JP2013096210A - Underground continuous body forming method using in-situ soil - Google Patents

Underground continuous body forming method using in-situ soil Download PDF

Info

Publication number
JP2013096210A
JP2013096210A JP2011243058A JP2011243058A JP2013096210A JP 2013096210 A JP2013096210 A JP 2013096210A JP 2011243058 A JP2011243058 A JP 2011243058A JP 2011243058 A JP2011243058 A JP 2011243058A JP 2013096210 A JP2013096210 A JP 2013096210A
Authority
JP
Japan
Prior art keywords
soil
drilling fluid
situ soil
vane
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243058A
Other languages
Japanese (ja)
Other versions
JP5133450B1 (en
Inventor
Hatsuichi Tanaka
肇一 田中
Shuji Isotani
修二 磯谷
Akihiro Yoshiura
彰洋 吉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2011243058A priority Critical patent/JP5133450B1/en
Application granted granted Critical
Publication of JP5133450B1 publication Critical patent/JP5133450B1/en
Publication of JP2013096210A publication Critical patent/JP2013096210A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground continuous body forming method using in-situ soil, for reducing excavation resistance, preventing separate precipitation of a coarse gravel portion, facilitating insertion of a core material, and preventing crash of a groove face.SOLUTION: In a method of forming an underground continuous body 15 by rotating a cutter 11 inserted underground, excavating a groove 13 continuous in a horizontal direction while cutting soil 12, and agitating and mixing in-situ soil 14 and excavation liquid at an original position simultaneously, mixed soil of the in-situ soil 14 and the excavation liquid is thixotropic, and vane shear stress relative value by a pocket vane test is 10% to 85%.

Description

本発明は、掘削抵抗を低減し、且つ芯材等の挿入を容易にする原位置土を用いた地中連続体造成方法に関するものである。   The present invention relates to a method for creating an underground continuum using in-situ soil that reduces excavation resistance and facilitates insertion of a core material and the like.

地中連続体造成方法として、例えばソイルセメント地中連続壁工法(TRD工法)が知られている(特開平5−280043号公報)。このTRD工法は、地中に建て込んだチェーンソー型のカッターポストをベースマシンと接続し、カッターを回転させ、地盤を掘削しながら横方向に移動させて、溝を掘削し、同時に土とセメントミルク等の硬化液を噴出することにより、原位置において土砂と硬化液とを混合して、ソイルセメント壁体を造成するものである。そして、この地中連続壁中にH鋼などの芯材を建て込み、地下掘削時の土留壁としたり止水壁としたり、更に液状化対策や地盤の補強など、様々な用途への応用を可能とするものである。   For example, a soil cement underground continuous wall construction method (TRD construction method) is known as a method for producing an underground continuous body (Japanese Patent Laid-Open No. 5-280043). In this TRD method, a chain saw-type cutter post built in the ground is connected to the base machine, the cutter is rotated, the ground is moved laterally while excavating, the groove is excavated, and soil and cement milk are simultaneously produced. The soil cement wall is formed by mixing the earth and sand and the hardening liquid at the original position by ejecting a hardening liquid such as the above. And, core material such as H steel is built in this underground continuous wall, and it can be used as a retaining wall or water blocking wall during underground excavation, and also for various applications such as liquefaction countermeasures and ground reinforcement. It is possible.

また、特開2003−120174号公報には、切羽の安定状態を継続させるシールド工法における切羽安定方法であって、地盤への浸透性を有し、かつ地盤改良効果を有する切羽保持用泥水を切羽から地盤に浸透させて、該切羽保持用泥水が浸透した地盤の浸透領域全体に自立性を持たせるシールド工法における切羽安定方法およびベントナイトと、アクリルアミド系高分子凝集剤とが配合されているシールド工法における切羽保持用泥水が開示されている。これにより、切羽を良好に保持し、安定した掘削作業を行うことが可能となる。   Japanese Patent Application Laid-Open No. 2003-120174 discloses a face stabilization method in a shield method that maintains the stable state of the face, and the face retaining mud that has permeability to the ground and has a ground improvement effect is disclosed in The shield stabilization method and the shield method in which bentonite and an acrylamide polymer flocculant are blended in the shield method to allow the entire infiltration area of the ground infiltrated from the ground into the ground to be self-supported. The face retaining mud is disclosed. This makes it possible to hold the face well and perform stable excavation work.

特開平5−280043号公報Japanese Patent Laid-Open No. 5-280043 特開2003−120174号公報JP 2003-120174 A

しかしながら、従来のTRD工法においては、硬化液と原位置土との混合土が、例えば硬化液の配合が少なく粗礫分が多い場合、流動性が悪く、粗礫分が撹拌刃に噛んで掘削抵抗が大となることで、掘削不能状態となったり、溝壁の崩落が生じやすくなるという問題がある。また、この掘削不能状態を解消するために地上から注入する硬化液量を多くすれば粗礫分の分離沈降による芯材建て込みが困難となったり、注入量増加による排泥の増加が生じ、例えば、処分費が増となり不経済になる等の問題がある。   However, in the conventional TRD method, the mixed soil of the hardening liquid and in-situ soil has poor fluidity when, for example, the hardening liquid is mixed and the amount of coarse gravel is large, and the excavation occurs when the coarse gravel is bitten by the stirring blade. Due to the large resistance, there is a problem that the excavation is impossible and the groove wall tends to collapse. Also, if you increase the amount of hardened liquid injected from the ground to eliminate this inability to excavate, it will be difficult to build the core material by separating and sinking the gravel, increasing the amount of mud due to the increased injection amount, For example, there are problems such as disposal costs increasing and becoming uneconomical.

また、特開2003−120174号公報は、切羽保持用泥水が浸透した地盤の浸透領域全体に自立性を持たせることから、切羽の安定状態を継続させる切羽安定工法であって、シールドの掘進量と排土量のバランスをとりながら掘進するために用いる切羽安定液である。当該切羽安定液をTRD工法に適用した場合、溝壁の崩落を防止することは出来るが、当該切羽安定液は水分が多く希釈な状態のため、粗礫分の分離沈降を防止することは出来ず、芯材の挿入に問題が生じる。このように、従来、溝壁の崩落防止と、掘削抵抗の低減と、芯材の安定した設置とは共に満足した工法はなかった。   Japanese Patent Laid-Open No. 2003-120174 is a face stabilization method for maintaining the stable state of the face since the entire infiltration area of the ground into which the face retaining mud has infiltrated is provided, It is a face stabilization solution used for excavating while balancing the amount of soil removed. When the face stabilization liquid is applied to the TRD method, the wall of the groove can be prevented from collapsing. However, since the face stabilization liquid has a high water content and is diluted, it cannot prevent the sedimentation and sedimentation of the coarse gravel. Therefore, a problem occurs in the insertion of the core material. Thus, conventionally, there has been no method that satisfies the prevention of the collapse of the groove wall, the reduction of the excavation resistance, and the stable installation of the core material.

従って、本発明の目的は、撹乱時には掘削抵抗を低減し、不撹乱時には粗礫分の分離沈降を防止し、芯材等の挿入が容易であり、且つ溝壁の崩落を防止する原位置土を用いた地中連続体造成方法を提供することにある。   Therefore, the object of the present invention is to reduce the digging resistance when disturbed, prevent separation and sedimentation of coarse gravel when not disturbed, facilitate the insertion of core material, etc., and prevent the collapse of the groove wall. An object of the present invention is to provide a method for constructing an underground continuum using the above.

