JP2013094688A - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
JP2013094688A
JP2013094688A JP2011236903A JP2011236903A JP2013094688A JP 2013094688 A JP2013094688 A JP 2013094688A JP 2011236903 A JP2011236903 A JP 2011236903A JP 2011236903 A JP2011236903 A JP 2011236903A JP 2013094688 A JP2013094688 A JP 2013094688A
Authority
JP
Japan
Prior art keywords
electrode plate
wind
load electrode
ground electrode
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011236903A
Other languages
Japanese (ja)
Other versions
JP5909632B2 (en
Inventor
Atsushi Kataya
篤史 片谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011236903A priority Critical patent/JP5909632B2/en
Publication of JP2013094688A publication Critical patent/JP2013094688A/en
Application granted granted Critical
Publication of JP5909632B2 publication Critical patent/JP5909632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic precipitator which has a passing wind velocity as high as about 5-15 m/s and achieves such a form and a structure as to allow an energy-saving operation.SOLUTION: The electrostatic precipitator has thorn-like protrusions for corona discharge at both ends of a charge electrode plate 1 of a charging section 13. The leeward end of the charge electrode plate 1 is located on the windward side relative to the middle point between the windward and the leeward in the adjacent grounding electrode plate 2, and the charge electrode plate 1 is located between the windward and the leeward of the grounding electrode plate 2. The configuration allows an energy-saving operation.

Description

本発明は、一般的には電気集塵装置に関し、特定的には、コロナ放電する部分を帯電部内の風上寄りの空間に配置する電気集塵装置に関するものである。   The present invention generally relates to an electrostatic precipitator, and more particularly, to an electrostatic precipitator in which a corona discharge portion is arranged in a space near the windward in a charging unit.

従来、この種の電気集塵装置は、帯電部の放電極に直流高電圧を印加し、正コロナまたは負コロナを発生させ、帯電部を通過する粉塵に正または負の電荷をもたせて帯電する。この帯電した粉塵を、直流高電圧が印加された放電極と、接地に繋がれた接地極板を有する集塵部の高電界により、静電気力で接地極板面上に捕集する技術が広く一般的に知られている。(例えば、特許文献1参照)。   Conventionally, this type of electrostatic precipitator applies a high DC voltage to the discharge electrode of the charging unit, generates a positive corona or a negative corona, and charges the dust passing through the charging unit with a positive or negative charge. . There is a wide range of technologies for collecting this charged dust on the surface of the grounding electrode plate with electrostatic force by the high electric field of the dust collector that has a discharge electrode to which a DC high voltage is applied and a grounding electrode plate connected to the ground. Generally known. (For example, refer to Patent Document 1).

以下、その電気集塵送風原理について図19を参照しながら説明する。   Hereinafter, the principle of the electrostatic dust collection and blowing will be described with reference to FIG.

図19に示すように、電気集塵装置は帯電部104と集塵部105により構成される。通風方向は、帯電部104から、集塵部105への向きである。帯電部104と集塵部105にはそれぞれ+11kVの直流高圧電源108と+5.5kVの直流高圧電源109が接続されている。帯電部104は、放電線タイプの放電極104Aと接地極板104Bにより構成される。放電極104Aは、接地極板104Bにおける風の流れ方向の長さの中間点付近に配置されている。放電極104Aに+11kVの直流高圧が印加され、放電極104Aと接地極板104Bの間の空間に正コロナが発生する。この正コロナにより発生した正イオンが、空間中の粉塵(図示されず)に電荷を与え、粉塵は正に帯電される。帯電した粉塵は後段の集塵部105における、荷電極板105Aと接地極板105B間で形成される強電界により、静電気力で接地極板105B上に捕集される。電気集塵装置に正の高電圧が印加される場合で説明したが、負の高電圧が印加される場合でも、同様に、接地極板105B上に粉塵が捕集される。また、電圧値は必ずしも前記の値でなくてもよい。帯電部と集塵部が独立した二段式電気集塵方式であることが特徴となっている。   As shown in FIG. 19, the electric dust collector includes a charging unit 104 and a dust collecting unit 105. The ventilation direction is the direction from the charging unit 104 to the dust collecting unit 105. A +11 kV DC high-voltage power supply 108 and a +5.5 kV DC high-voltage power supply 109 are connected to the charging unit 104 and the dust collecting unit 105, respectively. The charging unit 104 includes a discharge wire type discharge electrode 104A and a ground electrode plate 104B. The discharge electrode 104A is disposed in the vicinity of the midpoint of the length in the wind flow direction on the ground electrode plate 104B. A +11 kV DC high voltage is applied to the discharge electrode 104A, and a positive corona is generated in the space between the discharge electrode 104A and the ground electrode plate 104B. Positive ions generated by the positive corona give a charge to dust (not shown) in the space, and the dust is positively charged. The charged dust is collected on the ground electrode plate 105 </ b> B by electrostatic force by a strong electric field formed between the load electrode plate 105 </ b> A and the ground electrode plate 105 </ b> B in the dust collector 105 at the subsequent stage. Although the case where a positive high voltage is applied to the electrostatic precipitator has been described, dust is collected on the ground electrode plate 105B in the same manner even when a negative high voltage is applied. The voltage value is not necessarily the above value. It is characterized by a two-stage electrostatic dust collection system in which the charging unit and the dust collection unit are independent.

また、帯電部の放電極として、荷電極板の端部にトゲ突起を設けた二段式電気集塵装置が、特許文献2に示されている。   Further, Patent Document 2 discloses a two-stage electrostatic precipitator in which a barb protrusion is provided at an end of a load electrode plate as a discharge electrode of a charging unit.

以下、その電気集塵送風原理について図20を参照しながら説明する。   Hereinafter, the principle of the electrostatic dust collection and blowing will be described with reference to FIG.

図20に示すように、帯電部104は、トゲ突起を有する放電極104Aと接地極板104Bにより構成されている。このとき、放電極104Aは、接地極板104Bにおける風の流れ方向の長さの中間点付近に配置されている。   As shown in FIG. 20, the charging unit 104 includes a discharge electrode 104A having a thorn protrusion and a ground electrode plate 104B. At this time, the discharge electrode 104A is disposed in the vicinity of the midpoint of the length in the wind flow direction on the ground electrode plate 104B.

また、帯電部の放電極として、別の形状のトゲ突起を用いた二段式電気集塵装置が、特許文献3に示されている。   Further, Patent Document 3 discloses a two-stage electrostatic precipitator using a barb protrusion having another shape as a discharge electrode of a charging unit.

以下、その電気集塵送風原理について図21と図22を参照しながら説明する。   Hereinafter, the principle of the electrostatic dust collection and blowing will be described with reference to FIGS. 21 and 22.

図21に示すように、帯電部104は、荷電極板の端部にトゲ突起を設けた放電極104A、104Cと接地極板104Bにより構成されている。このとき、放電極104Aの先端部分は、接地極板104Bにおける風の流れ方向の長さの中間点付近よりも風上側に配置されている。一方、放電極104Cの先端部分は、接地極板104Bにおける風の流れ方向の長さの中間点付近よりも風下側に配置されている。要するに、放電極104A、104Cの先端部分は、接地極板104Bにおける風の流れ方向の長さの中間点付近から
見て、風上側と風下側に、概ね対称的に配置されている。また、図22にも別の形態が示されている。荷電極板にトゲ突起を設けた放電極104A、とトゲ突起を設けた接地極板104Bが示されているが、各トゲ突起は、風の流れ方向の長さの中間点付近に配置されている。因みに、図22の形態において、接地極板104Bからは、放電極104Aと逆極性のコロナ放電が発生し、放電極104Aと接地極板104Bによる双極のコロナ放電により塵埃を帯電・集塵できるとしている。
As shown in FIG. 21, the charging unit 104 includes discharge electrodes 104A and 104C provided with barbed protrusions at the end of the load electrode plate and a ground electrode plate 104B. At this time, the distal end portion of the discharge electrode 104A is disposed on the windward side of the ground electrode plate 104B near the midpoint of the length in the wind flow direction. On the other hand, the distal end portion of the discharge electrode 104C is disposed on the leeward side of the ground electrode plate 104B near the midpoint of the length in the wind flow direction. In short, the tip portions of the discharge electrodes 104A and 104C are arranged approximately symmetrically on the windward side and the leeward side when viewed from the vicinity of the midpoint of the length of the ground electrode plate 104B in the wind flow direction. FIG. 22 shows another form. The discharge electrode 104A is provided with a barb protrusion on the load electrode plate, and the ground electrode plate 104B is provided with a barb protrusion. The barb protrusions are arranged near the midpoint of the length of the wind flow direction. Yes. Incidentally, in the configuration of FIG. 22, it is assumed that corona discharge having a polarity opposite to that of the discharge electrode 104A occurs from the ground electrode plate 104B, and dust can be charged and collected by bipolar corona discharge by the discharge electrode 104A and the ground electrode plate 104B. Yes.

また、別な形状のトゲ突起の放電極が、特許文献4に示されている。   Another shape of the barb discharge electrode is disclosed in Patent Document 4.

以下、図23を参照しながら説明する。   Hereinafter, a description will be given with reference to FIG.

図23の(A)(B)に示すように、帯電部104内には、荷電極板の一面至る所にトゲ突起を有する放電極104Aと接地極板104Bにより構成されている。要するに、放電極104Aの多数のトゲ突起は接地極板104Bにおける風の流れ方向の長さの中間点付近から見て、風上側と風下側に、ほぼ対称的に配置されていると見ることができる。   As shown in FIGS. 23 (A) and 23 (B), the charging unit 104 includes a discharge electrode 104A having a barb protrusion on the entire surface of the load electrode plate and a ground electrode plate 104B. In short, it can be seen that a large number of thorn protrusions of the discharge electrode 104A are arranged approximately symmetrically on the windward side and the leeward side when viewed from the middle point of the length in the wind flow direction on the ground electrode plate 104B. it can.

特開平10−202143号公報(図4)JP-A-10-202143 (FIG. 4) 特開2002−192014号公報(図1)Japanese Patent Laid-Open No. 2002-192014 (FIG. 1) 特許第3124193号公報(図2、図3)Japanese Patent No. 3124193 (FIGS. 2 and 3) 特開平8−299848号公報(図1、図3)JP-A-8-299848 (FIGS. 1 and 3)

このような従来の、電気集塵装置の帯電部の放電極の突起の配置については、接地極板における風の流れ方向の長さの中間点付近に配置するか、または、接地極板における風の流れ方向の長さの中間点付近から見て、風上側と風下側に、概ね対称的に配置するかが主流であった。一般産業用の電気集塵装置や家庭用空気清浄機の電気集塵装置の通過風速は概ね1から2m/s程度で低風速といえる。帯電部を通過する風速がこのように低ければ、前述の放電極の配置は、イオン場の対称性を概ね備えており、コロナ放電と粉塵への帯電効率の観点から至極妥当であるといえる。しかしながら、道路トンネル用の電気集塵装置のように、通過風速が5m/sから15m/s程度の高風速となると(注:高風速の上限値は理論上、存在しないが、圧力損失の増大抑制に配慮し、実用上の最大風速は15m/s程度であろうとされている)、コロナ放電によるイオン場の対称性が崩れ、その結果、粉塵への帯電効率が低下する。即ち、帯電部のコロナ放電に大電力を投入しなければ、充分に帯電できないので、満足のゆく集塵効率が得られず、帯電部の省エネ運転を行うことができないという課題があった。   With respect to the arrangement of the discharge electrode protrusions of the charging unit of the conventional electrostatic precipitator, it is arranged near the midpoint of the length of the wind flow direction on the ground plate, or the wind on the ground plate. When viewed from the vicinity of the midpoint of the length in the flow direction, the mainstream is to arrange them symmetrically on the windward side and leeward side. Passing wind speeds of general industrial electrostatic precipitators and electric precipitators of home air purifiers are about 1 to 2 m / s, which can be said to be low. If the wind speed passing through the charging section is thus low, the above-mentioned disposition of the discharge electrode generally has ion field symmetry, and can be said to be extremely appropriate from the viewpoint of corona discharge and charging efficiency to dust. However, if the passing wind speed becomes high from 5m / s to 15m / s as in the case of an electric dust collector for road tunnels (note: the upper limit of the high wind speed does not exist theoretically, but the pressure loss increases. In consideration of suppression, the practical maximum wind speed is supposed to be about 15 m / s), and the symmetry of the ion field due to corona discharge is lost, and as a result, the charging efficiency to dust is reduced. In other words, sufficient charging cannot be performed unless a large amount of electric power is applied to the corona discharge of the charging unit, so that a satisfactory dust collection efficiency cannot be obtained, and there is a problem that energy-saving operation of the charging unit cannot be performed.

