JP2013094305A - Functional electric stimulation system for walk assistance by driving foot joint - Google Patents

Functional electric stimulation system for walk assistance by driving foot joint Download PDF

Info

Publication number
JP2013094305A
JP2013094305A JP2011238042A JP2011238042A JP2013094305A JP 2013094305 A JP2013094305 A JP 2013094305A JP 2011238042 A JP2011238042 A JP 2011238042A JP 2011238042 A JP2011238042 A JP 2011238042A JP 2013094305 A JP2013094305 A JP 2013094305A
Authority
JP
Japan
Prior art keywords
stimulation
muscle
muscles
electrical stimulation
stimulation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011238042A
Other languages
Japanese (ja)
Other versions
JP5569885B2 (en
Inventor
Toshiyasu Yamamoto
敏泰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kake Educational Institution
Original Assignee
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kake Educational Institution filed Critical Kake Educational Institution
Priority to JP2011238042A priority Critical patent/JP5569885B2/en
Publication of JP2013094305A publication Critical patent/JP2013094305A/en
Application granted granted Critical
Publication of JP5569885B2 publication Critical patent/JP5569885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a functional electric stimulation system enabling a user to more naturally walk.SOLUTION: The functional electric stimulation system for walk assistance includes: a drive force imparting device for imparting a drive force to a foot joint by individually electrically stimulating each of a plurality of muscles around of the foot joint; stimulation electrode supporters 1, 5 to be attached to the lower extremity to give electric stimulus; sensors 3, 4 for detecting that the legs contact the ground; and sensors 7, 8, 12, 13 for detecting the angle of foot joints respectively. The system estimates muscular output online on the basis of a skeleton model of a passive walk mode and a muscle skeleton mathematical model, converts the estimated output into a stimulus pattern corresponding to each of the muscles, and causes the stimulation electrode supporters to individually electrically stimulate each of the muscles based on a stimulus pattern corresponding to each of the muscles.

Description

本発明は、脳卒中や脊髄損傷、その他の中枢性神経麻痺による歩行障害に対し、受傷の初期的段階から人工的に歩行を支援する手段を提供し、また高齢化に伴う下肢、特に下腿部の筋出力の低下を訓練によって補助する手段を提供する機能的電気刺激(FES:Functional Electrical stimulation)システムに関する。   The present invention provides a means for artificially supporting walking from the initial stage of injury for gait disturbance due to stroke, spinal cord injury, and other central nerve palsy, and lower limbs associated with aging, particularly the lower leg The present invention relates to a Functional Electrical Stimulation (FES) system that provides a means for assisting in the reduction of muscle output of a person by training.

ヒトの歩行において、通常の歩行速度では立脚期終期の駆動力は主に足関節により実現されており、蹴り出し期には足関節の屈筋である下腿三頭筋による蹴り出し力、対応した関節全体の剛性を制御するために伸筋群の活動が必要とされることが、歩行の動作解析および筋電図解析にて判明されている。一方、機能的電気刺激(FES)装置は、麻痺した手足の機能再建に有力な手法を提供することが認められている。   In normal walking speed, the driving force at the end of the stance phase is realized mainly by the ankle joint, and the kicking force by the triceps surae which is the flexor of the ankle joint during the kicking out phase, the corresponding joint It has been clarified in the gait motion analysis and electromyogram analysis that the activity of the extensor group is required to control the overall rigidity. On the other hand, functional electrical stimulation (FES) devices are recognized to provide a powerful technique for functional reconstruction of paralyzed limbs.

歩行の運動制御については各種提案がなされており、非特許文献1には、足関節屈伸筋群の電気刺激に関する記載があり、特許文献1、非特許文献2、非特許文献3には、受動歩行と、そのフィードバック制御に関する記載がある。非特許文献4〜6には骨格モデルに関する記載があり、非特許文献7には筋骨格数学モデルに関する記載がある。非特許文献8には被刺激筋の電気的応答に関する記載がある。   Various proposals have been made for locomotion control. Non-patent document 1 describes electrical stimulation of ankle flexor and extensor muscle group, and patent document 1, non-patent document 2 and non-patent document 3 describe passive. There is a description about walking and its feedback control. Non-Patent Documents 4 to 6 have descriptions related to skeletal models, and Non-Patent Document 7 has descriptions related to musculoskeletal mathematical models. Non-patent document 8 describes the electrical response of the stimulated muscle.

特開2005−88113号公報JP 2005-88113 A

Kesar,T.M., Perumal R., et al, Functional electrical stimulation of ankle plantar anddorsi-flexor muscles: effects on post-stroke gait, Stroke, 40(12), 2009Kesar, T.M., Perumal R., et al, Functional electrical stimulation of ankle plantar anddorsi-flexor muscles: effects on post-stroke gait, Stroke, 40 (12), 2009 McGeer,T., Passive dynamic walking, IJRR, 19(2), 1990McGeer, T., Passive dynamic walking, IJRR, 19 (2), 1990 Hobbelen,D. G. E. and Wisse, M., Ankle actuation for limit cycle walkers, IJRR, 27(6),2008Hobbelen, D.G.E. And Wisse, M., Ankle actuation for limit cycle walkers, IJRR, 27 (6), 2008 Lelas,J. L., Merriman, G. J., et al, Predicting peak kinematic and kinetic parametersfrom gait speed, Gait and Posture 17, 106-112, 2003Lelas, J. L., Merriman, G. J., et al, Predicting peak kinematic and kinetic parameters from gait speed, Gait and Posture 17, 106-112, 2003 FrigoC., Crenna P. and Jensen, L. M.; Moment-angle relationship at lower limb jointsduring human walking at different velocities, J. Electromyogr. Kinesiol., 6(3),177-190, 1996FrigoC., Crenna P. and Jensen, L. M .; Moment-angle relationship at lower limb jointsduring human walking at different velocities, J. Electromyogr. Kinesiol., 6 (3), 177-190, 1996 山本敏泰,久野弘明,体重支持トレッドミル歩行時の足部周囲感覚刺激による下肢交互動作反応,第21回バイオメカニズムシンポジュウム,435-446, 2009Toshiyasu Yamamoto, Hiroaki Kuno, Alternating movement response of lower limbs by sensory stimulation around the foot when walking on a weight-supported treadmill, 21st Biomechanism Symposium, 435-446, 2009 長谷 和徳, SIMM, ARMO, AnyBody による動作解析,バイオメカニズム学会誌33(3),2009Kazunori Hase, SIMM, ARMO, AnyBody motion analysis, Journal of Biomechanism Society 33 (3), 2009 T.Yamamoto, Control of movement of a skeletal joint by functional electricalstimulation via surface Electrodes, Ph.D. thesis, University of Wisconsin-Madison,1985T. Yamamoto, Control of movement of a skeletal joint by functional electricalstimulation via surface Electrodes, Ph.D. thesis, University of Wisconsin-Madison, 1985

しかしながら、従来の機能的電気刺激装置は、ヒトの自然な歩行を実現するまでには至っておらず、自然な状態に近い歩行を可能にする機能的電気刺激装置の開発が求められている。   However, conventional functional electrical stimulation devices have not yet achieved natural human walking, and there is a demand for the development of functional electrical stimulation devices that enable walking close to a natural state.

本発明は、前記のような状況に鑑みて、より自然な歩行に近づけることを可能にする機能的電気刺激システムを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a functional electrical stimulation system that makes it possible to approach more natural walking.

前記目的を達成するために、本発明の機能的電気刺激システムは、歩行支援のための機能的電気刺激システムであって、足関節周囲筋群の複数の各筋を個別に電気刺激して足関節駆動力を付与する駆動力付与装置と、下肢に装着して前記電気刺激を行う刺激電極サポータと、脚接地情報及び関節角度を検出するセンサーを備えており、前記センサーの検出信号に基いて、受動歩行様式の骨格モデル、及び筋骨格数学モデルによりオンラインで筋出力を推定し、前記推定した筋出力を前記各筋に対応した刺激パターンに変換し、前記刺激電極サポータにより、前記各筋に対応した刺激パターンで前記各筋を個別に電気刺激することを特徴とする。   In order to achieve the above object, a functional electrical stimulation system according to the present invention is a functional electrical stimulation system for assisting walking, and each of a plurality of muscles in an ankle joint muscle group is electrically stimulated individually. A driving force applying device that applies joint driving force; a stimulation electrode supporter that is attached to a lower limb to perform the electrical stimulation; and a sensor that detects leg ground contact information and a joint angle. Based on a detection signal of the sensor The muscle output is estimated online by the skeletal model of passive walking style and the musculoskeletal mathematical model, the estimated muscle output is converted into a stimulation pattern corresponding to each muscle, and the muscle is supported by the stimulation electrode supporter. Each of the muscles is individually electrically stimulated with a corresponding stimulation pattern.

