JP2013095623A - Method and apparatus for treating waste hydrochloric acid - Google Patents

Method and apparatus for treating waste hydrochloric acid Download PDF

Info

Publication number
JP2013095623A
JP2013095623A JP2011237905A JP2011237905A JP2013095623A JP 2013095623 A JP2013095623 A JP 2013095623A JP 2011237905 A JP2011237905 A JP 2011237905A JP 2011237905 A JP2011237905 A JP 2011237905A JP 2013095623 A JP2013095623 A JP 2013095623A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
waste hydrochloric
evaporator
concentration
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011237905A
Other languages
Japanese (ja)
Other versions
JP5822654B2 (en
Inventor
Hidefumi Yamanaka
秀文 山中
Hidemasa Nonaka
英正 野中
Kiyoto Ogawa
清登 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011237905A priority Critical patent/JP5822654B2/en
Publication of JP2013095623A publication Critical patent/JP2013095623A/en
Application granted granted Critical
Publication of JP5822654B2 publication Critical patent/JP5822654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of using an evaporator comprising a titanium-palladium alloy with high reliability for a long period by preventing wall thinning of the evaporator.SOLUTION: When waste hydrochloric acid containing an iron component is supplied into an evaporator 1 made of a titanium-palladium alloy and heated to recover hydrochloric acid vapor, the Feconcentration in the evaporator into which the waste hydrochloric acid is supplied is kept to be ≥5 g/L.

Description

本発明は、鉄成分を含有してなる廃塩酸をチタンパラジウム合金製の蒸発缶内に供給し、加熱して塩酸蒸気を回収する廃塩酸の処理方法、および、処理装置に関し、具体的には、たとえば、鋼線製造工場、鋼板製造工場、メッキ工場などにおいて、鋼線、鋼板、鋼製品などの洗浄工程で発生する高濃度鉄分含有廃塩酸の処理方法および処理装置に関する。本発明は、さらに詳しくは、従来はその殆どが産業廃棄物としてそのまま処理されていた廃塩酸中に残存する有効な塩酸を蒸発回収することにより、その再利用をはかるとともに、廃棄残分の減容化を行う廃塩酸の再生方法に関する。   The present invention relates to a waste hydrochloric acid treatment method and a treatment apparatus for supplying waste hydrochloric acid containing an iron component into an evaporator made of titanium palladium alloy and recovering hydrochloric acid vapor by heating, and specifically, For example, the present invention relates to a processing method and a processing apparatus for waste hydrochloric acid containing high-concentration iron contained in a cleaning process of steel wires, steel plates, steel products, etc. in steel wire manufacturing plants, steel plate manufacturing plants, plating plants and the like. More specifically, the present invention aims to reuse and reduce waste residue by evaporating and recovering effective hydrochloric acid remaining in waste hydrochloric acid, which has been mostly treated as industrial waste. The present invention relates to a method for recycling waste hydrochloric acid.

たとえば、特開昭59−026184号公報における図面に示されている従来の蒸気圧縮式蒸発装置は、下部に原液の溜室を備えた密閉型の蒸発器内の上部に多数本の伝熱管を設け、該各伝熱管の外側面に、原液ポンプによって送られて来る原液を散布器にて散布することにより蒸発させる構成となっている。この蒸発により発生した蒸気をブロワー圧縮機で圧縮して昇温し、この昇温した蒸気をダクトを介して、前記各伝熱管内に供給することにより、各伝熱管の外側面に散布されている原液を加熱・蒸発させる。   For example, in the conventional vapor compression evaporator shown in the drawing of Japanese Patent Laid-Open No. 59-026184, a large number of heat transfer tubes are provided in the upper part of a sealed evaporator having a stock solution reservoir in the lower part. It is configured to evaporate the raw solution sent by the raw solution pump on the outer surface of each heat transfer tube by spraying it with a sprayer. The steam generated by this evaporation is compressed by a blower compressor, the temperature is raised, and the heated steam is supplied to each heat transfer tube through a duct so that it is dispersed on the outer surface of each heat transfer tube. The stock solution is heated and evaporated.

このような廃塩酸の処理装置の蒸発缶は、濃縮される前記廃塩酸の強酸性および腐食性に対する耐久性能および処理温度、圧力条件に対する耐久性を考慮してフッ素樹脂やカーボン材などで製造されている場合が殆どである。しかしカーボン材などでは強度面などから設備が大型化し、設備費が高くなるなどの課題があり、金属材料により蒸発缶を製作する必要がある。金属材料としては、チタンパラジウム合金が候補材料として挙げられた。このような合金であれば、極めて耐食性が高く、強度も十分であるので、廃塩酸の処理を行っても容易に劣化しないものと考えられていた。   The evaporator of such a waste hydrochloric acid treatment apparatus is manufactured from a fluororesin or a carbon material in consideration of durability against the strong acidity and corrosivity of the waste hydrochloric acid to be concentrated and durability against the treatment temperature and pressure conditions. In most cases. However, carbon materials and the like have problems such as an increase in equipment size and cost due to strength, and it is necessary to produce an evaporator using a metal material. As the metal material, titanium palladium alloy was cited as a candidate material. Such an alloy has been considered to be extremely resistant to corrosion and sufficiently strong, so that it is not easily deteriorated even when waste hydrochloric acid is treated.

特開昭59−026184号公報JP 59-026184 A

しかし、いかに耐久性が高い合金からなる蒸発缶であっても濃塩酸の濃縮流去を連続的に繰り返していると、次第に劣化し、蒸発缶の壁面が溶解減肉する。チタンパラジウム合金からなる蒸発缶の劣化の進行度合いは、酸化剤(NO3 -、Fe3+など)が存在する環境下では通常非常に少ないので、特に対策をとる必要はないとされているが、酸化剤が全くないか非常に低い時に異常な減肉が観測される場合があって、このような状況に対する対策が必要になってきている。 However, even if an evaporator made of an alloy having a high durability is used, if concentrated hydrochloric acid is continuously concentrated and washed away, it gradually deteriorates and the wall of the evaporator is melted and thinned. The progress of deterioration of the evaporator made of titanium palladium alloy is usually very low in an environment where an oxidizing agent (NO 3 , Fe 3+, etc.) is present. When there is no or very low oxidizing agent, abnormal thinning may be observed, and countermeasures for such a situation are required.

したがって、本発明は上記実状に鑑み、蒸発缶の減肉を防止して、チタンパラジウム合金からなる蒸発缶を長期にわたって信頼性高く使用できる技術を提供することを目的とする。   Therefore, in view of the above situation, an object of the present invention is to provide a technique capable of preventing the thickness reduction of the evaporator and using the evaporator made of titanium palladium alloy with high reliability over a long period of time.

〔構成1〕
上記目的を達成するための本発明の廃塩酸の処理方法の特徴構成は、鉄成分を含有してなる廃塩酸をチタンパラジウム合金製の蒸発缶内に供給し、加熱して塩酸蒸気を回収する廃塩酸の処理方法であって、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持する点にある。
[Configuration 1]
The characteristic configuration of the waste hydrochloric acid treatment method of the present invention for achieving the above object is that waste hydrochloric acid containing an iron component is supplied into an evaporator made of titanium palladium alloy and heated to recover hydrochloric acid vapor. This is a method for treating waste hydrochloric acid, wherein the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator is maintained at 5 g / L or more.

〔作用効果1〕
本発明者らによると、チタンパラジウム合金製の蒸発缶の腐食減肉が観測される場合、前記蒸発缶の内壁面には、十分な不動態膜が形成されていないと予測されることが明らかになった。この新知見に基づき鋭意研究した結果、前記蒸発缶内に存在するFe3+濃度が十分高い場合には前記不動態膜が形成されており、高い耐久性を発揮しているものの、ある程度低い場合には前記不動態膜が不十分であって、十分な耐久性が発揮されていないことを実験的に明らかにした。本発明はこのような実験的事実の蓄積によってなされたものであり、前記蒸発缶に供給される廃塩酸に含まれるFe3+濃度が5g/L未満になった場合、蒸発缶内の減肉が急激に進みやすくなるのに対し、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持することにより、Fe3+がチタンパラジウム合金の蒸発缶内壁に不動態膜を形成する酸化剤として働き、蒸発缶内の不動態膜が安定して得られ、その蒸発缶の耐久性を高くするのに寄与することが明らかになった。
[Function 1]
According to the present inventors, when corrosion thinning of an evaporator made of titanium palladium alloy is observed, it is clear that a sufficient passive film is not formed on the inner wall surface of the evaporator. Became. As a result of diligent research based on this new knowledge, when the Fe 3+ concentration present in the evaporator is sufficiently high, the passive film is formed and exhibits high durability, but is somewhat low It was experimentally clarified that the above-mentioned passive film was insufficient and sufficient durability was not exhibited. The present invention has been made by accumulating such experimental facts. When the concentration of Fe 3+ contained in the waste hydrochloric acid supplied to the evaporator is less than 5 g / L, the thickness of the evaporator is reduced. However, by maintaining the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator at 5 g / L or more, Fe 3+ is deposited on the inner wall of the titanium palladium alloy evaporator. It has been clarified that it acts as an oxidant to form, forming a stable passive film in the evaporator and contributing to increasing the durability of the evaporator.

〔構成2〕
上記構成において、前記蒸発缶に供給される廃塩酸に酸素含有ガスを吹きこみ、前記廃塩酸中のFe2+をFe3+に酸化処理して、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持することができる。
[Configuration 2]
In the above configuration, an oxygen-containing gas is blown into the waste hydrochloric acid supplied to the evaporator, and Fe 2+ in the waste hydrochloric acid is oxidized to Fe 3+ , so that Fe contained in the waste hydrochloric acid in the evaporator The 3+ concentration can be maintained above 5 g / L.

〔作用効果2〕
すなわち、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するにあたって、本発明で対象とする廃塩酸は鉄成分を含有してなるものであるから鉄成分がFe3+となるように酸化しておけばよい。この際、Fe2+をFe3+に酸化処理するには、最も簡単に汎用されている手法として、空気酸化を採用することができる。空気酸化を行うには、前記蒸発缶に供給される廃塩酸に酸素含有ガスを吹きこむだけの簡単な装置構成を用いることができるから、簡便かつ高効率にチタンパラジウム合金の蒸発缶内壁に不動態膜を形成させることができる。
[Operation effect 2]
That is, when maintaining the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator at 5 g / L or more, the waste hydrochloric acid targeted by the present invention contains an iron component, so that the iron component is Fe. It should be oxidized to 3+ . At this time, in order to oxidize Fe 2+ to Fe 3+ , air oxidation can be adopted as the most commonly used technique. In order to perform air oxidation, a simple apparatus configuration in which oxygen-containing gas is simply blown into the waste hydrochloric acid supplied to the evaporator can be used. Therefore, the inner wall of the titanium palladium alloy evaporator can be easily and efficiently removed. A dynamic membrane can be formed.

〔構成3〕
また、上記構成において、前記蒸発缶に供給される廃塩酸にFe3+を添加して、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持することもできる。
[Configuration 3]
In the above configuration, Fe 3+ can be added to the waste hydrochloric acid supplied to the evaporator to maintain the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator at 5 g / L or more.

〔作用効果3〕
先述の構成によると、経験的には前記蒸発缶内における廃塩酸に含まれるFe3+濃度を効率よく5g/L以上に高めることができるのであるが、鉄成分を含む廃塩酸であっても十分量の鉄成分を安定的に含んでいるものとは限らないし、応答性良く前記廃塩酸中のFe2+をFe3+に酸化処理することができるとも限らない。そこで、直接的に廃塩酸中にFe3+を添加すれば、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持することが可能になり、前記蒸発缶内で不動態膜を形成するための酸化剤として働かせることができる。
[Operation effect 3]
According to the above-described configuration, it is empirically possible to efficiently increase the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator to 5 g / L or more, but even with waste hydrochloric acid containing an iron component, It does not necessarily contain a sufficient amount of iron component stably, and it does not necessarily mean that Fe 2+ in the waste hydrochloric acid can be oxidized to Fe 3+ with good responsiveness. Therefore, if Fe 3+ is added directly to the waste hydrochloric acid, the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator can be maintained at 5 g / L or more. It can act as an oxidizing agent to form a passive film.

〔構成4〕
本発明の廃塩酸処理装置の特徴構成は、鉄成分を含有してなる廃塩酸をチタンパラジウム合金製の蒸発缶内に供給し、加熱して塩酸蒸気を回収する廃塩酸の処理装置であって、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するFe3+濃度調整部を備えた点にある。
[Configuration 4]
The characteristic configuration of the waste hydrochloric acid treatment apparatus of the present invention is a waste hydrochloric acid treatment apparatus that supplies waste hydrochloric acid containing an iron component into an evaporator made of titanium palladium alloy and recovers hydrochloric acid vapor by heating. lies in that the Fe 3+ concentration of the waste hydrochloric acid in the evaporator within the can with a Fe 3+ concentration adjusting unit that maintained above 5 g / L.

〔作用効果4〕
上記Fe3+濃度調整部によると、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するものであるから、上記廃塩酸の処理方法を行うことができる。これにより、Fe3+がチタンパラジウム合金の蒸発缶内壁に不動態膜を形成する酸化剤として働き、蒸発缶内の不動態膜が安定して得られ、その蒸発缶の耐久性を高くするのに寄与する。
[Operation effect 4]
According to the Fe 3+ concentration adjusting unit, since the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator is maintained at 5 g / L or more, the method for treating the waste hydrochloric acid can be performed. As a result, Fe 3+ works as an oxidizing agent that forms a passive film on the inner wall of the titanium palladium alloy evaporator, and the passive film in the evaporator can be stably obtained, increasing the durability of the evaporator. Contribute to.

〔構成5〕
また、前記蒸発缶に供給される廃塩酸を貯留する廃塩酸貯留タンクを備え、前記Fe3+濃度調整部として前記廃塩酸貯留タンクに酸素含有ガスを吹き込むバブリング部を設けてもよい。
[Configuration 5]
In addition, a waste hydrochloric acid storage tank that stores waste hydrochloric acid supplied to the evaporator may be provided, and a bubbling unit that blows oxygen-containing gas into the waste hydrochloric acid storage tank may be provided as the Fe 3+ concentration adjusting unit.

〔作用効果5〕
上記Fe3+濃度調整部として前記廃塩酸貯留タンクに酸素含有ガスを吹き込むバブリング部を設けてあれば、前記蒸発缶に廃塩酸を供給する前段階で前記廃塩酸に含まれるFe3+濃度を調整しておくことができる。この際、前記廃塩酸貯留タンクでは、酸素含有ガスをバブリングして充分気液接触させる時間を確保し易く、効率よくFe2+をFe3+に酸化処理することができる。
[Operation effect 5]
If a bubbling unit for blowing an oxygen-containing gas into the waste hydrochloric acid storage tank is provided as the Fe 3+ concentration adjusting unit, the Fe 3+ concentration contained in the waste hydrochloric acid may be reduced before supplying the waste hydrochloric acid to the evaporator. It can be adjusted. In this case, in the waste hydrochloric acid storage tank, it is easy to ensure a sufficient time for gas-liquid contact by bubbling the oxygen-containing gas, and Fe 2+ can be efficiently oxidized to Fe 3+ .

〔構成6〕
前記バブリング部は、前記廃塩酸貯留タンクに収容される廃塩酸を抜き出し前記廃塩酸貯留タンクに再供給する廃塩酸循環路を設け、前記再供給される廃塩酸が、酸素含有ガスとしての空気を吸い込みつつ前記廃塩酸貯留タンクに供給されるエジェクタ部を備える構成であってもよい。
[Configuration 6]
The bubbling unit is provided with a waste hydrochloric acid circulation path for extracting the waste hydrochloric acid stored in the waste hydrochloric acid storage tank and re-supplying the waste hydrochloric acid storage tank, and the re-supplied waste hydrochloric acid supplies air as an oxygen-containing gas. The structure provided with the ejector part supplied to the said waste hydrochloric acid storage tank, sucking in may be sufficient.

〔作用効果6〕
すなわちエジェクタ部をもってバブリングを行う構成であれば、前記廃塩酸貯留タンクに収容される廃塩酸を抜き出し前記廃塩酸貯留タンクに再供給する廃塩酸循環路を設ける単純な配管で、再供給される廃塩酸が酸素含有ガスを吸い込みつつ微細気泡を生成して前記廃塩酸貯留タンクに供給することができ、かつ、少ない動力でバブリングを継続することができるので、効率のよい酸化処理が行いやすい。
[Operation effect 6]
That is, if bubbling is performed with the ejector section, the waste hydrochloric acid stored in the waste hydrochloric acid storage tank is extracted and re-supplied with a simple piping provided with a waste hydrochloric acid circulation path that is re-supplied to the waste hydrochloric acid storage tank. Since hydrochloric acid sucks oxygen-containing gas, fine bubbles can be generated and supplied to the waste hydrochloric acid storage tank, and bubbling can be continued with a small amount of power, making it easy to perform efficient oxidation treatment.

〔構成7〕
また、前記蒸発缶に廃塩酸を供給する管路に前記Fe3+濃度調整部としてのFeCl3添加部を設けてあってもよい。
[Configuration 7]
Further, an FeCl 3 addition unit as the Fe 3+ concentration adjusting unit may be provided in a pipe for supplying waste hydrochloric acid to the evaporator.

〔作用効果7〕
直接的に廃塩酸中にFe3+を添加するFeCl3添加部を設けてあれば、前記廃塩酸中のFe3+濃度を高め、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持することが可能になり、前記蒸発缶内で不動態膜を形成するための酸化剤として働かせることができる。
[Operation effect 7]
If an FeCl 3 addition part for directly adding Fe 3+ to waste hydrochloric acid is provided, the Fe 3+ concentration in the waste hydrochloric acid is increased, and the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator is increased. It can be maintained at 5 g / L or more, and can act as an oxidizing agent for forming a passive film in the evaporator.

〔構成8〕
さらに、前記蒸発缶に腐食電位を測定する腐食電位監視部を設けるとともに、前記腐食電位監視部における腐食電位測定値に基き、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するためのFeCl3添加量を決定するFeCl3添加量制御装置を付加することもできる。
[Configuration 8]
Further, the evaporator is provided with a corrosion potential monitor for measuring the corrosion potential, and the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator is 5 g / L based on the measured corrosion potential in the corrosion potential monitor. It can also be added FeCl 3 addition amount control device for determining the FeCl 3 added amount for maintaining the above.

〔作用効果8〕
特に、処理される廃塩酸が含有するFe3+濃度が安定していないような場合には上記Fe3+濃度調整部でのFe3+濃度調整が必要になる。この際、充分量のFe3+を添加すれば、前記蒸発缶内不動態被膜を形成するのに問題はなく、Fe3+濃度調整の結果、Fe3+濃度が高くなりすぎてもかまわないが、あまりに必要以上のFe3+を添加しても経済的には不利であるので、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上にするために必要最小量のFe3+添加量を目標値としてFe3+濃度調整を行うことが好ましい。Fe3+濃度が増えると、前記蒸発缶の壁面の腐食電位は高くなる傾向を示すので、Fe3+濃度を直接監視するのに代えて、前記蒸発缶の腐食電位を測定して監視することができる。そのため、前記蒸発缶の腐食電位を測定する腐食電位監視部を設けるとともに、前記腐食電位監視部における腐食電位測定値に基き、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するためのFeCl3添加量を決定することができる。FeCl3添加量を決定するFeCl3添加量制御装置により、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持すると、必要最小限のFeCl3添加量を維持しつつ、過剰のFeCl3添加を抑制し、経済的に効率のよいFeCl3添加でFe2+をFe3+に酸化処理することができる。
[Operation effect 8]
In particular, Fe 3+ concentration waste hydrochloric acid to be treated contains is required Fe 3+ concentration adjustment in the Fe 3+ concentration adjusting unit in the case that not stable. At this time, if a sufficient amount of Fe 3+ is added, there is no problem in forming the passive film in the evaporator, and the Fe 3+ concentration may be too high as a result of the Fe 3+ concentration adjustment. However, it is economically disadvantageous to add too much Fe 3+ more than necessary, so the minimum amount necessary to make the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator can be 5 g / L or more. It is preferable to adjust the Fe 3+ concentration using the Fe 3+ addition amount as a target value. As the Fe 3+ concentration increases, the corrosion potential of the evaporator wall tends to increase. Therefore, instead of directly monitoring the Fe 3+ concentration, the corrosion potential of the evaporator should be measured and monitored. Can do. Therefore, a corrosion potential monitoring unit for measuring the corrosion potential of the evaporator is provided, and the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator is 5 g / L based on the measured corrosion potential value in the corrosion potential monitoring unit. The amount of FeCl 3 added for maintaining the above can be determined. The FeCl 3 addition amount control device for determining the FeCl 3 added amount, maintaining the Fe 3+ concentration of the waste hydrochloric acid in the evaporator in the can than 5 g / L, while maintaining the FeCl 3 added amount of the minimum necessary Thus, excessive FeCl 3 addition can be suppressed, and Fe 2+ can be oxidized to Fe 3 + by economically efficient FeCl 3 addition.

〔構成9〕
また、前記廃塩酸貯留タンクもしくは前記廃塩酸貯留タンクから前記蒸発缶にいたる管路に、腐食電位監視部を設けるとともに、前記腐食電位監視部における腐食電位測定値に基き、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するためのFeCl3添加量を決定するFeCl3添加量制御装置を備えてもよい。
[Configuration 9]
In addition, a corrosion potential monitoring unit is provided in the waste hydrochloric acid storage tank or a pipeline extending from the waste hydrochloric acid storage tank to the evaporator, and the waste in the evaporator can be determined based on the measured corrosion potential in the corrosion potential monitoring unit. it may comprise FeCl 3 addition amount control device for determining the FeCl 3 amount to maintain the Fe 3+ concentration of the hydrochloric acid more than 5 g / L.

前記蒸発缶に腐食電位監視部を設ける場合、直接的に蒸発缶内における廃塩酸に含まれるFe3+濃度を反映した腐食電位を求めることができるが、前記腐食電位を求めるための電極等を前記蒸発缶に設けることは、前記蒸発缶の設計変更を伴う場合があって、好ましく無い場合もある。そのような場合、前記廃塩酸貯留タンクもしくは前記廃塩酸貯留タンクから前記蒸発缶にいたる管路に、前記腐食電位監視部を設けると、その蒸発缶に供給される廃塩酸に含まれるFe3+濃度を監視することができる。ここで求められたFe3+濃度は、前記蒸発缶内におけるFe3+濃度と相関を有するものであるから、前記腐食電位監視部における腐食電位測定値に基き、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するためのFeCl3添加量を決定することができる。すなわち、前記蒸発缶に腐食電位監視部を設ける場合と同様に、FeCl3添加量を決定するFeCl3添加量制御装置により、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持することができる。 When the corrosion potential monitor is provided in the evaporator, the corrosion potential that directly reflects the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator can be obtained. Providing in the evaporator may be accompanied by a change in the design of the evaporator and may not be preferable. In such a case, when the corrosion potential monitoring unit is provided in the waste hydrochloric acid storage tank or a pipeline extending from the waste hydrochloric acid storage tank to the evaporator, Fe 3+ contained in the waste hydrochloric acid supplied to the evaporator The concentration can be monitored. Since the Fe 3+ concentration obtained here has a correlation with the Fe 3+ concentration in the evaporator, the waste hydrochloric acid in the evaporator can be determined based on the measured corrosion potential in the corrosion potential monitor. The amount of FeCl 3 added for maintaining the concentration of Fe 3+ contained at 5 g / L or more can be determined. That is, similarly to the case of providing a corrosion potential monitoring unit to the evaporator, by FeCl 3 addition amount control device for determining the FeCl 3 addition amount of Fe 3+ concentration of the waste hydrochloric acid in the evaporator in the reactor 5 g / L It can be maintained above.

〔構成10〕
尚、上記腐食電位監視部が貴金属電極を備えることが好ましい。
[Configuration 10]
The corrosion potential monitoring unit preferably includes a noble metal electrode.

〔作用効果10〕
上記前記腐食電位監視部において、前記蒸発缶壁部の腐食電位を直接求めることもできる。すなわち、この場合、前記チタンパラジウム合金の表面電位を直接参照すると、不動態被膜の生成状況に応じて、Fe3+濃度と腐食電位との関係が理想的な比例関係を示さないために、あらかじめFe3+濃度と腐食電位との関係式を求め、この関係式に従って、Fe3+濃度を求めることになる。しかし、前記腐食電位監視部が貴金属電極を備えると、前記貴金属電極において測定される電位は、蒸発缶内部の不動態の生成状況とは関係なく、比例に近い関係となるために、簡単に測定される電位から精度良くFe3+濃度を求めることができるようになる。
また、前記廃塩酸貯留タンクもしくは前記廃塩酸貯留タンクから前記蒸発缶にいたる管路に、前記腐食電位監視部を設ける場合においても同様に、前記腐食電位監視部が貴金属電極であれば、比例に近い関係から、より精度良くFe3+濃度を求めることができるようになる。
[Operation effect 10]
In the corrosion potential monitoring unit, the corrosion potential of the evaporator wall can be directly obtained. That is, in this case, referring directly to the surface potential of the titanium palladium alloy, the relationship between the Fe 3+ concentration and the corrosion potential does not show an ideal proportional relationship depending on the state of formation of the passive film. It obtains a relational expression between the Fe 3+ concentration and corrosion potential, in accordance with this relation, thus obtaining the Fe 3+ concentration. However, if the corrosion potential monitoring unit is equipped with a noble metal electrode, the potential measured at the noble metal electrode is close to proportional, regardless of the state of generation of the passive state inside the evaporator. The Fe 3+ concentration can be obtained with high accuracy from the applied potential.
Similarly, in the case where the corrosion potential monitoring unit is provided in the waste hydrochloric acid storage tank or the pipe from the waste hydrochloric acid storage tank to the evaporator, the corrosion potential monitoring unit is proportionally provided that it is a noble metal electrode. From the close relationship, the Fe 3+ concentration can be obtained with higher accuracy.

したがって、蒸発缶の内面を、常時不動態被膜で被覆した状況を維持することができるようになり、蒸発缶の腐食減肉を効率よく抑制することができるようになり、長期にわたって信頼性高く使用することができる廃塩酸処理装置および廃塩酸処理方法を提供することがきるようになった。   Therefore, it becomes possible to maintain the condition where the inner surface of the evaporator is always covered with a passive film, and the corrosion thinning of the evaporator can be efficiently suppressed, and it can be used reliably over a long period of time. It has become possible to provide a waste hydrochloric acid treatment apparatus and a waste hydrochloric acid treatment method that can be performed.

本発明による廃塩酸の濃縮処理の一例を示すフローシートである。It is a flow sheet which shows an example of concentration processing of waste hydrochloric acid by the present invention. Fe3+濃度と蒸発缶の減肉との関係を示す図Diagram showing the relationship between Fe 3+ concentration and reduced thickness of evaporator バブリングによるFe3+濃度調整例を示すグラフGraph showing Fe 3+ concentration adjustment by bubbling 腐食電位とFe3+濃度との関係を示すグラフGraph showing the relationship between corrosion potential and Fe 3+ concentration 貴金属電極を用いた場合の腐食電位とFe3+濃度との関係を示すグラフGraph showing the relationship between corrosion potential and Fe 3+ concentration when using noble metal electrodes

以下に、本発明の廃塩酸の処理装置を説明する。尚、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the processing apparatus of the waste hydrochloric acid of this invention is demonstrated. Preferred examples are described below, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

〔廃塩酸の処理装置〕
本発明の廃塩酸の処理装置は、図1に示すように、複数の伝熱管11を内装したチタンパラジウム合金製の蒸発缶(カランドリア型蒸発缶)1を備えるとともに、前記蒸発缶1に廃塩酸を供給する廃塩酸貯留タンク2を備え、濃縮すべき廃塩酸は、廃塩酸貯留タンク2から、ライン21を経て、ポンプ22において所定圧力まで昇圧された後、ライン23から蒸発缶1へ導入される。図示はしないが、必要ならば、ポンプ22の前流側にストレーナーを設け、後流側に流量計を設けることができる。廃塩酸は、蒸発缶内の液面から伝熱管上部までの液深さの15〜50%の位置(液面から下方に向けての位置)で蒸発缶1に導入される。
[Waste hydrochloric acid treatment equipment]
As shown in FIG. 1, the waste hydrochloric acid treatment apparatus of the present invention includes a titanium palladium alloy-made evaporator (calandria-type evaporator) 1 having a plurality of heat transfer tubes 11, and the evaporator 1 has waste hydrochloric acid. A waste hydrochloric acid storage tank 2 is provided, and waste hydrochloric acid to be concentrated is boosted from the waste hydrochloric acid storage tank 2 through the line 21 to a predetermined pressure in the pump 22 and then introduced into the evaporator 1 from the line 23. The Although not shown, if necessary, a strainer can be provided on the upstream side of the pump 22 and a flow meter can be provided on the downstream side. Waste hydrochloric acid is introduced into the evaporator 1 at a position of 15 to 50% of the liquid depth from the liquid level in the evaporator to the upper part of the heat transfer tube (position downward from the liquid level).

廃塩酸の加熱は、たとえば、以下に示す例のように、通常廃塩酸の発生源である鋼線製造/加工工場、鋼板製造/加工工場、メッキ工場などで発生する回収蒸気(ボイラー、コジェネレーション設備等の蒸気発生装置3から回収された蒸気)により行うことができる。また、回収蒸気に代えて、ガスエンジン等の排ガスそのものの排熱を利用することもできる。   The waste hydrochloric acid is heated, for example, as shown in the following example, with the recovered steam (boiler, cogeneration) generated in steel wire manufacturing / processing factories, steel plate manufacturing / processing factories, plating factories, etc. Steam recovered from the steam generator 3 such as equipment). Further, the exhaust heat of the exhaust gas itself such as a gas engine can be used instead of the recovered steam.

この際、利用すべき蒸気が低温・低圧(110℃以下/0.15MPa以下程度)である場合には、圧縮機32であらかじめ圧縮・昇温を行う。すなわち、蒸気発生装置3からの蒸気をライン31を経て圧縮機32に供給し、ここで圧縮・昇温した後、ライン33および34を経て、蒸発缶1の伝熱管11外側に供給し、伝熱管11内の液を加熱し、蒸発させる。高温・高圧の蒸気が得られる場合には、この蒸気を圧縮機32をバイパスするライン35を経てそのままライン33および34を経て、蒸発缶1に供給する。このような操作により、伝熱管11外の蒸気自体は、凝縮・液化する。凝縮液は、蒸発缶1内の伝熱管11の下部に接続されたライン12からスチームトラップ13を経て、ライン14から排出される。この凝縮液は、必要に応じ、蒸気発生装置3への給水用水として、あるいはライン41から抜き出される濃縮液の固化防止用希釈水などとして、再利用される。さらに、この凝縮水は、再利用に先立って、ポンプ22の出口側のライン23に設けた予熱器(図示せず)において、原液の予熱源として利用することができる。   At this time, when the steam to be used is at a low temperature and low pressure (110 ° C. or less / about 0.15 MPa or less), the compressor 32 performs compression and temperature increase in advance. That is, the steam from the steam generator 3 is supplied to the compressor 32 via the line 31, compressed and heated here, and then supplied to the outside of the heat transfer tube 11 of the evaporator 1 via the lines 33 and 34. The liquid in the heat tube 11 is heated and evaporated. When high-temperature and high-pressure steam is obtained, this steam is supplied to the evaporator 1 through lines 33 and 34 as it is via a line 35 that bypasses the compressor 32. By such an operation, the steam itself outside the heat transfer tube 11 is condensed and liquefied. The condensate is discharged from the line 14 through the steam trap 13 from the line 12 connected to the lower part of the heat transfer tube 11 in the evaporator 1. The condensate is reused as necessary for supplying water to the steam generator 3 or as diluting water for preventing solidification of the concentrated liquid extracted from the line 41 as necessary. Furthermore, this condensed water can be used as a preheating source of the stock solution in a preheater (not shown) provided in the line 23 on the outlet side of the pump 22 prior to reuse.

低温・低圧の圧縮機32としては、アルミニウム合金製ケーシング内に一対の雄および雌ローターを内蔵した形式のスクリュー型圧縮機が使用できる。   As the low-temperature / low-pressure compressor 32, a screw-type compressor having a pair of male and female rotors in an aluminum alloy casing can be used.

蒸発缶1内で発生した塩酸および水の蒸気は、ライン51を経て、冷却水ライン52を備えた冷却器53で冷却され、凝縮した後、ライン54を経て、蒸留液タンク5に溜められる。このように再生された塩酸水溶液は、鉄鋼製品の表面処理に再度使用することができる。 The vapor of hydrochloric acid and water generated in the evaporator 1 is cooled by a cooler 53 having a cooling water line 52 through a line 51, condensed, and then stored in the distillate tank 5 through a line 54. The hydrochloric acid aqueous solution thus regenerated can be used again for the surface treatment of steel products.

蒸発缶1の上部空間には、充填物、フィルター、たれ壁などのデミスター15を配設することにより、原液飛沫あるいは缶内液飛沫の上記への同伴混入を防止している。   In the upper space of the evaporator 1, a demister 15 such as a filler, a filter, and a dripping wall is disposed to prevent entrainment of the raw liquid splash or the liquid splash in the can.

圧縮機32の効率および消費電力などに影響を与える蒸発缶1内の空気などの非凝縮性ガスは、伝熱管11外側の蒸気ライン42に設けた電磁弁43の開閉により蒸発缶1外へ排出される。この電磁弁43の開閉は、蒸発缶1内圧力と連動させることにより行ってもよく、あるいはタイマー設定により自動的に行ってもよい。必要ならば、排出ガスを活性炭などによる吸着処理に供すことができる、また、排出ガスは、濃縮液タンク4内の液中にバブリングさせてもよい。   Non-condensable gas such as air in the evaporator 1 that affects the efficiency and power consumption of the compressor 32 is discharged out of the evaporator 1 by opening and closing the electromagnetic valve 43 provided in the steam line 42 outside the heat transfer tube 11. Is done. The opening and closing of the electromagnetic valve 43 may be performed in conjunction with the pressure inside the evaporator 1 or may be automatically performed by setting a timer. If necessary, the exhaust gas can be subjected to an adsorption treatment with activated carbon or the like, and the exhaust gas may be bubbled into the liquid in the concentrate tank 4.

蒸発缶1内に蓄積する濃縮液は、蒸発缶1内の液面計(図示せず)からの信号により、蒸発缶1の底部からのライン41および制御弁(図示せず)を通じて、濃縮液タンク4に排出される。あるいは、濃縮液は、制御弁を用いることなく、蒸発缶1内の液面に相当する位置において、蒸発缶1の底部に連通するオーバーフロー管(図示せず)から抜き出すことも可能である。   The concentrated liquid accumulated in the evaporator 1 is concentrated through a line 41 and a control valve (not shown) from the bottom of the evaporator 1 according to a signal from a liquid level gauge (not shown) in the evaporator 1. It is discharged into the tank 4. Alternatively, the concentrated liquid can be extracted from an overflow pipe (not shown) communicating with the bottom of the evaporator 1 at a position corresponding to the liquid level in the evaporator 1 without using a control valve.

排出された濃縮液の固化を防止する必要がある場合には、水または前記ライン14からの凝縮水をライン41または濃縮液タンク4内に供給し、濃縮液を希釈すればよい。   When it is necessary to prevent solidification of the discharged concentrated liquid, water or condensed water from the line 14 may be supplied into the line 41 or the concentrated liquid tank 4 to dilute the concentrated liquid.

また、必要に応じて、蒸発缶1内の液を液抜き出しライン41から循環ポンプ(図示せず)により抜き出し、廃塩酸の供給されるライン23へ循環することにより、伝熱管内の液流速を増大させ、伝熱係数を上げることができる。蒸発缶1内の運転圧力が減圧系である場合には、電磁弁43の後流側に電磁弁43の開閉と連動する真空ポンプ(図示せず)を設ける。減圧系で運転する場合には、ライン14上に凝縮液ポンプ(図示せず)を設け、ライン41上に濃縮液ポンプ(図示せず)を設ける。   If necessary, the liquid in the evaporator 1 is extracted from the liquid extraction line 41 by a circulation pump (not shown) and circulated to the line 23 to which waste hydrochloric acid is supplied, thereby reducing the liquid flow rate in the heat transfer tube. Increase the heat transfer coefficient. When the operating pressure in the evaporator 1 is a decompression system, a vacuum pump (not shown) that interlocks with the opening and closing of the electromagnetic valve 43 is provided on the downstream side of the electromagnetic valve 43. When operating in a reduced pressure system, a condensate pump (not shown) is provided on the line 14, and a concentrate pump (not shown) is provided on the line 41.

〔Fe3+濃度調整部〕
前記廃塩酸貯留タンク2に収容される廃塩酸を抜き出し前記廃塩酸貯留タンクに再供給する廃塩酸循環路24を設けて、前記再供給される廃塩酸が、酸素含有ガスとしての空気を吸い込みつつ前記廃塩酸貯留タンク2に供給されるエジェクタを備えたバブリング部25を備える。このバブリング部25により、前記廃塩酸循環路から再供給される廃塩酸が酸素含有ガスを吸い込みつつ微細気泡を生成して前記廃塩酸貯留タンクに供給し、前記廃塩酸貯留タンク内のFe2+をFe3+に酸化処理し、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持することができ、Fe3+濃度調整部Cとして機能する。
[Fe 3+ concentration adjuster]
A waste hydrochloric acid circulation path 24 is provided for extracting the waste hydrochloric acid stored in the waste hydrochloric acid storage tank 2 and supplying it again to the waste hydrochloric acid storage tank. The re-supplied waste hydrochloric acid sucks air as an oxygen-containing gas. A bubbling unit 25 including an ejector supplied to the waste hydrochloric acid storage tank 2 is provided. By this bubbling unit 25, the waste hydrochloric acid re-supplied from the waste hydrochloric acid circulation path generates fine bubbles while sucking the oxygen-containing gas and supplies the fine bubbles to the waste hydrochloric acid storage tank, and Fe 2+ in the waste hydrochloric acid storage tank. Is oxidized to Fe 3+, and the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator can be maintained at 5 g / L or more, which functions as the Fe 3+ concentration adjusting unit C.

また、前記ライン23には、サブタンク26を設けるとともに、前記サブタンク内におけるチタンパラジウム合金表面の腐食電位を測定する電極を設けてある腐食電位監視部27を設けてある。これにより、前記蒸発缶の腐食電位を測定するとともに、前記腐食電位測定値に基き、前記廃塩酸に含まれるFe3+濃度を知ることができる。またさらに、前記サブタンク26の下流側には別のFe3+濃度調整部CとしてのFeCl3添加部28を設けてあり、前記腐食電位測定値に基き、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するためのFeCl3添加量を決定するFeCl3添加量制御装置29を備える。 The line 23 is provided with a sub tank 26 and a corrosion potential monitoring unit 27 provided with an electrode for measuring the corrosion potential of the titanium palladium alloy surface in the sub tank. Thus, the corrosion potential of the evaporator can be measured, and the Fe 3+ concentration contained in the waste hydrochloric acid can be known based on the measured corrosion potential value. Further, another FeCl 3 addition unit 28 as an Fe 3+ concentration adjusting unit C is provided on the downstream side of the sub tank 26, and is included in the waste hydrochloric acid in the evaporator based on the measured corrosion potential. An FeCl 3 addition amount control device 29 is provided for determining the addition amount of FeCl 3 for maintaining the Fe 3+ concentration at 5 g / L or more.

〔Fe3+濃度と蒸発缶の減肉との関係〕
前記廃塩酸中のFe3+濃度と、チタンパラジウム合金製の蒸発缶1の壁面の減肉速度との関係を調べたところ図2のようになった。図2においては、チタンパラジウム合金製の試験片をHCl濃度114〜119g/Lの試験廃塩酸に浸漬し、110℃において、2週間〜4週間放置した場合の試験片の重量減少を求め、この重量減少から試験片の1年あたりの減肉速度を求めた。
[Relationship between Fe 3+ concentration and reduced thickness of evaporator]
FIG. 2 shows the relationship between the Fe 3+ concentration in the waste hydrochloric acid and the wall thinning rate of the wall of the evaporator 1 made of titanium palladium alloy. In FIG. 2, a test piece made of titanium palladium alloy was immersed in test waste hydrochloric acid having an HCl concentration of 114 to 119 g / L, and the weight loss of the test piece when left at 110 ° C. for 2 to 4 weeks was determined. The thickness reduction rate per year of the test piece was determined from the weight reduction.

図2より、減肉速度はFe3+濃度と高い関連性があり、前記蒸発缶内における廃塩酸に含まれるFe3+濃度が5g/Lを下回ると急激に高くなる一方、5g/L以上あれば、減肉速度は0.1mm/y以下で安定していることが読み取れる。これは、Fe3+濃度が5g/Lを下回ると前記チタンパラジウム合金の表面に形成される不動態被膜が充分維持されないことによるものと考えられる。 From FIG. 2, thinning rate has Fe 3+ concentration and highly relevant, the one that Fe 3+ concentration of the waste hydrochloric acid in the evaporator is rapidly increased if the lower 5g / L, 5g / L or more If it exists, it can be read that the thinning rate is stable at 0.1 mm / y or less. This is presumably because the passive film formed on the surface of the titanium palladium alloy is not sufficiently maintained when the Fe 3+ concentration is less than 5 g / L.

したがって、前記廃塩酸の処理装置によれば、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持する廃塩酸の処理方法を行うことによって、前記蒸発缶を耐久性高く用いることができることがわかる。 Therefore, according to the waste hydrochloric acid treatment apparatus, the waste can be made durable by performing the waste hydrochloric acid treatment method in which the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator is maintained at 5 g / L or more. It turns out that it can be used highly.

〔バブリング部によるFe3+濃度調整例〕
前記Fe3+濃度調整部Cとしてのバブリング部25において廃塩酸中に空気を吹きこんだ場合の酸化処理性能を調べたところ、図3のようになった。図3においては、タンク容量20m3の廃塩酸貯留タンク2に廃塩酸としてHCl濃度114g/L、Fe2+濃度85g/L、Fe3+濃度1g/Lの試験廃塩酸を6m3収容し、循環ポンプ圧0.16MPa、6m3/hで循環させつつ、吸引する空気が235L/分の割合で廃塩酸中に空気をバブリングする構成で試験を行っている。
[Fe 3+ concentration adjustment by bubbling part]
When the bubbling part 25 as the Fe 3+ concentration adjusting part C examined the oxidation performance when air was blown into the waste hydrochloric acid, it was as shown in FIG. In FIG. 3, HCl concentration 114 g / L, Fe 2+ concentration 85 g / L, the test waste hydrochloric acid Fe 3+ concentration 1 g / L to 6 m 3 accommodated in the waste hydrochloric acid storage tank 2 of the tank capacity 20 m 3 as waste hydrochloric acid, The test is conducted in a configuration in which air is bubbled into waste hydrochloric acid at a rate of 235 L / min while circulating at a circulation pump pressure of 0.16 MPa and 6 m 3 / h.

図3より、廃塩酸に対する気泡供給時間とFe3+濃度増加量との間には比例関係があり、本装置によれば、廃塩酸が25分程度のバブリングを行う構成で廃塩酸の供給を行えば、5g/L程度のFe3+濃度増加が見こめることがわかった。 From FIG. 3, there is a proportional relationship between the bubble supply time for waste hydrochloric acid and the amount of increase in Fe 3+ concentration. According to this apparatus, waste hydrochloric acid is supplied in a configuration in which the waste hydrochloric acid is bubbled for about 25 minutes. It was found that an increase in the Fe 3+ concentration of about 5 g / L can be seen if performed.

〔腐食電位とFe3+濃度との関係〕
種々のFe3+濃度の廃塩酸中におかれたチタンパラジウム合金の腐食電位を求めたところ図4のようになった。電位は、Ag/AgCl電極を基準極とした電位として求めている。図4より腐食電位はFe3+濃度の増加に伴って単調増加しており、腐食電位測定値に基きFe3+濃度を求めることができる。このFe3+濃度を基に前記蒸発缶内における廃塩酸に含まれるFe3+濃度が5g/L以上になるように維持するためのFeCl3添加量を、FeCl3添加量制御装置29において決定することができる。求められたFeCl3添加量に基き、前記FeCl3添加部28からFeCl3の濃溶液を前記ライン23に添加することによって、蒸発缶の内面を、常時不動態被膜で被覆した状況を維持することができるようになり、蒸発缶の腐食減肉を効率よく抑制することができる。
[Relationship between corrosion potential and Fe 3+ concentration]
FIG. 4 shows the corrosion potentials of titanium palladium alloys placed in waste hydrochloric acid having various Fe 3+ concentrations. The potential is obtained as a potential with the Ag / AgCl electrode as a reference electrode. Corrosion potential than 4 monotonically increases with increasing Fe 3+ concentrations, can be determined Fe 3+ concentration based on corrosion potential measurements. Based on this Fe 3+ concentration, the FeCl 3 addition amount for maintaining the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator at 5 g / L or more is determined by the FeCl 3 addition amount control device 29. can do. Based on FeCl 3 added amount obtained by adding the concentrated solution of FeCl 3 in the line 23 from the FeCl 3 added 28, to maintain the inner surface of the evaporator, coated with always passive film Availability As a result, it is possible to efficiently suppress the corrosion thinning of the evaporator.

尚、上記実施の形態ではいずれも、前記蒸発缶内における廃塩酸に含まれるFe3+濃度が5g/L以上になるように維持することとしたが、5g/L以上のFe3+濃度としては、10g/L以上としても良く、10g/Lとすることで、図2より、より安定して低い減肉速度を維持でき、図4より、Fe3+濃度に対する電位の変化が、より直線的に変化するので、Fe3+濃度を求める場合にも、より正確であるという利点がある。 In each of the above embodiments, the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator is maintained to be 5 g / L or more. However, the Fe 3+ concentration is 5 g / L or more. May be 10 g / L or more, and by setting it to 10 g / L, the lower thinning rate can be maintained more stably than in FIG. 2, and the change in potential with respect to the Fe 3+ concentration is more linear than in FIG. Therefore, there is an advantage that it is more accurate when obtaining the Fe 3+ concentration.

Fe3+濃度を測定するための電極を貴金属電極とした場合、同様にFe3+濃度の廃塩酸中の電位を測定したところ、図5のようになり、腐食電位はFe3+濃度の増加に伴って直線的に増加しており、腐食電位測定値に基いて、より正確にFe3+濃度を求めることができることがわかる。 When the electrode for measuring the Fe 3+ concentration is a noble metal electrode, the potential in the waste hydrochloric acid having the same Fe 3+ concentration is measured as shown in FIG. 5, and the corrosion potential is increased by increasing the Fe 3+ concentration. It can be seen that the Fe 3+ concentration can be obtained more accurately based on the measured value of the corrosion potential.

また、前記腐食電位監視部27は、前記蒸発缶に直接設けてもよく、この場合、蒸発缶内で比較的穏和な環境となっている蒸発缶下部の廃塩酸に対し、電極を設けて腐食電位を監視する形態とする事が、電極の耐腐食性等の観点から好ましい。   Further, the corrosion potential monitoring unit 27 may be provided directly on the evaporator, and in this case, an electrode is provided to corrode the waste hydrochloric acid at the lower part of the evaporator that is in a relatively mild environment in the evaporator. It is preferable to monitor the potential from the viewpoint of the corrosion resistance of the electrode.

したがって、本発明の廃塩酸の処理装置は、蒸発缶の内面を、常時不動態被膜で被覆した状況を維持することができるようになり、蒸発缶の腐食減肉を効率よく抑制することができるようになり、長期にわたって信頼性高く使用することができる。   Therefore, the waste hydrochloric acid treatment apparatus of the present invention can maintain the state where the inner surface of the evaporator is always covered with the passive film, and can efficiently suppress the corrosion thinning of the evaporator. And can be used reliably over a long period of time.

1 :蒸発缶
11 :伝熱管
12 :ライン
13 :スチームトラップ
14 :ライン
15 :デミスター
2 :廃塩酸貯留タンク
21 :ライン
22 :ポンプ
23 :ライン
24 :廃塩酸循環路
25 :バブリング部
26 :サブタンク
27 :腐食電位監視部
28 :FeCl3添加部
29 :FeCl3添加量制御装置
3 :蒸気発生装置
31 :ライン
32 :圧縮機
33 :ライン
34 :ライン
35 :ライン
4 :濃縮液タンク
41 :ライン
42 :蒸気ライン
43 :電磁弁
5 :蒸留液タンク
51 :ライン
52 :冷却水ライン
53 :冷却器
54 :ライン
C :濃度調整部
1: Evaporator 11: Heat transfer tube 12: Line 13: Steam trap 14: Line 15: Demister 2: Waste hydrochloric acid storage tank 21: Line 22: Pump 23: Line 24: Waste hydrochloric acid circulation path 25: Bubbling part 26: Sub tank 27 : Corrosion potential monitoring unit 28: FeCl 3 addition unit 29: FeCl 3 addition amount control device 3: Steam generator 31: Line 32: Compressor 33: Line 34: Line 35: Line 4: Concentrated liquid tank 41: Line 42: Steam line 43: Solenoid valve 5: Distillate tank 51: Line 52: Cooling water line 53: Cooler 54: Line C: Concentration adjustment unit

Claims (10)

鉄成分を含有してなる廃塩酸をチタンパラジウム合金製の蒸発缶内に供給し、加熱して塩酸蒸気を回収する廃塩酸の処理方法であって、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持する廃塩酸の処理方法。 A method for treating waste hydrochloric acid in which waste hydrochloric acid containing an iron component is supplied into an evaporator made of titanium palladium alloy and heated to collect hydrochloric acid vapor, and is contained in the waste hydrochloric acid in the evaporator. A method of treating waste hydrochloric acid that maintains a 3+ concentration of 5 g / L or more. 前記蒸発缶に供給される廃塩酸に酸素含有ガスを吹きこみ、前記廃塩酸中のFe2+をFe3+に酸化処理して、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持する請求項1に記載の廃塩酸の処理方法。 Oxygen-containing gas is blown into the waste hydrochloric acid supplied to the evaporator, and Fe 2+ in the waste hydrochloric acid is oxidized to Fe 3+ to reduce the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator. The processing method of the waste hydrochloric acid of Claim 1 maintained at 5 g / L or more. 前記蒸発缶に供給される廃塩酸にFe3+を添加して、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持する請求項1または2に記載の廃塩酸の処理方法。 The waste hydrochloric acid according to claim 1 or 2, wherein Fe 3+ is added to the waste hydrochloric acid supplied to the evaporator and the concentration of Fe 3+ contained in the waste hydrochloric acid in the evaporator is maintained at 5 g / L or more. Processing method. 鉄成分を含有してなる廃塩酸をチタンパラジウム合金製の蒸発缶内に供給し、加熱して塩酸蒸気を回収する廃塩酸の処理装置であって、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するFe3+濃度調整部を備えた廃塩酸の処理装置。 A waste hydrochloric acid treatment device for supplying waste hydrochloric acid containing an iron component into an evaporator made of titanium palladium alloy and recovering hydrochloric acid vapor by heating, wherein Fe contained in the waste hydrochloric acid in the evaporator A waste hydrochloric acid treatment apparatus equipped with an Fe 3+ concentration adjusting unit for maintaining the 3+ concentration at 5 g / L or more. 前記蒸発缶に供給される廃塩酸を貯留する廃塩酸貯留タンクを備え、前記Fe3+濃度調整部として前記廃塩酸貯留タンクに酸素含有ガスを吹き込むバブリング部を設けた請求項4に記載の廃塩酸の処理装置。 The waste according to claim 4, further comprising a waste hydrochloric acid storage tank for storing waste hydrochloric acid to be supplied to the evaporator, wherein a bubbling portion for blowing an oxygen-containing gas into the waste hydrochloric acid storage tank is provided as the Fe 3+ concentration adjusting portion. Hydrochloric acid treatment equipment. 前記バブリング部は、前記廃塩酸貯留タンクに収容される廃塩酸を抜き出し前記廃塩酸貯留タンクに再供給する廃塩酸循環路を設け、前記再供給される廃塩酸が、酸素含有ガスとしての空気を吸い込みつつ前記廃塩酸貯留タンクに供給されるエジェクタ部を備える請求項5に記載の廃塩酸の処理装置。   The bubbling unit is provided with a waste hydrochloric acid circulation path for extracting the waste hydrochloric acid stored in the waste hydrochloric acid storage tank and re-supplying the waste hydrochloric acid storage tank, and the re-supplied waste hydrochloric acid supplies air as an oxygen-containing gas. The waste hydrochloric acid treatment apparatus according to claim 5, further comprising an ejector section that is supplied to the waste hydrochloric acid storage tank while sucking. 前記蒸発缶に廃塩酸を供給する管路に前記Fe3+濃度調整部としてのFeCl3添加部を設けてある請求項4〜6のいずれか一項に記載の廃塩酸の処理装置。 The waste hydrochloric acid treatment apparatus according to any one of claims 4 to 6, wherein an FeCl 3 addition unit serving as the Fe 3+ concentration adjusting unit is provided in a pipe for supplying the waste hydrochloric acid to the evaporator. 前記蒸発缶に腐食電位を測定する腐食電位監視部を設けるとともに、前記腐食電位監視部における腐食電位測定値に基き、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するためのFeCl3添加量を決定するFeCl3添加量制御装置を備えた請求項7に記載の廃塩酸の処理装置。 The evaporator is provided with a corrosion potential monitor for measuring the corrosion potential, and the Fe 3+ concentration contained in the waste hydrochloric acid in the evaporator is 5 g / L or more based on the measured corrosion potential in the corrosion potential monitor. processor of the waste hydrochloric acid according to claim 7 having a FeCl 3 addition amount control device for determining the FeCl 3 amount to maintain. 前記廃塩酸貯留タンクもしくは前記廃塩酸貯留タンクから前記蒸発缶にいたる管路に、腐食電位監視部を設けるとともに、前記腐食電位監視部における腐食電位測定値に基き、前記蒸発缶内における廃塩酸に含まれるFe3+濃度を5g/L以上に維持するためのFeCl3添加量を決定するFeCl3添加量制御装置を備えた請求項7に記載の廃塩酸の処理装置。 A corrosion potential monitoring unit is provided in the waste hydrochloric acid storage tank or a pipe from the waste hydrochloric acid storage tank to the evaporator, and the waste hydrochloric acid in the evaporator can be changed based on the measured corrosion potential in the corrosion potential monitoring unit. processor of the waste hydrochloric acid according to Fe 3+ concentration in claim 7 having a FeCl 3 addition amount control device for determining the FeCl 3 added amount for maintaining the above 5 g / L included. 前記腐食電位監視部が貴金属電極を備える請求項8または9に記載の廃塩酸の処理装置。   The waste hydrochloric acid treatment apparatus according to claim 8 or 9, wherein the corrosion potential monitoring unit includes a noble metal electrode.
JP2011237905A 2011-10-28 2011-10-28 Waste hydrochloric acid treatment method and treatment equipment Expired - Fee Related JP5822654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011237905A JP5822654B2 (en) 2011-10-28 2011-10-28 Waste hydrochloric acid treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011237905A JP5822654B2 (en) 2011-10-28 2011-10-28 Waste hydrochloric acid treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2013095623A true JP2013095623A (en) 2013-05-20
JP5822654B2 JP5822654B2 (en) 2015-11-24

Family

ID=48617962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011237905A Expired - Fee Related JP5822654B2 (en) 2011-10-28 2011-10-28 Waste hydrochloric acid treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP5822654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153646A1 (en) * 2021-01-12 2022-07-21 日立Geニュークリア・エナジー株式会社 Chemical decontamination method and chemical decontamination apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100105A (en) * 1980-01-16 1981-08-11 Daido Kagaku Sochi Kk Recovering and treating method for waste hydrochloric acid
JPH0710504A (en) * 1993-06-29 1995-01-13 Nittetsu Kakoki Kk Method for recovering hydrochloric acid excellent in purity
JPH11199203A (en) * 1998-01-07 1999-07-27 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JPH11199204A (en) * 1998-01-07 1999-07-27 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JP2000282273A (en) * 1999-03-30 2000-10-10 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JP2000282272A (en) * 1999-03-30 2000-10-10 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
WO2011100820A1 (en) * 2010-02-18 2011-08-25 Neomet Technologies Inc. Process for the recovery of metals and hydrochloric acid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100105A (en) * 1980-01-16 1981-08-11 Daido Kagaku Sochi Kk Recovering and treating method for waste hydrochloric acid
JPH0710504A (en) * 1993-06-29 1995-01-13 Nittetsu Kakoki Kk Method for recovering hydrochloric acid excellent in purity
JPH11199203A (en) * 1998-01-07 1999-07-27 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JPH11199204A (en) * 1998-01-07 1999-07-27 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JP2000282273A (en) * 1999-03-30 2000-10-10 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JP2000282272A (en) * 1999-03-30 2000-10-10 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
WO2011100820A1 (en) * 2010-02-18 2011-08-25 Neomet Technologies Inc. Process for the recovery of metals and hydrochloric acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153646A1 (en) * 2021-01-12 2022-07-21 日立Geニュークリア・エナジー株式会社 Chemical decontamination method and chemical decontamination apparatus

Also Published As

Publication number Publication date
JP5822654B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP4983069B2 (en) Pure water supply boiler water system treatment method and treatment apparatus
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
JP6095341B2 (en) Scale suppression device, water heater, and hot water consumption device
WO2008078668A1 (en) Method of feeding makeup water for boiler water supply
JP2010230183A (en) Steam boiler apparatus and method for operating the same
JP5822654B2 (en) Waste hydrochloric acid treatment method and treatment equipment
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
JP2016057009A (en) Boiler and suspension processing method for boiler
US20110120885A1 (en) Cooling tower water management system
JP2005517890A (en) A cooling method and apparatus for cooling a fluid using cooling water.
JP4962013B2 (en) Method of supplying chemicals to steam boiler
JP2006275410A (en) Boiler device
JP6341877B2 (en) Evaporation concentration device
JP2008055336A (en) Operation method of permeation flux in membrane filtration device
JP6001328B2 (en) Sulfuric acid acidic liquid concentration apparatus, sulfuric acid acidic liquid concentration method, and crude nickel sulfate recovery method
JP6017856B2 (en) Vacuum cooling device
JP2007263385A (en) Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2010043794A (en) Condensate recovering device
JP2018193931A (en) Corrosion prevention method of root blower
JP5019030B2 (en) Method for supplying corrosion inhibitor in steam boiler equipment
JP2006283988A (en) Deaerating system
JP2010266131A (en) Steam generator scale adhesion suppressing method
JP6930729B2 (en) Evaporative heat exchanger
JP4033667B2 (en) Boiler feed water quality judgment method
JP3982272B2 (en) Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R150 Certificate of patent or registration of utility model

Ref document number: 5822654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees