JP2013095405A - Vehicle wheel - Google Patents
Vehicle wheel Download PDFInfo
- Publication number
- JP2013095405A JP2013095405A JP2011243365A JP2011243365A JP2013095405A JP 2013095405 A JP2013095405 A JP 2013095405A JP 2011243365 A JP2011243365 A JP 2011243365A JP 2011243365 A JP2011243365 A JP 2011243365A JP 2013095405 A JP2013095405 A JP 2013095405A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- support
- grounding body
- vehicle
- support groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 20
- 230000002265 prevention Effects 0.000 claims abstract description 8
- 230000002093 peripheral effect Effects 0.000 claims description 26
- 238000005452 bending Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 8
- 238000005192 partition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000011435 rock Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
Landscapes
- Tires In General (AREA)
Abstract
Description
本発明は、惑星及び衛星等の天体の表面上を走行する天体走行車両に装着される車両用車輪に関する。 The present invention relates to a vehicle wheel mounted on a celestial vehicle that travels on the surface of a celestial body such as a planet and a satellite.
月面や火星のように、地球上よりも重力が極端に小さく、その表面が非常に粒径の小さい砂地等で形成されている天体で、地球上で使用する車輪を使用すると、車輪の弾性変形が小さいため、接地長が十分に確保できず、車輪の接地圧が局所的に増大する。そのため、地球上で使用する車輪を低重力環境下の天体の砂地で使用すると、車輪の空転が誘発され、もしくは接地圧の極大化により砂地が掘削されて車輪が砂地に潜り込んでしまい、車両が走行不能になるおそれがある。そのため、低重力環境下の天体では、地球上で使用されている車輪を使用することは出来なかった。 Like a lunar surface or Mars, gravity is extremely smaller than on the earth, and the surface is formed of sand or other material with a very small particle size. Since the deformation is small, the contact length cannot be sufficiently secured, and the contact pressure of the wheel locally increases. Therefore, if the wheel used on the earth is used in a sandy celestial body in a low-gravity environment, the wheel is caused to slip or the ground is excavated due to the maximization of the ground pressure, and the wheel sinks into the sand, and the vehicle There is a risk of being unable to run. For this reason, wheels used on the earth could not be used with celestial bodies in a low-gravity environment.
そこで、従来、惑星や衛星といった、地球とは異なる周囲環境下で走行する車両に装着される車輪としては、特許文献1に記載されたものが知られている。なお、以下の説明において、車輪の回転軸の軸方向を幅方向、もしくは軸方向とする。また、車輪の周方向を単に周方向とし、車輪の半径方向を単に半径方向とする。 Therefore, conventionally, a wheel described in Patent Document 1 is known as a wheel mounted on a vehicle that travels in an ambient environment different from the earth such as a planet or a satellite. In the following description, the axial direction of the rotating shaft of the wheel is the width direction or the axial direction. Further, the circumferential direction of the wheel is simply the circumferential direction, and the radial direction of the wheel is simply the radial direction.
図1は、従来の天体走行用の車輪2の斜視図である。
図2は、平坦な面を走行する時の従来の天体走行用の車輪2の幅方向断面図である。(A)は接地前の状態であり、(B)は接地後の状態である。
この車輪2は、半径方向の荷重に基づいて幅方向外方に弾性的に突出変形するよう予め屈曲又は湾曲した板ばね4が、幅方向に互いに対向するようにホイール6に配置され、周方向に連続して延びる無端ベルトである接地体8を支えるものである。
例えば月面のような低重力環境下でこの車輪2を使用した場合、板ばね4が車両の荷重に基づいてホイール6と接地体8との距離を縮めつつ、幅方向外方に弾性的に突出変形する。そして、接地領域内にある接地体8は接地面の形状に対応して変形し、接地体8の接地長は長くなる。そのため、接地圧が低減されるため、車輪2が空転したり、砂地に沈下したりするおそれがない。
FIG. 1 is a perspective view of a conventional celestial wheel 2.
FIG. 2 is a cross-sectional view in the width direction of a conventional astronomical traveling wheel 2 when traveling on a flat surface. (A) is a state before grounding, and (B) is a state after grounding.
The wheel 2 is disposed on the wheel 6 so that the leaf springs 4 bent or curved in advance so as to elastically project and deform outward in the width direction based on a load in the radial direction so as to face each other in the width direction. It supports the grounding body 8 which is an endless belt extending continuously.
For example, when this wheel 2 is used in a low-gravity environment such as the lunar surface, the leaf spring 4 is elastically outward in the width direction while reducing the distance between the wheel 6 and the grounding body 8 based on the load of the vehicle. Protrusively deformed. Then, the grounding body 8 in the grounding region is deformed corresponding to the shape of the grounding surface, and the grounding length of the grounding body 8 becomes long. Therefore, since the contact pressure is reduced, there is no possibility that the wheel 2 idles or sinks to sand.
図3は、歪みを発生した従来の天体走行用の車輪2の幅方向断面図である。(A)は凹凸のある面を走行する場合であり、(B)は永久歪みを発生した場合である。
図3(A)に示すように、特許文献1の車輪2が凹凸のある面を走行すると、半径方向の荷重に基づいて板ばね4が幅方向外方に変形するだけでなく、車輪2の軸方向にも変形してしまうため、軸方向に荷重がかかる場合の走行が不安定になる欠点があった。
FIG. 3 is a cross-sectional view in the width direction of a conventional celestial traveling wheel 2 in which distortion occurs. (A) is a case where it runs on a surface with unevenness, and (B) is a case where permanent distortion occurs.
As shown in FIG. 3A, when the wheel 2 of Patent Document 1 travels on an uneven surface, the leaf spring 4 is not only deformed outward in the width direction based on the radial load, but also the wheel 2 Since it is also deformed in the axial direction, there is a drawback that traveling becomes unstable when a load is applied in the axial direction.
また、例えば、粒径が比較的そろった砂地等、走行面10が一様であれば図2(B)のように半径方向の変形も一様だが、岩石を含む砂地等の走行面10が一様でない場合、局所的な変形が生じ、図3(B)に示すように車輪2に永久歪みが発生したり、破損したりすることがあった。 Further, for example, if the traveling surface 10 is uniform, such as sandy ground having a relatively uniform particle diameter, the radial deformation is uniform as shown in FIG. If it is not uniform, local deformation may occur and the wheel 2 may be permanently set or damaged as shown in FIG.
本発明は上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、半径方向の荷重により半径方向に撓んでも、軸方向に変形しない車両用車輪を提供することにある。 The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide a vehicle wheel that does not deform in the axial direction even if it is bent in the radial direction by a radial load.
本発明によれば、車両に装着された回転軸に固定される車両用車輪であって、
回転軸に固定され外周面が円筒形のホイールと、
ホイールの半径方向外方に位置し車両の走行面と接触して撓む可撓性のある接地体と、
接地体の前記撓みを許容し、かつ接地体の軸方向の変位を防止する軸変位防止装置と、を備え、
軸変位防止装置は、ホイールの外周面に固定され、外方が開口し軸方向に一定の間隔を有するリング状の支持溝を有する内支持具と、
外端が接地体の内面に周方向に間隔を隔てて固定され、半径方向内方に延び、内端が支持溝内に位置する複数の外支持具とを備え、
外支持具は支持溝により軸方向変位が制限される、ことを特徴とする車両用車輪が提供される。
According to the present invention, a vehicle wheel fixed to a rotating shaft mounted on a vehicle,
A wheel having a cylindrical outer peripheral surface fixed to a rotating shaft;
A flexible grounding body that is located radially outward of the wheel and bends in contact with the running surface of the vehicle;
An axial displacement prevention device that allows the bending of the grounding body and prevents axial displacement of the grounding body,
The axial displacement prevention device is fixed to the outer peripheral surface of the wheel, and an inner support having a ring-shaped support groove having an outer opening and a constant interval in the axial direction;
A plurality of outer supports, the outer ends of which are fixed to the inner surface of the grounding body at intervals in the circumferential direction, extend radially inward, and the inner ends are located in the support grooves;
A vehicle wheel is provided in which the outer support is restricted in axial displacement by a support groove.
上述した本発明の車両用車輪によれば、ホイールの外周面に固定され、外方が開口し軸方向に一定の間隔を有するリング状の支持溝を有する内支持具と、外端が接地体の内面に周方向に間隔を隔てて固定され、半径方向内方に延び、内端が支持溝内に位置する複数の外支持具とを備え、外支持具は支持溝により軸方向変位が制限されるので、外支持具は常に回転軸に垂直な面上に両端を保って、支持溝内をスライドする。それにより、外支持具の外端は幅方向に移動しないので、接地体を幅方向に移動させずに、周方向と半径方向のみに変形させることができる。したがって、幅方向への車輪の変形を防ぐことができる。 According to the vehicle wheel of the present invention described above, an inner support having a ring-shaped support groove that is fixed to the outer peripheral surface of the wheel and that opens outwardly and has a constant interval in the axial direction, and an outer end of the grounding body. A plurality of outer support members that are fixed to the inner surface of the inner surface at intervals in the circumferential direction, extend inward in the radial direction, and have an inner end located in the support groove. The outer support member is restricted in axial displacement by the support groove. Therefore, the outer support always slides in the support groove while maintaining both ends on a plane perpendicular to the rotation axis. Thereby, since the outer end of the outer support does not move in the width direction, the grounding body can be deformed only in the circumferential direction and the radial direction without moving in the width direction. Therefore, deformation of the wheel in the width direction can be prevented.
また、岩石を含む砂地等の走行面が一様でない場所を走行して局所的な力が接地体や弾性体にかかったとしても、半径方向に移動可能な範囲が制限されて変形しにくいため、弾性体や接地体の永久歪みの発生や破損を防ぐことができる。 In addition, even if the road surface is uneven, such as sand that includes rocks, and the local force is applied to the grounding body or elastic body, the range that can be moved in the radial direction is limited and deformation is difficult. In addition, it is possible to prevent the permanent deformation and breakage of the elastic body and the grounding body.
また、外支持具の内端は常に支持溝に嵌合されることによって、支持溝により外支持具の軸方向変位が制限される。すなわち、半径方向の長さで考えた場合、外支持具と内支持具の長さの合計が、接地前の状態のホイールの外周面から接地体の内周面までの距離(以下、未接地半径距離)よりも大きく創られている。そのため、接地状態のホイールの外周面から接地体の内周面までの距離(以下、接地時半径距離)が未接地半径距離の半分より短くなるほどに車輪が撓むことはない。そのため、車輪の永久歪みの発生や破損を防ぐことができる。
Further, the inner end of the outer support is always fitted into the support groove, so that the axial displacement of the outer support is limited by the support groove. That is, when considering the length in the radial direction, the total length of the outer support and the inner support is the distance from the outer peripheral surface of the wheel in the state before contact to the inner peripheral surface of the grounding body (hereinafter referred to as ungrounded). Radius distance) is created. For this reason, the wheel does not bend so that the distance from the outer peripheral surface of the grounded wheel to the inner peripheral surface of the grounded body (hereinafter referred to as the grounded radial distance) is shorter than half of the ungrounded radial distance. Therefore, generation | occurrence | production and damage of the permanent set of a wheel can be prevented.
以下、本発明の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
図4は、本発明の第1実施形態の車両用車輪12の接地前の状態の説明図である。(A)は回転軸に垂直な面による断面図であり、(B)は(A)のA−A断面図である。
図5は、本発明の第1実施形態の車両用車輪12の接地後の状態の説明図である。(A)は回転軸18に垂直な面による断面図であり、(B)は(A)のB−B断面図である。
本発明の車両用車輪12は、惑星及び衛星等の天体の表面上を走行する天体走行車両16に装着される車輪であり、同じく天体走行車両16に装着された回転軸18に固定されている。
また、本発明の車両用車輪12は、ホイール20、接地体22、弾性体24、軸変位防止装置25とを備える。
また、軸変位防止装置25は、内支持具26と外支持具28を備える。
さらに、内支持具26は一対の平板29を有し、平板29の間に支持溝30を有する。
なお、以下、説明の簡略化のため、支持溝30の回転軸18側の面を底面30a、回転軸18に垂直な支持溝30の側面を幅方向内壁面30bとする。また、接地前の状態のホイール20の外周面から接地体22の内周面までの距離を未接地半径距離Sとする。また、接地状態のホイール20の外周面から接地体22の内周面までの距離を、接地時半径距離Tとする。
FIG. 4 is an explanatory diagram of a state before the grounding of the vehicle wheel 12 according to the first embodiment of the present invention. (A) is sectional drawing by a surface perpendicular | vertical to a rotating shaft, (B) is AA sectional drawing of (A).
FIG. 5 is an explanatory diagram of a state after the grounding of the vehicle wheel 12 according to the first embodiment of the present invention. (A) is sectional drawing by a surface perpendicular | vertical to the rotating shaft 18, (B) is BB sectional drawing of (A).
The vehicle wheel 12 of the present invention is a wheel that is mounted on a celestial vehicle 16 that travels on the surface of a celestial body such as a planet and a satellite, and is fixed to a rotary shaft 18 that is also mounted on the celestial vehicle 16. .
The vehicle wheel 12 of the present invention includes a wheel 20, a grounding body 22, an elastic body 24, and an axial displacement prevention device 25.
Further, the shaft displacement preventing device 25 includes an inner support tool 26 and an outer support tool 28.
Further, the inner support 26 has a pair of flat plates 29 and a support groove 30 between the flat plates 29.
Hereinafter, for simplification of description, the surface on the rotating shaft 18 side of the support groove 30 is referred to as a bottom surface 30a, and the side surface of the support groove 30 perpendicular to the rotating shaft 18 is referred to as a width-direction inner wall surface 30b. Further, the distance from the outer peripheral surface of the wheel 20 before the ground contact to the inner peripheral surface of the ground member 22 is defined as an ungrounded radial distance S. Further, the distance from the outer peripheral surface of the wheel 20 in a grounded state to the inner peripheral surface of the grounding body 22 is defined as a radial distance T at the time of grounding.
ホイール20は、回転軸18に固定され、回転軸18と一体に回転する。
また、ホイール20の形状は、外周面が円筒形であることが好ましい。しかし、ホイール20の形状はこれに限らず、回転軸18の軸方向に厚みのある外周面をもち、その外周面が回転軸18と連結されて、回転軸18と一体に回転する形状であれば、どのような形状でもよい。
また、ホイール20の材質は、ステンレス鋼、アルミニウム合金、炭素繊維強化プラスチック等の複合材料が好ましい。しかし、車両16を走行させる天体の環境条件で必要な強度を持つものであれば、その他の材質でもよい。
The wheel 20 is fixed to the rotating shaft 18 and rotates integrally with the rotating shaft 18.
The shape of the wheel 20 is preferably a cylindrical outer peripheral surface. However, the shape of the wheel 20 is not limited to this, and the wheel 20 has a thick outer peripheral surface in the axial direction of the rotating shaft 18, and the outer peripheral surface is connected to the rotating shaft 18 and rotates integrally with the rotating shaft 18. Any shape is possible.
The material of the wheel 20 is preferably a composite material such as stainless steel, an aluminum alloy, or carbon fiber reinforced plastic. However, other materials may be used as long as they have the necessary strength under the environmental conditions of the celestial body on which the vehicle 16 is driven.
接地体22は、車両16の走行面14と接する部位であり、ホイール20の半径方向外方に位置し、ホイール20と一体に回転する。また、接地体22は可撓性のある無端状のリングであり、車両16の走行面14と接触して撓む。低重力環境下の天体で接地圧を低減させるため、接地体22の幅は広いことが好ましい。また、接地体22の材質は変形しやすいものが好ましい。例えば、接地体22は、周方向に分割されたステンレス鋼やアルミニウム合金の分割セグメントであることが好ましい。もしくは、接地体22は、炭素繊維強化プラスチック等の複合材料やゴム製の無端状ベルトでもよい。 The grounding body 22 is a part in contact with the traveling surface 14 of the vehicle 16, is located radially outward of the wheel 20, and rotates integrally with the wheel 20. The grounding body 22 is a flexible endless ring and bends in contact with the traveling surface 14 of the vehicle 16. In order to reduce the ground pressure in a celestial body in a low gravity environment, it is preferable that the width of the grounding body 22 is wide. The material of the grounding body 22 is preferably a material that is easily deformed. For example, the grounding body 22 is preferably a divided segment of stainless steel or aluminum alloy divided in the circumferential direction. Alternatively, the grounding body 22 may be a composite material such as carbon fiber reinforced plastic or an endless belt made of rubber.
第1実施形態の弾性体24は、ホイール20と接地体22とを連結して接地体22の半径方向の荷重を支持し、接地体22とホイール20との距離を伸ばす方向に弾性力を有する。そして、弾性体24は、接地体22が走行面14に接触した際にかかる荷重に応じて、半径方向のホイール20と接地体22との距離を可逆的に収縮させる。また、第1実施形態の弾性体24は、例えば図4(A)に示すように、ホイール20と接地体22の幅方向両端に向かい合って設置されていることが好ましい。しかし、弾性体24の設置位置は、これに限らず、ホイール20と接地体22とを連結して接地体22の半径方向の荷重を支持できれば他の位置でもよい。
また、弾性体24の種類は円環状、ベローズ状、もしくは渦巻状の板ばねやコイルバネが好ましい。もしくは、円環状のワイヤーでもよい。すなわち、弾性体24は、弾性があり、半径方向の荷重を支えることができるものであれば、どのような構造の弾性体24でもよい。
The elastic body 24 of the first embodiment connects the wheel 20 and the grounding body 22 to support the load in the radial direction of the grounding body 22 and has an elastic force in the direction of extending the distance between the grounding body 22 and the wheel 20. . The elastic body 24 reversibly contracts the distance between the wheel 20 and the grounding body 22 in the radial direction according to the load applied when the grounding body 22 contacts the traveling surface 14. Moreover, it is preferable that the elastic body 24 of 1st Embodiment is installed facing the both ends of the width direction of the wheel 20 and the grounding body 22, for example, as shown to FIG. 4 (A). However, the installation position of the elastic body 24 is not limited to this, and may be another position as long as the wheel 20 and the grounding body 22 are connected to support the radial load of the grounding body 22.
The type of elastic body 24 is preferably an annular, bellows, or spiral leaf spring or coil spring. Alternatively, an annular wire may be used. That is, the elastic body 24 may be any structure as long as it has elasticity and can support a load in the radial direction.
軸変位防止装置25は、接地体22の撓みを許容し、かつ接地体22の軸方向の変位を防止する。また、軸変位防止装置25は、ホイール20の外周面に回転軸18に垂直に設置された一対の平板29を有する内支持具26と、外端が接地体22に周方向に複数固定され半径方向内方に延びる外支持具28とを備える。 The shaft displacement preventing device 25 allows the grounding body 22 to bend and prevents the grounding body 22 from being displaced in the axial direction. Further, the shaft displacement preventing device 25 includes an inner support 26 having a pair of flat plates 29 installed on the outer peripheral surface of the wheel 20 perpendicularly to the rotary shaft 18 and a plurality of outer ends fixed to the grounding body 22 in the circumferential direction. And an outer support 28 extending inward in the direction.
内支持具26は、内周面がホイール20の外周面に固定されている。内支持具26はリング状の円盤であることが好ましい。すなわち、2枚のリング状の平板29が回転軸18に垂直な状態で、向かい合ってホイール20の外周面に設置されていることが好ましい。しかし、これに限らず、内支持具26が半径方向に厚みをもち、ホイール20の外周面に固定されるものであれば、どのようなものでもよい。例えば、平板29が、周方向に分割されていても良い。
また、内支持具26は、外方がリング状に開口し軸方向に一定の間隔を有するリング状の支持溝30を有する。すなわち、支持溝30は、一対の平板29の間に平板29の外周面から半径方向内方に向かって形成される溝であり、回転軸18に垂直な面による断面がリング形の溝である。
内支持具26の材質は、ステンレス鋼、アルミニウム合金、炭素繊維強化プラスチック等の複合材料が好ましい。しかし、車両16を走行させる天体の環境条件で必要な強度を持つものであれば、その他の材質でもよい。
The inner support member 26 has an inner peripheral surface fixed to the outer peripheral surface of the wheel 20. The inner support 26 is preferably a ring-shaped disk. That is, it is preferable that the two ring-shaped flat plates 29 are installed on the outer peripheral surface of the wheel 20 so as to face each other in a state perpendicular to the rotating shaft 18. However, the present invention is not limited to this, and any material may be used as long as the inner support 26 has a thickness in the radial direction and is fixed to the outer peripheral surface of the wheel 20. For example, the flat plate 29 may be divided in the circumferential direction.
Further, the inner support 26 has a ring-shaped support groove 30 that opens outward in a ring shape and has a constant interval in the axial direction. That is, the support groove 30 is a groove formed between the pair of flat plates 29 from the outer peripheral surface of the flat plate 29 inward in the radial direction, and a cross section by a plane perpendicular to the rotation shaft 18 is a ring-shaped groove. .
The material of the inner support 26 is preferably a composite material such as stainless steel, aluminum alloy, or carbon fiber reinforced plastic. However, other materials may be used as long as they have the necessary strength under the environmental conditions of the celestial body on which the vehicle 16 is driven.
外支持具28は、外端が接地体22に周方向に間隔を隔てて複数固定され、半径方向内方に向かって延びる。また、外支持具28の内端は内支持具26の支持溝30内に位置し、支持溝30に嵌合される。
そして、外支持具28は支持溝30により軸方向変位が制限される。すなわち、外支持具28は、平板29に挟まれて、支持溝30内で車輪12の半径方向と周方向に自在にスライドする。
外支持具28は、棒状のピンであることが好ましい。また、外支持具28が車輪12の半径方向と周方向にスライド可能であるように、支持溝30の幅は、所定の隙間34の分、外支持具28の幅方向の幅より大きい。
さらに、半径方向の長さで考えた場合、外支持具28と内支持具26の長さの合計が、未接地半径距離Sよりも大きい。すなわち、外支持具28、内支持具26、及び支持溝30の半径方向の長さは、車輪12の接地前の状態において、外支持具28の内端が常に内支持具26の支持溝30の中に嵌合される長さが必要である。
A plurality of outer supports 28 are fixed to the grounding body 22 at intervals in the circumferential direction, and extend outward in the radial direction. Further, the inner end of the outer support tool 28 is located in the support groove 30 of the inner support tool 26 and is fitted into the support groove 30.
The axial displacement of the outer support 28 is limited by the support groove 30. That is, the outer support 28 is sandwiched by the flat plate 29 and freely slides in the radial direction and the circumferential direction of the wheel 12 in the support groove 30.
The outer support 28 is preferably a rod-shaped pin. Further, the width of the support groove 30 is larger than the width of the outer support 28 in the width direction by a predetermined gap 34 so that the outer support 28 can slide in the radial direction and the circumferential direction of the wheel 12.
Furthermore, when considering the length in the radial direction, the total length of the outer support 28 and the inner support 26 is greater than the ungrounded radial distance S. That is, the radial lengths of the outer support tool 28, the inner support tool 26, and the support groove 30 are such that the inner end of the outer support tool 28 is always at the support groove 30 of the inner support tool 26 in a state before the wheel 12 is grounded. The length to be fitted in the is required.
また、外支持具28と内支持具26の半径方向の長さの合計が、未接地半径距離Sよりも大きいので、接地時半径距離Tが未接地半径距離Sの半分より短くなるほど弾性体24が撓むことはない。そのため、弾性体24の永久歪みの発生や破損を防ぐことができる。 Further, since the sum of the radial lengths of the outer support 28 and the inner support 26 is larger than the ungrounded radial distance S, the elastic body 24 becomes shorter as the grounded radial distance T becomes shorter than half of the ungrounded radial distance S. Will not bend. Therefore, permanent deformation and breakage of the elastic body 24 can be prevented.
さらに、内支持具26と外支持具28には、外支持具28が支持溝30から抜けないようにするために、ストッパ32が設けられていることが好ましい。
例えばストッパ32は、幅方向内壁面30bの半径方向外端に、内支持具26の幅方向中央に向かって突出した内方突起32aと、外支持具28の内端に幅方向外方に向かって突出した外方突起32bから構成されていることが好ましい。ストッパ32がこの形状である場合、外支持具28が半径方向外方に引っ張られても、外方突起32bが内方突起32aに当接し、外支持具28の内端を支持溝30内に保持することができる。
しかし、ストッパ32の構成はこれに限らず、外支持具28が支持溝30から抜けなければどのような構造でもよい。
Further, the inner support 26 and the outer support 28 are preferably provided with a stopper 32 so that the outer support 28 does not come out of the support groove 30.