本発明によれば、足関節周囲筋群の複数の各筋を個別に電気刺激して足関節駆動力を付与するので、適切な剛性の下で足関節の駆動力が得られる。より具体的には、立脚期終期に足関節剛性を考慮しながら、足関節周囲筋群の複数の各筋を個別に電気刺激することによって、自然な歩行に近い足関節駆動力を獲得でき、より自然な歩行を実現できる。   According to the present invention, since each of the plurality of muscles in the muscle group around the ankle joint is individually electrically stimulated to apply the ankle joint driving force, the driving force of the ankle joint can be obtained with appropriate rigidity. More specifically, while considering the ankle joint stiffness at the end of the stance phase, by individually electrically stimulating each muscle of the muscles around the ankle joint, an ankle joint driving force close to natural walking can be obtained, A more natural walk can be realized.

前記刺激電極サポータは、足関節屈筋としての腓腹筋とヒラメ筋とを個別に電気刺激できるように、腓腹筋とヒラメ筋とに対応した刺激電極を別個に設けていることが好ましい。この構成によれば、電気刺激による作用の異なる腓腹筋とヒラメ筋とを個別に電気刺激できるので、自然な歩行に近い足関節駆動力の獲得に有利になる。   It is preferable that the stimulation electrode supporter separately provide stimulation electrodes corresponding to the gastrocnemius and soleus so that the gastrocnemius and soleus as the ankle flexor muscles can be electrically stimulated individually. According to this configuration, the gastrocnemius muscle and the soleus muscle, which have different actions due to electrical stimulation, can be electrically stimulated individually, which is advantageous in obtaining an ankle joint driving force that is close to natural walking.

前記刺激電極サポータは、足関節伸筋としての前脛骨筋を刺激できるように、刺激電極を設けていることが好ましい。   The stimulation electrode supporter is preferably provided with a stimulation electrode so as to stimulate the anterior tibial muscle as an ankle extensor muscle.

前記刺激電極サポータは、足関節屈筋としての腓腹筋とヒラメ筋と足関節伸筋としての前脛骨筋とを個別に電気刺激できるように、腓腹筋とヒラメ筋と前脛骨筋に対応した刺激電極を別個に設けており、かつ前脛骨筋と合わせて指伸筋を電気刺激できることが好ましい。   The stimulation electrode supporter has separate stimulation electrodes for the gastrocnemius, soleus and anterior tibial muscles so that the gastrocnemius, soleus and anterior tibial muscles as ankle extensors can be electrically stimulated individually. It is preferable that the finger extensor can be electrically stimulated together with the anterior tibial muscle.

前記刺激電極サポータは、下腿部の筋に加え膝関節伸筋である大腿四頭筋を電気刺激できるように電極を設けていることが好ましい。この構成によれば、対脚の立脚期における膝折を回避するための電気刺激を与えることができる。   The stimulation electrode supporter is preferably provided with electrodes so that the quadriceps muscle, which is the knee joint extensor, can be electrically stimulated in addition to the muscles of the lower leg. According to this structure, the electrical stimulation for avoiding the knee break in the stance phase of the anti-leg can be given.

前記刺激電極サポータは、足関節伸展動作を行うために、前脛骨筋の電気刺激に加えて長趾伸筋などの電気刺激ができるように刺激電極を設けていることが好ましい。この構成によれば、矢状面での足関節伸展動作を補完する電気刺激を与えることができる。   The stimulation electrode supporter is preferably provided with a stimulation electrode so as to perform electrical stimulation of the long ankle extensor muscle in addition to the electrical stimulation of the anterior tibial muscle in order to perform ankle joint extension operation. According to this configuration, it is possible to provide an electrical stimulus that complements the ankle joint extension operation in the sagittal plane.

1歩行周期において、立脚期の腓腹筋刺激を、遊脚期初期まで膝が屈曲する程度の刺激強度で継続し、対脚が立脚期に入った段階では大腿四頭筋の電気刺激を行うことができることが好ましい。この構成によれば、痙性などの異常な筋緊張がある場合などにも、遊脚期初期に膝を屈曲させることができるとともに、対脚の立脚期における膝の屈曲を防止でき、つま先が床に引っ掛かってつまずくことを防止できる。   In one gait cycle, the gastrocnemius muscle stimulation in the stance phase is continued with a stimulation intensity enough to bend the knee until the early swing phase, and the quadriceps muscles are electrically stimulated when the anti-legged phase is in the stance phase. Preferably it can be done. According to this configuration, even when there is abnormal muscle tension such as spasticity, the knee can be bent in the early swing phase, and the knee can be prevented from bending in the stance phase of the leg, and the toes It is possible to prevent it from being tripped by being caught.

前記電気刺激の刺激パルスは二相性矩形波又は二相性サイン波であり、1対の電極からなる1チャンネル出力は、1つ又は2つ以上の神経・筋を同時に刺激することができることができることが好ましい。   The stimulation pulse of the electrical stimulation is a biphasic rectangular wave or a biphasic sine wave, and one channel output composed of a pair of electrodes can simultaneously stimulate one or two or more nerves and muscles. preferable.

前記電気刺激は、電圧制御方式を採用しており、刺激波形はバースト波で、基本パルス幅は2〜5kHz、刺激周波数は20〜60Hzであることが好ましい。この構成によれば、皮膚・電極間のインピーダンスのばらつきなどによる過度の電流が局所的に流れることを防止することができる。   The electrical stimulation employs a voltage control method, the stimulation waveform is a burst wave, the basic pulse width is preferably 2 to 5 kHz, and the stimulation frequency is preferably 20 to 60 Hz. According to this configuration, it is possible to prevent an excessive current due to a variation in impedance between the skin and the electrode from flowing locally.

前記刺激電極は柔軟性のある素材で形成され、リード線が取り付けられていることが好ましい。この構成によれば、刺激電極は皮膚に馴染み易く、かつ歩行に伴って柔軟に変形できる。柔軟性のある素材としては、例えば銀織布又は銀細線メッシュが挙げられる。   The stimulation electrode is preferably formed of a flexible material and has a lead wire attached thereto. According to this configuration, the stimulation electrode can be easily adapted to the skin and can be flexibly deformed with walking. Examples of the flexible material include silver woven fabric or silver fine wire mesh.

前記刺激電極サポータは、固形部材と伸縮部材とを組み合せて形成していることが好ましい。この構成によれば、刺激電極サポータは伸縮部材を含んでいるので、下肢部の大きさの異なる装着者への装着が容易になり、装着部への密着性も高めることができる。固形部材は例えばプラスチック製である。使用環境に応じて固形部材に発汗防止用の穴が開いたものも利用してもよい。   The stimulation electrode supporter is preferably formed by combining a solid member and an elastic member. According to this configuration, since the stimulation electrode supporter includes the expansion / contraction member, it is easy to attach to a wearer having a different size of the lower limb portion, and adhesion to the attachment portion can be improved. The solid member is made of plastic, for example. Depending on the use environment, a solid member having a hole for preventing perspiration may be used.

前記刺激電極サポータは、開閉可能に形成されており、装着時には閉じた状態で固定する固定用手段を備えていることが好ましい。この構成によれば、刺激電極サポータの着脱が容易になる。   The stimulation electrode supporter is formed so as to be openable and closable, and preferably includes fixing means for fixing in a closed state when the stimulation electrode supporter is attached. According to this configuration, the stimulation electrode supporter can be easily attached and detached.

前記刺激電極サポータは、片脚又は両脚に記録電極を有し、腓腹筋、ヒラメ筋及び前脛骨筋の電気的応答を記録できることが好ましい。   The stimulation electrode supporter preferably has a recording electrode on one or both legs, and can record electrical responses of the gastrocnemius, soleus and anterior tibial muscles.

脚接地情報を検出するセンサーとしてフットスイッチ及び足圧センサーを用い、足及び股の関節角度を検出するセンサーとして加速度センサー又はジャイロセンサーを用いることが好ましい。   It is preferable to use a foot switch and a foot pressure sensor as sensors for detecting leg contact information, and to use an acceleration sensor or a gyro sensor as a sensor for detecting joint angles of feet and hips.

前記骨格モデルを用いてオンラインで足関節モーメントを推定し、又は健常者の実験式による歩行速度と足関節モーメントの関係を利用して、足関節モーメントを推定し、前記筋骨格数学モデルにより筋力を推定し、筋力が刺激電圧と比例すると仮定して前記刺激パターンを推定することが好ましい。この構成によれば、オンラインによる筋出力の推定の負担を軽減させることができる。   The ankle joint moment is estimated online using the skeletal model, or the ankle joint moment is estimated using the relationship between the walking speed and the ankle joint moment based on the empirical formula of a healthy person, and the muscle strength is calculated using the musculoskeletal mathematical model. Preferably, the stimulation pattern is estimated on the assumption that muscle strength is proportional to the stimulation voltage. According to this configuration, it is possible to reduce the burden of online muscle output estimation.

本発明によれば、足関節周囲筋群の複数の各筋を個別に電気刺激して足関節駆動力を付与するので、適切な剛性の下で足関節の駆動力が得られ、自然な歩行に近い足関節駆動力を獲得でき、より自然な歩行を実現できる。   According to the present invention, since each of a plurality of muscles of the muscle group around the ankle joint is individually electrically stimulated to provide the ankle joint driving force, the ankle joint driving force can be obtained under appropriate rigidity, and natural walking An ankle joint driving force close to can be acquired, and more natural walking can be realized.

本発明の一実施形態に係る刺激電極サポータを下肢に取り付けた状態を示す側面図。The side view which shows the state which attached the stimulation electrode supporter which concerns on one Embodiment of this invention to the leg. 本発明の一実施形態に係る下腿部刺激電極サポータ1の内側を示す図。The figure which shows the inner side of the leg part stimulation electrode supporter 1 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る機能的電気刺激システムを用いた歩行状態の一例を示す斜視図。The perspective view which shows an example of the walk state using the functional electrical stimulation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電気刺激の基本刺激波形図。The basic stimulus waveform figure of the electrical stimulus concerning one embodiment of the present invention. 本発明の一実施形態に係る試作記録電極の平面図。1 is a plan view of a prototype recording electrode according to an embodiment of the present invention. 本発明の一実施形態に係るヒラメ筋、腓腹筋刺激による歩行時の体重心の加速度の一例を示す図。The figure which shows an example of the acceleration of the body gravity center at the time of the walk by the soleus muscle and gastrocnemius muscle stimulation which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係る機能的電気刺激システムについて図面を参照しながら説明する。本実施形態に係る機能的電気刺激システムは、下肢に装着した刺激電極サポータにより、足関節周囲筋群を電気刺激してより自然な歩行を図るものである。   Hereinafter, a functional electrical stimulation system according to an embodiment of the present invention will be described with reference to the drawings. The functional electrical stimulation system according to the present embodiment is intended to achieve a more natural walk by electrically stimulating the muscles around the ankle joint with a stimulation electrode supporter attached to the lower limbs.

図1は、本発明の一実施形態に係る刺激電極サポータを下肢に取り付けた状態を示す側面図である。刺激電極サポータは、下腿部刺激電極サポータ1と大腿部刺激電極サポータ5とで構成されている。   FIG. 1 is a side view showing a state in which a stimulation electrode supporter according to an embodiment of the present invention is attached to a lower limb. The stimulation electrode supporter includes a lower leg stimulation electrode supporter 1 and a thigh stimulation electrode supporter 5.

下腿部刺激電極サポータ1及び大腿部刺激電極サポータ5は、刺激電極を備えており、各刺激電極に対応する部位の筋を電気刺激できる。下腿部刺激電極サポータ1の刺激電極については、後に図2を参照しながら説明する。大腿部刺激電極サポータ5は、大腿四頭筋の内側及び外側を電気刺激できる。大腿部刺激電極サポータ5の刺激電極を取り付ける本体部は、例えばプラスチック製である。   The crus stimulation electrode supporter 1 and the thigh stimulation electrode supporter 5 are provided with stimulation electrodes, and can electrically stimulate muscles at a site corresponding to each stimulation electrode. The stimulation electrodes of the lower leg stimulation electrode supporter 1 will be described later with reference to FIG. The thigh stimulation electrode supporter 5 can electrically stimulate the inside and outside of the quadriceps muscle. The main body to which the stimulation electrode of the thigh stimulation electrode supporter 5 is attached is made of plastic, for example.

下腿部刺激電極サポータ1は、後に図2を用いて説明するように、開閉可能である。図1の状態では、分割した各部材を一体にして下腿部を巻くようにして、下腿部刺激電極サポータ1が下腿部に装着されている。具体的には、固定手段である固定用金具2及びベルト10を用い、固定用金具2にベルト10を挿通させている。ベルト10に面ファスナーを用いれば、ベルト10同士を貼り合わせることができ、分割された部材同士をベルト10により結合することができる。   The lower leg stimulation electrode supporter 1 can be opened and closed as will be described later with reference to FIG. In the state of FIG. 1, the lower leg stimulation electrode supporter 1 is mounted on the lower leg so that the divided members are integrally wound around the lower leg. Specifically, the fixing bracket 2 and the belt 10 which are fixing means are used, and the belt 10 is inserted through the fixing bracket 2. If a hook-and-loop fastener is used for the belt 10, the belts 10 can be bonded together, and the divided members can be joined by the belt 10.

靴11と足の裏面との間には、脚接地情報を検出するセンサーであるフットスイッチ3及び足圧センサー4を介在させている。足圧センサー4としては、例えば動歪み圧センサーを用いることができる。足圧センサー4では、フットスイッチ3による脚接地期間を推定してもよい。また、足関節モーメントを推定することができる。   A foot switch 3 and a foot pressure sensor 4 which are sensors for detecting leg ground contact information are interposed between the shoe 11 and the back surface of the foot. As the foot pressure sensor 4, for example, a dynamic strain pressure sensor can be used. The foot pressure sensor 4 may estimate the leg contact period by the foot switch 3. Moreover, an ankle joint moment can be estimated.

また、大腿部刺激電極サポータ5には傾斜角度センサー7を取り付けており、腰部には固定用ベルト9により傾斜角度センサー8を取り付けている。傾斜角度センサー7、8としては、例えば加速度センサー、ジャイロセンサーを用いることができる。傾斜角度センサー7及び8は、股関節角度を検出するセンサーである。足関節の制御のためには、図1に示したように、足関節角度を検出するセンサー12及び13を設けて足関節角度を計測する。以上の4つのセンサー7、8、12及び13から膝関節角度を計測することもできる。   Further, an inclination angle sensor 7 is attached to the thigh stimulation electrode supporter 5, and an inclination angle sensor 8 is attached to the waist by a fixing belt 9. As the tilt angle sensors 7 and 8, for example, an acceleration sensor or a gyro sensor can be used. The tilt angle sensors 7 and 8 are sensors for detecting the hip joint angle. In order to control the ankle joint, as shown in FIG. 1, sensors 12 and 13 for detecting the ankle joint angle are provided to measure the ankle joint angle. The knee joint angle can also be measured from the above four sensors 7, 8, 12 and 13.

図2は、下腿部刺激電極サポータ1の内側を示す図である。下腿部刺激電極サポータ1は、第1本体部15と第2本体部16とに分割して構成されている。第1本体部15及び第2本体部16は固形部材であり、例えばプラスチック製である。図2の下腿部刺激電極サポータ1は、図1の状態からベルト10を固定用金具2から取り外し、結合されていた第1本体部15と第2本体部16を開いた状態を示している。第1本体部15及び第2本体部16として半透明のプラスチック材料を使うと電極の位置が判りやすく、取り付けが容易になる。   FIG. 2 is a view showing the inside of the lower leg stimulation electrode supporter 1. The lower leg stimulation electrode supporter 1 is divided into a first main body 15 and a second main body 16. The 1st main-body part 15 and the 2nd main-body part 16 are solid members, for example, are made of plastics. The lower leg stimulation electrode supporter 1 of FIG. 2 shows a state in which the belt 10 is removed from the fixing bracket 2 from the state of FIG. 1 and the first main body portion 15 and the second main body portion 16 that have been joined are opened. . When a translucent plastic material is used for the first main body portion 15 and the second main body portion 16, the positions of the electrodes are easily understood, and attachment is facilitated.

第2本体部16には、伸縮部材17が組み合わされている。伸縮部材17は例えば布製である。この構成によれば、刺激電極サポータ1は伸縮部材17を含んでいるので、下肢部の大きさの異なる装着者への装着が容易になり、装着部への密着性も高めることができる。   An elastic member 17 is combined with the second main body portion 16. The elastic member 17 is made of, for example, cloth. According to this configuration, since the stimulation electrode supporter 1 includes the expansion / contraction member 17, it can be easily attached to a wearer having a different size of the lower limb, and the adhesion to the attachment can be improved.

第1本体部15には、一対の腓腹筋刺激電極20、一対のヒラメ筋刺激電極21が取り付けられている。第2本体部16には、一対の前脛骨筋刺激電極22が取り付けられている。下腿部刺激電極サポータ1を、図1のように下腿部に装着した状態では、腓腹筋刺激電極20が腓腹筋の位置に対応し、ヒラメ筋刺激電極21がヒラメ筋の位置に対応し、前脛骨筋刺激電極22が前脛骨筋の位置に対応する。前脛骨筋刺激電極22は、あわせて長趾伸筋にも対応する。   A pair of gastrocnemius muscle stimulation electrodes 20 and a pair of soleus muscle stimulation electrodes 21 are attached to the first main body portion 15. A pair of anterior tibial muscle stimulation electrodes 22 are attached to the second main body portion 16. When the lower leg stimulation electrode supporter 1 is attached to the lower leg as shown in FIG. 1, the gastrocnemius muscle stimulation electrode 20 corresponds to the position of the gastrocnemius muscle, and the soleus muscle stimulation electrode 21 corresponds to the position of the soleus muscle. The tibial muscle stimulation electrode 22 corresponds to the position of the anterior tibial muscle. The anterior tibial muscle stimulation electrode 22 also corresponds to the long ankle extensor muscle.

前記の刺激電極20〜22には、刺激パターンを伝達するためのリード線が取り付けられる。刺激電極20〜22は皮膚に馴染み易く、かつ歩行に伴って柔軟に変形できるように柔軟性のある部材で形成することが好ましい。柔軟性のある素材としては、例えば銀織布又は銀細線メッシュが挙げられる。刺激電極20〜22は、刺激部位の神経及び筋を覆う大きさとし、各筋の筋腹を出来るだけ覆うようにする。このことは、刺激強度を抑えて刺激時の違和感を軽減するのに役立つ。また、刺激電極20〜22の大きさは、装着者間の刺激部位の大きさばらつきを考慮して、余裕を持たせた大きさとすることが好ましい。少し大きめにとることによって、実際の刺激部位は貼付ゲルのサイズで調節して利用者毎のサイズに合わせられるようにしてもよい。   Lead wires for transmitting a stimulation pattern are attached to the stimulation electrodes 20 to 22. The stimulation electrodes 20 to 22 are preferably formed of flexible members so that the stimulation electrodes 20 to 22 are easy to adjust to the skin and can be deformed flexibly with walking. Examples of the flexible material include silver woven fabric or silver fine wire mesh. The stimulation electrodes 20 to 22 are sized to cover the nerves and muscles of the stimulation site, and cover the muscle belly of each muscle as much as possible. This is useful for reducing the intensity of stimulation and reducing discomfort during stimulation. Moreover, it is preferable that the size of the stimulation electrodes 20 to 22 is a size with a margin in consideration of variation in the size of the stimulation site between wearers. By taking a slightly larger size, the actual stimulation site may be adjusted to the size of each user by adjusting the size of the applied gel.

図2において、第1本体部15には、記録電極23及び記録電極24が取り付けられ、第2本体部16には、記録電極25が取り付けられている。記録電極23〜25は電気的応答計測センサーであり、被刺激筋からの電気的応答を計測する電極である。記録電極24の位置は記録電極間の干渉防止のため刺激電極21右側下方に向けて配置してしてもよい。また、記録電極は片脚側だけに設けてもよく、両脚側に設けてもよい。   In FIG. 2, a recording electrode 23 and a recording electrode 24 are attached to the first main body 15, and a recording electrode 25 is attached to the second main body 16. The recording electrodes 23 to 25 are electrical response measuring sensors, and are electrodes that measure the electrical response from the stimulated muscle. The position of the recording electrode 24 may be arranged toward the lower right side of the stimulation electrode 21 to prevent interference between the recording electrodes. Further, the recording electrode may be provided only on one leg side or on both leg sides.

図5に試作した記録電極の一例の平面図を示している。記録電極は銀板製であり、3つの記録電極32とその周囲の増幅器コモン31(0 volt)及び全体を取り囲むアース30で構成されている。寸法aは例えば10mmであり、寸法bは例えば48mmである。アースは刺激ノイズを除去するのに有効である。   FIG. 5 shows a plan view of an example of a recording electrode manufactured as a prototype. The recording electrode is made of a silver plate, and includes three recording electrodes 32, an amplifier common 31 (0 volt) around the recording electrode 32, and an earth 30 surrounding the whole. The dimension a is 10 mm, for example, and the dimension b is 48 mm, for example. Earth is effective in removing stimulus noise.

下腿部刺激電極サポータ1及び大腿部刺激電極サポータ5の各電極には、各電極の刺激部位に対応した刺激パターンが伝達される。作成された刺激パターンは、駆動力付与装置により、下腿部刺激電極サポータ1及び大腿部刺激電極サポータ5に伝達される。   A stimulation pattern corresponding to the stimulation site of each electrode is transmitted to each electrode of the lower leg stimulation electrode supporter 1 and the thigh stimulation electrode supporter 5. The created stimulation pattern is transmitted to the crus stimulation electrode supporter 1 and the thigh stimulation electrode supporter 5 by the driving force applying device.

駆動力付与装置は、本実施形態の機能的電気刺激システムに含まれる。これらは制御基板として構成され、例えば箱体内に収納して、図1に示したベルト9に取り付ければよい。   The driving force application device is included in the functional electrical stimulation system of the present embodiment. These are configured as a control board, for example, stored in a box and attached to the belt 9 shown in FIG.

本実施形態の機能的電気刺激システムは、図1の靴11内に設置されたフットスイッチ3及び足圧センサー4からの検出信号に基づいて、骨格モデル及び筋骨格数学モデルにより、オンラインで筋出力を推定し、これを各筋に対応した刺激パターンに変換する。この刺激パターンは、駆動力付与装置により、下腿部刺激電極サポータ1及び大腿部刺激電極サポータ5に伝達される。   The functional electrical stimulation system of this embodiment is based on the detection signals from the foot switch 3 and the foot pressure sensor 4 installed in the shoe 11 of FIG. Is converted into a stimulation pattern corresponding to each muscle. This stimulation pattern is transmitted to the crus stimulation electrode supporter 1 and the thigh stimulation electrode supporter 5 by the driving force applying device.

図2に示したように下腿部刺激電極サポータ1は、腓腹筋刺激電極20、ヒラメ筋刺激電極21及び前脛骨筋刺激電極22は、それぞれ別個独立に構成されている。このため、腓腹筋、ヒラメ筋及び前脛骨筋に対し、これらの各筋に対応した刺激パターンで各筋を個別に電気刺激することができる。   As shown in FIG. 2, in the crus stimulation electrode supporter 1, the gastrocnemius muscle stimulation electrode 20, the soleus muscle stimulation electrode 21 and the anterior tibial muscle stimulation electrode 22 are each configured independently. For this reason, with respect to the gastrocnemius, the soleus and the anterior tibial muscle, each muscle can be individually electrically stimulated with the stimulation pattern corresponding to each of these muscles.

ここで、従来、脳卒中片麻痺者への下垂足防止用の足部運動制御は遊脚期に前脛骨筋などを刺激して、足部の運動のみに注目した方法が殆どであった。これに対し、本願発明者は、通常歩行速度での健常者の下肢駆動力は、主に足関節によるものであることに注目した。そして、下肢全体の運動を考慮に入れた足関節駆動様式を採用した機能的電気刺激システムを開発した。   Here, in the past, most of the foot movement control for preventing drooping foot for stroke hemiplegic patients has focused on only the foot movement by stimulating the anterior tibial muscle during the swing phase. On the other hand, the inventor of the present application has focused on that the lower limb driving force of a healthy person at a normal walking speed is mainly due to an ankle joint. Then, we developed a functional electrical stimulation system that adopts an ankle joint drive system that takes into account the movement of the entire lower limbs.

前記のような下腿部刺激電極サポータ1は、本願発明者が歩行訓練を交えた実験確認を繰り返して導き出したものである。本願発明者は、ヒトの自然な受動歩行様式に基づいて足関節周囲の主要な複数の筋を個別に刺激することにより、自然な歩行に近い歩行が可能になる足関節の駆動力が得られることを見出した。このことに対応させて、本実施形態に係る下腿部刺激電極サポータ1は、前記のように、各筋を個別に電気刺激できるように刺激電極が構成されている。   The crus stimulation electrode supporter 1 as described above is derived by repeating the experiment confirmation by the present inventor with walking training. The inventor of the present application can obtain the driving force of the ankle joint that enables walking close to natural walking by individually stimulating a plurality of main muscles around the ankle joint based on a human passive walking style. I found out. Corresponding to this, the crus stimulation electrode supporter 1 according to the present embodiment is configured with stimulation electrodes so that each muscle can be electrically stimulated individually as described above.

図6に、腓腹筋とヒラメ筋を個別刺激したときの歩行時の体重心移動加速度を示している。図6(a)は、1ストライド(Stride)における刺激電圧パターンを示している。線35は腓腹筋に対する刺激電圧パターンであり、線36はヒラメ筋に対する刺激電圧パターンである。図6(b)は、体重心の加速度曲線を示している。線40はヒラメ筋を電気刺激したときの垂直方向加速度、線41は腓腹筋を電気刺激したときの垂直方向加速度、線42はヒラメ筋を電気刺激したときの進行方向加速度、線43は腓腹筋を電気刺激したときの進行方向加速度を示している。   FIG. 6 shows the body center-of-gravity movement acceleration when walking when the gastrocnemius and soleus muscles are individually stimulated. FIG. 6A shows a stimulation voltage pattern in one stride. A line 35 is a stimulation voltage pattern for the gastrocnemius muscle, and a line 36 is a stimulation voltage pattern for the soleus muscle. FIG. 6B shows an acceleration curve of the body center of gravity. Line 40 is the vertical acceleration when the soleus is electrically stimulated, line 41 is the vertical acceleration when the gastrocnemius is electrically stimulated, line 42 is the acceleration in the traveling direction when the soleus is electrically stimulated, and line 43 is the electric acceleration of the gastrocnemius. The acceleration in the direction of travel when stimulated is shown.

図6(b)から分かるように、ヒラメ筋と腓腹筋は足関節屈筋として作用するが、身体重心への作用が異なる。ヒラメ筋は相対的に前方に送り出す作用が大きい。このことから、腓腹筋刺激電極20とヒラメ筋刺激電極21とに伝達する刺激パターンを個別に設定し、腓腹筋とヒラメ筋とを別個の刺激パターンで電気刺激することにより、自然な歩行に近づけることが可能になる足関節の駆動力が得られることになる。   As can be seen from FIG. 6 (b), the soleus and gastrocnemius muscles act as ankle flexors, but have different effects on the body center of gravity. The soleus has a relatively large forward action. From this, the stimulation pattern transmitted to the gastrocnemius muscle stimulation electrode 20 and the soleus muscle stimulation electrode 21 is individually set, and the gastrocnemius muscle and the soleus muscle are electrically stimulated with separate stimulation patterns, thereby making it closer to natural walking. A possible driving force of the ankle joint is obtained.

下腿部刺激電極サポータ1は、足関節伸筋としての前脛骨筋に対応させた刺激電極22も備えているので、関節の剛性を調節でき、より自然な歩行の実現に一層有利になる。さらに、前脛骨筋と合わせて指伸筋を電気刺激するようにしてもよい。   Since the crus stimulation electrode supporter 1 also includes the stimulation electrode 22 corresponding to the anterior tibial muscle as an ankle joint extensor, the rigidity of the joint can be adjusted, which is more advantageous for realizing a more natural walking. Furthermore, the finger extensor muscles may be electrically stimulated together with the anterior tibial muscle.

本実施形態では、前記の通り大腿部刺激電極サポータ5を備えており、大腿四頭筋を電気刺激できる。この大腿部刺激電極サポータ5を用いて、次のような電気刺激を行なうことができる。   In this embodiment, the thigh stimulation electrode supporter 5 is provided as described above, and the quadriceps muscle can be electrically stimulated. Using this thigh stimulation electrode supporter 5, the following electrical stimulation can be performed.

すなわち、1歩行周期において、立脚期における下腿部刺激電極サポータ1による腓腹筋刺激を、遊脚期初期まで刺激強度を膝が屈曲できる程度の刺激強度で継続し、対脚が立脚期に入った段階では大腿部刺激電極サポータ5により大腿四頭筋の電気刺激を行うようにしてもよい。この電気刺激によれば、痙性などの異常な筋緊張がある場合などには、遊脚期初期に膝を屈曲させることができるとともに、対脚の立脚期における膝の屈曲を防止でき、つま先が床に引っ掛かってつまずくことを防止できる。   That is, in one gait cycle, the gastrocnemius muscle stimulation by the crus stimulation electrode supporter 1 in the stance phase was continued until the early swing phase with a stimulus strength that allowed the knee to bend, and the anti-legs entered the stance phase. In the stage, the thigh quadriceps muscle may be electrically stimulated by the thigh stimulation electrode supporter 5. According to this electrical stimulation, when there is an abnormal muscle tension such as spasticity, the knee can be bent in the early swing phase, and the knee can be prevented from bending in the stance phase of the leg. You can prevent it from tripping on the floor.

電気刺激に用いる刺激パルスは、二相性矩形波を用いることができる。図4に電気刺激の基本刺激波形図を示している。例えば、刺激波形はバースト波で、基本パルス幅は2〜5kHz、刺激周波数は20〜60Hzとし、電圧制御方式を採用して、皮膚・電極間のインピーダンスのばらつきなどによる過度の電流が局所的に流れることを防止するようにすればよい。また、矩形波では、皮膚の違和感や痛みを感じる場合には、2〜5kHzの二相性サイン波を基本周波数に利用して症状を軽減するようにすればよい。   A biphasic rectangular wave can be used as a stimulation pulse used for electrical stimulation. FIG. 4 shows a basic stimulus waveform diagram of electrical stimulation. For example, the stimulation waveform is a burst wave, the basic pulse width is 2 to 5 kHz, the stimulation frequency is 20 to 60 Hz, and a voltage control method is adopted, so that excessive current due to impedance variation between skin and electrodes is locally generated. What is necessary is just to prevent flowing. In addition, in the case of the rectangular wave, when the skin feels uncomfortable or painful, the symptoms may be reduced by using a biphasic sine wave of 2 to 5 kHz as the fundamental frequency.

さらに、刺激パルスを二相性矩形波又は二相性サイン波とすることにより、1対の電極からなる1チャンネル出力は、1つ又は2つ以上の神経・筋を同時に刺激することができる。例えば前脛骨筋と長趾伸筋を1つの電極で刺激することにより足部を矢状面状で伸展させることができる。   Furthermore, by setting the stimulation pulse to a biphasic rectangular wave or a biphasic sine wave, one channel output composed of a pair of electrodes can stimulate one or more nerves / muscles simultaneously. For example, the foot can be extended in the sagittal plane by stimulating the anterior tibialis anterior and longus extensor muscles with one electrode.

本実施形態に係る機能的電気刺激は、受動歩行のしくみを用いた足関節駆動様式を採用したものであり、ヒトのみではなく機械系が固有に持っている性質に基づくものであり、非常に効率がよいといえる。パラメータ設定の制限により、適用出来る範囲が狭くなることを防いだり、外乱への対応を図るために、フィードバック制御を取り入れてもよい(例えば特許文献1、非特許文献2)。   The functional electrical stimulation according to the present embodiment adopts an ankle joint drive mode using a mechanism of passive walking, and is based on a property inherent in not only a human but also a mechanical system. It can be said that efficiency is good. Feedback control may be incorporated in order to prevent the applicable range from becoming narrow due to parameter setting restrictions or to deal with disturbances (for example, Patent Document 1 and Non-Patent Document 2).

また、足関節駆動力の推定はオンラインで十分可能であるが、膝・股関節部を含むモデルでは携帯用電気刺激装置には少し負担になる場合がある。このため、既存の骨格モデルを利用して(例えば、非特許文献3〜5)、健常者の実験式による歩行速度と足関節モーメント関係を利用して足関節モーメントを求めてもよい。この場合、求めた足関節モーメントに基づいて、筋骨格数学モデル(例えば、非特許文献6)により筋力を推定し、筋力が刺激電圧と比例すると仮定して刺激パターンを推定すればよい。   In addition, although it is possible to estimate the ankle joint driving force online, a model including a knee / hip joint may be a little burdensome for the portable electrical stimulation device. For this reason, you may obtain | require an ankle joint moment using the existing skeletal model (for example, nonpatent literature 3-5) using the walking speed and ankle joint moment relationship by a healthy person's empirical formula. In this case, based on the obtained ankle joint moment, muscle strength may be estimated by a musculoskeletal mathematical model (for example, Non-Patent Document 6), and the stimulation pattern may be estimated assuming that the muscle strength is proportional to the stimulation voltage.

図3は、本実施形態に係る機能的電気刺激システムを用いた歩行状態の一例を示す斜視図である。図3に示した歩行者は、本実施形態に係る機能的電気刺激システムに係る装着部材を装着している。これらは、図1、2を用いて説明したものと同一構成であるため、同一番号を付して説明は省略する。   FIG. 3 is a perspective view showing an example of a walking state using the functional electrical stimulation system according to the present embodiment. The pedestrian shown in FIG. 3 is wearing the attachment member according to the functional electrical stimulation system according to the present embodiment. Since these are the same configurations as those described with reference to FIGS. 1 and 2, the same numbers are assigned and description thereof is omitted.

図3において、歩行者は下腿部に下腿部刺激電極サポータ1を装着し、大腿部に大腿部刺激電極サポータ5を装着し、腰部には固定用ベルト9により傾斜角度センサー9を取り付けている。図3(a)は右下肢が蹴り出し期の状態を示し、図3(b)は右下肢が遊脚期初期の状態を示し、図3(c)は右下肢が遊脚期中期の状態を示している。   In FIG. 3, the pedestrian wears the lower leg stimulation electrode supporter 1 on the lower leg, the thigh stimulation electrode supporter 5 on the thigh, and the tilt angle sensor 9 by the fixing belt 9 on the waist. It is attached. 3A shows a state in which the right lower limb is kicking out, FIG. 3B shows a state in which the right lower limb is in the early swing phase, and FIG. 3C shows a state in which the right lower limb is in the middle swing phase. Is shown.

本実施形態に係る機能的電気刺激システムにおいては、次のように筋出力を安定化させるためのフィードバック制御をしてもよい。図2に示したように、下腿部刺激電極サポータ1内には、各刺激電極20〜22の近傍に、電気的応答計測センサーである記録電極23〜25が配置されている。記録電極23〜25の配置は相互干渉を抑制できるように配置することが望ましい。記録電極23〜25からの検出信号に基いて、筋出力を推定し(1つの筋からの検出・推定方法は非特許文献8参照)、刺激パターンにフィードバック制御をかける。図2に示した各刺激電極20〜22の配置は応答波形の相互干渉が相対的に少なく、電気刺激による発生トルクを安定化させるのに役立つ。   In the functional electrical stimulation system according to the present embodiment, feedback control for stabilizing muscle output may be performed as follows. As shown in FIG. 2, in the crus stimulation electrode supporter 1, recording electrodes 23 to 25 that are electrical response measurement sensors are arranged in the vicinity of the stimulation electrodes 20 to 22. The recording electrodes 23 to 25 are desirably arranged so that mutual interference can be suppressed. Based on the detection signals from the recording electrodes 23 to 25, the muscle output is estimated (refer to Non-Patent Document 8 for the detection / estimation method from one muscle), and feedback control is applied to the stimulation pattern. The arrangement of the stimulation electrodes 20 to 22 shown in FIG. 2 has relatively little mutual interference of response waveforms, and helps to stabilize the torque generated by electrical stimulation.

また、股関節角度のフィードバック制御を行ってもよい。この制御では、大腿部の傾斜角度センサー7及び腰部の傾斜角度センサー9の検出値から、股関節角度を検出する。同様に足関節角度のフィードバック制御を行ってもよい。このフィードバック制御により、定常的な歩行速度を維持できる。   Further, feedback control of the hip joint angle may be performed. In this control, the hip joint angle is detected from the detection values of the thigh inclination angle sensor 7 and the waist inclination angle sensor 9. Similarly, feedback control of the ankle joint angle may be performed. A steady walking speed can be maintained by this feedback control.

以上、本発明の実施形態について説明したが、これらは一例であり適宜変更してもよい。例えば、刺激電極の構成は図2の例に限るものではなく、より細分化したものであってもよい。   As mentioned above, although embodiment of this invention was described, these are examples and may be changed suitably. For example, the configuration of the stimulation electrode is not limited to the example of FIG. 2 and may be more fragmented.

1 下腿部刺激電極サポータ
2 固定用金具
3 フットスイッチ
4 足圧センサー
5 大腿部刺激電極サポータ
7,8 傾斜角度センサー
10 ベルト
17 伸縮結材
20 腓腹筋刺激電極
21 ヒラメ筋刺激電極
22 前脛骨筋刺激電極
23,24,25 記録電極
DESCRIPTION OF SYMBOLS 1 Lower leg stimulation electrode supporter 2 Fixing metal fitting 3 Foot switch 4 Foot pressure sensor 5 Thigh stimulation electrode supporter 7, 8 Inclination angle sensor 10 Belt 17 Telescopic binding material 20 Gastrocnemius muscle stimulation electrode 21 Soleus muscle stimulation electrode 22 Anterior tibial muscle Stimulation electrode 23, 24, 25 Recording electrode

Claims (14)

歩行支援のための機能的電気刺激システムであって、
足関節周囲筋群の複数の各筋を個別に電気刺激して足関節駆動力を付与する駆動力付与装置と、
下肢に装着して前記電気刺激を行う刺激電極サポータと、
脚接地情報及び関節角度を検出するセンサーを備えており、
前記センサーの検出信号に基いて、受動歩行様式の骨格モデル、及び筋骨格数学モデルによりオンラインで筋出力を推定し、前記推定した筋出力を前記各筋に対応した刺激パターンに変換し、
前記刺激電極サポータにより、前記各筋に対応した刺激パターンで前記各筋を個別に電気刺激することを特徴とする機能的電気刺激システム。
A functional electrical stimulation system for walking support,
A driving force applying device that individually applies electrical stimulation to each of the plurality of muscles in the muscle group around the ankle joint and applies an ankle joint driving force;
A stimulation electrode supporter that is mounted on a lower limb and performs the electrical stimulation;
It has a sensor that detects leg contact information and joint angle.
Based on the detection signal of the sensor, the muscle output is estimated online by a skeletal model of passive walking style and a musculoskeletal mathematical model, and the estimated muscle output is converted into a stimulation pattern corresponding to each muscle,
A functional electrical stimulation system, wherein each muscle is individually electrically stimulated with a stimulation pattern corresponding to each muscle by the stimulation electrode supporter.
前記刺激電極サポータは、足関節屈筋としての腓腹筋とヒラメ筋とを個別に電気刺激できるように、腓腹筋とヒラメ筋とに対応した刺激電極を別個に設けている請求項1に記載の機能的電気刺激システム。   The functional electricity according to claim 1, wherein the stimulation electrode supporter is provided with stimulation electrodes corresponding to the gastrocnemius and soleus muscles separately so that the gastrocnemius and soleus muscles as ankle flexor muscles can be electrically stimulated individually. Stimulation system. 前記刺激電極サポータは、足関節伸筋としての前脛骨筋を刺激できるように、刺激電極を設けている請求項1又は2に記載の機能的電気刺激システム。   The functional electrical stimulation system according to claim 1, wherein the stimulation electrode supporter is provided with a stimulation electrode so that the anterior tibial muscle as an ankle joint extensor can be stimulated. 前記刺激電極サポータは、足関節屈筋としての腓腹筋とヒラメ筋と足関節伸筋としての前脛骨筋とを個別に電気刺激できるように、腓腹筋とヒラメ筋と前脛骨筋に対応した刺激電極を別個に設けており、かつ前脛骨筋と合わせて指伸筋を電気刺激できる請求項1から3のいずれかに記載の機能的電気刺激システム。   The stimulation electrode supporter has separate stimulation electrodes for the gastrocnemius, soleus and anterior tibial muscles so that the gastrocnemius, soleus and anterior tibial muscles as ankle extensors can be electrically stimulated individually. The functional electrical stimulation system according to claim 1, wherein the finger extensor muscle can be electrically stimulated together with the anterior tibial muscle. 前記刺激電極サポータは、下腿部の筋に加え膝関節伸筋である大腿四頭筋を電気刺激できるように電極を設けている請求項1から4のいずれかに記載の機能的電気刺激システム。   5. The functional electrical stimulation system according to claim 1, wherein the stimulation electrode supporter is provided with an electrode so as to electrically stimulate the quadriceps muscle that is a knee joint extensor in addition to the muscles of the lower leg. . 1歩行周期において、立脚期の腓腹筋刺激を、遊脚期初期まで膝が屈曲する程度の刺激強度で継続し、対脚が立脚期に入った段階では大腿四頭筋の電気刺激を行うことができる請求項5に記載の機能的電気刺激システム。   In one gait cycle, the gastrocnemius muscle stimulation in the stance phase is continued with a stimulation intensity enough to bend the knee until the early swing phase, and the quadriceps muscles are electrically stimulated when the anti-legged phase is in the stance phase. The functional electrical stimulation system of claim 5, which is capable. 前記電気刺激の刺激パルスは二相性矩形波又は二相性サイン波であり、1対の電極からなる1チャンネル出力は、1つ又は2つ以上の神経・筋を同時に刺激することができる請求項1から6のいずれかに記載の機能的電気刺激システム。   The stimulation pulse of the electrical stimulation is a biphasic rectangular wave or a biphasic sine wave, and one channel output composed of a pair of electrodes can simultaneously stimulate one or more nerves and muscles. 7. The functional electrical stimulation system according to any one of 1 to 6. 前記電気刺激は、電圧制御方式を採用しており、刺激波形はバースト波で、基本パルス幅は2〜5kHz、刺激周波数は20〜60Hzである請求項1から7のいずれかに記載の機能的電気刺激システム。   The functional stimulation according to any one of claims 1 to 7, wherein the electrical stimulation employs a voltage control method, the stimulation waveform is a burst wave, the basic pulse width is 2 to 5 kHz, and the stimulation frequency is 20 to 60 Hz. Electrical stimulation system. 前記刺激電極は柔軟性のある素材で形成され、リード線が取り付けられている請求項1から8のいずれかに記載の機能的電気刺激システム。   The functional electrical stimulation system according to any one of claims 1 to 8, wherein the stimulation electrode is formed of a flexible material and has a lead wire attached thereto. 前記刺激電極サポータは、固形部材と伸縮部材とを組み合せて形成している請求項1から9のいずれかに記載の機能的電気刺激システム。   The functional electrical stimulation system according to claim 1, wherein the stimulation electrode supporter is formed by combining a solid member and an elastic member. 前記刺激電極サポータは、開閉可能に形成されており、装着時には閉じた状態で固定する固定用手段を備えている請求項1から10のいずれかに記載の機能的電気刺激システム。   The functional electrical stimulation system according to any one of claims 1 to 10, wherein the stimulation electrode supporter is configured to be openable and closable, and includes a fixing unit that is fixed in a closed state when the stimulation electrode supporter is mounted. 前記刺激電極サポータは、片脚又は両脚に記録電極を有し、腓腹筋、ヒラメ筋及び前脛骨筋の電気的応答を記録できる請求項1から11のいずれかに機能的電気刺激システム。   The functional electrical stimulation system according to any one of claims 1 to 11, wherein the stimulation electrode supporter has recording electrodes on one leg or both legs, and can record electrical responses of gastrocnemius, soleus and anterior tibial muscles. 脚接地情報を検出するセンサーとしてフットスイッチ及び足圧センサーを用い、足及び股の関節角度を検出するセンサーとして加速度センサー又はジャイロセンサーを用いる請求項1から12のいずれかに記載の機能的電気刺激システム。   The functional electrical stimulation according to any one of claims 1 to 12, wherein a foot switch and a foot pressure sensor are used as sensors for detecting leg ground contact information, and an acceleration sensor or a gyro sensor is used as a sensor for detecting joint angles of feet and hips. system. 前記骨格モデルを用いてオンラインで足関節モーメントを推定し、又は健常者の実験式による歩行速度と足関節モーメントの関係を利用して、足関節モーメントを推定し、前記筋骨格数学モデルにより筋力を推定し、筋力が刺激電圧と比例すると仮定して前記刺激パターンを推定する請求項1から13のいずれかに記載の機能的電気刺激システム。   The ankle joint moment is estimated online using the skeletal model, or the ankle joint moment is estimated using the relationship between the walking speed and the ankle joint moment based on the empirical formula of a healthy person, and the muscle strength is calculated using the musculoskeletal mathematical model. The functional electrical stimulation system according to claim 1, wherein the stimulation pattern is estimated on the assumption that muscle strength is proportional to a stimulation voltage.
JP2011238042A 2011-10-28 2011-10-28 Walking support functional electrical stimulation system with ankle joint drive Active JP5569885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238042A JP5569885B2 (en) 2011-10-28 2011-10-28 Walking support functional electrical stimulation system with ankle joint drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238042A JP5569885B2 (en) 2011-10-28 2011-10-28 Walking support functional electrical stimulation system with ankle joint drive

Publications (2)

Publication Number Publication Date
JP2013094305A true JP2013094305A (en) 2013-05-20
JP5569885B2 JP5569885B2 (en) 2014-08-13

Family

ID=48616923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238042A Active JP5569885B2 (en) 2011-10-28 2011-10-28 Walking support functional electrical stimulation system with ankle joint drive

Country Status (1)

Country Link
JP (1) JP5569885B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059612A1 (en) * 2013-10-23 2015-04-30 Ecole Polytechnique Federale De Lausanne (Epfl) Neuroprosthetic system restoring upper limb function through coordinated electrical stimulation
JP2015136584A (en) * 2014-01-24 2015-07-30 パナソニック株式会社 Electric stimulator
EP3097947A4 (en) * 2014-01-24 2017-01-11 Panasonic Intellectual Property Management Co., Ltd. Electrostimulator
WO2017023864A1 (en) 2015-07-31 2017-02-09 Cala Health, Inc. Systems, devices, and method for the treatment of osteoarthritis
JPWO2016013067A1 (en) * 2014-07-23 2017-04-27 システム・インスツルメンツ株式会社 Electrical stimulation device, training device, and electrical stimulation method
JP2018196575A (en) * 2017-05-24 2018-12-13 日本電信電話株式会社 Ankle joint angle estimation device, walking support device, ankle joint angle estimation method, walking support method, and program
US10420696B2 (en) 2015-07-27 2019-09-24 Samsung Electronics Co., Ltd. Walking assistance method and apparatuses performing the same
KR20190129469A (en) * 2018-05-11 2019-11-20 김창걸 Device and Method for Active Functional Electrical Stimulation, Recording Medium for Performing the Method
US10549093B2 (en) 2014-06-02 2020-02-04 Cala Health, Inc. Method for peripheral nerve stimulation
CN110917495A (en) * 2019-11-27 2020-03-27 四川大学 Electrical stimulation device for treating sarcopenia
JP2020086959A (en) * 2018-11-26 2020-06-04 エヌ・ティ・ティ・コミュニケーションズ株式会社 Operation support device and operation support method
US10765856B2 (en) 2015-06-10 2020-09-08 Cala Health, Inc. Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units
DE102019118402A1 (en) * 2019-07-08 2021-01-14 Markus Bresser Targeted electromyostimulation
WO2021004680A1 (en) * 2019-07-09 2021-01-14 Vonnemann Anna Portable device and method for mobilizing a person suffering from a neurological gait dysfunction as a result of impaired proprioception, and carrying aid for such a device
CN112386796A (en) * 2020-11-18 2021-02-23 力迈德医疗(广州)有限公司 Rehabilitation equipment control method based on electrical stimulation and rehabilitation equipment
KR20220053746A (en) * 2020-10-22 2022-05-02 고려대학교 산학협력단 Functional Electrical Stimulation and Vibration Control System Based on User Fatigue
US11331480B2 (en) 2017-04-03 2022-05-17 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11344722B2 (en) 2016-01-21 2022-05-31 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
WO2022138020A1 (en) * 2020-12-25 2022-06-30 Cyberdyne株式会社 Walking assistance device and walking assistance method
CN115054492A (en) * 2022-06-17 2022-09-16 天津大学 Active-passive driving integrated ankle joint walking aid rehabilitation system
CN115089445A (en) * 2022-05-27 2022-09-23 同济大学 Lower limb exoskeleton device with electrodes
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536856B1 (en) 2016-10-31 2023-05-25 삼성전자주식회사 Apparatus for gait assistance and operating method thereof
CN106377399B (en) * 2016-11-16 2017-07-28 广州初曲科技有限公司 A kind of bionical power-assisted pedipulator of the enhanced smart of analog neuron electric signal
CN108382486B (en) * 2018-03-16 2019-12-24 江汉大学 Tripodia under-actuated walking device and control method thereof
CN108438082B (en) * 2018-03-16 2019-12-20 江汉大学 Two-dimensional robot walking device and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200104A (en) * 2000-12-28 2002-07-16 Japan Science & Technology Corp Hybrid fes device used in combination with short lower limb appliance
JP2004504922A (en) * 2000-08-14 2004-02-19 ネオプラクシス プロプライエタリイ リミテッド Interface to FES control system
JP2006503658A (en) * 2002-10-24 2006-02-02 ロッキード マーティン コーポレイション Movement disorder treatment system and method
JP2009050675A (en) * 2007-08-27 2009-03-12 Honda Motor Co Ltd Auxiliomotor system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504922A (en) * 2000-08-14 2004-02-19 ネオプラクシス プロプライエタリイ リミテッド Interface to FES control system
JP2002200104A (en) * 2000-12-28 2002-07-16 Japan Science & Technology Corp Hybrid fes device used in combination with short lower limb appliance
JP2006503658A (en) * 2002-10-24 2006-02-02 ロッキード マーティン コーポレイション Movement disorder treatment system and method
JP2009050675A (en) * 2007-08-27 2009-03-12 Honda Motor Co Ltd Auxiliomotor system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059612A1 (en) * 2013-10-23 2015-04-30 Ecole Polytechnique Federale De Lausanne (Epfl) Neuroprosthetic system restoring upper limb function through coordinated electrical stimulation
US10046161B2 (en) 2013-10-23 2018-08-14 Ecole Polytechnique Federale De Lausanne (Epfl) Neuroprosthetic system restoring upper limb function through coordinated electrical stimulation
JP2015136584A (en) * 2014-01-24 2015-07-30 パナソニック株式会社 Electric stimulator
EP3097947A4 (en) * 2014-01-24 2017-01-11 Panasonic Intellectual Property Management Co., Ltd. Electrostimulator
US10549093B2 (en) 2014-06-02 2020-02-04 Cala Health, Inc. Method for peripheral nerve stimulation
US10561839B2 (en) 2014-06-02 2020-02-18 Cala Health, Inc. Systems for peripheral nerve stimulation
US10960207B2 (en) 2014-06-02 2021-03-30 Cala Health, Inc. Systems for peripheral nerve stimulation
US10905879B2 (en) 2014-06-02 2021-02-02 Cala Health, Inc. Methods for peripheral nerve stimulation
JPWO2016013067A1 (en) * 2014-07-23 2017-04-27 システム・インスツルメンツ株式会社 Electrical stimulation device, training device, and electrical stimulation method
US10765856B2 (en) 2015-06-10 2020-09-08 Cala Health, Inc. Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units
US10420696B2 (en) 2015-07-27 2019-09-24 Samsung Electronics Co., Ltd. Walking assistance method and apparatuses performing the same
WO2017023864A1 (en) 2015-07-31 2017-02-09 Cala Health, Inc. Systems, devices, and method for the treatment of osteoarthritis
EP3328277A4 (en) * 2015-07-31 2019-03-06 Cala Health, Inc. Systems, devices, and method for the treatment of osteoarthritis
CN108135537A (en) * 2015-07-31 2018-06-08 卡拉健康公司 For treating the systems, devices and methods of osteoarthritis
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11344722B2 (en) 2016-01-21 2022-05-31 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11918806B2 (en) 2016-01-21 2024-03-05 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation of the leg
US11331480B2 (en) 2017-04-03 2022-05-17 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
JP2018196575A (en) * 2017-05-24 2018-12-13 日本電信電話株式会社 Ankle joint angle estimation device, walking support device, ankle joint angle estimation method, walking support method, and program
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
KR20190129469A (en) * 2018-05-11 2019-11-20 김창걸 Device and Method for Active Functional Electrical Stimulation, Recording Medium for Performing the Method
KR102239910B1 (en) * 2018-05-11 2021-04-12 김창걸 Device and Method for Active Functional Electrical Stimulation, Recording Medium for Performing the Method
JP2020086959A (en) * 2018-11-26 2020-06-04 エヌ・ティ・ティ・コミュニケーションズ株式会社 Operation support device and operation support method
JP7183008B2 (en) 2018-11-26 2022-12-05 エヌ・ティ・ティ・コミュニケーションズ株式会社 Operation support device and operation support method
DE102019118402A1 (en) * 2019-07-08 2021-01-14 Markus Bresser Targeted electromyostimulation
WO2021004680A1 (en) * 2019-07-09 2021-01-14 Vonnemann Anna Portable device and method for mobilizing a person suffering from a neurological gait dysfunction as a result of impaired proprioception, and carrying aid for such a device
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification
CN110917495B (en) * 2019-11-27 2020-12-22 四川大学 Electrical stimulation device for treating sarcopenia
CN110917495A (en) * 2019-11-27 2020-03-27 四川大学 Electrical stimulation device for treating sarcopenia
KR102473277B1 (en) 2020-10-22 2022-12-05 고려대학교 산학협력단 Functional Electrical Stimulation and Vibration Control System Based on User Fatigue
KR20220053746A (en) * 2020-10-22 2022-05-02 고려대학교 산학협력단 Functional Electrical Stimulation and Vibration Control System Based on User Fatigue
CN112386796A (en) * 2020-11-18 2021-02-23 力迈德医疗(广州)有限公司 Rehabilitation equipment control method based on electrical stimulation and rehabilitation equipment
WO2022138020A1 (en) * 2020-12-25 2022-06-30 Cyberdyne株式会社 Walking assistance device and walking assistance method
CN115089445A (en) * 2022-05-27 2022-09-23 同济大学 Lower limb exoskeleton device with electrodes
CN115054492A (en) * 2022-06-17 2022-09-16 天津大学 Active-passive driving integrated ankle joint walking aid rehabilitation system
CN115054492B (en) * 2022-06-17 2024-04-19 天津大学 Ankle joint walking aid rehabilitation system integrating active and passive driving

Also Published As

Publication number Publication date
JP5569885B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5569885B2 (en) Walking support functional electrical stimulation system with ankle joint drive
US11071672B2 (en) Method and apparatus for improving human balance and gait and preventing foot injury
JP7410993B2 (en) Gait adjustment systems and devices and their use
Aqueveque et al. After stroke movement impairments: a review of current technologies for rehabilitation
Lenzi et al. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking
US9272139B2 (en) Universal closed-loop electrical stimulation system
US9314393B2 (en) Active robotic gait-training system and method
KR100946186B1 (en) Robotic assisted orthosis for lower extremity
JP6751881B2 (en) Spinal cord electrical stimulator for walking training
JP2013512709A (en) System and fitting for muscle relaxation of spastic muscles
CN111167011A (en) Sensor in footwear or limb garment
JP6340528B2 (en) BMI exercise assist device
KR102239910B1 (en) Device and Method for Active Functional Electrical Stimulation, Recording Medium for Performing the Method
CN111167010A (en) Control system for motion reconstruction and/or recovery of a patient
KR20190031979A (en) Muscle stimulating wearable apparatus for directional stimulation and controlling method thereof
Khoo et al. Real-time biofeedback device for gait rehabilitation of post-stroke patients
La Scaleia et al. Control of leg movements driven by EMG activity of shoulder muscles
Khoo et al. Design of a biofeedback device for gait rehabilitation in post-stroke patients
US11752325B2 (en) Functional electrical stimulation system offering coordinated and natural movements
KR20180031176A (en) Method of identifying characteristics of a muscle, method for walking assist using the same, and devices operating the same
Skidmore et al. A comprehensive analysis of sensorimotor mechanisms of inter-leg coordination in gait using the Variable Stiffness Treadmill: Physiological insights for improved robot-assisted gait therapy
Phadke et al. Soleus h-reflex modulation during stance phase of walking with altered arm swing patterns
EP2727573B1 (en) A stimulation device, particularly for therapy of the human body
US20240075285A1 (en) Devices, systems and methods using flexible circuitry for stimulating a body of a subject to cause a desired movement
Jung et al. Machine-learning-based coordination of powered ankle–foot orthosis and functional electrical stimulation for gait control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5569885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250