かかる実情において、本発明者は鋭意検討を行った結果、TRD工法において、原位置土と掘削液の混合土が、ポケットベーン試験による撹乱時のベーンせん断応力値が、不撹乱時のベーンせん断応力値の10%〜85%であるようなチクソトロピー性を有する混合土であれば、掘削抵抗を低減し、粗礫分の分離沈降を防止し、芯材の挿入が容易であり、且つ溝壁の崩落を防止すること等を見出し、本発明を完成するに至った。   In this situation, the present inventor has intensively studied. As a result, in the TRD method, the mixed soil of the in-situ soil and the drilling fluid has a vane shear stress value when disturbed by the pocket vane test and a vane shear stress when undisturbed. If the mixed soil has thixotropy such as 10% to 85% of the value, the excavation resistance is reduced, separation and sedimentation of the gravel is prevented, the core material is easily inserted, and the groove wall The inventors have found that the collapse is prevented, and have completed the present invention.

すなわち、本発明は、地中に挿入した回転式カッターにより、地盤を切削しながら水平方向に連続した溝を掘削し、同時に原位置土と掘削液を原位置で撹拌混合し、地中連続体を造成する方法において、該原位置土と掘削液の混合土は、撹乱時のポケットベーン試験によるベーンせん断応力値が、不撹乱時のポケットベーン試験によるベーンせん断応力値の10%〜85%であることを特徴とする原位置土を用いた地中連続体造成方法を提供するものである。   That is, the present invention excavates a continuous groove in a horizontal direction while cutting the ground with a rotary cutter inserted into the ground, and simultaneously agitates and mixes the original soil and the drilling fluid at the original position, The mixed soil of the in-situ soil and the drilling fluid has a vane shear stress value in the pocket vane test at the time of disturbance of 10% to 85% of the vane shear stress value in the pocket vane test at the time of undisturbed. It is an object of the present invention to provide a method for creating an underground continuum using in-situ soil, which is characterized.

本発明によれば、該原位置土と掘削液の混合土は、チクソトロピー性を有する。チクソトロピー性とは、不撹乱時は、団粒体が水を内包しているため粘性が高まり、撹拌時には応力が加わるため団粒体に閉じ込められた水が開放されて混合土の粘性が低下し流動性が高まる性質を言う。すなわち、混合土は不撹乱状態で粘性が高く、撹乱状態で不撹乱状態での粘性よりも低くなる。このため、TRD工法におけるカッター切削時のカッタートルク値を小さくすることになり、芯材建て込み時には粘性が回復し溝壁の安定が確保され、且つ溝壁の崩落を防止できる。また、粗礫分の分離がないため、芯材の挿入が容易である。その他の効果として、注入する掘削液は少量でも地中連続体を造成できるので、排泥処理量が減じ、経済的である。   According to the present invention, the mixed soil of the in-situ soil and the drilling fluid has thixotropic properties. The thixotropy is that when undisturbed, the aggregates contain water and the viscosity increases. During stirring, stress is applied, so the water trapped in the aggregates is released and the viscosity of the mixed soil decreases. This refers to the property of increasing fluidity. That is, the mixed soil has a high viscosity in the undisturbed state and is lower than the viscosity in the undisturbed state in the disturbed state. For this reason, the cutter torque value at the time of cutter cutting in the TRD method is reduced, the viscosity is restored when the core material is built in, the stability of the groove wall is ensured, and the collapse of the groove wall can be prevented. Moreover, since there is no separation of coarse gravel, the core material can be easily inserted. As another effect, since the underground continuum can be formed even with a small amount of drilling fluid to be injected, the amount of sludge treatment is reduced and it is economical.

本発明の実施の形態における原位置土を用いた地中連続体造成方法を説明する図であり、(A)、(B)および(C)の順に工程が進む。It is a figure explaining the underground continuum formation method using the in-situ soil in embodiment of this invention, and a process progresses in order of (A), (B) and (C). 図1(C)を上から見た概略図である。It is the schematic which looked at FIG.1 (C) from the top. 本発明のチクソトロピー性を有する原位置混合撹拌土の模式図を示す。The schematic diagram of the in-situ mixing stirring soil which has the thixotropic property of this invention is shown. ポケットベーン試験装置および試験方法を説明する図である。It is a figure explaining a pocket vane test device and a test method. 従来のチクソトロピー性を示さない原位置混合撹拌土の模式図を示す。The schematic diagram of the in-situ mixed stirring soil which does not show the conventional thixotropic property is shown.

本発明の実施の形態における原位置土を用いた地中連続体造成方法(以下、単に、「地中連続体造成方法」とも言う。)を図1〜図5を参照して説明する。当該地中連続体造成方法を実施する装置(以下、「地中連続体造成装置」とも言う。)としては、例えば、特開平5−280043号公報に記載の公知の装置を使用することができる。   An underground continuum formation method using an in-situ soil according to an embodiment of the present invention (hereinafter, also simply referred to as “underground continuum formation method”) will be described with reference to FIGS. As an apparatus for carrying out the underground continuum formation method (hereinafter also referred to as “underground continuum formation apparatus”), for example, a known apparatus described in JP-A-5-280043 can be used. .

先ず、地中連続体造成装置10の回転式カッター11を地中に挿入する(図1)。次いで、地中に挿入した回転式カッター11を回転させ、地盤12を切削しながら水平方向に連続した溝13を造成し、同時に原位置土14と掘削液を原位置で撹拌混合し、地中連続体15を造成する(図2)。なお、図1は、簡略記載のため、掘削液および掘削液供給手段は不図示であるが、掘削液は地上から掘削位置へポンプにより供給される。
また、セメントミルク等の固化液を原位置土へ供給する場合、地中連続体造成装置10には、固化液の供給手段を付設する。また、地中連続体造成装置10には、掘削液I供給手段およびチクソ発現剤配合液供給手段を別途付設してもよい。
First, the rotary cutter 11 of the underground continuous body forming device 10 is inserted into the ground (FIG. 1). Next, the rotary cutter 11 inserted into the ground is rotated to form a continuous groove 13 in the horizontal direction while cutting the ground 12, and at the same time, the in-situ soil 14 and the drilling fluid are stirred and mixed in the in-situ, A continuous body 15 is formed (FIG. 2). In FIG. 1, for the sake of brevity, the drilling fluid and the drilling fluid supply means are not shown, but the drilling fluid is supplied from the ground to the drilling position by a pump.
Moreover, when supplying solidification liquid, such as cement milk, to an in-situ soil, the underground continuous body formation apparatus 10 is attached with the supply means of solidification liquid. In addition, the underground continuous body forming apparatus 10 may be additionally provided with a drilling fluid I supply unit and a thixotropic agent mixture liquid supply unit.

掘削液としては、ベントナイトまたは粘土鉱物、水およびチクソ発現剤を含有するもの(以下、「1液系掘削液」とも言う。)、ベントナイトまたは粘土鉱物および水を含む掘削液Iと、チクソ発現剤および水を含むチクソ発現剤配合液とをそれぞれ別系統で原位置土に供給するもの(以下、「2液系掘削液」とも言う。)が挙げられる。ベントナイトまたは粘土鉱物は、チクソ発現剤により、団粒体を形成する。粘土鉱物としては、モンモリナイト系鉱物、カオリナイト系鉱物および一般粘土鉱物が挙げられる。ベントナイトまたは粘土鉱物は、粒径1〜5μmの微粒子のものが使用できる。   The drilling fluid includes bentonite or clay mineral, water and thixotropic agent (hereinafter also referred to as “one-part drilling fluid”), drilling fluid I containing bentonite or clay mineral and water, and thixotropic agent. And a thixotropic agent-containing liquid containing water (hereinafter also referred to as “two-part drilling fluid”) supplied to the in situ soil by separate systems. Bentonite or clay mineral forms aggregates by the thixotropic agent. Examples of clay minerals include montmorillonite minerals, kaolinite minerals, and general clay minerals. Bentonite or clay mineral may be fine particles having a particle diameter of 1 to 5 μm.

1液系掘削液において、チクソ発現剤は、粒径1〜5μmのベントナイトまたは粘土鉱物(微粒子)を含むスラリー中に配合することで、微粒子間を結合し、掘削液中に、20〜50μmの団粒体を形成することができる。そして、原位置土と撹拌混合された後、不撹乱時は、団粒体が水を内包しているため粘性が高まり、撹拌時には応力が加わるため団粒体に閉じ込められた水が開放されて混合土の粘性が低下し流動性が高まる。また、2液系掘削液において、例えば原位置土と掘削液Iの混合土に、チクソ発現剤配合液を供給する場合、チクソ発現剤は、混合土中の粒径1〜5μmのベントナイトまたは粘土鉱物(微粒子)における微粒子間を凝集し、混合土中に、20〜50μmの団粒体を形成することができ、前記と同様の作用が生じ、混合土にチクソトロピー性を発現させる。   In a one-part drilling fluid, the thixotropic agent is blended in a slurry containing bentonite or clay mineral (fine particles) having a particle size of 1 to 5 μm so that the fine particles are bonded to each other. Aggregates can be formed. And after mixing with in-situ soil, when undisturbed, the aggregates contain water, so the viscosity increases, and during stirring, the stress is added and the water trapped in the aggregates is released. The viscosity of the mixed soil decreases and the fluidity increases. In addition, in the case of supplying a thixotropic agent-containing liquid to a mixed soil of, for example, in-situ soil and excavating liquid I in a two-part drilling fluid, the thixotropic agent is bentonite or clay having a particle size of 1 to 5 μm in the mixed soil. Aggregates between fine particles in mineral (fine particles) to form aggregates of 20 to 50 μm in the mixed soil, the same action as described above occurs, and thixotropic properties are expressed in the mixed soil.

本発明において、2液系掘削液の原位置土への供給方法としては、掘削液Iとチクソ発現剤配合液を同時に供給する方法、あるいは先に掘削液Iを供給し、原位置土と掘削液Iの混合土を形成し、その後、原位置土と掘削液Iの混合土にチクソ発現剤配合液を供給する方法が挙げられる。これにより、ベントナイトまたは粘土鉱物は、チクソ発現剤により凝集し、20〜50μmの団粒体となる。   In the present invention, as a method for supplying the two-part drilling fluid to the in-situ soil, a method of simultaneously supplying the drilling fluid I and the thixotropic agent-containing solution, or a method in which the drilling fluid I is first supplied and the in-situ soil and the excavation are excavated. There is a method in which a mixed soil of liquid I is formed, and then a thixotropic agent-containing liquid is supplied to the mixed soil of in-situ soil and excavating liquid I. Thereby, bentonite or clay mineral is aggregated by the thixotropic agent to form aggregates of 20 to 50 μm.

チクソ発現剤としては、アニオン系高分子剤が挙げられる。アニオン系高分子剤としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、アクリルアミド2−メチルプロパンスルフォン酸、ビニルスルフォン酸、スチレンスルフォン酸などの単独重合体あるいはアクリルアミドとの共重合体が挙げられる。アニオン系高分子剤は、天然物又は合成物いずれも使用できるが、合成物とすることが、少ない配合量で流動化物を得ることができる点で好ましい。これらの高分子剤は、特公昭34−10644号公報などに記載の公知の方法で製造することができる。   Examples of the thixotropic agent include an anionic polymer agent. Examples of the anionic polymer agent include homopolymers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamide 2-methylpropane sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, and copolymers with acrylamide. . As the anionic polymer agent, either a natural product or a synthetic product can be used, but it is preferable to use a synthetic product in that a fluidized product can be obtained with a small blending amount. These polymer agents can be produced by a known method described in Japanese Patent Publication No. 34-10644.

好ましい高分子剤は、分子量が100万以上、好ましくは200万以上、1000万以下であり、イオン化度が0〜100モル%のアクリル系高分子からなる粉末状と分散粒子径が100μm以下の油中水型エマルジョン形態のものである。   A preferred polymer agent is an oil having a molecular weight of 1 million or more, preferably 2 million or more and 10 million or less, and an acrylic polymer having an ionization degree of 0 to 100 mol% and a dispersed particle size of 100 μm or less. It is in the form of a water-in-water emulsion.

1液系掘削液において、ベントナイトまたは粘土鉱物、水およびチクソ発現剤の配合割合は、掘削液の比重が1.01〜1.3となるように配合すればよい。具体的には、掘削液中、ベントナイトまたは粘土鉱物(V)と水(W)との重量配合比(V):(W)が、1:1.5〜1:70、好ましくは1:1.6〜1:59.5とすればよい。また、掘削液中のチクソ発現剤の配合割合は、掘削地盤により添加量が変わるため、一概に決定できないものの、概ね、ベントナイトまたは粘土鉱物と水1m当たり、0.1〜50kg、好ましくは1〜10kg程度である。このような掘削液は、水中にベントナイトまたは粘土鉱物およびチクソ発現剤を添加し、撹拌混合して得ることができ、得られた掘削液は、ベントナイトまたは粘土鉱物とチクソ発現剤からなる20〜50μmの団粒体が均一に分散している。このような1液系掘削液は、原位置土と撹拌混合されることで混合土はチクソトロピー性を発現する。また、掘削液には、任意成分として、セメントが配合されていてもよい。 In one-part drilling fluid, the blending ratio of bentonite or clay mineral, water, and thixotropic agent may be blended so that the specific gravity of the drilling fluid is 1.01 to 1.3. Specifically, the weight ratio (V) :( W) of bentonite or clay mineral (V) and water (W) in the drilling fluid is 1: 1.5 to 1:70, preferably 1: 1. .6 to 1: 59.5. Further, the mixing ratio of the thixotropic agent in the drilling fluid cannot be generally determined because the amount added varies depending on the drilling ground, but is generally 0.1 to 50 kg, preferably 1 per 1 m 3 of bentonite or clay mineral. About 10 kg. Such a drilling fluid can be obtained by adding bentonite or clay mineral and a thixotropic agent in water and stirring and mixing the resulting drilling fluid, 20-50 μm comprising bentonite or clay mineral and a thixotropic agent. The aggregates are uniformly dispersed. Such a one-part drilling fluid is stirred and mixed with the in-situ soil, so that the mixed soil exhibits thixotropic properties. The drilling fluid may contain cement as an optional component.

2液系掘削液の掘削液Iにおいて、ベントナイトまたは粘土鉱物(V)と水(W)との重量配合比(V):(W)が、1:1.5〜1:70、好ましくは1:1.6〜1:59.5とすればよい。また、掘削液Iに対するチクソ発現剤配合液の使用割合は、掘削地盤により使用量が変わるため、一概に決定できないものの、概ね、掘削液I 1m当たり、チクソ発現剤が0.1〜50kg、好ましくは1〜10kgとなるように使用すればよい。掘削液I、チクソ発現剤配合液および原位置土の混合土は、ベントナイトまたは粘土鉱物とチクソ発現剤からなる20〜50μmの団粒体が均一に分散している。このような2液系掘削液と原位置土の混合土は、チクソトロピー性を発現する。また、掘削液1には、任意成分として、セメントが配合されていてもよい。 In the drilling fluid I of the two-component drilling fluid, the weight ratio (V) :( W) of bentonite or clay mineral (V) and water (W) is 1: 1.5 to 1:70, preferably 1. : 1.6 to 1: 59.5. The proportion of the thixotropic developer liquid combination for drilling fluid I, since the amount of use varies by excavating the ground, although can not be determined unconditionally, generally drilling fluid I 1 m 3 per thixotropic developer is 0.1~50Kg, Preferably, it may be used so as to be 1 to 10 kg. In the mixed soil of the drilling fluid I, the thixotropic agent blending solution, and the in-situ soil, aggregates of 20 to 50 μm composed of bentonite or clay mineral and a thixotropic agent are uniformly dispersed. Such a mixed soil of two-component drilling fluid and in-situ soil exhibits thixotropic properties. Further, the drilling fluid 1 may contain cement as an optional component.

原位置土14としては、施工する地盤の不撹乱土を言い、例えば粘土地盤、砂礫地盤、砂地盤、腐植土、有機質土等が挙げられる。   The in-situ soil 14 is undisturbed soil of the ground to be constructed, and examples thereof include clay ground, gravel ground, sand ground, humus soil, and organic soil.

本発明において、原位置土14と掘削液の混合土の撹乱時のポケットベーン試験によるベーンせん断応力値が、不撹乱時のポケットベーン試験によるベーンせん断応力値の10%〜85%、好ましくは20〜70%である。このような混合土は、高チクソトロピー性を有する。上記数値は、ベーンせん断応力相対値と言う。ベーンせん断応力相対値が10%未満では、チクソ発現剤の添加量が多い割にチクソトロピー性が上がらず、85%を超えるものは、高チクソトロピー性にならず、カッター切削時のカッタートルク値を十分小さくすることができない。   In the present invention, the vane shear stress value by the pocket vane test at the time of disturbance of the mixed soil of the original soil 14 and the drilling fluid is 10% to 85%, preferably 20% of the vane shear stress value by the pocket vane test at the time of undisturbed. ~ 70%. Such mixed soil has high thixotropy. The above numerical values are referred to as vane shear stress relative values. If the vane shear stress relative value is less than 10%, the thixotropy does not increase for a large amount of thixotropic agent added, and if it exceeds 85%, the thixotropy does not become high, and the cutter torque value at the time of cutter cutting is sufficient. It cannot be made smaller.

ポケットベーン試験装置は、原位置ベーンせん断試験(JGS 1411)の基準に基づいた手動式ベーンせん断試験装置であり、ベーンの回転抵抗から測定試料のせん断応力の最大歪値と最小歪値を求め、この比率よりチクソトロピー性を求めるものである。   The pocket vane test device is a manual vane shear test device based on the standard of the in-situ vane shear test (JGS 1411), and obtains the maximum strain value and the minimum strain value of the shear stress of the measurement sample from the rotational resistance of the vane. The thixotropy is obtained from this ratio.

ポケットベーン試験装置を用いて測定試料のチクソトロピー性を測定する方法を図4を参照して説明する。図4(A)はポケットベーン試験装置の概略図である。ポケットベーン試験装置40は、手動回転ハンドル41、上端が手動回転ハンドル41に接続し、下方部にベーンブレード43を有するベーンシャフト42とから構成され、ベーンブレード43は、長方形の4枚羽根を平面視で十字型となるように組み合わせたもので、羽根の高さと幅の比は2.0である。なお、符号45はベーン回転トルク表示円であり、符号46はベーン回転トルク指示針である。また、符号42と43をベーンと言う。図4(A)は、ビーカーに入れた試料土44の中心部にベーンブレード43を貫入する状態を示す図であり、図4(B)は不撹乱試料にてベーンを回している概略図、図4(C)は(B)にてベーンを回したことにより撹乱試料となり、その撹乱試料にてベーンを回している概略図である。   A method for measuring the thixotropy of a measurement sample using a pocket vane test apparatus will be described with reference to FIG. FIG. 4A is a schematic view of a pocket vane test apparatus. The pocket vane test apparatus 40 is composed of a manual rotary handle 41, an upper end connected to the manual rotary handle 41, and a vane shaft 42 having a vane blade 43 at a lower portion. The blades are combined so as to form a cross shape, and the ratio of the height and width of the blades is 2.0. Reference numeral 45 is a vane rotation torque display circle, and reference numeral 46 is a vane rotation torque indicating needle. Reference numerals 42 and 43 are referred to as vanes. FIG. 4 (A) is a diagram showing a state in which the vane blade 43 penetrates into the center of the sample soil 44 placed in a beaker, and FIG. FIG. 4C is a schematic diagram in which a vane is turned by turning the vane in (B), and the vane is turned by the disturbed sample.

ポケットベーン試験装置40を用いて測定試料44のチクソトロピー性を測定する方法としては、先ず図4(A)に示すようにポケットベーンブレード43が不撹乱試料の中心部に位置するようにゆっくり貫入する。次に図4(B)に示すようにベーン手動回転ハンドル45を出来るだけゆっくり符号Xの方向に回転させる。このときのベーン回転トルク表示の値が符号47で示される最大歪値(不撹乱時のベーンせん断応力値)である。図4(B)の状態から更に回転を加えた試料は、図4(C)に示すように撹乱試料となり、最大歪値から収束し約3回転後の値が符号48で示されるものが最小歪値(撹乱時のベーンせん断応力値)である。この最大歪値に対する最小歪値の比率を求め、これをベーンせん断応力相対値とする。   As a method for measuring the thixotropy of the measurement sample 44 using the pocket vane test apparatus 40, first, as shown in FIG. 4A, the pocket vane blade 43 is slowly penetrated so as to be positioned at the center of the undisturbed sample. . Next, as shown in FIG. 4B, the vane manual rotation handle 45 is rotated in the direction of the symbol X as slowly as possible. The value of the vane rotation torque display at this time is the maximum strain value indicated by reference numeral 47 (the vane shear stress value when undisturbed). The sample further rotated from the state of FIG. 4 (B) becomes a disturbed sample as shown in FIG. 4 (C), and the sample which converges from the maximum strain value and is indicated by reference numeral 48 after about 3 rotations is the minimum. Strain value (vane shear stress value during disturbance). The ratio of the minimum strain value to the maximum strain value is obtained, and this is set as the vane shear stress relative value.

混合土のベーンせん断応力相対値を上記数値範囲とするには、対象地盤(原位置土)から採取した土を、実験室において掘削液と配合割合を変えて混合して数種のサンプルを作成し、この数種の混合土について、ポケットベーン試験装置40を用いてベーンせん断応力相対値を求め、その結果から掘削液の使用量を決定すればよい(以下、「実験室的掘削液決定方法」とも言う)。   In order to make the relative value of the vane shear stress of the mixed soil within the above numerical range, several samples were prepared by mixing the soil collected from the target ground (in-situ soil) with the drilling fluid and mixing ratio in the laboratory. Then, for these several types of mixed soil, the relative value of the vane shear stress is obtained using the pocket vane test device 40, and the amount of drilling fluid used may be determined from the result (hereinafter referred to as “laboratory drilling fluid determination method”). ").

次に、原位置土12と掘削液の混合土のチクソトロピー性について図3を参照して説明する。図3(A)は現位置土の模式図である。原位置土30は粗礫分31と細粒分32を含んでいる。(B)は(A)の原位置土に掘削液を投入し撹拌混合した後の模式図である。(B)の混合土は、粗礫分31と団粒体33が混在している。団粒体33は、掘削液中のベントナイトまたは粘土鉱物および原位置土の細粒分が結合して団粒化したものであり、この団粒体中に水が内包される。従って、(B)の混合土は、不撹乱状態では粘性が高くなっている。このため、溝13の溝壁151の崩落を防止すると共に、粗礫分31が沈降し難くなっている。粗礫分31が沈降すると、溝13の溝底に粗礫分31が堆積して、芯材16の先が深く入らないことがあるが、本発明においては、粗礫分31が沈降しないため、図1(C)工程に示すように、芯材16の挿入が容易となる。   Next, the thixotropy of the mixed soil of the original soil 12 and the drilling fluid will be described with reference to FIG. FIG. 3A is a schematic diagram of the current position soil. The in-situ soil 30 includes a coarse gravel portion 31 and a fine grain portion 32. (B) is a schematic view after the excavation liquid is put into the in-situ soil of (A) and mixed with stirring. In the mixed soil (B), the gravel portion 31 and the aggregate 33 are mixed. The aggregate 33 is formed by combining bentonite or clay mineral in the drilling fluid and fine particles of the in situ soil, and water is included in the aggregate. Therefore, the mixed soil of (B) has a high viscosity in an undisturbed state. For this reason, collapse of the groove wall 151 of the groove 13 is prevented, and the coarse gravel portion 31 is difficult to settle. When the coarse gravel portion 31 settles, the coarse gravel portion 31 accumulates on the groove bottom of the groove 13 and the tip of the core material 16 may not enter deeply. However, in the present invention, the coarse gravel portion 31 does not settle. As shown in FIG. 1C, the core material 16 can be easily inserted.

図3(C)は、(B)の原位置土14と掘削液の混合土に対して矢印方向に力が作用したものであり、当該混合土はチクソトロピー性を発現する。チクソトロピー性とは、不撹乱時は、団粒体が水を内包しているため粘性が高まり、撹拌時には応力が加わるため団粒体に閉じ込められた水が開放されて混合土の粘性が低下し流動性が高まる現象を言う。すなわち、図3(C)に示すように、当該混合土に力が作用すると、団粒体33に閉じ込められた水を開放されて混合土の粘性が低下し流動性が向上する。このようなチクソトロピー性は、図1(B)の混合土中、力が作用するカッター11近傍や芯材挿入部分で発現する。このため、掘削抵抗が低減し、芯材16の挿入が容易となる(図1(C))。   In FIG. 3C, a force is applied in the direction of the arrow to the mixed soil of the in-situ soil 14 and the drilling fluid of (B), and the mixed soil exhibits thixotropic properties. The thixotropy is that when undisturbed, the aggregates contain water and the viscosity increases. During stirring, stress is applied, so the water trapped in the aggregates is released and the viscosity of the mixed soil decreases. A phenomenon that increases fluidity. That is, as shown in FIG. 3C, when a force acts on the mixed soil, the water confined in the aggregate 33 is released, the viscosity of the mixed soil is reduced, and the fluidity is improved. Such thixotropic properties are manifested in the vicinity of the cutter 11 where the force acts and the core material insertion portion in the mixed soil of FIG. For this reason, excavation resistance reduces and insertion of the core material 16 becomes easy (FIG.1 (C)).

本発明の比較例となる従来における原位置土14と掘削液の混合土の挙動について図5を参照して説明する。図5(A)は現位置土の模式図である。原位置土60は粗礫分61と細粒分62を含んでいる。(B)は(A)の原位置土にチクソ発現剤が配合されていない掘削液を投入し撹拌混合した後の模式図である。(B)の混合土は、粗礫分61と細粒分62と、掘削液中に存在していた微粒子63が混在している。従って、(B)の混合土中、粗礫分61は本発明のように水を内包した団粒体がないため、矢印で示すように、自由に動くことができ、不撹乱状態では粘性が低くなっている。このため、溝13の溝壁151の崩落を防止することができず、また、粗礫分61が沈降し易くなっている。粗礫分61が沈降すると、溝13の溝底に粗礫分61が堆積して、芯材16の先が深く入らないことがある。   With reference to FIG. 5, the behavior of the conventional soil 14 and the mixed soil of the drilling fluid will be described as a comparative example of the present invention. FIG. 5A is a schematic diagram of the current position soil. The in-situ soil 60 includes a coarse gravel portion 61 and a fine grain portion 62. (B) is a schematic diagram after the excavating liquid in which the thixo-expressing agent is not blended is added to the in-situ soil of (A) and stirred and mixed. In the mixed soil (B), the coarse gravel portion 61, the fine particle portion 62, and the fine particles 63 present in the drilling fluid are mixed. Therefore, in the mixed soil of (B), the coarse gravel portion 61 does not have aggregates containing water as in the present invention, and therefore can move freely as indicated by the arrow, and the viscosity is undisturbed in the undisturbed state. It is low. For this reason, collapse of the groove wall 151 of the groove 13 cannot be prevented, and the coarse gravel portion 61 tends to settle. When the coarse gravel portion 61 sinks, the coarse gravel portion 61 may accumulate at the groove bottom of the groove 13 and the tip of the core material 16 may not enter deeply.

図5(C)は、(B)の原位置土14と掘削液の混合土に力が作用したものであり、当該混合土はチクソトロピー性を有さない。すなわち、図5(C)に示すように、当該混合土に力が作用すると、粗礫分61同士の摩擦で、流動性が悪くなり、掘削抵抗は大きくなる。このように、地中連続体造成方法においては、原位置土14と掘削液の混合土にチクソトロピー性がある場合とない場合とでは、奏する効果が顕著に相違する。   In FIG. 5C, a force is applied to the mixed soil of the in-situ soil 14 and the drilling fluid in (B), and the mixed soil does not have thixotropic properties. That is, as shown in FIG. 5 (C), when a force acts on the mixed soil, fluidity deteriorates due to friction between the gravel portions 61 and excavation resistance increases. As described above, in the underground continuum formation method, the effect to be achieved is significantly different between the case where the mixed soil of the in-situ soil 14 and the excavating liquid has thixotropy.

本発明においては、原位置土と掘削液を原位置で撹拌混合し、地中連続体15を造成するが、撹拌混合の際、掘削液と同量の混合土が排泥される。本発明で使用する掘削液は、チクソ発現剤が配合されているため、掘削液量が同一の場合、ベントナイトまたは粘土鉱物については、従来に比べて、少量投入で済む。このため、排泥も少量となり、環境負荷が低減する。   In the present invention, the in-situ soil and the drilling fluid are stirred and mixed in the original position to form the underground continuum 15, but the same amount of mixed soil as the drilling fluid is drained during the stirring and mixing. Since the drilling fluid used in the present invention contains a thixotropic agent, if the amount of drilling fluid is the same, a small amount of bentonite or clay mineral may be added compared to the conventional one. For this reason, the amount of mud is also small, and the environmental load is reduced.

本発明においては、掘削液と硬化液をそれぞれ独立して同時に供給することもでき、また硬化液の供給後、掘削液を供給することもできる。掘削液と硬化液をそれぞれ独立して供給する場合、一方を本発明に係るベントナイトまたは粘土鉱物、水およびチクソ発現剤で形成される掘削液とし、他方を水およびセメントで形成される硬化液とすることができる。   In the present invention, the drilling liquid and the hardening liquid can be supplied independently and simultaneously, and the drilling liquid can be supplied after the hardening liquid is supplied. When supplying the drilling liquid and the hardening liquid independently, one is the bentonite or clay mineral according to the present invention, the drilling liquid formed with water and the thixogene, and the other is the hardening liquid formed with water and cement. can do.

本発明において、掘削液と硬化液をそれぞれ独立して供給する方法としては、例えば、原位置土と硬化液を原位置で撹拌混合する。この時、掘削液の供給は停止している。そして、地上における撹拌混合状態のモニタリングにより、カッターが原位置土を噛み込み、掘削抵抗が増加した場合、本発明の掘削液を供給して、原位置土と掘削液の混合土を上記ベーンせん断応力相対値の範囲として、撹拌混合抵抗を低減する。この方法においては、ベーンせん断応力相対値を決定するための実験室的掘削液決定方法において、掘削液が配合される対象土は、セメントミルク等の硬化剤が配合されたものとなる。   In the present invention, as a method for supplying the drilling liquid and the hardening liquid independently, for example, the in situ soil and the hardening liquid are stirred and mixed in the original position. At this time, the supply of drilling fluid is stopped. When the cutter bites the in-situ soil by monitoring the agitation and mixing state on the ground, and the excavation resistance increases, the excavating fluid of the present invention is supplied, and the mixed soil of the in-situ soil and the excavating fluid is vane sheared. The stirring mixing resistance is reduced as the range of the stress relative value. In this method, in the laboratory drilling fluid determination method for determining the relative value of the vane shear stress, the target soil to which the drilling fluid is blended is a blend of a hardener such as cement milk.

本発明における地中連続体造成方法においては、掘削(1パス)、戻り(2パス)、硬化液注入(3パス)および芯材挿入という従来の3パス施工方法を行う場合、掘削時の掘削液を本発明の1液系掘削液または2液系掘削液として使用すればよい。また、掘削、硬化液注入、芯材挿入を一連作業とする従来の1パス施工を行う場合、本発明に係る掘削液と硬化液をそれぞれ独立して同時に供給すればよい。   In the underground continuous body formation method in the present invention, when performing the conventional three-pass construction method of excavation (1 pass), return (2 passes), hardening liquid injection (3 passes), and core material insertion, excavation during excavation is performed. The liquid may be used as the one-part drilling fluid or the two-part drilling fluid of the present invention. Moreover, when performing the conventional 1-pass construction which makes excavation, hardening | curing liquid injection | pouring, and core material insertion a series of work, what is necessary is just to supply the digging liquid and hardening liquid which concern on this invention each independently simultaneously.

(実施例)
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(Example)
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

参考例
(本発明の工法を適用する地盤の調査)
K駅高架工事において本発明の工法を適用する地盤(原位置土)を採取し、実験室的に調製した該原位置土と掘削液の混合土について、ポケットベーン試験装置を用いてベーンせん断応力相対値を測定した。なお、掘削液Aは、粒径1〜5μmのベントナイト29.6kgと水988kgとアクリル酸とアクリルアミドとの共重合体(チクソ発現剤)の混合物を使用し、ベーンせん断応力相対値の測定は、チクソ発現剤の量が、掘削液1m当たり、0、5、7.6、10kgのものについて行った。なお、ポケットベーン試験装置のベーンブレードの直径は2cmであり、ベーンせん断応力(N/m)は式;(6×Mf)/(7πB)より算出した。式中、Mfは回転モーメント(N・cm)、Bはベーンブレードの直径(cm)を示す。なお、地盤(原位置土)は、ナンバー1は、施工1日目の対象地盤、ナンバー2は、施工2日目の対象地盤、ナンバー3は、施工3日目の対象地盤である。その結果を表1に示した。なお、ベーンせん断応力相対値20%〜83%のものは、高チクソトロピー性を示すものであり、TRD工法におけるカッター切削時のカッタートルク値を小さくでき、芯材建て込む時には粘性が回復し溝壁の安定が確保されることを確認した。
Reference example (investigation of the ground to which the method of the present invention is applied)
The ground (in-situ soil) to which the method of the present invention is applied in the K station elevated construction, and the vane shear stress of the mixed soil of the in-situ soil and the drilling fluid prepared in the laboratory using a pocket vane test device. Relative values were measured. The drilling fluid A uses a mixture of 29.6 kg of bentonite having a particle size of 1 to 5 μm, 988 kg of water, and a copolymer of acrylic acid and acrylamide (thixo-expressing agent). The amount of the thixotropic agent was 0, 5, 7.6, and 10 kg per 1 m 3 of the drilling fluid. The diameter of the vane blade of the pocket vane test apparatus was 2 cm, and the vane shear stress (N / m 2 ) was calculated from the formula: (6 × Mf) / (7πB 3 ). In the formula, Mf represents the rotational moment (N · cm), and B represents the diameter (cm) of the vane blade. As for the ground (original position soil), number 1 is the target ground on the first construction day, number 2 is the target ground on the second construction day, and number 3 is the target ground on the third construction day. The results are shown in Table 1. A vane shear stress relative value of 20% to 83% exhibits high thixotropy, and the cutter torque value during cutter cutting in the TRD method can be reduced. It was confirmed that the stability of

Figure 2013096210
Figure 2013096210

(掘削液の調製)
比重2.5、粒径1〜5μmのベントナイト155kgと水938kgとの混合物に対して、混合物1m当たり、1.5kgのアクリル酸とアクリルアミドとの共重合体(チクソ発現剤)を配合して、掘削液を調製した。掘削液の比重は1.1であった。
(Preparation of drilling fluid)
A mixture of 155 kg of bentonite with a specific gravity of 2.5 and a particle size of 1 to 5 μm and 938 kg of water is blended with 1.5 kg of a copolymer of acrylic acid and acrylamide (thixotropic agent) per 1 m 3 of the mixture. The drilling fluid was prepared. The specific gravity of the drilling fluid was 1.1.

(硬化液の調製)
粒径1〜5μmの粘土鉱物50kgと水800kgと比重3.04の高炉セメントB種547.2kgを混合して、硬化液を調製した。
(Preparation of curable liquid)
A hardening liquid was prepared by mixing 50 kg of a clay mineral having a particle diameter of 1 to 5 μm, 800 kg of water, and 547.2 kg of blast furnace cement type B having a specific gravity of 3.04.

(地中連続体の造成)
適用壁深度30m、適用壁厚550〜850mmのTRD-III型機を使用し、粘土混じりの砂礫地盤に対して、TRD工法を行った。すなわち、掘削、硬化液の注入および芯材の建て込みを1パスで一連作業として行なった。なお、掘削液と硬化液は独立して供給し、カッターの掘削抵抗も施工機のモニタリングで確認した。
(Construction of underground continuum)
Using a TRD-III type machine with an applied wall depth of 30 m and an applied wall thickness of 550 to 850 mm, the TRD method was carried out on gravel ground mixed with clay. That is, excavation, injection of hardening liquid, and erection of the core material were performed as a series of operations in one pass. The drilling liquid and hardening liquid were supplied independently, and the excavation resistance of the cutter was confirmed by monitoring the construction machine.

先ず、掘削液を使用せず、硬化液を砂礫地盤に対して、91.4リットル/mで投入しつつ施工を行った。その結果、施工途中、溝壁が崩落してカッターに噛み込んで、掘削不能となった。このため、施工を中止し、芯材の設置までには至らなかった。 First, construction was carried out without using the drilling fluid, but by feeding the hardening fluid to the gravel ground at 91.4 liters / m 3 . As a result, during construction, the groove wall collapsed and bitten into the cutter, making it impossible to excavate. For this reason, construction was stopped and the core material was not installed.

流動化改善のためと芯材建て込み時の流動性を確保するため新たに、水938kgと粘土分155kgを混合したものを、硬化液とは別経路で180リットル/m投入したが、今度は粗礫分が分離沈降し、芯材の建て込みが困難となった。 In order to improve fluidization and to ensure fluidity when the core material is installed, a new mixture of 938 kg of water and 155 kg of clay was added to the liquefied liquid through a separate route, 180 liters / m 3. As a result, the gravel was separated and settled, making it difficult to build the core material.

そこで、上記調製された掘削液を、別経路にて、砂礫地盤に対して、150リットル/m投入しつつ施工を行った。この時の混合土のベーンせん断応力相対値は36%であった。この数値から、混合土は高チクソトロピー性を示すものであった。 Therefore, construction was carried out while introducing the prepared drilling fluid into the gravel ground through another route at 150 liters / m 3 . The relative value of the vane shear stress of the mixed soil at this time was 36%. From this value, the mixed soil showed high thixotropy.

その結果、溝壁の崩落は解消し、掘削抵抗がTRD―III型機のトルク値が250kN・mから180kN・mへ著しくに低下した。そして、引き続き行った芯材の挿入は、極めて円滑に行うことができた。   As a result, the collapse of the groove wall has been eliminated, and the excavation resistance has significantly decreased from 250 kN · m to 180 kN · m. The subsequent core material insertion could be performed very smoothly.

本発明によれば、撹乱時、掘削抵抗を低減でき、不撹乱時、高粘度となり、溝壁の崩落を防止する。また、粗礫分の分離がないため、芯材の挿入が容易である。このため、効率的なTRD工法の実施が可能となった。   According to the present invention, the excavation resistance can be reduced during disturbance, the viscosity becomes high when undisturbed, and the collapse of the groove wall is prevented. Moreover, since there is no separation of coarse gravel, the core material can be easily inserted. For this reason, an efficient TRD construction method can be implemented.

10 掘削装置
11 カッター
12 地盤
13 溝
14、30、60 原位置土
15 地中連続体
16 芯材
20 回転粘度計
31、61 粗粒分
32、62 細粒分
33 団粒分
40 ポケットベーン試験装置
43 ベーンブレード
DESCRIPTION OF SYMBOLS 10 Excavator 11 Cutter 12 Ground 13 Groove 14, 30, 60 In-situ soil 15 Underground continuum 16 Core material 20 Rotational viscometer 31, 61 Coarse particles 32, 62 Fine particles 33 Aggregates 40 Pocket vane test device 43 Vane Blade

すなわち、本発明は、地中に挿入した回転式カッターにより、地盤を切削しながら水平方向に連続した溝を掘削し、同時に原位置土と掘削液を原位置で撹拌混合し、地中連続体を造成する方法において、該原位置土と掘削液の混合土は、撹乱時のポケットベーン試験によるベーンせん断応力値が、不撹乱時のポケットベーン試験によるベーンせん断応力値の10%〜70%であることを特徴とする原位置土を用いた地中連続体造成方法を提供するものである。 That is, the present invention excavates a continuous groove in a horizontal direction while cutting the ground with a rotary cutter inserted into the ground, and simultaneously agitates and mixes the original soil and the drilling fluid at the original position, The mixed soil of the in-situ soil and the drilling fluid has a vane shear stress value of 10% to 70 % of the vane shear stress value by the pocket vane test at the time of disturbance without disturbance. It is an object of the present invention to provide a method for creating an underground continuum using in-situ soil, which is characterized.

すなわち、本発明は、地中に挿入した回転式カッターにより、地盤を切削しながら水平方向に連続した溝を掘削し、同時に原位置土と掘削液と硬化液を原位置で撹拌混合し、地中連続体を造成する方法において、先ず、原位置土に硬化液を投入し、原位置土と硬化液を撹拌混合し、回転式カッターが原位置土を噛み込んで施工不能となるまで掘削し、次いで原位置土に硬化液と、ベントナイトまたは粘土鉱物、水およびチクソ発現剤を含有する掘削液を投入し、撹拌混合し施工するものであって、該原位置土と掘削液と硬化液の混合土は、撹乱時のポケットベーン試験によるベーンせん断応力値が、不撹乱時のポケットベーン試験によるベーンせん断応力値の10%〜70%であることを特徴とする原位置土を用いた地中連続体造成方法を提供するものである。 That is, according to the present invention, a rotary cutter inserted into the ground excavates a continuous groove in the horizontal direction while cutting the ground, and simultaneously agitates and mixes the original soil, the excavating liquid, and the hardening liquid at the original position, In the method of creating a middle continuum, first, the hardening liquid is poured into the in-situ soil, the in-situ soil and the hardening liquid are stirred and mixed, and excavation is performed until the rotary cutter bites the in-situ soil and the construction becomes impossible. and then a curing liquid situ soil, bentonite or clay minerals, a drilling fluid containing water and a thixotropic enhancer was charged, there is stirring mixed construction, the raw position soil with the drilling fluid and the hardening liquid Mixed soil is an underground soil using in-situ soil characterized in that the vane shear stress value by the pocket vane test at the time of disturbance is 10% to 70% of the vane shear stress value by the pocket vane test at the time of undisturbed Proposed continuum creation method It is intended to.

先ず、地中連続体造成装置10の回転式カッター11を地中に挿入する(図1)。次いで、地中に挿入した回転式カッター11を回転させ、地盤12を切削しながら水平方向に連続した溝13を造成し、同時に原位置土14と掘削液を原位置で撹拌混合し、地中連続体15を造成する(図2)。なお、図1は、簡略記載のため、掘削液および掘削液供給手段は不図示であるが、掘削液は地上から掘削位置へポンプにより供給される。また、セメントミルク等の硬化液を原位置土へ供給する場合、地中連続体造成装置10には、硬化液の供給手段を付設する。また、地中連続体造成装置10には、掘削液I供給手段およびチクソ発現剤配合液供給手段を別途付設してもよい。 First, the rotary cutter 11 of the underground continuous body forming device 10 is inserted into the ground (FIG. 1). Next, the rotary cutter 11 inserted into the ground is rotated to form a continuous groove 13 in the horizontal direction while cutting the ground 12, and at the same time, the in-situ soil 14 and the drilling fluid are stirred and mixed in the in-situ, A continuous body 15 is formed (FIG. 2). In FIG. 1, for the sake of brevity, the drilling fluid and the drilling fluid supply means are not shown, but the drilling fluid is supplied from the ground to the drilling position by a pump. Moreover, when supplying hardening liquid, such as cement milk, to an in-situ soil, the underground continuous body formation apparatus 10 is attached with the supply means of hardening liquid. In addition, the underground continuous body forming apparatus 10 may be additionally provided with a drilling fluid I supply unit and a thixotropic agent mixture liquid supply unit.

本発明において、掘削液と硬化液をそれぞれ独立して供給する方法としては、例えば、原位置土と硬化液を原位置で撹拌混合する。この時、掘削液の供給は停止している。そして、地上における撹拌混合状態のモニタリングにより、カッターが原位置土を噛み込み、掘削抵抗が増加した場合、本発明の掘削液を供給して、原位置土と、ベントナイトまたは粘土鉱物、水および掘削液と、硬化液の混合土を上記ベーンせん断応力相対値の範囲として、撹拌混合抵抗を低減する。この方法においては、ベーンせん断応力相対値を決定するための実験室的掘削液決定方法において、掘削液が配合される対象土は、セメントミルク等の硬化が配合されたものとなる。 In the present invention, as a method for supplying the drilling liquid and the hardening liquid independently, for example, the in situ soil and the hardening liquid are stirred and mixed in the original position. At this time, the supply of drilling fluid is stopped. Then, by monitoring the agitation and mixing state on the ground, if the cutter bites the in-situ soil and the excavation resistance increases, supply the in-situ soil and bentonite or clay mineral, water and excavation Stir mixing resistance is reduced by setting the mixed soil of the liquid and the hardening liquid in the range of the relative value of the vane shear stress. In this method, in the laboratory drilling fluid determination method for determining the relative value of the vane shear stress, the target soil to which the drilling fluid is blended is a mixture of a hardening fluid such as cement milk.

Claims (5)

地中に挿入した回転式カッターにより、地盤を切削しながら水平方向に連続した溝を掘削し、同時に原位置土と掘削液を原位置で撹拌混合し、地中連続体を造成する方法において、該原位置土と掘削液の混合土は、撹乱時のポケットベーン試験によるベーンせん断応力値が、不撹乱時のポケットベーン試験によるベーンせん断応力値の10%〜85%であることを特徴とする原位置土を用いた地中連続体造成方法。   In a method of excavating a continuous groove in the horizontal direction while cutting the ground with a rotary cutter inserted into the ground, and simultaneously stirring and mixing the original soil and the drilling fluid at the original position, The mixed soil of the in-situ soil and the drilling fluid is characterized in that the vane shear stress value by the pocket vane test at the time of disturbance is 10% to 85% of the vane shear stress value by the pocket vane test at the time of undisturbed. Underground continuum creation method using in-situ soil. 該掘削液は、ベントナイトまたは粘土鉱物、水およびチクソ発現剤を含有することを特徴とする請求項1記載の原位置土を用いた地中連続体造成方法。   The ground excavation method according to claim 1, wherein the drilling fluid contains bentonite or clay mineral, water and a thixotropic agent. 該掘削液は、ベントナイトまたは粘土鉱物および水を含む掘削液Iと、チクソ発現剤および水を含むチクソ発現剤配合液とをそれぞれ別系統で原位置土に供給するものであることを特徴とする請求項1記載の原位置土を用いた地中連続体造成方法。   The drilling fluid is characterized in that the drilling fluid I containing bentonite or clay mineral and water and the thixotropic agent-containing liquid containing thixotropic agent and water are respectively supplied to the in situ soil by separate systems. The underground continuum formation method using the in-situ soil of Claim 1. 該チクソ発現剤が、アニオン系高分子剤であることを特徴とする請求項1〜3のいずれか1項に記載の原位置土を用いた地中連続体造成方法。   The underground continuum formation method using the in-situ soil according to any one of claims 1 to 3, wherein the thixotropic agent is an anionic polymer agent. 粒径1〜5μmのベントナイトまたは粘土鉱物が、チクソ発現剤により、粒径20〜50μmの団粒体となっていることを特徴とする請求項2または3記載の原位置土を用いた地中連続体造成方法。   The ground using the in situ soil according to claim 2 or 3, wherein bentonite or clay mineral having a particle diameter of 1 to 5 µm is formed into aggregates having a particle diameter of 20 to 50 µm by a thixotropic agent. Continuous body creation method.
JP2011243058A 2011-11-07 2011-11-07 Subsurface continuum creation method using in situ soil Active JP5133450B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243058A JP5133450B1 (en) 2011-11-07 2011-11-07 Subsurface continuum creation method using in situ soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243058A JP5133450B1 (en) 2011-11-07 2011-11-07 Subsurface continuum creation method using in situ soil

Publications (2)

Publication Number Publication Date
JP5133450B1 JP5133450B1 (en) 2013-01-30
JP2013096210A true JP2013096210A (en) 2013-05-20

Family

ID=47693059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243058A Active JP5133450B1 (en) 2011-11-07 2011-11-07 Subsurface continuum creation method using in situ soil

Country Status (1)

Country Link
JP (1) JP5133450B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354649A (en) * 2022-08-26 2022-11-18 中建五局华东建设有限公司 TRD construction method for pebble bed ultra-deep falling-bottom rock

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286223A (en) * 1985-10-09 1987-04-20 Asahi Chem Ind Co Ltd Settlement work of prefabricated pile
JPH06207167A (en) * 1993-01-08 1994-07-26 Mitsui Cyanamid Co Production of aqueous solution of slurry-making agent
JPH08199160A (en) * 1995-01-27 1996-08-06 Mitsui Cytec Kk Excavation additive
JP2000313879A (en) * 1999-04-30 2000-11-14 Nippon Shokubai Co Ltd Dispersant for soil, conditioner for excavated muddy water and water reducing agent for ground injection technique
JP2002147171A (en) * 2000-11-10 2002-05-22 Toda Constr Co Ltd Improving method for excavated material
JP2005240553A (en) * 2000-12-28 2005-09-08 Kobelco Cranes Co Ltd Method of supporting construction of continuous underground wall, and excavator and support system for use therein
JP2010270169A (en) * 2009-05-19 2010-12-02 Toagosei Co Ltd Additive for drilling mud and method for producing the same and drilling mud using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286223A (en) * 1985-10-09 1987-04-20 Asahi Chem Ind Co Ltd Settlement work of prefabricated pile
JPH06207167A (en) * 1993-01-08 1994-07-26 Mitsui Cyanamid Co Production of aqueous solution of slurry-making agent
JPH08199160A (en) * 1995-01-27 1996-08-06 Mitsui Cytec Kk Excavation additive
JP2000313879A (en) * 1999-04-30 2000-11-14 Nippon Shokubai Co Ltd Dispersant for soil, conditioner for excavated muddy water and water reducing agent for ground injection technique
JP2002147171A (en) * 2000-11-10 2002-05-22 Toda Constr Co Ltd Improving method for excavated material
JP2005240553A (en) * 2000-12-28 2005-09-08 Kobelco Cranes Co Ltd Method of supporting construction of continuous underground wall, and excavator and support system for use therein
JP2010270169A (en) * 2009-05-19 2010-12-02 Toagosei Co Ltd Additive for drilling mud and method for producing the same and drilling mud using the same

Also Published As

Publication number Publication date
JP5133450B1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
EP2868807B1 (en) Hybrid foundation structure, and method for building same
JP6370614B2 (en) Underground continuous wall construction system
JP5133450B1 (en) Subsurface continuum creation method using in situ soil
JP5507591B2 (en) Excavation stirring method for hard ground
JP2012057407A (en) Slurry recycling method
JP6830632B2 (en) Treatment method of mud generated by mud pressure shield method
JP5317938B2 (en) Construction method of soil cement pillar and soil cement continuous wall
JP2006312865A (en) Method for replacing and constructing column, and replaced column
JP6831211B2 (en) Strength control method of backfill material and backfill method of ground
JP2010236349A (en) Construction method for stage type solidification
JP6679030B1 (en) Method for modifying mud soil such as soil mixed with drilling additives
JP2007332722A (en) Method for improving slime left in cast-in-place concrete pile
JP5167190B2 (en) High specific gravity stable liquid and excavation method
JP2012149480A (en) Soil cement method
US10161097B2 (en) Hybrid foundation structure, and method for building same
JP5767815B2 (en) Drilling solution
JP4867044B2 (en) Column replacement construction method
JP7133816B2 (en) Disposal method of mud generated by the mud pressure shield construction method
JP2005076333A (en) Banking construction method of slope face using on-site excessive soil
JP2006045877A (en) Underground continuous wall construction method
JP4867045B2 (en) Column replacement construction method
JP2018168628A (en) Manufacturing method of granulated soil and method for granulating swelling portion using the same
JP5864517B2 (en) Column building equipment
JP6193105B2 (en) Deformation following type water shielding material
JP2006307628A (en) Column replacing construction method and replacing column

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5133450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250