そこで本発明は、上記従来の課題を解決するものであり、帯電部において、コロナ放電する部分を、帯電部内の風上寄りの空間に配置した電気集塵装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide an electrostatic precipitator in which a portion where corona discharge is performed in a charging unit is arranged in a space near the windward in the charging unit.

そして、この目的を達成するために、本発明は、通過風速が5m/sから15m/s程度の範囲内の、帯電部と集塵部からなる電気集塵装置において、帯電部内の荷電極板端の放電極のトゲ突起先端位置が、風の流れ方向における帯電部長さの中間位置よりもの風上側に位置し、かかる高風速により、帯電に必要なコロナ放電によるイオン場の対称性が崩れた条件下でも、効率的に粉塵を帯電・捕集できることを特徴とする電気集塵装置としたものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention relates to a load electrode plate in a charging part in an electrostatic precipitator comprising a charging part and a dust collecting part in a passing wind speed range of about 5 m / s to 15 m / s. The tip position of the tip of the discharge electrode of the discharge electrode is located on the windward side of the middle position of the charging part length in the wind flow direction, and the high wind speed destroyed the symmetry of the ion field due to corona discharge necessary for charging. The electrostatic precipitator is characterized by being able to charge and collect dust efficiently even under conditions, and thereby achieves the intended purpose.

本発明によれば、通過風速が5m/sから15m/s程度の範囲内の、帯電部と集塵部からなる電気集塵装置において、帯電部内の荷電極板端の放電極のトゲ突起先端位置が、風の流れ方向における帯電部長さの中間位置よりも風上側に位置し、かかる高風速により、帯電に必要なコロナ放電によるイオン場の対称性が崩れた条件下でも、消費電力効率を向上させて粉塵を帯電・捕集できることを特徴とする電気集塵装置にしたことにより、省エネ運転が可能という効果を得ることができる。   According to the present invention, in the electrostatic precipitator including the charging unit and the dust collecting unit within the range of the passing wind speed of about 5 m / s to 15 m / s, the tip of the barb protrusion of the discharge electrode at the end of the load electrode plate in the charging unit. The position is located on the windward side of the middle position of the charged part length in the wind flow direction, and the high wind speed makes it possible to reduce the power consumption efficiency even under the condition that the symmetry of the ion field due to corona discharge required for charging is broken. By improving the electrostatic precipitator, which is characterized by being able to charge and collect dust, it is possible to obtain an effect that energy-saving operation is possible.

本発明の実施の形態1による電気集塵装置の(a)概略図、(b)帯電部の荷電極板の平面図BRIEF DESCRIPTION OF THE DRAWINGS (a) Schematic of the electrostatic precipitator by Embodiment 1 of this invention, (b) The top view of the load electrode board of a charging part 同帯電部における(a)無風時の放電状態図、(b)通風時の放電状態図(A) No-wind discharge state diagram, (b) Discharge state diagram in the same charging section 本発明の実施の形態2による電気集塵装置の(a)概略図、(b)帯電部の荷電極板の平面図(A) Schematic of the electrostatic precipitator by Embodiment 2 of this invention, (b) The top view of the load electrode board of a charging part 同帯電部における(a)無風時の放電状態図、(b)通風時の放電状態図(A) No-wind discharge state diagram, (b) Discharge state diagram in the same charging section 本発明の実施の形態3による電気集塵装置の(a)概略図、(b)帯電部の荷電極板の平面図(A) Schematic of the electrostatic precipitator by Embodiment 3 of this invention, (b) The top view of the load electrode board of a charging part 同帯電部における(a)無風時の放電状態図、(b)通風時の放電状態図(A) No-wind discharge state diagram, (b) Discharge state diagram in the same charging section 本発明の実施の形態4による電気集塵装置の(a)概略図、(b)帯電部の荷電極板の平面図(A) Schematic of the electrostatic precipitator by Embodiment 4 of this invention, (b) The top view of the load electrode board of a charging part 同帯電部における(a)無風時の放電状態図、(b)通風時の放電状態図(A) No-wind discharge state diagram, (b) Discharge state diagram in the same charging section 本発明の実施例の実験装置概略図Schematic diagram of experimental apparatus according to an embodiment of the present invention 本発明の実施例1の帯電部の構成図(A)極板平面図、(B)一対の極板配置図、(C)X=0mm極板配置図、(D)X=−60mm極板配置図、(E)X=+60mm極板配置図Configuration diagram (A) electrode plate plan view, (B) a pair of electrode plate arrangement, (C) X = 0 mm electrode plate arrangement, (D) X = −60 mm electrode plate of the charging unit of Example 1 of the present invention Layout, (E) X = + 60mm pole plate layout 本発明の実施例1の正電圧印加時の集塵効率の特性図Characteristic diagram of dust collection efficiency when positive voltage is applied in Example 1 of the present invention 本発明の実施例1の負電圧印加時の集塵効率の特性図Characteristic diagram of dust collection efficiency when negative voltage is applied in Example 1 of the present invention 本発明の実施例1の有風と無風における放電様相の比較写真Comparative photograph of discharge mode in wind and no wind of Example 1 of the present invention 本発明の実施例2の帯電部の構成図(A)極板平面図、(B)一対の極板配置図、(C)X=0mm極板配置図、(D)X=−60mm極板配置図、(E)X=+60mm極板配置図(A) Electrode plate plan view, (B) A pair of electrode plate arrangement, (C) X = 0 mm electrode plate arrangement, (D) X = -60 mm electrode plate Layout, (E) X = + 60mm pole plate layout 本発明の実施例2の正または負電圧印加時の集塵効率の特性図Characteristic diagram of dust collection efficiency when positive or negative voltage is applied in Example 2 of the present invention 本発明の実施例3の帯電部の構成図(A)極板平面図、(B)一対の極板配置図、(C)X=0mm極板配置図、(D)X=−60mm極板配置図、(E)X=+60mm極板配置図(A) Electrode plate top view, (B) A pair of electrode plate arrangement, (C) X = 0 mm electrode plate arrangement, (D) X = -60 mm electrode plate Layout, (E) X = + 60mm pole plate layout 本発明の実施例3の正または負電圧印加時の集塵効率の特性図Characteristic diagram of dust collection efficiency when positive or negative voltage is applied in Example 3 of the present invention 本発明の実施例4の帯電部の構成図(A)極板平面図、(B)極板配置図Configuration diagram of charging unit of embodiment 4 of the present invention (A) electrode plate plan view, (B) electrode plate layout 従来の電気集塵装置の集塵原理図Dust collection principle diagram of a conventional electric dust collector 従来の電気集塵装置の集塵原理図Dust collection principle diagram of a conventional electric dust collector 従来の電気集塵装置の集塵原理図Dust collection principle diagram of a conventional electric dust collector 従来の電気集塵装置の帯電部の構造図Structure of the charging part of a conventional electrostatic precipitator 従来の電気集塵装置の帯電部の構造図Structure of the charging part of a conventional electrostatic precipitator

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に示すように、本実施の形態の電気集塵装置は、吸込ダクト11から粉塵を含む空気を吸い込み、帯電部13で粉塵に電荷を与えた後、集塵部16で粉塵を捕集するもので
ある。帯電部13は、複数枚の荷電極板1と複数枚の接地極板2を空気の流れに平行に交互に配置している。同じく集塵部16は、複数枚の荷電極板9と複数枚の接地極板10を空気の流れに平行に交互に配置している。帯電部13の荷電極板1は、風上側の端部と風下側の端部に先端を風上側あるいは風下側に向けた三角形状のトゲ51、52を有している。そして、風上側のトゲ51の先端は、接地極板2に対向した位置に設けられている。また、風下側のトゲ52の先端は、接地極板2に対向した位置で、かつ、接地極板2の風向方向の中心線よりも風上側に対向した位置に設けられている。すなわち、荷電極板1に設けられたトゲ51、52の先端は、風向に対して、接地極板2の風上側先端よりも風下側に有り、かつ、接地極板2の風向方向の中心線よりも風上側にあることになる。なお、図1(a)における帯電部13の荷電極板1の両端(風上側、風下側)を尖った形状で表しているが、これは、トゲ51、52を模式的に表したもので、実際にこの方向に見て尖った形状をしているわけではない。このことは、図2についても同様である。また、以降の実施の形態における図面でも、風上側あるいは風下側端部が尖った形状をしたものは、「トゲ」形状を示している。そして、風向に直交する「角部」をもつものは、「トゲ」のない直線状の端部を有していることを模式的に示している。
(Embodiment 1)
As shown in FIG. 1, the electrostatic precipitator of the present embodiment sucks in air containing dust from the suction duct 11, charges the dust with the charging unit 13, and then collects the dust with the dust collecting unit 16. To do. The charging unit 13 has a plurality of load electrode plates 1 and a plurality of ground electrode plates 2 arranged alternately in parallel to the air flow. Similarly, the dust collecting unit 16 has a plurality of load electrode plates 9 and a plurality of ground electrode plates 10 arranged alternately in parallel to the air flow. The load electrode plate 1 of the charging unit 13 has triangular thorns 51 and 52 whose tips are directed toward the windward side or leeward side at the windward end and the leeward end. The tip of the windward thorn 51 is provided at a position facing the ground electrode plate 2. The tip of the leeward thorn 52 is provided at a position facing the ground electrode plate 2 and at a position facing the windward side of the center line of the ground electrode plate 2 in the wind direction. That is, the tips of the barbs 51 and 52 provided on the load electrode plate 1 are located on the leeward side of the windward tip of the ground electrode plate 2 with respect to the wind direction, and the center line of the ground electrode plate 2 in the wind direction. Will be on the windward side. In addition, although the both ends (windward side, leeward side) of the load electrode plate 1 of the charging unit 13 in FIG. 1A are represented by pointed shapes, this is a schematic representation of the thorns 51 and 52. In fact, it does not have a sharp shape when viewed in this direction. The same applies to FIG. Also, in the drawings in the following embodiments, those having a pointed end on the leeward side or the leeward side indicate a “thorn” shape. And what has a "corner part" orthogonal to a wind direction has shown typically that it has a linear edge part without a "thorn".

このような構成の電気集塵装置の帯電部13に、高電圧を印加すると、図2(a)に示すように、トゲ51、52の先端から、風上側、風下側対称にコロナ放電空間が形成される。しかし、通過風速が5m/sから15m/s程度の風を(図1の風向に沿って)流すと、図2(b)に示すように、コロナ放電空間が風下側に流され、結果として変形する。このとき、風下側のトゲ52のコロナ放電は、接地極板2を風下側に長くしているので、円滑な放電となり、結果として、帯電部13を通過する粉塵に対し、効率的に電荷を与えることができる。即ち、高い集塵効率を確保できるのである。   When a high voltage is applied to the charging unit 13 of the electrostatic precipitator having such a configuration, as shown in FIG. 2A, the corona discharge space is symmetric from the tip of the thorns 51 and 52 to the leeward and leeward sides. It is formed. However, if a wind with a passing wind speed of about 5 m / s to 15 m / s is flowed (along the wind direction in FIG. 1), the corona discharge space is flowed to the leeward side as shown in FIG. Deform. At this time, the corona discharge of the leeward thorn 52 is a smooth discharge because the ground electrode plate 2 is elongated to the leeward side. As a result, the electric charge is efficiently charged to the dust passing through the charging unit 13. Can be given. That is, high dust collection efficiency can be secured.

一方、風上側のトゲ51のコロナ放電については、接地極板2の風上側の長さが短いが、コロナ放電空間が風下側に向けて変形しているので、円滑な放電を得ることができる。よって、帯電部13を通過する粉塵に対し、効率的に電荷を与えることができ、高い集塵効率が得られるのである。   On the other hand, for the corona discharge of the windward thorn 51, the length of the windward side of the ground electrode plate 2 is short, but since the corona discharge space is deformed toward the leeward side, a smooth discharge can be obtained. . Therefore, the dust passing through the charging unit 13 can be efficiently charged, and high dust collection efficiency can be obtained.

(実施の形態2)
図3,4を用いて第2の実施の形態による電気集塵装置について説明する。第1の実施の形態と同じ構成については同じ符号を付してその詳細な説明を省略する。
(Embodiment 2)
The electrostatic precipitator according to the second embodiment will be described with reference to FIGS. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の電気集塵装置の帯電部13の荷電極板1は、風下側の端部に先端を風下側に向けた三角形状のトゲ61を有している。そして、風上側の端部は、接地極板2に対向した位置に設けられている。また、風下側のトゲ61の先端は、接地極板2に対向した位置で、かつ、接地極板2の風向方向の中心線よりも風上側に対向した位置に設けられている。すなわち、荷電極板1は、風向に対して、接地極板2の風上側先端よりも風下側に有り、かつ、接地極板2の風向方向の中心線よりも風上側にあることになる。   The load electrode plate 1 of the charging unit 13 of the electrostatic precipitator according to the present embodiment has a triangular thorn 61 having a tip directed toward the leeward side at the end on the leeward side. The windward end is provided at a position facing the ground electrode plate 2. The tip of the leeward thorn 61 is provided at a position facing the ground electrode plate 2 and at a position facing the windward side of the center line of the ground electrode plate 2 in the wind direction. That is, the load electrode plate 1 is located on the leeward side with respect to the wind direction from the windward tip of the ground electrode plate 2 and on the windward side of the center line of the ground electrode plate 2 in the wind direction.

このような構成の電気集塵装置の帯電部13に、高電圧を印加すると、図4(a)に示すように、トゲ61の先端から、風下側に向けてコロナ放電空間が形成される。しかし、通過風速が5m/sから15m/s程度の風を(図3の風向に沿って)流すと、図4(b)に示すように、コロナ放電空間が風下側に流され、結果として変形する。このとき、風下側のトゲ61のコロナ放電は、接地極板2を風下側に長くしているので、円滑な放電となり、結果として、帯電部13を通過する粉塵に対し、効率的に電荷を与えることができる。即ち、高い集塵効率を確保できるのである。   When a high voltage is applied to the charging unit 13 of the electrostatic precipitator configured as described above, a corona discharge space is formed from the tip of the thorn 61 toward the leeward side, as shown in FIG. However, if a wind with a passing wind speed of about 5 m / s to 15 m / s is flowed (along the wind direction in FIG. 3), the corona discharge space is flowed to the leeward side as shown in FIG. Deform. At this time, the corona discharge of the thorn 61 on the leeward side makes the grounding electrode plate 2 longer on the leeward side, resulting in a smooth discharge. As a result, the dust passing through the charging unit 13 is efficiently charged. Can be given. That is, high dust collection efficiency can be secured.

(実施の形態3)
図5,6を用いて第3の実施の形態による電気集塵装置について説明する。第1、第2
の実施の形態と同じ構成については同じ符号を付してその詳細な説明を省略する。
(Embodiment 3)
The electrostatic precipitator according to the third embodiment will be described with reference to FIGS. 1st, 2nd
The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の電気集塵装置の帯電部13の荷電極板1は、風上側の端部に先端を風上側に向けた三角形状のトゲ71を有している。そして、風上側のトゲ71の先端は、接地極板2に対向した位置に設けられている。風下側の端部は、接地極板2に対向した位置で、かつ、接地極板10の風向方向の中心線よりも風上側に対向した位置に設けられている。すなわち、荷電極板1は、風向に対して、接地極板2の風上側先端よりも風下側に有り、かつ、接地極板2の風向方向の中心線よりも風上側にあることになる。   The load electrode plate 1 of the charging unit 13 of the electrostatic precipitator according to the present embodiment has a triangular thorn 71 having a tip directed toward the windward side at an end on the windward side. The tip of the windward thorn 71 is provided at a position facing the ground electrode plate 2. The end on the leeward side is provided at a position facing the ground electrode plate 2 and at a position facing the windward side of the center line of the ground electrode plate 10 in the wind direction. That is, the load electrode plate 1 is located on the leeward side with respect to the wind direction from the windward tip of the ground electrode plate 2 and on the windward side of the center line of the ground electrode plate 2 in the wind direction.

このような構成の電気集塵装置の帯電部13に、高電圧を印加すると、図6(a)に示すように、トゲ71の先端から、風上側に向けてコロナ放電空間が形成される。このとき、通過風速が5m/sから15m/s程度の風を(図5の風向に沿って)流すと、図6(b)に示すように、風下側にコロナ放電空間が風下側に向けて変形するが、風下側に十分な距離を持った接地極板2を配置しているので、円滑な放電を得ることができる。よって、帯電部13を通過する粉塵に対し、効率的に電荷を与えることができ、高い集塵効率が得られるのである。   When a high voltage is applied to the charging unit 13 of the electrostatic precipitator configured as described above, a corona discharge space is formed from the tip of the thorn 71 toward the windward side, as shown in FIG. At this time, when a wind having a passing wind speed of about 5 m / s to 15 m / s is flowed (along the wind direction in FIG. 5), the corona discharge space is directed toward the leeward side as shown in FIG. 6B. However, since the ground electrode plate 2 having a sufficient distance is arranged on the leeward side, a smooth discharge can be obtained. Therefore, the dust passing through the charging unit 13 can be efficiently charged, and high dust collection efficiency can be obtained.

(実施の形態4)
図7,8を用いて第4の実施の形態による電気集塵装置について説明する。第1、第2、第3の実施の形態と同じ構成については同じ符号を付してその詳細な説明を省略する。
(Embodiment 4)
The electrostatic precipitator according to the fourth embodiment will be described with reference to FIGS. The same components as those in the first, second, and third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の電気集塵装置の帯電部13の荷電極板1は、風上側の端部に先端を風上側に向けた三角形状のトゲ81を有している。また、帯電部13の接地極板2は、風下側の端部に、先端を風上側に向けたトゲ82を有している。   The load electrode plate 1 of the charging unit 13 of the electrostatic precipitator according to the present embodiment has a triangular thorn 81 having a tip directed toward the windward side at an end on the windward side. Further, the grounding electrode plate 2 of the charging unit 13 has a thorn 82 with a tip directed toward the windward side at an end portion on the leeward side.

そして、接地極板2の風下側端部、すなわち、トゲ82の先端は、荷電極板1に対向した位置に設けられる。言い換えると、トゲ82の先端は、風向に対して荷電極板1の風上端よりも風下側で、かつ、荷電極板1の風下端よりも風上側に位置する。   The leeward side end of the ground electrode plate 2, that is, the tip of the thorn 82 is provided at a position facing the load electrode plate 1. In other words, the tip of the thorn 82 is located on the leeward side from the windward upper end of the load electrode plate 1 and on the windward side of the windward end of the load electrode plate 1 with respect to the wind direction.

また、荷電極板1の風上側端部、すなわち、トゲ81の先端は、接地極板2に対向した位置に設けられる。言い換えると、トゲ81の先端は、風向に対して接地極板2の風上端よりも風下側で、かつ、接地極板2の風下端よりも風上側に位置する。   Further, the windward end of the load electrode plate 1, that is, the tip of the thorn 81 is provided at a position facing the ground electrode plate 2. In other words, the tip of the thorn 81 is located on the leeward side of the windward end of the grounding electrode plate 2 with respect to the wind direction and on the leeward side of the windward end of the grounding electrode plate 2.

このような構成の電気集塵装置の帯電部13に、高電圧を印加すると、図8(a)に示すように、トゲ81、82の先端から、風上側、風下側にコロナ放電空間が形成される。しかし、通過風速が5m/sから15m/s程度の風を(図7の風向に沿って)流すと、図8(b)に示すように、コロナ放電空間が風下側に流され、結果として変形する。このとき、トゲ81、82に対向する極板は、それぞれトゲ81、82の先端よりも風下側に長くしているので、円滑な放電となり、結果として、帯電部13を通過する粉塵に対し、効率的に電荷を与えることができる。即ち、高い集塵効率を確保できるのである。   When a high voltage is applied to the charging unit 13 of the electrostatic precipitator having such a configuration, corona discharge spaces are formed on the windward side and leeward side from the tips of the thorns 81 and 82 as shown in FIG. Is done. However, when a wind having a passing wind speed of about 5 m / s to 15 m / s is flowed (along the wind direction of FIG. 7), the corona discharge space is flowed to the leeward side as shown in FIG. Deform. At this time, since the electrode plates facing the thorns 81 and 82 are longer on the leeward side than the tips of the thorns 81 and 82, respectively, the discharge is smooth, and as a result, against the dust passing through the charging unit 13, An electric charge can be given efficiently. That is, high dust collection efficiency can be secured.

なお、本実施の形態では、帯電部13の風上側の極板を接地極板2、風下側を荷電極板1をとしたが、逆であってもその作用効果に変わりはない。   In the present embodiment, the windward electrode plate of the charging unit 13 is the ground electrode plate 2, and the load electrode plate 1 is on the leeward side.

すなわち、風下側の極板を接地して接地極板とし、風上側の極板に高圧電圧を印加する構成としても良い。   That is, the leeward electrode plate may be grounded to be a grounded electrode plate, and a high voltage may be applied to the leeward electrode plate.

本発明の実施の形態として、以下の試験装置を用いて行った実験を例にして説明する。   As an embodiment of the present invention, an experiment performed using the following test apparatus will be described as an example.

図9に本試験装置の概略図を示す。図に示すように、吸込ダクト11から粉塵を含む空気を吸い込み、帯電部13で粉塵に電荷を与えた後、集塵部16で粉塵を捕集するものである。このダクト系の後端部に設けたファン19により、空気が吸い込まれる。吸込ダクト11、帯電部13および集塵部16で構成されるこのダクト系の内部の幅寸法は、一律120mmである。高さ寸法は一律130mmであるが、帯電部13のみは高風速を得るために高さ寸法を32mmとしている。   FIG. 9 shows a schematic diagram of the test apparatus. As shown in the drawing, air containing dust is sucked from the suction duct 11, and after charging the dust by the charging unit 13, the dust is collected by the dust collecting unit 16. Air is sucked in by a fan 19 provided at the rear end of the duct system. The internal width dimension of this duct system composed of the suction duct 11, the charging part 13 and the dust collecting part 16 is uniformly 120 mm. Although the height dimension is uniformly 130 mm, only the charging unit 13 has a height dimension of 32 mm in order to obtain a high wind speed.

帯電部13における(トゲ突起を有する放電極としての)荷電極板1と接地極板2の間に印加する電圧は正負含めて可変としたが、集塵部16における荷電極板9とこれに隣接する接地極板10の間隔は10mmで一定とし、直流の印加電圧−9kVも一定とした。帯電部13の条件変化が集塵効率にどのように影響するのかを把握することとした。ファン19は周波数制御により回転数を可変できる。熱線風速計14は、吸込ダクト11部分での風速を計るのに用いた。帯電部13においては、高風速を実現するために、内部の高さ寸法を縮めることにより開口面積を狭めている。帯電部13内での風速が9m/s一定となるように、ファン19の電源周波数を微調整した。帯電部13は、正及び負の高圧電源22を切り替えて使用した。集塵部16に収納される荷電極板9と接地極板10には、負高圧電源23により電圧を印加した。電圧が印加される荷電極板9と接地される接地極板10については、形状・使用枚数・材質ともに同一とした。(全て、130mm×200mm、0.4t、SUS304)粉塵の濃度測定用には、パーティクルカウンター15を用い、帯電部13の風上側と集塵部16の風下側を濃度サンプル場所として集塵効率測定を行った。0.3ミクロンメートル以上の全ての粒径による粉塵濃度を用いて、集塵効率を算出した。除去対象の粉塵は、室中の大気塵である。   Although the voltage applied between the load electrode plate 1 (as a discharge electrode having thorn protrusions) and the ground electrode plate 2 in the charging unit 13 is variable including positive and negative, the load electrode plate 9 in the dust collecting unit 16 and The interval between adjacent grounding electrode plates 10 was constant at 10 mm, and the DC applied voltage −9 kV was also constant. It was decided to grasp how the condition change of the charging unit 13 affects the dust collection efficiency. The fan 19 can change the rotation speed by frequency control. The hot wire anemometer 14 was used to measure the wind speed at the suction duct 11 portion. In the charging unit 13, in order to realize a high wind speed, an opening area is narrowed by reducing an internal height dimension. The power frequency of the fan 19 was finely adjusted so that the wind speed in the charging unit 13 was constant at 9 m / s. The charging unit 13 was used by switching between the positive and negative high-voltage power supplies 22. A voltage was applied to the load electrode plate 9 and the ground electrode plate 10 accommodated in the dust collecting unit 16 by a negative high voltage power source 23. The load electrode plate 9 to which the voltage is applied and the ground electrode plate 10 to be grounded are the same in shape, number of sheets used, and material. (All, 130mm x 200mm, 0.4t, SUS304) For dust concentration measurement, particle counter 15 is used, and dust collection efficiency measurement is performed using the windward side of charging unit 13 and the leeward side of dust collection unit 16 as concentration sample locations. Went. The dust collection efficiency was calculated using the dust concentration for all particle sizes of 0.3 microns or more. The dust to be removed is atmospheric dust in the room.

以上のような試験装置を用いた試験をより詳細に説明する。   The test using the above test apparatus will be described in more detail.

(実施例1)
図10(A)は,実験で使用した帯電部13の荷電極板1と接地極板2の外形を示す。これらをそれぞれ複数枚用いて帯電部13を構成する。荷電極板1と接地極板2の板厚は0.4mmで、材質はSUS304である。荷電極板1の左端および右端の一辺に、それぞれ3個のトゲを配列した。トゲの先端角度は30度、トゲの高さは10mmで、トゲ間隔は12mmである。
Example 1
FIG. 10A shows the outer shape of the load electrode plate 1 and the ground electrode plate 2 of the charging unit 13 used in the experiment. The charging unit 13 is configured using a plurality of these. The thickness of the load electrode plate 1 and the ground electrode plate 2 is 0.4 mm, and the material is SUS304. Three thorns were arranged on each side of the left end and the right end of the load electrode plate 1. The tip angle of the thorn is 30 degrees, the height of the thorn is 10 mm, and the thorn interval is 12 mm.

図10(B)は、荷電極板1とこれに平行に隣接する接地極板2を板に垂直な方向から眺めたものである。太い矢印は9m/sの通風方向を示す。荷電極板1の風下端が、隣接する接地極板2における風上端と風下端の中間位置(一点叉線)よりも風上側に位置し、荷電極板1の風上端が、接地極板2の風上端と風下端の間に位置することを示している。接地極板2の中間位置を原点0mmポイントとし、ここから風下方向を+方向、風上方向を−方向としている。荷電極板1の風下端と原点間の距離をXとすると、荷電極板1の風下端が、接地極板2における風上端と風下端の中間位置よりも風上側に位置し、荷電極板1の風上端が、接地極板2の風上端と風下端の間に位置するための−方向の最大寸法はX=−60mmである。   FIG. 10B shows the load electrode plate 1 and the ground electrode plate 2 adjacent to the load electrode plate 1 in parallel, as viewed from the direction perpendicular to the plate. A thick arrow indicates a ventilation direction of 9 m / s. The windward lower end of the load electrode plate 1 is located on the windward side of an intermediate position (one-dotted line) between the windward upper end and the windward lower end of the adjacent ground electrode plate 2, and the wind upper end of the load electrode plate 1 is located on the grounding electrode plate 2. It is located between the wind upper end and the wind lower end. The intermediate position of the ground electrode plate 2 is set to the origin 0 mm point, and the leeward direction from here is the + direction, and the leeward direction is the − direction. When the distance between the wind bottom end of the load electrode plate 1 and the origin is X, the wind bottom end of the load electrode plate 1 is located on the windward side of the ground electrode plate 2 between the wind top end and the wind bottom end. The maximum dimension in the − direction for the wind upper end of 1 to be positioned between the wind upper end and the wind lower end of the ground electrode plate 2 is X = −60 mm.

図10(C)は、帯電部13において、X=0mmの場合の極板配置の様子を示す。太い矢印は通風方向を示す。荷電極板1と隣接する接地極板2の間の距離をDとし、Dが10mm、15mm、20mmの3ケースで実験を行った。これをD10、D15、D20と表現することにする。各D寸法と使用する極板枚数の関係は、次の通りである。
・D10の場合:荷電極板1は6枚、接地極板2は7枚。
・D15の場合:荷電極板1は4枚、接地極板2は5枚。
・D20の場合:荷電極板1は3枚、接地極板2は4枚。
荷電極板1において風上側の3個のトゲ突起からコロナ放電空間(a)が形成され、風下
側の3個のトゲ突起からもコロナ放電空間(b)が形成されることを示している。通風により風上側から運ばれてきた粉塵(図示せず)は、この帯電部13内のコロナ放電空間を通過することにより、帯電され、後段の集塵部16の強電界により捕集される。
FIG. 10C shows a state of electrode plate arrangement in the charging unit 13 when X = 0 mm. Thick arrows indicate the direction of ventilation. The distance between the load electrode plate 1 and the adjacent ground electrode plate 2 was set to D, and the experiment was conducted in three cases where D was 10 mm, 15 mm, and 20 mm. These are expressed as D10, D15, and D20. The relationship between each D dimension and the number of electrode plates used is as follows.
In the case of D10: six load electrode plates 1 and seven ground electrode plates 2
In the case of D15: Four load electrode plates 1 and five ground electrode plates 2
In the case of D20: three load electrode plates 1 and four ground electrode plates 2
In the load electrode plate 1, the corona discharge space (a) is formed from the three ridges on the leeward side, and the corona discharge space (b) is also formed from the three ridges on the leeward side. Dust (not shown) carried from the windward side by the ventilation is charged by passing through the corona discharge space in the charging unit 13 and collected by the strong electric field of the dust collecting unit 16 at the subsequent stage.

図10(D)は、帯電部13において、X=−60mmの場合の極板配置の様子を示し、図10(E)は、X=+60mmの場合の極板配置の様子を示す。   FIG. 10D shows a state of electrode plate arrangement in the charging unit 13 when X = −60 mm, and FIG. 10E shows a state of electrode plate arrangement when X = + 60 mm.

集塵部16の極間・電圧条件は常に一定とし、また通風速度も常に9m/sで一定とし、帯電部13の条件を変化させて、集塵効率ηを測定する実験を行った。集塵効率ηは、吸込ダクト11に流入する粉塵の総数をAとし、集塵部16から流出する粉塵の総数をBとすると、η=(A−B)/A×100%で示される。
帯電部13の条件変化の詳細を以下に示す。
・D10の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
・D15の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
・D20の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
このとき荷電極板1には正の直流電圧と負の直流電圧をそれぞれ印加するものとした。電圧印加により放電電流が発生するが、同じ電圧でも、正負の別、Dの変化、Xの変化によって放電電流は変化する。帯電部の13の実験条件は、前記のように変化させるが、印加電圧と放電電流の積、即ち消費電力については、常に一定値1Wとなるように、印加電圧を調整して実験を行った。要するに、本実験は、集塵部16の条件は一定で、帯電部13の消費電力は一定であるが、その他の正負・D・Xを変化させたときに、集塵効率ηがどのように変化するのかを確認するものである。
An experiment was conducted to measure the dust collection efficiency η by changing the conditions of the charging unit 13 while keeping the gap / voltage condition of the dust collection unit 16 always constant and the ventilation speed constant at 9 m / s. The dust collection efficiency η is represented by η = (A−B) / A × 100%, where A is the total number of dust flowing into the suction duct 11 and B is the total number of dust flowing out from the dust collection unit 16.
Details of the condition change of the charging unit 13 will be described below.
In the case of D10: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In the case of D15: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In the case of D20: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
At this time, a positive DC voltage and a negative DC voltage were applied to the load electrode plate 1, respectively. A discharge current is generated by applying a voltage. Even at the same voltage, the discharge current changes depending on whether it is positive or negative, a change in D, or a change in X. Although the experimental conditions of the charging unit 13 were changed as described above, the experiment was performed by adjusting the applied voltage so that the product of the applied voltage and the discharge current, that is, the power consumption, was always a constant value 1W. . In short, in this experiment, the conditions of the dust collection unit 16 are constant and the power consumption of the charging unit 13 is constant, but how the dust collection efficiency η is changed when other positive / negative / D · X is changed. It is to confirm whether it changes.

実験結果を図11と図12に示す。図11には、荷電極板1に正電圧を印加した場合の各Dについて、横軸X、縦軸ηにて特性が示される。図12には、荷電極板1に負電圧を印加した場合の特性が示される。   The experimental results are shown in FIGS. In FIG. 11, the characteristics are shown on the horizontal axis X and the vertical axis η for each D when a positive voltage is applied to the load electrode plate 1. FIG. 12 shows characteristics when a negative voltage is applied to the load electrode plate 1.

図11でも図12でもXが増大すると、集塵効率ηは低下する。正負の別やDの違いにより、各特性に差異はあるものの、Xが増大すると、ηは低下する。これは荷電極板1が風下側にずれるとηが悪くなることを意味する。その理由を考察する。   In both FIG. 11 and FIG. 12, when X increases, the dust collection efficiency η decreases. Although there is a difference in each characteristic depending on whether it is positive or negative or D, η decreases as X increases. This means that η becomes worse when the load electrode plate 1 is shifted to the leeward side. Consider the reason.

図13に,帯電部13における正放電の様子を4枚の写真(a)、(b)、(c)、(d)で示す。写真は全て暗闇の中で、露出時間60秒にて撮影した。(a)のみは,瞬間的に約1秒間、懐中電灯を点灯させた写真である。写真は全て,G20でX=0mm の配置にて、無風もしくは9m/sの有風条件下で撮影した。写真(a)中央部の荷電極板1に正電圧を印加し、上下の極板は接地極板2である。有風の場合、写真の左手が風上である。(a)は、無風条件下で撮影された。中央部の荷電極板1の先端部のトゲ突起の形状が鮮明に映っており、トゲ突起先端から正コロナが発生している。(b)は(a)と同一条件にて、完全な暗闇で撮影したものである。(c)と(d)は、荷電極板1のトゲ突起先端から火花が発生した時のものである。無風条件の(c)に比べ、有風条件の(d)では、火花時の電離発光部分が、9m/sという高風速によって風下に流されていることがわかる。このことは、電離で発生したイオンも気体分子と同じく、通風によって風下に流されることを示している。これにより、「高風速条件下では,コロナ放電により発生した気体イオンは風下に流されるので、粉塵を帯電するのに効果的な荷電空間は、トゲの風上側よりも風下側に存在する。」と言えることが判明した。実験結果から、正荷電でも負荷電でもこのことが言える。従って、図11でも図12でもXが増大して、荷電極板1が風下側にずれると、風下側の荷電(帯電)空間が減るので、集塵効率ηが低下することが裏付けられた。よって、帯電部13の消費電力一定という条件下では、荷電極板1の風下端が、隣接する接地極板2における風上端と風下端の中間位置よりも風上側に位置したほうが、風下側に位置するよりも、集塵効率ηが高い値となるといえる。   In FIG. 13, the state of positive discharge in the charging unit 13 is shown by four photographs (a), (b), (c), and (d). All photos were taken in the dark with an exposure time of 60 seconds. Only (a) is a photograph in which a flashlight is turned on instantaneously for about 1 second. All photographs were taken with no wind or wind condition of 9 m / s in an arrangement of G = 0 and X = 0 mm 2. Photo (a) A positive voltage is applied to the load electrode plate 1 in the center, and the upper and lower electrode plates are ground electrode plates 2. When there is a wind, the left hand of the photo is upwind. (A) was taken under windless conditions. The shape of the thorn protrusion at the tip of the load electrode plate 1 at the center is clearly shown, and a positive corona is generated from the tip of the thorn protrusion. (B) was taken in complete darkness under the same conditions as (a). (C) and (d) are when a spark is generated from the tip of the barb protrusion of the load electrode plate 1. It can be seen that, in the windy condition (d), the ionized light emission part at the time of spark is caused to flow downward at a high wind speed of 9 m / s as compared with the windless condition (c). This indicates that ions generated by ionization are caused to flow leeward by ventilation as well as gas molecules. As a result, “under high wind speed conditions, gas ions generated by corona discharge flow downwind, so there is an effective charge space for charging dust on the leeward side of the thorns.” It turns out that it can be said. From the experimental results, this is true for both positive and negative charges. Accordingly, it was confirmed that when X increases in both FIG. 11 and FIG. 12 and the load electrode plate 1 is shifted to the leeward side, the charge (charging) space on the leeward side is reduced, so that the dust collection efficiency η is lowered. Therefore, under the condition that the power consumption of the charging unit 13 is constant, the leeward end of the load electrode plate 1 is more on the leeward side than the intermediate position between the leeward upper end and the lower end of the adjacent ground electrode plate 2. It can be said that the dust collection efficiency η is higher than the position.

なお、帯電部13の荷電極板1に印加する直流電圧kVを隣接する極板間隔(cm)で割った値を平均電界強度(kV/cm)と呼ぶが、正電圧を印加した場合は、平均電界強度は7kV/cmから10kV/cm程度の範囲内にあった。また、負電圧を印加した場合は、平均電界強度は6kV/cmから9kV/cm程度の範囲内にあった。   Note that a value obtained by dividing the DC voltage kV applied to the load electrode plate 1 of the charging unit 13 by the interval between adjacent electrode plates (cm) is called an average electric field strength (kV / cm), but when a positive voltage is applied, The average electric field strength was in the range of about 7 kV / cm to 10 kV / cm. When a negative voltage was applied, the average electric field strength was in the range of about 6 kV / cm to 9 kV / cm.

なお、荷電極板1の1列中のトゲの数は3個でなくても、1個以上あればよい。   The number of thorns in one row of the load electrode plate 1 is not limited to three but may be one or more.

なお、荷電極板1のトゲの数は、全てが同じでなくてもよい。   The number of thorns on the load electrode plate 1 may not be all the same.

なお、荷電極板1のトゲ突起の先端角度は30でなくても、10度から40度程度の範囲であればよい。   The tip angle of the barb protrusion of the load electrode plate 1 is not limited to 30, but may be in the range of about 10 to 40 degrees.

なお、荷電極板1のトゲの高さは10mmでなくても、5mmから20mm程度の範囲であればよい。   Note that the height of the barbs of the load electrode plate 1 is not limited to 10 mm, but may be in the range of about 5 mm to 20 mm.

なお、荷電極板1の端部上で隣接するトゲの間隔は12mmでなくても、4mmから20mm程度の範囲であればよい。   In addition, the space | interval of the thorn adjacent on the edge part of the load electrode plate 1 should just be the range of about 4 mm to 20 mm even if it is not 12 mm.

なお、荷電極板1の板厚は0.4mmでなくても、0.2mmから1.5mm程度の範囲であればよい。   In addition, the plate | board thickness of the load electrode plate 1 should just be the range of about 0.2 mm to 1.5 mm even if it is not 0.4 mm.

なお、荷電極板1の材質はSUS304でなくても、平板化可能な金属であればよい。   The material of the load electrode plate 1 is not limited to SUS304, but may be any metal that can be flattened.

なお、荷電極板1の寸法は40mm×36mmでなくてもよい。   Note that the size of the load electrode plate 1 may not be 40 mm × 36 mm.

すなわち、通過風速が5m/sから15m/s程度の範囲内で、帯電部13の荷電極板1の両端にコロナ放電用のトゲ突起を有し、荷電極板1の風下端が、隣接する接地極板2における風上端と風下端の中間位置よりも風上側に位置し、荷電極板1の風上端が、接地極板2の風上端と風下端の間に位置する構造であれば、消費電力効率の良い電気集塵装置が得られるのである。   That is, corona discharge barbs are provided at both ends of the load electrode plate 1 of the charging unit 13 within the range of the passing wind speed of about 5 m / s to 15 m / s, and the wind lower end of the load electrode plate 1 is adjacent to the load electrode plate 1. If the structure is located on the windward side between the windward upper end and the windward lower end of the ground electrode plate 2 and the load electrode plate 1 is located between the wind upper end and the wind lower end of the ground electrode plate 2, An electric dust collector with good power consumption efficiency can be obtained.

(実施例2)
風下端のみに、トゲ突起を設けた場合を実施例2として、実験により確認することとした。
(Example 2)
The case where the thorn protrusion was provided only on the windward end was determined as Example 2 and confirmed by experiments.

図14(A)は,実験で使用した帯電部13の荷電極板1と接地極板2の外形を示す。これらをそれぞれ複数枚用いて帯電部13を構成する。使用する枚数の考え方は実施例1と同じである。荷電極板1と接地極板2の板厚・材質も実施例1と同じである。荷電極板1の風下端の一辺に、3個のトゲを配列した。トゲの先端角度・トゲ高さ・トゲ間隔は実施例1と同じである。   FIG. 14A shows the outer shape of the load electrode plate 1 and the ground electrode plate 2 of the charging unit 13 used in the experiment. The charging unit 13 is configured using a plurality of these. The concept of the number of sheets used is the same as in the first embodiment. The thickness and material of the load electrode plate 1 and the ground electrode plate 2 are the same as in the first embodiment. Three thorns were arranged on one side of the bottom end of the load electrode plate 1. The tip angle, thorn height, and thorn interval of thorns are the same as those in the first embodiment.

図14(B)は、荷電極板1とこれに平行に隣接する接地極板2を垂直方向から眺めたものである。通風方向・風速は実施例1と同じである。荷電極板1の風下端が、隣接する接地極板2における風上端と風下端の中間位置(一点叉線)よりも風上側に位置し、荷電極板1が、接地極板2の風上端と風下端の間に位置することを示している。接地極板2の中間位置を原点0mmポイントとし、ここから風下方向を+方向、風上方向を−方向としている。荷電極板1の風下端と原点間の距離をXとすると、荷電極板1の風下端が、接地極板2における風上端と風下端の中間位置よりも風上側に位置し、荷電極板1が、接地極板2の風上端と風下端の間に位置するための−方向の最大寸法はX=−60mmである。   FIG. 14B shows the load electrode plate 1 and the ground electrode plate 2 adjacent to the load electrode plate 1 in parallel, as viewed from the vertical direction. The ventilation direction and the wind speed are the same as those in the first embodiment. The windward end of the load electrode plate 1 is located on the windward side of the intermediate position (one-dotted line) between the windward upper end and the windward lower end of the adjacent ground electrode plate 2, and the load electrode plate 1 is located on the windward upper end of the ground electrode plate 2. It is located between and the wind end. The intermediate position of the ground electrode plate 2 is set to the origin 0 mm point, and the leeward direction from here is the + direction, and the leeward direction is the − direction. When the distance between the wind bottom end of the load electrode plate 1 and the origin is X, the wind bottom end of the load electrode plate 1 is located on the windward side of the ground electrode plate 2 between the wind top end and the wind bottom end. The maximum dimension in the − direction for 1 to be located between the wind upper end and the wind lower end of the ground electrode plate 2 is X = −60 mm.

図14(C)は、帯電部13において、X=0mmの場合の極板配置の様子を示す。太い矢印は通風方向を示す。荷電極板1と隣接する接地極板2の間の距離をDとし、Dが10mm、15mm、20mmの3ケースで実験を行った。   FIG. 14C shows a state of electrode plate arrangement in the charging unit 13 when X = 0 mm. Thick arrows indicate the direction of ventilation. The distance between the load electrode plate 1 and the adjacent ground electrode plate 2 was set to D, and the experiment was conducted in three cases where D was 10 mm, 15 mm, and 20 mm.

荷電極板1において風下側の3個のトゲ突起からコロナ放電空間(b)が形成されることを示している。風上側から運ばれてきた粉塵(図示せず)は、この帯電部13内のコロナ放電空間を通過することにより、帯電され、後段の集塵部16の強電界で捕集される。   In the load electrode plate 1, the corona discharge space (b) is formed from three ridge protrusions on the leeward side. Dust (not shown) carried from the windward side is charged by passing through the corona discharge space in the charging unit 13 and collected by the strong electric field of the subsequent dust collection unit 16.

図14(D)は、帯電部13において、X=−60mmの場合の極板配置の様子を示し、図14(E)は、X=+60mmの場合の極板配置の様子を示す。   FIG. 14D shows a state of electrode plate arrangement in the charging unit 13 when X = −60 mm, and FIG. 14E shows a state of electrode plate arrangement when X = + 60 mm.

集塵部16の極間・電圧条件は常に一定とし、また通風速度も常に9m/sで一定とし、帯電部13の条件を変化させて、集塵効率ηを測定する実験を行った。
帯電部13の条件変化の詳細を以下に示す。
・D10の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
・D15の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
・D20の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
本実験は、集塵部16の条件は一定で、帯電部13の消費電力は一定の1Wであるが、電圧の正負の別・D・Xを変化させたときに、集塵効率ηがどのように変化するのかを確認するものである。
An experiment was conducted to measure the dust collection efficiency η by changing the conditions of the charging unit 13 while keeping the gap / voltage condition of the dust collection unit 16 always constant and the ventilation speed constant at 9 m / s.
Details of the condition change of the charging unit 13 will be described below.
In the case of D10: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In the case of D15: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In the case of D20: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In this experiment, the conditions of the dust collecting unit 16 are constant, and the power consumption of the charging unit 13 is constant 1 W. However, when the voltage is changed between D and X, the dust collection efficiency η It is to confirm how it changes.

実験結果を図15に示す。荷電極板1に正または負の電圧を印加した場合の、各Dについて、横軸X、縦軸ηの特性が示される。記号説明の中で、極間Gの文字の前に付された+または−の記号は、印加した直流電圧が正であるか負であるかを示している。   The experimental results are shown in FIG. The characteristics of the horizontal axis X and the vertical axis η are shown for each D when a positive or negative voltage is applied to the load electrode plate 1. In the symbol explanation, the symbol “+” or “−” attached in front of the letter “G” indicates whether the applied DC voltage is positive or negative.

図14では、Xが増大すると、集塵効率ηは低下している。正負の別やDの違いにより、各特性に差異はあるものの、Xが増大すると、ηは低下する。これは荷電極板1が風下側にずれるとηが悪化することを意味している。その理由は実施例1のものと同じであり、「高風速条件下では,コロナ放電により発生した気体イオンは風下に流されるので、粉塵を帯電するのに効果的な荷電空間は、トゲの風上側よりも風下側に存在する。」と言うものである。よって、帯電部13の消費電力一定という条件下では、荷電極板1の風下端が、隣接する接地極板2における風上端と風下端の中間位置よりも風上側に位置したほうが、風下側に位置するよりも、集塵効率ηが高い値となるといえる。   In FIG. 14, as X increases, the dust collection efficiency η decreases. Although there is a difference in each characteristic depending on whether it is positive or negative or D, η decreases as X increases. This means that η deteriorates when the load electrode plate 1 shifts to the leeward side. The reason for this is the same as that of Example 1. “Gas ions generated by corona discharge flow under the wind at high wind speeds, so the effective charge space for charging the dust is the thorn wind. It exists on the leeward side rather than the upper side. " Therefore, under the condition that the power consumption of the charging unit 13 is constant, the leeward end of the load electrode plate 1 is more on the leeward side than the intermediate position between the leeward upper end and the lower end of the adjacent ground electrode plate 2. It can be said that the dust collection efficiency η is higher than the position.

なお、帯電部13の荷電極板1に正電圧を印加した場合の平均電界強度は7kV/cmから10kV/cm程度の範囲であった。また、負電圧を印加した場合、平均電界強度は6kV/cmから9kV/cm程度の範囲であった。   The average electric field strength when a positive voltage was applied to the load electrode plate 1 of the charging unit 13 was in the range of about 7 kV / cm to 10 kV / cm. When a negative voltage was applied, the average electric field strength was in the range of about 6 kV / cm to 9 kV / cm.

なお、荷電極板1の1列中のトゲの数は3個でなくても、1個以上あればよい。   The number of thorns in one row of the load electrode plate 1 is not limited to three but may be one or more.

なお、荷電極板1のトゲの数は、全てが同じでなくてもよい。   The number of thorns on the load electrode plate 1 may not be all the same.

なお、荷電極板1のトゲ突起の先端角度は30でなくても、10度から40度程度の範囲であればよい。   The tip angle of the barb protrusion of the load electrode plate 1 is not limited to 30, but may be in the range of about 10 to 40 degrees.

なお、荷電極板1のトゲの高さは10mmでなくても、5mmから20mm程度の範囲であればよい。   Note that the height of the barbs of the load electrode plate 1 is not limited to 10 mm, but may be in the range of about 5 mm to 20 mm.

なお、荷電極板1の端部上で隣接するトゲの間隔は12mmでなくても、4mmから2
0mm程度の範囲であればよい。
It should be noted that the spacing between adjacent thorns on the end portion of the load electrode plate 1 is 4 mm to 2
It may be in the range of about 0 mm.

なお、荷電極板1の板厚は0.4mmでなくても、0.2mmから1.5mm程度の範囲であればよい。   In addition, the plate | board thickness of the load electrode plate 1 should just be the range of about 0.2 mm to 1.5 mm even if it is not 0.4 mm.

なお、荷電極板1の材質はSUS304でなくても、平板化可能な金属であればよい。   The material of the load electrode plate 1 is not limited to SUS304, but may be any metal that can be flattened.

なお、荷電極板1の寸法は20mm×36mmでなくてもよい。   The size of the load electrode plate 1 may not be 20 mm × 36 mm.

すなわち、通過風速が5m/sから15m/s程度の時、帯電部13の荷電極板1の風下端にコロナ放電用のトゲ突起を有し、荷電極板1の風下端が、隣接する接地極板2における風上端と風下端の中間位置よりも風上側に位置し、荷電極板1が、接地極板2の風上端と風下端の間に位置する構造であれば、消費電力効率の良い電気集塵装置が得られるのである。   That is, when the passing wind speed is about 5 m / s to 15 m / s, the bottom end of the load electrode plate 1 of the charging unit 13 has a corona discharge barb protrusion, and the bottom end of the load electrode plate 1 is adjacent to the ground. If the load electrode plate 1 is located between the wind upper end and the wind lower end of the ground electrode plate 2 and is located on the windward side of the intermediate position between the wind upper end and the wind lower end of the electrode plate 2, the power consumption efficiency is improved. A good electrostatic precipitator is obtained.

(実施例3)
風上端のみに、トゲ突起を設けた場合を実施例3として、実験により確認する。
(Example 3)
The case where the thorn protrusion is provided only on the wind top is confirmed as an experiment as Example 3.

図16(A)は,実験で使用した帯電部13の荷電極板1と接地極板2の外形を示す。これらをそれぞれ複数枚用いて帯電部13を構成する。使用する枚数の考え方は実施例1と同じである。荷電極板1と接地極板2の板厚・材質も実施例1と同じである。荷電極板1の風上端の一辺に、3個のトゲを配列した。トゲの先端角度・トゲ高さ・トゲ間隔は実施例1と同じである。   FIG. 16A shows the outer shape of the load electrode plate 1 and the ground electrode plate 2 of the charging unit 13 used in the experiment. The charging unit 13 is configured using a plurality of these. The concept of the number of sheets used is the same as in the first embodiment. The thickness and material of the load electrode plate 1 and the ground electrode plate 2 are the same as in the first embodiment. Three thorns were arranged on one side of the top end of the load electrode plate 1. The tip angle, thorn height, and thorn interval of thorns are the same as those in the first embodiment.

図16(B)は、荷電極板1とこれに平行に隣接する接地極板2を垂直方向から眺めたものである。通風方向・風速は実施例1と同じである。荷電極板1の風上端が、隣接する接地極板2における風上端と風下端の中間位置(一点叉線)よりも風上側に位置し、荷電極板1が、接地極板2の風上端と風下端の間に位置することを示している。接地極板2の中間位置を原点0mmポイントとし、ここから風下方向を+方向、風上方向を−方向としている。荷電極板1の風下端と原点間の距離をXとすると、荷電極板1の風上端が、接地極板2における風上端と風下端の中間位置よりも風上側に位置し、荷電極板1が、接地極板2の風上端と風下端の間に位置するための−方向の最大寸法はX=−60mmである。   FIG. 16B shows the load electrode plate 1 and the ground electrode plate 2 adjacent to the load electrode plate 1 in parallel, as viewed from the vertical direction. The ventilation direction and the wind speed are the same as those in the first embodiment. The windward upper end of the load electrode plate 1 is located on the windward side of the intermediate position (one-dotted line) between the windward upper end and the wind lower end of the adjacent ground electrode plate 2, and the load electrode plate 1 is located on the windward upper end of the ground electrode plate 2. It is located between and the wind end. The intermediate position of the ground electrode plate 2 is set to the origin 0 mm point, and the leeward direction from here is the + direction and the leeward direction is the − direction. When the distance between the wind bottom end of the load electrode plate 1 and the origin is X, the wind top end of the load electrode plate 1 is located on the windward side of the ground electrode plate 2 between the wind top end and the wind bottom end, and the load electrode plate 1 The maximum dimension in the − direction for 1 to be located between the wind upper end and the wind lower end of the ground electrode plate 2 is X = −60 mm.

図16(C)は、帯電部13において、X=0mmの場合の極板配置の様子を示す。太い矢印は通風方向を示す。荷電極板1と隣接する接地極板2の間の距離をDとし、Dが10mm、15mm、20mmの3ケースで実験を行った。   FIG. 16C shows a state of electrode plate arrangement in the charging unit 13 when X = 0 mm. Thick arrows indicate the direction of ventilation. The distance between the load electrode plate 1 and the adjacent ground electrode plate 2 was set to D, and the experiment was conducted in three cases where D was 10 mm, 15 mm, and 20 mm.

荷電極板1において風上側の3個のトゲ突起からコロナ放電空間(a)が形成されることを示している。風上側から運ばれてきた粉塵(図示せず)は、この帯電部13内のコロナ放電空間を通過することにより、電荷を帯び、後段の集塵部16の強電界で捕集される。   In the load electrode plate 1, the corona discharge space (a) is formed from three thorn protrusions on the windward side. Dust (not shown) carried from the windward side is charged by passing through the corona discharge space in the charging unit 13 and collected by the strong electric field of the dust collecting unit 16 at the subsequent stage.

図16(D)は、帯電部13において、X=−60mmの場合の極板配置の様子を示し、図16(E)は、X=+60mmの場合の極板配置の様子を示す。   FIG. 16D shows a state of electrode plate arrangement in the charging unit 13 when X = −60 mm, and FIG. 16E shows a state of electrode plate arrangement when X = + 60 mm.

集塵部16の極間・電圧条件は常に一定とし、また通風速度も常に9m/sで一定とし、帯電部13の条件を変化させて、集塵効率ηを測定する実験を行った。
帯電部13の条件変化の詳細を以下に示す。
・D10の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
・D15の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
・D20の場合:1)X=−60mm、2)X=0mm、3)X=+60mm。
本実験は、集塵部16の条件は一定で、帯電部13の消費電力は一定の1Wであるが、電圧の正負の別・D・Xを変化させたときに、集塵効率ηがどのように変化するのかを確認するものである。
An experiment was conducted to measure the dust collection efficiency η by changing the conditions of the charging unit 13 while keeping the gap / voltage condition of the dust collection unit 16 always constant and the ventilation speed constant at 9 m / s.
Details of the condition change of the charging unit 13 will be described below.
In the case of D10: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In the case of D15: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In the case of D20: 1) X = −60 mm, 2) X = 0 mm, 3) X = + 60 mm.
In this experiment, the conditions of the dust collecting unit 16 are constant, and the power consumption of the charging unit 13 is constant 1 W. However, when the voltage is changed between D and X, the dust collection efficiency η It is to confirm how it changes.

実験結果を図17に示す。荷電極板1に正または負の電圧を印加した場合の、各Dについて、横軸X、縦軸ηの特性が示される。記号説明の中で、極間Gの文字の前に付された+または−の記号は、印加した直流電圧が正であるか負であるかを示している。   The experimental results are shown in FIG. The characteristics of the horizontal axis X and the vertical axis η are shown for each D when a positive or negative voltage is applied to the load electrode plate 1. In the symbol explanation, the symbol “+” or “−” attached in front of the letter “G” indicates whether the applied DC voltage is positive or negative.

図17では、Xが増大すると、集塵効率ηは低下している。正負の別やDの違いにより、各特性に差異はあるものの、Xが増大すると、ηは低下した。これは荷電極板1が風下側にずれるとηが悪化することを意味している。その理由は実施例1のものと同じであり、「高風速条件下では,コロナ放電により発生した気体イオンは風下に流されるので、粉塵を帯電するのに効果的な荷電空間は、トゲの風上側よりも風下側に存在する。」と言うものである。よって、帯電部13の消費電力一定という条件下では、荷電極板1の風上端が、隣接する接地極板2における風上端と風下端の中間位置よりも風上側に位置したほうが、風下側に位置するよりも、集塵効率ηが高い値となるといえる。   In FIG. 17, as X increases, the dust collection efficiency η decreases. Although there was a difference in each characteristic depending on whether it was positive or negative or D, η decreased as X increased. This means that η deteriorates when the load electrode plate 1 shifts to the leeward side. The reason for this is the same as that of Example 1. “Gas ions generated by corona discharge flow under the wind at high wind speeds, so the effective charge space for charging the dust is the thorn wind. It exists on the leeward side rather than the upper side. " Therefore, under the condition that the power consumption of the charging unit 13 is constant, the windward end of the load electrode plate 1 is more on the leeward side than the intermediate position between the windward upper end and the windward lower end of the adjacent ground electrode plate 2. It can be said that the dust collection efficiency η is higher than the position.

なお、帯電部13の荷電極板1に正電圧を印加した場合の平均電界強度は7kV/cmから10kV/cm程度の範囲であった。また、負電圧を印加した場合、平均電界強度は6kV/cmから9kV/cm程度の範囲であった。   The average electric field strength when a positive voltage was applied to the load electrode plate 1 of the charging unit 13 was in the range of about 7 kV / cm to 10 kV / cm. When a negative voltage was applied, the average electric field strength was in the range of about 6 kV / cm to 9 kV / cm.

なお、荷電極板1の1列中のトゲの数は3個でなくても、1個以上あればよい。   The number of thorns in one row of the load electrode plate 1 is not limited to three but may be one or more.

なお、荷電極板1のトゲの数は、全てが同じでなくてもよい。   The number of thorns on the load electrode plate 1 may not be all the same.

なお、荷電極板1のトゲ突起の先端角度は30でなくても、10度から40度程度の範囲であればよい。   The tip angle of the barb protrusion of the load electrode plate 1 is not limited to 30, but may be in the range of about 10 to 40 degrees.

なお、荷電極板1のトゲの高さは10mmでなくても、5mmから20mm程度の範囲であればよい。   Note that the height of the barbs of the load electrode plate 1 is not limited to 10 mm, but may be in the range of about 5 mm to 20 mm.

なお、荷電極板1の端部上で隣接するトゲの間隔は12mmでなくても、4mmから20mm程度の範囲であればよい。   In addition, the space | interval of the thorn adjacent on the edge part of the load electrode plate 1 should just be the range of about 4 mm to 20 mm even if it is not 12 mm.

なお、荷電極板1の板厚は0.4mmでなくても、0.2mmから1.5mm程度の範囲であればよい。   In addition, the plate | board thickness of the load electrode plate 1 should just be the range of about 0.2 mm to 1.5 mm even if it is not 0.4 mm.

なお、荷電極板1の材質はSUS304でなくても、平板化可能な金属であればよい。   The material of the load electrode plate 1 is not limited to SUS304, but may be any metal that can be flattened.

なお、荷電極板1の寸法は20mm×36mmでなくてもよい。   The size of the load electrode plate 1 may not be 20 mm × 36 mm.

すなわち、通過風速が5m/sから15m/s程度の範囲内の時、帯電部13の荷電極板1の風上端にコロナ放電用のトゲ突起を有し、荷電極板1の風上端が、隣接する接地極板2における風上端と風下端の中間位置よりも風上側に位置し、荷電極板1が、接地極板2の風上端と風下端の間に位置する構造であれば、消費電力効率の良い電気集塵装置が得られるのである。   That is, when the passing wind speed is in the range of about 5 m / s to 15 m / s, the top end of the load electrode plate 1 of the charging unit 13 has a corona discharge barb protrusion, and the top end of the load electrode plate 1 If the adjacent grounding electrode plate 2 is located on the windward side of the intermediate position between the windward upper end and the windward lower end and the load electrode plate 1 is positioned between the windward upper end and the windward lower end of the grounding electrode plate 2, the consumption A power efficient electric dust collector can be obtained.

(実施例4)
実施例1では、荷電極板1の風上端と風下端の両方にトゲ突起を設けた。実施例2では
、荷電極板1の風下端のみにトゲ突起を設けた。また、実施例3では、荷電極板1の風上端のみにトゲ突起を設けた。実施例1から実施例3の実験結果で共通することは、「同一消費電力条件下では、トゲ先端が、風上寄りに位置する方が、風下寄りに位置するよりも集塵効率ηが高くなる」というものである。さらに考えを深めれば、「トゲ突起の位置が風下端である実施例2の結果と、トゲ突起の位置が風上端である実施例3の結果を複合したものが、実施例1の結果となっている」ということができる。以上をまとめて表1を得る。

Figure 2013094688
Example 4
In Example 1, thorn protrusions were provided on both the wind upper end and the wind lower end of the load electrode plate 1. In Example 2, thorn protrusions were provided only on the windward end of the load electrode plate 1. Further, in Example 3, thorn protrusions were provided only on the windward end of the load electrode plate 1. What is common to the experimental results of Example 1 to Example 3 is that, under the same power consumption conditions, the dust collection efficiency η is higher when the thorn tip is located closer to the windward than when it is located closer to the leeward. It becomes ". To further deepen the idea, “the result of Example 2 in which the position of the thorn protrusion is the windward end and the result of Example 3 in which the position of the thorn protrusion is the windward end are combined with the result of Example 1. It can be said. The above is summarized and Table 1 is obtained.
Figure 2013094688

従来技術の項で、図22について説明した。図22においては、放電極104A(荷電極板)のトゲ突起のみならず、接地極板104Bにもトゲ突起を設け、接地極板104Bからも、放電極104Aと逆極性のコロナ放電を発生させ、放電極104Aと接地極板104Bの両者のコロナ放電により粉塵を帯電させ集塵するものである。   FIG. 22 has been described in the section of the prior art. In FIG. 22, not only the barb protrusions of the discharge electrode 104A (load electrode plate) but also barb protrusions are provided on the ground electrode plate 104B, and corona discharge having a polarity opposite to that of the discharge electrode 104A is generated from the ground electrode plate 104B. The dust is charged and collected by corona discharge of both the discharge electrode 104A and the ground electrode plate 104B.

「実施例2の結果と、実施例3の結果を複合したものが実施例1の結果である」ので、さらにこの考えを、図22のような接地極板104Bにもトゲ突起を設ける場合に、拡張して考えることができる。   “A combination of the results of Example 2 and the results of Example 3 is the result of Example 1.” This idea is further applied to the case where a grounding protrusion 104B as shown in FIG. Can be expanded.

図18を用いて説明する。図18(A)には、帯電部13の荷電極板1の風上端のみにコロナ放電用のトゲ突起が配置され、さらに、隣接する接地極板2の風下端にのみに放電用のトゲ突起が配置される様子を示す。接地極板2の風下端が、接地極板2の風上端と荷電極板1の風下端の中間位置(一点叉線)よりも風上側に位置し、荷電極板1の風上端が接地極板2の風上端と風下端の間に位置する構造となっている。図18(B)は、荷電極板1のトゲ突起先端からは正(または負)のコロナ放電が(a)のように発生し、接地極板2のトゲ突起先端からは負(または正)のコロナ放電が(b)のように発生する様子を示している。この実施例4は、紛れもなく「実施例2の結果と、実施例3の結果の複合である」といえる。即ち、荷電極板1の風上端にコロナ放電用のトゲ突起を有し、隣接する接地極板2の風下端に放電用のトゲ突起を有し、接地極板2の風下端が、接地極板2の風上端と荷電極板1の風下端の中間位置よりも風上側に位置し、荷電極板1の風上端が接地極板2の風上端と風下端の間に位置する構造であれば、高い集塵効率ηを得ることができるのは自明といえる。なお、本実施例では、正負両コロナの放電が発生するので、平均電界強度は、6.5kV/cmから9.5kV/cm程度の範囲である。   This will be described with reference to FIG. In FIG. 18A, a corona discharge barb protrusion is disposed only at the windward upper end of the load electrode plate 1 of the charging unit 13, and a discharge barb protrusion only at the wind lower end of the adjacent ground electrode plate 2. Shows a state of being arranged. The windward lower end of the ground electrode plate 2 is located on the windward side of the intermediate position (one-dotted line) between the wind upper end of the grounding electrode plate 2 and the windward lower end of the load electrode plate 1, and the wind upper end of the load electrode plate 1 is the ground electrode. The plate 2 has a structure located between the wind upper end and the wind lower end. In FIG. 18B, positive (or negative) corona discharge is generated from the tip of the barb protrusion of the load electrode plate 1 as shown in (a), and negative (or positive) from the tip of the barb protrusion of the ground electrode plate 2. The state where the corona discharge is generated as shown in FIG. This Example 4 can be said to be “a composite of the result of Example 2 and the result of Example 3”. That is, the load electrode plate 1 has a corona discharge barb protrusion at the wind upper end, the adjacent ground electrode plate 2 has a discharge barb protrusion, and the ground lower end of the ground electrode plate 2 is connected to the ground electrode. A structure in which the windward upper end of the load electrode plate 1 is located between the windward upper end and the windward lower end of the ground electrode plate 2 is located on the windward side of the intermediate position between the windward upper end of the plate 2 and the windward lower end of the load electrode plate 1. Thus, it is obvious that a high dust collection efficiency η can be obtained. In this embodiment, both positive and negative corona discharges occur, so the average electric field strength is in the range of about 6.5 kV / cm to 9.5 kV / cm.

なお、荷電極板1の1列中のトゲの数は3個でなくても、1個以上あればよい。   The number of thorns in one row of the load electrode plate 1 is not limited to three but may be one or more.

なお、荷電極板1のトゲの数は、全てが同じでなくてもよい。   The number of thorns on the load electrode plate 1 may not be all the same.

なお、荷電極板1のトゲ突起の先端角度は30でなくても、10度から40度程度の範囲であればよい。   The tip angle of the barb protrusion of the load electrode plate 1 is not limited to 30, but may be in the range of about 10 to 40 degrees.

なお、荷電極板1のトゲの高さは10mmでなくても、5mmから20mm程度の範囲であればよい。   Note that the height of the barbs of the load electrode plate 1 is not limited to 10 mm, but may be in the range of about 5 mm to 20 mm.

なお、荷電極板1の端部上で隣接するトゲの間隔は12mmでなくても、4mmから20mm程度の範囲であればよい。   In addition, the space | interval of the thorn adjacent on the edge part of the load electrode plate 1 should just be the range of about 4 mm to 20 mm even if it is not 12 mm.

なお、荷電極板1の板厚は0.4mmでなくても、0.2mmから1.5mm程度の範囲であればよい。   In addition, the plate | board thickness of the load electrode plate 1 should just be the range of about 0.2 mm to 1.5 mm even if it is not 0.4 mm.

なお、荷電極板1の材質はSUS304でなくても、平板化可能な金属であればよい。   The material of the load electrode plate 1 is not limited to SUS304, but may be any metal that can be flattened.

すなわち、通過風速が5m/sから15m/s程度の範囲内の時、帯電部13の荷電極板1の風上端にコロナ放電用のトゲ突起を有し、隣接する接地極板2の風下端に放電用のトゲ突起を有し、接地極板2の風下端が、接地極板2の風上端と荷電極板1の風下端の中間位置よりも風上側に位置し、荷電極板1の風上端が接地極板2の風上端と風下端の間に位置する構造であれば、消費電力効率の良い電気集塵装置が得られるのである。   That is, when the passing wind speed is in the range of about 5 m / s to 15 m / s, the top end of the load electrode plate 1 of the charging unit 13 has a corona discharge barb protrusion, and the bottom end of the adjacent ground electrode plate 2 , And the bottom end of the ground electrode plate 2 is located on the windward side of the intermediate position between the top end of the ground electrode plate 2 and the bottom end of the load electrode plate 1. If the wind upper end is located between the wind upper end and the wind lower end of the ground electrode plate 2, an electric dust collector with good power consumption efficiency can be obtained.

本発明にかかる電気集塵装置は、速い通過風速で使用される際に、帯電部内のコロナ放電する部分を、帯電部内の風上寄りの空間に配置することで、省エネ運転が可能となるので、広い範囲で有用である。   When the electrostatic precipitator according to the present invention is used at a high passing wind speed, energy saving operation is possible by arranging the corona discharge part in the charging unit in a space near the windward in the charging unit. Useful in a wide range.

1 荷電極板
2 接地極板
9 荷電極板
10 接地極板
11 吸込ダクト
13 帯電部
14 熱線風速計
15 パーティクルカウンター
16 集塵部
19 ファン
22 高圧電源
23 負高圧電源
51 トゲ
52 トゲ
61 トゲ
71 トゲ
81 トゲ
82 トゲ
DESCRIPTION OF SYMBOLS 1 Load electrode plate 2 Ground electrode plate 9 Load electrode plate 10 Ground electrode plate 11 Suction duct 13 Charging part 14 Heat wire anemometer 15 Particle counter 16 Dust collection part 19 Fan 22 High voltage power supply 23 Negative high voltage power supply 51 Toge 52 Toge 61 Toge 71 Toge 81 thorns 82 thorns

Claims (6)

荷電極板と接地極板を交互に平行に配置した帯電部と集塵部からなる電気集塵装置において、
通過風速を5m/sから15m/s程度の範囲内とし、
帯電部の荷電極板の両端にコロナ放電用のトゲ突起を有し、
荷電極板の風下端が、隣接する接地極板における風上端と風下端の中間位置よりも風上側に位置し、
荷電極板の風上端が、接地極板の風上端と風下端の間に位置する構造を特徴とする電気集塵装置。
In an electrostatic precipitator consisting of a charging part and a dust collecting part in which a load electrode plate and a ground electrode plate are alternately arranged in parallel,
The passing wind speed is in the range of about 5 m / s to 15 m / s,
There are thorn projections for corona discharge on both ends of the load electrode plate of the charging part,
The windward lower end of the load electrode plate is located on the windward side of the intermediate position between the wind upper end and the wind lower end of the adjacent ground electrode plate,
An electrostatic precipitator characterized by a structure in which a wind-up end of a load electrode plate is positioned between a wind-up end and a wind-down end of a ground electrode plate.
荷電極板と接地極板を交互に平行に配置した帯電部と集塵部からなる電気集塵装置において、
通過風速を5m/sから15m/s程度の範囲内とし、
帯電部の荷電極板の風下端にコロナ放電用のトゲ突起を有し、
荷電極板の風下端が、隣接する接地極板における風上端と風下端の中間位置よりも風上側に位置し、
荷電極板が、接地極板の風上端と風下端の間に位置する構造を特徴とする電気集塵装置。
In an electrostatic precipitator consisting of a charging part and a dust collecting part in which a load electrode plate and a ground electrode plate are alternately arranged in parallel,
The passing wind speed is in the range of about 5 m / s to 15 m / s,
It has a barbed protrusion for corona discharge at the lower end of the load electrode plate of the charging part,
The windward lower end of the load electrode plate is located on the windward side of the intermediate position between the wind upper end and the wind lower end of the adjacent ground electrode plate,
An electrostatic precipitator having a structure in which a load electrode plate is positioned between a wind upper end and a wind lower end of a ground electrode plate.
荷電極板と接地極板を交互に平行に配置した帯電部と集塵部からなる電気集塵装置において、
通過風速を5m/sから15m/s程度の範囲内とし、
帯電部の荷電極板の風上端にコロナ放電用のトゲ突起を有し、
荷電極板の風上端が、隣接する接地極板における風上端と風下端の中間位置よりも風上側に位置し、
荷電極板が、接地極板の風上端と風下端の間に位置する構造を特徴とする電気集塵装置。
In an electrostatic precipitator consisting of a charging part and a dust collecting part in which a load electrode plate and a ground electrode plate are alternately arranged in parallel,
The passing wind speed is in the range of about 5 m / s to 15 m / s,
There is a thorn projection for corona discharge on the wind top of the load electrode plate of the charging part,
The windward upper end of the load electrode plate is located on the windward side of the intermediate position between the wind upper end and the wind lower end of the adjacent ground electrode plate,
An electrostatic precipitator having a structure in which a load electrode plate is positioned between a wind upper end and a wind lower end of a ground electrode plate.
荷電極板と接地極板を交互に平行に配置した帯電部と集塵部からなる電気集塵装置において、
通過風速を5m/sから15m/s程度の範囲内とし、
帯電部の荷電極板の風上端にコロナ放電用のトゲ突起を有し、
隣接する接地極板の風下端に放電用のトゲ突起を有し、
接地極板の風下端が、接地極板の風上端と荷電極板の風下端の中間位置よりも風上側に位置し、
荷電極板の風上端が接地極板の風上端と風下端の間に位置する構造を特徴とする電気集塵装置。
In an electrostatic precipitator consisting of a charging part and a dust collecting part in which a load electrode plate and a ground electrode plate are alternately arranged in parallel,
The passing wind speed is in the range of about 5 m / s to 15 m / s,
There is a thorn projection for corona discharge on the wind top of the load electrode plate of the charging part,
It has a thorn projection for discharge at the wind bottom end of the adjacent grounding electrode plate,
The lower end of the ground electrode plate is located on the upper side of the wind between the upper end of the ground electrode plate and the lower end of the load electrode plate,
An electrostatic precipitator having a structure in which a wind upper end of a load electrode plate is positioned between a wind upper end and a wind lower end of a ground electrode plate.
荷電極板と接地極板を交互に平行に配置した帯電部と集塵部からなる電気集塵装置において、
通過風速を5m/sから15m/s程度の範囲内とし、
帯電部の接地極板の風上端にコロナ放電用のトゲ突起を有し、
隣接する荷電極板の風下端に放電用のトゲ突起を有し、
荷電極板の風下端が、荷電極板の風上端と接地極板の風下端の中間位置よりも風上側に位置し、
接地極板の風上端が荷電極板の風上端と風下端の間に位置する構造を特徴とする電気集塵装置。
In an electrostatic precipitator consisting of a charging part and a dust collecting part in which a load electrode plate and a ground electrode plate are alternately arranged in parallel,
The passing wind speed is in the range of about 5 m / s to 15 m / s,
It has a corona discharge thorn projection on the wind top of the grounding electrode plate of the charging unit,
It has a thorn protrusion for discharge at the wind bottom end of the adjacent load electrode plate,
The windward lower end of the load electrode plate is located on the windward side of the intermediate position between the windward upper end of the load electrode plate and the wind lower end of the ground electrode plate,
An electrostatic precipitator having a structure in which a wind top end of a ground electrode plate is positioned between a wind top end and a wind bottom end of a load electrode plate.
帯電部の荷電極板と隣接する接地極板との最短距離が10mmから20mm程度の範囲にあることを特徴とする請求項1から5いずれかひとつに記載の電気集塵装置。 6. The electrostatic precipitator according to claim 1, wherein the shortest distance between the load electrode plate of the charging unit and the adjacent ground electrode plate is in the range of about 10 mm to 20 mm.
JP2011236903A 2011-10-28 2011-10-28 Electric dust collector Expired - Fee Related JP5909632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236903A JP5909632B2 (en) 2011-10-28 2011-10-28 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236903A JP5909632B2 (en) 2011-10-28 2011-10-28 Electric dust collector

Publications (2)

Publication Number Publication Date
JP2013094688A true JP2013094688A (en) 2013-05-20
JP5909632B2 JP5909632B2 (en) 2016-04-27

Family

ID=48617240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236903A Expired - Fee Related JP5909632B2 (en) 2011-10-28 2011-10-28 Electric dust collector

Country Status (1)

Country Link
JP (1) JP5909632B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065498A1 (en) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 Electric dust collector
CN110116050A (en) * 2019-06-05 2019-08-13 李焱 A kind of composite purification device
KR20200097957A (en) * 2019-02-11 2020-08-20 연세대학교 산학협력단 Dry washing type electric dust collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144177A (en) * 1974-05-08 1975-11-19
JPS5916556A (en) * 1982-07-16 1984-01-27 Sunooden Kk Discharge ionization device of electrostatic type air cleaner
JP2001070829A (en) * 1999-09-09 2001-03-21 Mitsubishi Electric Corp Air cleaner
JP2001232241A (en) * 1999-12-15 2001-08-28 Kawasaki Heavy Ind Ltd Electric dust collector and power source device
JP2008119599A (en) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd Electric precipitator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144177A (en) * 1974-05-08 1975-11-19
JPS5916556A (en) * 1982-07-16 1984-01-27 Sunooden Kk Discharge ionization device of electrostatic type air cleaner
JP2001070829A (en) * 1999-09-09 2001-03-21 Mitsubishi Electric Corp Air cleaner
JP2001232241A (en) * 1999-12-15 2001-08-28 Kawasaki Heavy Ind Ltd Electric dust collector and power source device
JP2008119599A (en) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd Electric precipitator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065498A1 (en) * 2017-09-29 2019-04-04 パナソニックIpマネジメント株式会社 Electric dust collector
KR20200097957A (en) * 2019-02-11 2020-08-20 연세대학교 산학협력단 Dry washing type electric dust collector
KR102198109B1 (en) * 2019-02-11 2021-01-04 연세대학교 산학협력단 Dry washing type electric dust collector
CN110116050A (en) * 2019-06-05 2019-08-13 李焱 A kind of composite purification device

Also Published As

Publication number Publication date
JP5909632B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP6055585B2 (en) Electric dust collector and air cleaner including the same
JP5816810B2 (en) Electric dust collector
US7485174B2 (en) Electrostatic Dust Collector
WO2013029436A1 (en) Stucture of electrostatic de-dusting device
US20100251889A1 (en) Charging device, air handling device, method for charging, and method for handling air
JP2008539067A (en) Electrostatic air cleaner
JP5909632B2 (en) Electric dust collector
US4381927A (en) Corona electrode apparatus
CN207857133U (en) A kind of charged module of particulate matter and electrostatic dust-collecting device
US20230140445A1 (en) Electrostatic separator
CN108144750A (en) A kind of charged module of particulate matter and electrostatic dust-collecting device
CN112512696A (en) Electric dust collector
JP5655841B2 (en) Electric dust collector
JP6953605B2 (en) Electrostatic precipitator
JPS59209664A (en) Blower
JP2009061444A (en) Electrostatic dust collector and charger
JP2005152863A (en) Electrostatic precipitator
KR20210115511A (en) Electric Dust Collection Device
JP2005156101A (en) Air conditioner
CN221208466U (en) Electric field unit and high-efficiency electric field device
KR102554741B1 (en) Scroll type electrostatic precipitator and air conditioning apparatus having the same
JP6671905B2 (en) Dust collector and air conditioner
CN107490069A (en) Electrostatic precipitator and air conditioner
JP2008168172A (en) Electrostatic precipitator
CN217209736U (en) Air purification equipment and electric purification component thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5909632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees