、本ルーチンをリターンする。
In step S14, the ratio of distribution to pre-injection is set to 1.0. Then, the process proceeds to step S16.
In step S16, the post-injection carry-over fuel can be burned out during the pre-injection period, and the corrected main injection amount Qmmod is set as the pre-correction main injection amount Qm. That is, the main injection amount Qm is not corrected. Then, this routine is returned.

また、ステップS18では、上記式(1)と下記式(2)より補正後プレ噴射量Qpmodを算出する。そして、ステップS20に進む。
ratio=Qpmod×α+β・・・・・・・・・・(2)
α:図4の範囲(II)の傾き(定数)
β:図4の範囲(II)の切片(定数)
ステップS20では、ステップS18で算出された補正後プレ噴射量Qpmodがプレ噴射量下限Qpminより大きいか、否かを判別する。判別結果が真(Yes)で補正後プレ噴射量Qpmodがプレ噴射量下限Qpminより大きければ、図4(II)の範囲であるとして、ステップS22に進む。判別結果が否(No)で補正後プレ噴射量Qpmodがプレ噴射量下限Qpmin以下であれば、図4(III)の範囲であるとして、ステップS24に進む。
In step S18, the corrected pre-injection amount Qpmod is calculated from the above equation (1) and the following equation (2). Then, the process proceeds to step S20.
ratio = Qpmod × α + β (2)
α: slope (constant) of range (II) in FIG.
β: intercept (constant) in range (II) of FIG.
In step S20, it is determined whether or not the corrected pre-injection amount Qpmod calculated in step S18 is greater than the pre-injection amount lower limit Qpmin. If the determination result is true (Yes) and the corrected pre-injection amount Qpmod is larger than the pre-injection amount lower limit Qpmin, the process proceeds to step S22 assuming that the range is in FIG. 4 (II). If the determination result is NO (No) and the corrected pre-injection amount Qpmod is equal to or less than the pre-injection amount lower limit Qpmin, the process proceeds to step S24 assuming that it is within the range of FIG.

ステップS22では、上記式(2)よりプレ噴射への配分割合ratioを算出し、当該プレ噴射への配分割合ratioとステップS18にて算出した補正後プレ噴射量Qpmodと下記式(3)より補正後メイン噴射量Qmmodを算出する。そして、本ルーチンをリターンする。
Qmmod=Qm−ΔT×(1-ratio)/ΔTqm・・・・・・・・・・(3)
Qmmod:補正後メイン噴射量
Qm:補正前メイン噴射量
ΔTqm:メイン補正量単位当たりのトルク増加量(図5中の傾きの逆数に相当し、あらかじめ算出される。)
ステップS24では、補正後プレ噴射量Qpmodをプレ噴射量下限Qpminとする。そして、ステップS26に進む。
In step S22, the distribution ratio ratio to pre-injection is calculated from the above equation (2), and corrected from the distribution ratio ratio to the pre-injection, the corrected pre-injection amount Qpmod calculated in step S18, and the following equation (3). The rear main injection amount Qmmod is calculated. Then, this routine is returned.
Qmmod = Qm-ΔT × (1-ratio) / ΔTqm (3)
Qmmod: main injection amount after correction Qm: main injection amount before correction ΔTqm: torque increase amount per unit of main correction amount (corresponding to the reciprocal of the slope in FIG. 5 and calculated in advance)
In step S24, the corrected pre-injection amount Qpmod is set as the pre-injection amount lower limit Qpmin. Then, the process proceeds to step S26.

ステップS26では、下記式(4)よりプレ噴射への配分割合ratioを算出する。そして、算出されたプレ噴射への配分割合ratioと上記式(3)より補正後メイン噴射量Qmmodを算出する。そして、本ルーチンをリターンする。
ratio=(Qp−Qpmod)×ΔTqm/ΔT・・・・・・・・・・(4)
このように本発明の内燃機関の燃料噴射制御では、予め試験等で確認されたポスト噴射量とトルク増加量ΔTとの関係より、ポスト噴射の次行程への燃料の持ち越しによるトルク増加量ΔTを算出する。そして式(1)にプレ噴射への配分割合ratio=1.0としてエンジン1より出力されるトルクを一定に保つための補正後プレ噴射量Qpmodを算出する。補正後プレ噴射量Qpmodがプレ単独補正下限Qpsminより大きければ、ポスト噴射の持ち越し燃料が補正後プレ噴射量Qpmodでプレ噴射の期間中に燃えきることができるとして、補正後プレ噴射量Qpmodを次行程でのプレ噴射量とする。また、補正後プレ噴射量Qpmodがプレ単独補正下限Qpsmin以下でポスト噴射の持ち越し燃料を補正後プレ噴射量Qpmodでプレ噴射の期間中に燃えきることができないとして、式(1)と式(2)より再度補正後プレ噴射量Qpmodを算出する。再度補正後プレ噴射量Qpmodがプレ噴射量下限Qpminより大ければ、式(3)より補正後メイン噴射量Qmmodを算出し、再度算出した補正後プレ噴射量Qpmodと算出した補正後メイン噴射量Qmmodを次行程のプレ噴射量とメイン噴射量とする。また、再度補正後プレ噴射量Qpmodがプレ噴射量下限Qpmin以下であれば、式(4)よりプレ噴射への配分割合ratioを算出して、補正後メイン噴射量Qmmodを算出し、プレ噴射量下限Qpminと算出した補正後メイン噴射量Qmmodを次行程のメイン噴射量とする。そして、次行程のプレ噴射量は、安定したプレ燃料を行うことのできるプレ噴射量下限Qpminとしている。
In step S26, a distribution ratio ratio to pre-injection is calculated from the following equation (4). Then, the corrected main injection amount Qmmod is calculated from the calculated distribution ratio to pre-injection and the above equation (3). Then, this routine is returned.
ratio = (Qp−Qpmod) × ΔTqm / ΔT (4)
As described above, in the fuel injection control of the internal combustion engine of the present invention, the torque increase amount ΔT due to the carry-over of fuel to the next stroke of the post injection is calculated based on the relationship between the post injection amount and the torque increase amount ΔT confirmed in advance by a test or the like. calculate. Then, the corrected pre-injection amount Qpmod for keeping the torque output from the engine 1 constant is calculated as the distribution ratio ratio to pre-injection = 1.0 in the equation (1). If the corrected pre-injection amount Qpmod is larger than the pre-single correction lower limit Qpsmin, it is assumed that the post-injection carry-over fuel can be burned during the pre-injection period with the corrected pre-injection amount Qpmod. Pre-injection amount in the stroke. Further, assuming that the corrected pre-injection amount Qpmod is equal to or less than the pre-single correction lower limit Qpsmin and that the post-injection carryover fuel cannot be burned during the pre-injection period with the corrected pre-injection amount Qpmod, the equations (1) and (2 ) To calculate the corrected pre-injection amount Qpmod again. If the corrected pre-injection amount Qpmod is larger than the pre-injection amount lower limit Qpmin again, the corrected main injection amount Qmmod is calculated from Equation (3), and the corrected pre-injection amount Qpmod is calculated again and the corrected main injection amount is calculated. Let Qmmod be the pre-injection amount and main injection amount for the next stroke. Further, if the corrected pre-injection amount Qpmod is equal to or less than the pre-injection amount lower limit Qpmin, the distribution ratio ratio to pre-injection is calculated from the equation (4), the corrected main injection amount Qmmod is calculated, and the pre-injection amount is calculated. The lower limit Qpmin and the calculated corrected main injection amount Qmmod are set as the main injection amount for the next stroke. The pre-injection amount in the next stroke is set to a pre-injection amount lower limit Qpmin that enables stable pre-fuel.

即ち、ポスト噴射の持ち越し燃料よりトルク増加量を算出し、補正後プレ噴射量Qpmodがプレ単独補正下限Qpsminより大きく、持ち越し燃料が補正後プレ噴射量Qpmodでプレ噴射の期間中に全て燃え切ることができれば、プレ噴射量のみトルク補正を行う。また、持ち越し燃料が補正後プレ噴射量Qpmodでプレ噴射の期間中に全て燃え切ることができず、補正後プレ噴射量Qpmodがプレ噴射の燃焼が不安定となるプレ噴射量下限Qpmin以下であれば、プレ噴射量をプレ噴射量下限Qpminとし、プレ噴射量に基づきメイン噴射量のトルク補正を行う。また、補正後プレ噴射量Qpmodがプレ単独補正下限Qpsminとプレ噴射量下限Qpminとの範囲内にあれば、図6に基づきプレ噴射量とメイン噴射量のトルク補正を行うようにしている。   That is, the amount of torque increase is calculated from the carry-over fuel of the post injection, the corrected pre-injection amount Qpmod is larger than the pre-single correction lower limit Qpsmin, and the carry-over fuel is all burned out during the pre-injection period at the corrected pre-injection amount Qpmod. If it is possible, torque correction is performed only for the pre-injection amount. Further, the carry-over fuel cannot be completely burned out during the pre-injection period with the corrected pre-injection amount Qpmod, and the corrected pre-injection amount Qpmod is not more than the pre-injection amount lower limit Qpmin at which the pre-injection combustion becomes unstable. For example, the pre-injection amount is set to the pre-injection amount lower limit Qpmin, and torque correction of the main injection amount is performed based on the pre-injection amount. If the corrected pre-injection amount Qpmod is within the range between the pre-single correction lower limit Qpsmin and the pre-injection amount lower limit Qpmin, the torque correction between the pre-injection amount and the main injection amount is performed based on FIG.

従って、ポスト噴射量に基づき、ポスト噴射の次行程への持ち越し燃料によるトルク増加量を算出し、当該トルク増加量に基づき次行程のプレ噴射量とメイン噴射量とを補正するようにしており、持ち越し燃料によるトルク増加量でプレ噴射量とメイン噴射量とを補正することでプレ噴射とメイン噴射とで発生するトルクを減少させて、ポスト噴射の持ち越し燃料によるトルク増加を補正する。このようにポスト噴射の持ち越し燃料によるトルク増加量に基づいてプレ噴射量とメイン噴射量を補正した上で、ポスト噴射によるNOxパージ処理、Sパージ処理或いはPM燃焼処理を行うことで、NOxトラップ触媒24或いはディーゼルパティキュレートフィルタ25での排気浄化を良好に行いつつ、持ち越し燃料でのトルク増加によるドライバビリティや騒音の悪化を防止することができる。   Therefore, based on the post injection amount, the amount of torque increase due to the carry-over fuel to the next stroke of the post injection is calculated, and the pre injection amount and the main injection amount of the next stroke are corrected based on the torque increase amount. By correcting the pre-injection amount and the main injection amount by the torque increase amount by the carry-over fuel, the torque generated by the pre-injection and the main injection is reduced, and the torque increase by the carry-over fuel of the post injection is corrected. In this way, the NOx purge catalyst, the S purge process, or the PM combustion process is performed by correcting the pre-injection amount and the main injection amount based on the amount of torque increase due to the carryover fuel of the post injection, thereby performing the NOx trap catalyst. 24 or the diesel particulate filter 25 can be satisfactorily purified, and drivability and noise deterioration due to an increase in the torque of the carry-over fuel can be prevented.

また、本実施形態では、ポスト噴射量より算出されるトルク増加量に基づいて、持ち越し燃料の全てがプレ噴射の期間中に燃焼可能であるか、またプレ噴射量がプレ噴射の燃焼が不安定とならないかを判別し、持ち越し燃料の全てがプレ噴射の期間中に燃焼可能である場合には、トルク変化への寄与度が大きいプレ噴射を優先的に補正するようにしている。これにより、例えば持ち越し燃料によるトルク増加に対して少ない噴射量の補正量で対応することができる。   Further, in the present embodiment, based on the torque increase amount calculated from the post injection amount, all of the carry-over fuel can be combusted during the pre-injection period, or the pre-injection amount is unstable in the pre-injection combustion. If all the carry-over fuel can be combusted during the pre-injection period, the pre-injection that greatly contributes to the torque change is preferentially corrected. Thereby, for example, it is possible to cope with an increase in torque due to carry-over fuel with a small correction amount of the injection amount.

また、持ち越し燃料の全てがプレ噴射の期間中に燃焼不可能である場合にプレ噴射量に加えメイン噴射量を補正するようにしているので、プレ噴射の燃焼が微弱とならないようにプレ噴射量を確保することができる。よって、プレ噴射の燃焼が確実に行われ、メイン噴射の着火遅れを抑制することが可能となり、メイン噴射の着火遅れによる急激な燃焼に伴う燃焼音の悪化を防止することができる。   In addition, since the main injection amount is corrected in addition to the pre-injection amount when all of the carry-over fuel cannot be combusted during the pre-injection period, the pre-injection amount is set so that the pre-injection combustion does not become weak. Can be secured. Therefore, the pre-injection combustion is reliably performed, and it is possible to suppress the ignition delay of the main injection, and it is possible to prevent the deterioration of the combustion noise due to the rapid combustion due to the ignition delay of the main injection.

以上で発明の実施形態の説明を終えるが、発明の形態は本実施形態に限定されるものではない。
例えば、図3、4及び5では、噴射量とトルク増加量を比例関係で表しているが、これに限定されるものではなく、例えば他の関数あるいはマップ等により噴射量とトルク増加量の関係を定義してもよい。
This is the end of the description of the embodiment of the invention, but the invention is not limited to this embodiment.
For example, in FIGS. 3, 4, and 5, the injection amount and the torque increase amount are represented by a proportional relationship, but the present invention is not limited to this, and for example, the relationship between the injection amount and the torque increase amount by another function or a map or the like. May be defined.

また、例えば、本実施形態では、持ち越し燃料の全てをプレ噴射の期間中に燃焼が可能である場合には、図4(I)のようにプレ噴射のみを補正するようにしているが、これに限定されるものではなく、例えば、プレ噴射の補正量によるトルク補正量がメイン噴射の補正量によるトルク補正量以上となるように、プレ噴射とメイン噴射との双方を補正するようにしてもよい。このように、トルク増加への影響が大きなプレ噴射量の補正量を大きくすることで、同じトルク増加量に対する補正であっても噴射量の補正量を小さくすることができるので噴射量の制御を容易にすることができる。   Further, for example, in the present embodiment, when all of the carry-over fuel can be combusted during the pre-injection period, only the pre-injection is corrected as shown in FIG. For example, both the pre-injection and the main injection may be corrected so that the torque correction amount based on the pre-injection correction amount is equal to or greater than the torque correction amount based on the main injection correction amount. Good. In this way, by increasing the correction amount of the pre-injection amount that has a large effect on the torque increase, the correction amount of the injection amount can be reduced even for correction for the same torque increase amount. Can be easily.

1 エンジン(内燃機関)
2 燃料噴射ノズル(燃料噴射手段)
23 酸化触媒(排気浄化手段)
24 NOxトラップ触媒(排気浄化手段)
25 ディーゼルパティキュレートフィルタ
40 ECU(トルク補正手段)
1 engine (internal combustion engine)
2 Fuel injection nozzle (fuel injection means)
23 Oxidation catalyst (exhaust gas purification means)
24 NOx trap catalyst (exhaust gas purification means)
25 Diesel particulate filter 40 ECU (torque correction means)

Claims (4)

排気浄化手段を有する圧縮自己着火式内燃機関の1サイクル中に、燃料噴射手段からプレ噴射、前記プレ噴射よりも噴射量の多いメイン噴射及び排気系に未燃燃料を供給するポスト噴射を含む複数回の燃料噴射を順に実施可能な内燃機関の燃料噴射制御装置において、
前記ポスト噴射量に基づき、前記ポスト噴射の次行程への持ち越し燃料によるトルク増加量を算出し、前記トルク増加量に基づき少なくとも次行程の前記プレ噴射量を補正するトルク補正手段を備えることを特徴とする内燃機関の燃料噴射制御装置。
Plural types including pre-injection from fuel injection means, main injection having a larger injection amount than the pre-injection, and post-injection for supplying unburned fuel to the exhaust system in one cycle of a compression self-ignition internal combustion engine having exhaust purification means In the fuel injection control device for an internal combustion engine capable of sequentially performing the fuel injections of times,
Torque correction means for calculating a torque increase amount due to carry-over fuel to the next stroke of the post injection based on the post injection amount, and correcting at least the pre-injection amount of the next stroke based on the torque increase amount. A fuel injection control device for an internal combustion engine.
前記トルク補正手段は、前記ポスト噴射量より算出される前記トルク増加量に基づいて、前記持ち越し燃料の全てが前記プレ噴射により噴射された燃料の燃焼時に燃焼可能である場合には、前記トルク増加量に応じて前記プレ噴射量を補正することを特徴とする、請求項1に記載の内燃機関の燃料噴射制御装置。   Based on the torque increase amount calculated from the post-injection amount, the torque correction means increases the torque when all of the carry-over fuel is combustible during combustion of the fuel injected by the pre-injection. The fuel injection control device for an internal combustion engine according to claim 1, wherein the pre-injection amount is corrected according to the amount. 前記トルク補正手段は、前記トルク増加量に基づき次行程の前記プレ噴射量と前記メイン噴射量とを補正可能であって、前記ポスト噴射量より算出される前記トルク増加量に基づいて、前記持ち越し燃料の全てが前記プレ噴射により噴射された燃料の燃焼時に燃焼不可能である場合には前記プレ噴射量に加え前記メイン噴射量の補正を行うことを特徴とする、請求項1或いは2に記載の内燃機関の燃料噴射制御装置。   The torque correction means can correct the pre-injection amount and the main injection amount in the next stroke based on the torque increase amount, and based on the torque increase amount calculated from the post injection amount, 3. The main injection amount is corrected in addition to the pre-injection amount when all of the fuel is not combustible when the fuel injected by the pre-injection is combusted. Fuel injection control device for internal combustion engine. 前記トルク補正手段は、前記トルク増加量に基づき次行程の前記プレ噴射量と前記メイン噴射量とを補正可能であって、噴射量補正後の前記プレ噴射により噴射された燃料が燃焼可能である場合には前記プレ噴射量の補正によるトルク補正量をメイン噴射量の補正によるトルク補正量以上とすることを特徴とする、請求項1乃至3のいずれか1項に記載の内燃機関の燃料噴射制御装置。   The torque correction means can correct the pre-injection amount and the main injection amount in the next stroke based on the torque increase amount, and the fuel injected by the pre-injection after the injection amount correction is combustible. 4. The fuel injection of the internal combustion engine according to claim 1, wherein the torque correction amount by the correction of the pre-injection amount is equal to or greater than the torque correction amount by the correction of the main injection amount. Control device.
JP2011242110A 2011-11-04 2011-11-04 Fuel injection control device for internal combustion engine Active JP5854203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011242110A JP5854203B2 (en) 2011-11-04 2011-11-04 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242110A JP5854203B2 (en) 2011-11-04 2011-11-04 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013096359A true JP2013096359A (en) 2013-05-20
JP5854203B2 JP5854203B2 (en) 2016-02-09

Family

ID=48618568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242110A Active JP5854203B2 (en) 2011-11-04 2011-11-04 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5854203B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264135A (en) * 1989-04-04 1990-10-26 Japan Electron Control Syst Co Ltd Fuel feed control device for internal combustion engine
JP2002235589A (en) * 2001-02-06 2002-08-23 Nissan Motor Co Ltd Controller of internal combustion engine
JP2002242732A (en) * 2001-02-20 2002-08-28 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002327637A (en) * 2001-04-27 2002-11-15 Denso Corp Torque control device and its torque control method of multi stage injection type engine
JP2004044403A (en) * 2002-07-09 2004-02-12 Mazda Motor Corp Fuel injection control device of engine
JP2007032276A (en) * 2005-07-15 2007-02-08 Isuzu Motors Ltd Fuel injection control device
JP2008184915A (en) * 2007-01-26 2008-08-14 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
JP2008202461A (en) * 2007-02-19 2008-09-04 Honda Motor Co Ltd Fuel injection control device for internal combustion engine
WO2009090941A1 (en) * 2008-01-15 2009-07-23 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine fuel injection
WO2010035340A1 (en) * 2008-09-29 2010-04-01 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP2011052641A (en) * 2009-09-03 2011-03-17 Denso Corp Device for controlling exhaust emission for internal combustion engine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264135A (en) * 1989-04-04 1990-10-26 Japan Electron Control Syst Co Ltd Fuel feed control device for internal combustion engine
JP2002235589A (en) * 2001-02-06 2002-08-23 Nissan Motor Co Ltd Controller of internal combustion engine
JP2002242732A (en) * 2001-02-20 2002-08-28 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2002327637A (en) * 2001-04-27 2002-11-15 Denso Corp Torque control device and its torque control method of multi stage injection type engine
JP2004044403A (en) * 2002-07-09 2004-02-12 Mazda Motor Corp Fuel injection control device of engine
JP2007032276A (en) * 2005-07-15 2007-02-08 Isuzu Motors Ltd Fuel injection control device
JP2008184915A (en) * 2007-01-26 2008-08-14 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
JP2008202461A (en) * 2007-02-19 2008-09-04 Honda Motor Co Ltd Fuel injection control device for internal combustion engine
WO2009090941A1 (en) * 2008-01-15 2009-07-23 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine fuel injection
WO2010035340A1 (en) * 2008-09-29 2010-04-01 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP2011052641A (en) * 2009-09-03 2011-03-17 Denso Corp Device for controlling exhaust emission for internal combustion engine

Also Published As

Publication number Publication date
JP5854203B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
KR100504422B1 (en) Exhaust emission control device for engine
JP4120523B2 (en) Exhaust gas recirculation control device for internal combustion engine
EP2591222B1 (en) Fuel injection control of an internal combustion engine
JP5332575B2 (en) Exhaust gas purification device for internal combustion engine
EP1380742A1 (en) Fuel injection control device, method and computer program for engine
JP4648274B2 (en) Control device for internal combustion engine
JP4985680B2 (en) Control device for compression ignition type internal combustion engine
JP6070941B2 (en) Exhaust gas purification device for internal combustion engine
JP2005048692A (en) Combustion control device for internal combustion engine
JP5125298B2 (en) Fuel supply control device for internal combustion engine
JP3975680B2 (en) Control device for internal combustion engine
JP2005240722A (en) Control device for diesel engine
JP5263532B2 (en) Combustion control device and combustion control method for diesel engine
JP5854203B2 (en) Fuel injection control device for internal combustion engine
JP2017115632A (en) Fuel injection control device for internal combustion engine
JP5854204B2 (en) Fuel injection control device for internal combustion engine
JP2017115634A (en) Fuel injection control device for internal combustion engine
JP5999335B2 (en) Fuel injection control device for internal combustion engine
JP4556417B2 (en) Method for raising the temperature of an exhaust purification catalyst for an internal combustion engine
JP4776507B2 (en) Control device for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP5983915B2 (en) Exhaust gas purification device for internal combustion engine
JP2017227169A (en) Control device of engine
JP4154589B2 (en) Combustion control device for internal combustion engine
JP2005023819A (en) Air fuel ratio control system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R151 Written notification of patent or utility model registration

Ref document number: 5854203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350