For example, the stopper 32 has an inward projection 32a protruding toward the center in the width direction of the inner support 26 at the radially outer end of the inner wall 30b in the width direction, and outward in the width direction at the inner end of the outer support 28. It is preferable that the outer protrusion 32b protrudes. When the stopper 32 has this shape, even when the outer support 28 is pulled outward in the radial direction, the outer protrusion 32b abuts on the inner protrusion 32a, and the inner end of the outer support 28 enters the support groove 30. Can be held.
However, the configuration of the stopper 32 is not limited to this, and any structure may be employed as long as the outer support 28 does not come out of the support groove 30.
図5を使用し、本発明の第1実施形態の車両用車輪12が平坦な走行面14に接地した場合の車両用車輪12の機能を説明する。
例えば、本発明の第1実施形態の車両用車輪12が平坦な走行面14を走行するとき、弾性体24が幅方向外方に撓み、ホイール20と接地体22との距離が縮まる。その際、外支持具28の内端が支持溝30に挿入された状態で、外支持具28が支持溝30内を上下する。外支持具28の内端は支持溝30内で周方向に移動することが可能であるため、外支持具28は周方向に自由に向きを変えることができる。そのため、走行面14の形状に応じて、接地体22が周方向に自由に変形することができ、車輪12の接地面を大きく保つことができる。
The function of the vehicle wheel 12 when the vehicle wheel 12 of the first embodiment of the present invention is grounded to the flat running surface 14 will be described with reference to FIG.
For example, when the vehicle wheel 12 of the first embodiment of the present invention travels on the flat traveling surface 14, the elastic body 24 bends outward in the width direction, and the distance between the wheel 20 and the grounding body 22 is reduced. At that time, the outer support 28 moves up and down in the support groove 30 with the inner end of the outer support 28 inserted in the support groove 30. Since the inner end of the outer support tool 28 can move in the circumferential direction within the support groove 30, the outer support tool 28 can freely change its direction in the circumferential direction. Therefore, according to the shape of the running surface 14, the grounding body 22 can be freely deformed in the circumferential direction, and the grounding surface of the wheel 12 can be kept large.
また、接地体22が大きく変形しても、接地体22がホイール20に当接する前に外支持具28が内支持具26の支持溝30の底面30aに当接するため、接地時半径距離Tが未接地半径距離Sの半分より短くなるほど、接地体22が撓むことはない。そのため、弾性体24や接地体22の永久歪みの発生や破損を防ぐことができる。 Further, even if the grounding body 22 is greatly deformed, the outer support 28 comes into contact with the bottom surface 30a of the support groove 30 of the inner support 26 before the grounding body 22 comes into contact with the wheel 20, so that the radial distance T at the time of contact is reduced. The shorter the half of the ungrounded radial distance S is, the less the grounding body 22 will bend. Therefore, it is possible to prevent the permanent deformation and breakage of the elastic body 24 and the grounding body 22.
図6は、凹凸のある面を走行する本発明の第1実施形態の車両用車輪12の説明図である。(A)は回転軸18に垂直な面による断面図であり、(B)は(A)のC−C断面図である。
図6を使用し、本発明の第1実施形態の車両用車輪12が、岩石を含む砂地等の走行面が一様でなく凹凸のある走行面14(以下、凹凸面)を走行する場合の外支持具28と内支持具26の機能を説明する。
まず、図6(B)の回転軸18に垂直な面による断面図で、車両用車輪12が凹凸面に接地した場合を説明する。
支持溝30の幅は、外支持具28が支障なく支持溝30内でスライドできるために所定の隙間34の分、外支持具28の幅方向の幅より大きくなっている。車両用車輪12が凹凸面に接地すると、外支持具28の内端が支持溝30の底面30aや幅方向内壁面30bに当接し、外支持具28の側面が幅方向内壁面30bの半径方向の外端に当接する。そのため、幅方向への外支持具28の移動を支持溝30の幅方向内壁面30bが妨げることができる。すなわち、外支持具28は回転軸18に対して垂直な面に両端を保って、支持溝30内をスライドする。そのため、外支持具28の外端が幅方向に移動しないので、幅方向への接地体22の変性を防ぐことができる。
したがって、この構造により本発明の車両用車輪12は、軸方向に弾性体24がずれて車輪12が変形することを抑えることができる。そのため、接地体22の永久歪みの発生や破損を防ぐことができる。
FIG. 6 is an explanatory diagram of the vehicle wheel 12 according to the first embodiment of the present invention that travels on an uneven surface. (A) is sectional drawing by a surface perpendicular | vertical to the rotating shaft 18, (B) is CC sectional drawing of (A).
When the vehicle wheel 12 according to the first embodiment of the present invention uses FIG. 6 and travels on a traveling surface 14 (hereinafter referred to as an uneven surface) having uneven and uneven traveling surfaces such as sand including rocks. The functions of the outer support tool 28 and the inner support tool 26 will be described.
First, a case where the vehicle wheel 12 is in contact with the concavo-convex surface will be described with reference to a cross-sectional view taken along a plane perpendicular to the rotating shaft 18 in FIG.
The width of the support groove 30 is larger than the width of the outer support 28 in the width direction by a predetermined gap 34 so that the outer support 28 can slide in the support groove 30 without any trouble. When the vehicle wheel 12 is brought into contact with the uneven surface, the inner end of the outer support 28 comes into contact with the bottom surface 30a of the support groove 30 and the widthwise inner wall surface 30b, and the side surface of the outer support 28 is in the radial direction of the widthwise inner wall surface 30b. It abuts on the outer end. Therefore, the movement of the outer support tool 28 in the width direction can be prevented by the width direction inner wall surface 30 b of the support groove 30. In other words, the outer support 28 slides in the support groove 30 while maintaining both ends on a plane perpendicular to the rotation shaft 18. Therefore, since the outer end of the outer support 28 does not move in the width direction, it is possible to prevent the grounding body 22 from being modified in the width direction.
Therefore, with this structure, the vehicle wheel 12 of the present invention can suppress deformation of the wheel 12 due to the elastic body 24 being displaced in the axial direction. Therefore, the permanent deformation and damage of the grounding body 22 can be prevented.
次に、図6(A)で、車両用車輪12が凹凸面に接地した場合を説明する。
本実施形態の支持溝30は周方向に間仕切り26a(図7参照)がない。そのため、外支持具28は半径方向だけではなく、周方向にも自在にスライドすることができる。
すなわち、凹凸面を走行する場合、図6(A)に示すように、車両16が岩石等に乗り上げることにより、接地体22が半径方向内方に局所的に凹むこともある。また、接地体22が半径方向内方に局所的に凹むことにより、その局所の周方向周囲の接地体22は、半径方向外方に突き出る。
その際、局所的に凹んだ部分の接地体22に固定されていた外支持具28は、隣接する外支持具28の内端との距離を広げる方向に内端を移動させ、接地体22の形状に応じて周方向に自在に移動することができる。また、局所的に半径方向外方に突き出た部分の接地体22に固定されていた外支持具28は、接地体22に外端を引っ張られて半径方向外方に移動する。そして、隣り合った外支持具28の内端との距離が近くなる。
Next, the case where the vehicle wheel 12 is grounded on the uneven surface will be described with reference to FIG.
The support groove 30 of the present embodiment has no partition 26a (see FIG. 7) in the circumferential direction. Therefore, the outer support 28 can slide freely not only in the radial direction but also in the circumferential direction.
That is, when traveling on an uneven surface, as shown in FIG. 6 (A), when the vehicle 16 rides on a rock or the like, the grounding body 22 may be locally recessed radially inward. Further, when the grounding body 22 is locally recessed inward in the radial direction, the grounding body 22 around the local circumferential direction protrudes outward in the radial direction.
At that time, the outer support 28 fixed to the grounding body 22 in the locally recessed portion moves the inner end in a direction to increase the distance from the inner end of the adjacent outer support 28, and It can move freely in the circumferential direction according to the shape. Further, the outer support 28 fixed to the grounding body 22 in the portion protruding radially outwardly is moved outward in the radial direction by the outer end being pulled by the grounding body 22. And the distance with the inner end of the adjacent outer support tool 28 becomes close.
このように、本実施形態の外支持具28と内支持具26の構造により、半径方向と周方向の外支持具28の移動を妨げずに軸方向の移動のみを制限することができる。それにより、接地体22と弾性体24の軸方向の歪みを防ぎつつ、周方向には自由に変形させることができる。また、外支持具28が支持溝30の底面30aに当接するまで、接地体22と弾性体24を半径方向に自由に変形させることができる。さらに、外支持具28が支持溝30の底面30aに当接することで、必要以上の接地体22と弾性体24を半径方向の変形を制限し、永久歪みの発生や破損を防ぐことができる。 Thus, the structure of the outer support tool 28 and the inner support tool 26 of the present embodiment can restrict only the movement in the axial direction without hindering the movement of the outer support tool 28 in the radial direction and the circumferential direction. Accordingly, the grounding body 22 and the elastic body 24 can be freely deformed in the circumferential direction while preventing distortion in the axial direction. Further, the grounding body 22 and the elastic body 24 can be freely deformed in the radial direction until the outer support 28 comes into contact with the bottom surface 30 a of the support groove 30. Furthermore, since the outer support 28 abuts against the bottom surface 30a of the support groove 30, it is possible to limit the deformation of the grounding body 22 and the elastic body 24 in the radial direction more than necessary, thereby preventing permanent distortion and damage.
図7は、本発明の第2実施形態の車両用車輪12の接地前の状態の説明図である。(A)は回転軸18に垂直な面による断面図であり、(B)は(A)のD−D断面図である。
図8は、凹凸のある面を走行する本発明の第2実施形態の車両用車輪12の説明図である。(A)は回転軸18に垂直な面による断面図であり、(B)は(A)のE−E断面図である。
本発明の第2実施形態の内支持具26は、その外周面に周方向に複数開口し、幅方向断面が扇形、または矩形の支持溝30を有する。すなわち、第2実施形態の支持溝30は、第1実施形態のリング状の支持溝30が複数の間仕切り26aによって周方向に周方向に複数区切られている。
なお、以下、説明の簡略化のため、間仕切り26aの側面を周方向内壁面30cとする。
FIG. 7 is an explanatory diagram of a state before the grounding of the vehicle wheel 12 according to the second embodiment of the present invention. (A) is sectional drawing by a surface perpendicular | vertical to the rotating shaft 18, (B) is DD sectional drawing of (A).
FIG. 8 is an explanatory diagram of the vehicle wheel 12 according to the second embodiment of the present invention that travels on an uneven surface. (A) is sectional drawing by a surface perpendicular | vertical to the rotating shaft 18, (B) is EE sectional drawing of (A).
The inner support 26 according to the second embodiment of the present invention has a plurality of openings in the circumferential direction on the outer circumferential surface thereof, and has a support groove 30 having a fan-shaped or rectangular cross section in the width direction. That is, in the support groove 30 of the second embodiment, the ring-shaped support groove 30 of the first embodiment is divided into a plurality in the circumferential direction by a plurality of partitions 26a.
Hereinafter, the side surface of the partition 26a is referred to as a circumferential inner wall surface 30c for simplification of description.
第2実施形態の弾性体24は、外支持具28の内端と支持溝30の底面30aとを連結し、接地体22の半径方向の荷重を支持する。第2実施形態の弾性体24はコイルバネが好ましい。しかし、弾性体24は、弾性があり、半径方向の荷重を支えることができるものであれば、どのような構造のものでもよい。
すなわち、第2実施形態の車両用車輪12は、外支持具28の内端を半径方向外方にむけて押す。それにより、外支持具28の外端を介して弾性体24の弾性力が接地体22に伝達され、接地体22が走行面14に接した時に周方向に変形することができる。
なお、弾性体24の形態は、第1実施形態と同じ形態であってもよい。
また、弾性体24が、接地体22の内周面と支持溝30の底面30aとを連結して接地体22の半径方向の荷重を支持し、外支持具28が、外端を接地体22の内周面に固定され、弾性体24の中に収められた状態で、半径方向内方へ延びていてもよい。
The elastic body 24 of the second embodiment connects the inner end of the outer support 28 and the bottom surface 30a of the support groove 30 and supports the load in the radial direction of the grounding body 22. The elastic body 24 of the second embodiment is preferably a coil spring. However, the elastic body 24 may have any structure as long as it is elastic and can support a load in the radial direction.
That is, the vehicle wheel 12 of the second embodiment pushes the inner end of the outer support 28 toward the radially outer side. As a result, the elastic force of the elastic body 24 is transmitted to the grounding body 22 via the outer end of the outer support tool 28, and can be deformed in the circumferential direction when the grounding body 22 contacts the running surface 14.
In addition, the form of the elastic body 24 may be the same form as the first embodiment.
The elastic body 24 connects the inner peripheral surface of the grounding body 22 and the bottom surface 30a of the support groove 30 to support the radial load of the grounding body 22, and the outer support 28 has the outer end at the grounding body 22. It may be fixed to the inner peripheral surface and extend inward in the radial direction while being accommodated in the elastic body 24.
図8を使用し、本発明の第2実施形態の車両用車輪12が、凹凸面を走行する場合の外支持具28と内支持具26の機能を説明する。
第2実施形態の車両用車輪12は、内支持具26が周方向に複数の間仕切り26aを有することにより、外支持具28の内端が支持溝30の底面30a、幅方向内壁面30b、または周方向内壁面30cに当接し、外支持具28の側面が幅方向内壁面30bの半径方向の外端や周方向内壁面30cの半径方向外端に当接する。そのため、支持溝30が幅方向への外支持具28の移動を防ぐ。それにより、外支持具28は回転軸18に垂直な面上に両端を保って、支持溝30内をスライドする。それにより、外支持具28の外端は幅方向に移動しないので、接地体22の幅方向の変性を防ぐことができる。したがって、この構造により本発明の車両用車輪12は、車両用車輪12の軸方向に弾性体24がずれて車輪12が変形することを抑えることができる。
The functions of the outer support 28 and the inner support 26 when the vehicle wheel 12 according to the second embodiment of the present invention travels on an uneven surface will be described with reference to FIG.
In the vehicle wheel 12 of the second embodiment, the inner support 26 has a plurality of partitions 26a in the circumferential direction, so that the inner end of the outer support 28 is the bottom surface 30a of the support groove 30, the inner wall 30b in the width direction, or Abutting on the circumferential inner wall surface 30c, the side surface of the outer support 28 abuts on the radially outer end of the widthwise inner wall surface 30b and the radially outer end of the circumferential inner wall surface 30c. Therefore, the support groove 30 prevents the movement of the outer support tool 28 in the width direction. Accordingly, the outer support 28 slides in the support groove 30 while maintaining both ends on a surface perpendicular to the rotation shaft 18. Thereby, since the outer end of the outer support 28 does not move in the width direction, it is possible to prevent the ground member 22 from being denatured in the width direction. Therefore, with this structure, the vehicle wheel 12 of the present invention can suppress deformation of the wheel 12 due to the elastic body 24 being displaced in the axial direction of the vehicle wheel 12.
また、周方向内壁面30cがあるので、外支持具28の内端が間仕切り26aよりも周方向に移動することがない。それにより、ホイール20の内周面から内支持具26の底面30aまでの距離が、常にその距離の半分より長く保たれる。そのため、接地体22の永久歪みの発生や破損を防ぐことができる。 Further, since there is the circumferential inner wall surface 30c, the inner end of the outer support 28 does not move in the circumferential direction more than the partition 26a. Thereby, the distance from the inner peripheral surface of the wheel 20 to the bottom surface 30a of the inner support 26 is always kept longer than half of the distance. Therefore, the permanent deformation and damage of the grounding body 22 can be prevented.
その他の構成と効果は、第1実施形態と同様である。 Other configurations and effects are the same as those of the first embodiment.
上述した本発明の車両用車輪12によれば、ホイール20の外周面に固定され、外方が開口し軸方向に一定の間隔を有するリング状の支持溝30を有する内支持具26と、外端が接地体の内面に周方向に間隔を隔てて固定され、半径方向内方に延び、内端が支持溝30内に位置する複数の外支持具28とを備え、外支持具28は支持溝30により軸方向変位が制限されるので、外支持具28は常に回転軸18に垂直な面上に両端を保って、支持溝30内をスライドする。それにより、外支持具28の外端は幅方向に移動しないので、接地体22を幅方向に移動させずに、周方向と半径方向のみに変形させることができる。したがって、幅方向への車両用車輪12の変形を防ぐことができる。 According to the vehicle wheel 12 of the present invention described above, the inner support 26 having the ring-shaped support groove 30 that is fixed to the outer peripheral surface of the wheel 20 and that opens outward and has a constant interval in the axial direction, A plurality of outer supports 28 whose ends are fixed to the inner surface of the grounding body at circumferential intervals, extend radially inward, and whose inner ends are located in the support groove 30. Since the axial displacement is limited by the groove 30, the outer support 28 always slides in the support groove 30 while maintaining both ends on a plane perpendicular to the rotation shaft 18. Thereby, since the outer end of the outer support 28 does not move in the width direction, the grounding body 22 can be deformed only in the circumferential direction and the radial direction without moving in the width direction. Therefore, deformation of the vehicle wheel 12 in the width direction can be prevented.
また、岩石を含む砂地等の走行面14が一様でない場所を走行して局所的な力が接地体22や弾性体24にかかったとしても、半径方向に移動可能な範囲が制限されて変形しにくいため、弾性体24や接地体22の永久歪みの発生や破損を防ぐことができる。 Further, even when the traveling surface 14 such as sandy land including rocks travels on a non-uniform place and a local force is applied to the grounding body 22 or the elastic body 24, the range that can be moved in the radial direction is limited and deformed. Therefore, the permanent deformation or breakage of the elastic body 24 or the grounding body 22 can be prevented.
また、外支持具28の内端は常に支持溝30に嵌合されることによって、支持溝30により外支持具28の軸方向変位が制限される。すなわち、半径方向の長さで考えた場合、外支持具28と内支持具26の半径方向の長さの合計が、未接地半径距離Sよりも大きく創られている。そのため、接地時半径距離Tが未接地半径距離Sの半分より短くなるほどに車輪12が撓むことはない。そのため、車輪12の永久歪みの発生や破損を防ぐことができる。 Further, the inner end of the outer support tool 28 is always fitted into the support groove 30, whereby the axial displacement of the outer support tool 28 is limited by the support groove 30. That is, when considering the length in the radial direction, the total length in the radial direction of the outer support 28 and the inner support 26 is made larger than the ungrounded radial distance S. Therefore, the wheel 12 does not bend so that the grounded radial distance T is shorter than half of the ungrounded radial distance S. Therefore, the permanent deformation and breakage of the wheel 12 can be prevented.
なお本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。 Note that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
2 車輪、4 板ばね、6,20 ホイール、
8,22 接地体、10 走行面、
12 車両用車輪、
14 走行面、16 天体走行車両、
18 回転軸、24 弾性体、
25 軸変位防止装置、
26 内支持具、26a 間仕切り、
28 外支持具、29 平板、
30 支持溝、30a 底面、30b 幅方向内壁面、30c 周方向内壁面、
32 ストッパ、32a 内方突起、32b 外方突起、
34 隙間、
S 未接地半径距離、T 接地時半径距離
2 wheels, 4 leaf springs, 6,20 wheels,
8,22 Grounding body, 10 running surface,
12 Vehicle wheels,
14 traveling surface, 16 celestial vehicle,
18 rotation axis, 24 elastic body,
25 Axial displacement prevention device,
26 inner support, 26a partition,
28 outer support, 29 flat plate,
30 support groove, 30a bottom surface, 30b width direction inner wall surface, 30c circumferential direction inner wall surface,
32 stopper, 32a inward protrusion, 32b outward protrusion,
34 Clearance,
S Ungrounded radial distance, T Radial distance when grounded
Claims (3)
回転軸に固定され外周面が円筒形のホイールと、
ホイールの半径方向外方に位置し車両の走行面と接触して撓む可撓性のある接地体と、
接地体の前記撓みを許容し、かつ接地体の軸方向の変位を防止する軸変位防止装置と、を備え、
軸変位防止装置は、ホイールの外周面に固定され、外方が開口し軸方向に一定の間隔を有するリング状の支持溝を有する内支持具と、
外端が接地体の内面に周方向に間隔を隔てて固定され、半径方向内方に延び、内端が支持溝内に位置する複数の外支持具とを備え、
外支持具は支持溝により軸方向変位が制限される、ことを特徴とする車両用車輪。 A vehicle wheel fixed to a rotating shaft mounted on the vehicle,
A wheel having a cylindrical outer peripheral surface fixed to a rotating shaft;
A flexible grounding body that is located radially outward of the wheel and bends in contact with the running surface of the vehicle;
An axial displacement prevention device that allows the bending of the grounding body and prevents axial displacement of the grounding body,
The axial displacement prevention device is fixed to the outer peripheral surface of the wheel, and an inner support having a ring-shaped support groove having an outer opening and a constant interval in the axial direction;
A plurality of outer supports, the outer ends of which are fixed to the inner surface of the grounding body at intervals in the circumferential direction, extend radially inward, and the inner ends are located in the support grooves;
A vehicle wheel, wherein the outer support is restricted in axial displacement by a support groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011243365A JP5924904B2 (en) | 2011-11-07 | 2011-11-07 | Vehicle wheels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011243365A JP5924904B2 (en) | 2011-11-07 | 2011-11-07 | Vehicle wheels |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013095405A true JP2013095405A (en) | 2013-05-20 |
JP5924904B2 JP5924904B2 (en) | 2016-05-25 |
Family
ID=48617786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011243365A Active JP5924904B2 (en) | 2011-11-07 | 2011-11-07 | Vehicle wheels |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5924904B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106573504A (en) * | 2014-08-08 | 2017-04-19 | 株式会社普利司通 | Non-pneumatic tire |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2715930A (en) * | 1951-11-16 | 1955-08-23 | Bixby | Hydraulically resilient wheel |
JPH09156308A (en) * | 1995-12-13 | 1997-06-17 | Sumitomo Rubber Ind Ltd | Puncture-free tire |
JPH10100602A (en) * | 1996-09-28 | 1998-04-21 | Fumito Ito | Wheel capable of getting on/off step difference |
-
2011
- 2011-11-07 JP JP2011243365A patent/JP5924904B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2715930A (en) * | 1951-11-16 | 1955-08-23 | Bixby | Hydraulically resilient wheel |
JPH09156308A (en) * | 1995-12-13 | 1997-06-17 | Sumitomo Rubber Ind Ltd | Puncture-free tire |
JPH10100602A (en) * | 1996-09-28 | 1998-04-21 | Fumito Ito | Wheel capable of getting on/off step difference |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106573504A (en) * | 2014-08-08 | 2017-04-19 | 株式会社普利司通 | Non-pneumatic tire |
CN106573504B (en) * | 2014-08-08 | 2020-08-11 | 株式会社普利司通 | Non-pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
JP5924904B2 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6039568B2 (en) | Gear transmission | |
US9206842B2 (en) | Crossed roller bearing | |
CN105209318B (en) | synthetic resin sliding bearing | |
JP6685889B2 (en) | Flexible mesh gear | |
JP5924904B2 (en) | Vehicle wheels | |
KR20190120697A (en) | Flexible engagement gear device | |
JP2013011346A (en) | Static sealing device for wheel hub assembly connected to constant velocity joint | |
JP2009214611A (en) | Wheel for celestial running vehicle | |
CN105697640A (en) | Torsional vibration reducing device | |
WO2017221653A1 (en) | Dust seal | |
JP2015042879A (en) | Bearing sealing device | |
JP6572624B2 (en) | Sliding bearing and bearing mechanism including the same | |
WO2013157397A2 (en) | Gearwheel drive | |
CN113492620A (en) | Drum unit, wheel, and drive unit | |
JP2020016278A (en) | Flexible meshing-type gear device | |
JP3130323U (en) | Omnidirectional wheel | |
CN107444008B (en) | Omnidirectional moving wheel | |
CN112211832A (en) | Fan assembly | |
US10155553B2 (en) | Crawler device | |
JP5265250B2 (en) | Astronomical vehicle wheels | |
JP7203970B2 (en) | sealing device | |
CN113492621A (en) | Wheel, drive unit and mobile device | |
CN102739102A (en) | Annular vibration wave actuator | |
JP6455828B2 (en) | Traveling mechanism | |
CN103228942A (en) | Rotary vibration damper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5924904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |