JP2013093268A - Wavelength conversion type light source device - Google Patents

Wavelength conversion type light source device Download PDF

Info

Publication number
JP2013093268A
JP2013093268A JP2011235775A JP2011235775A JP2013093268A JP 2013093268 A JP2013093268 A JP 2013093268A JP 2011235775 A JP2011235775 A JP 2011235775A JP 2011235775 A JP2011235775 A JP 2011235775A JP 2013093268 A JP2013093268 A JP 2013093268A
Authority
JP
Japan
Prior art keywords
light
excitation light
fluorescence
wavelength conversion
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011235775A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Kaburagi
清幸 蕪木
Toshihiro Nakajima
敏博 中島
Masaki Inoue
正樹 井上
Seiji Kitamura
政治 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2011235775A priority Critical patent/JP2013093268A/en
Publication of JP2013093268A publication Critical patent/JP2013093268A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion type light source device capable of cooling a phosphor layer, and thereby capable of obtaining high light emission efficiency and aiming at downsizing.SOLUTION: The device is provided with an excitation light-incident window member for excitation light to be incident into, a phosphor layer emitting fluorescence on receipt of the excitation light, a fluorescence emission window member for the fluorescence from the phosphor layer to be emitted from, and a light-reflecting member having a light-reflecting face formed for reflecting the excitation light and the fluorescence. A wavelength conversion space is formed where the excitation light and the phosphor cross each other, as it is circumscribed by the excitation light-incident window member, the fluorescence emission window and the light-reflecting face of the light-reflecting member. The phosphor layer is formed on the light-reflecting face of the light-reflecting member inside the wavelength conversion space, the excitation light-incident window member has optical characteristics of transmitting the excitation light and reflecting the fluorescence, and the fluorescence emission window member has optical characteristics of transmitting the fluorescence and reflecting the excitation light.

Description

本発明は、励起光源からの励起光を受けることによって波長変換された光を出射する波長変換型光源装置に関するものである。   The present invention relates to a wavelength conversion type light source device that emits wavelength-converted light by receiving excitation light from an excitation light source.

従来、液晶プロジェクタなどの画像投影装置の光源としては、ショートアーク型の高圧放電ランプが用いられている。而して、近年、発光ダイオードやレーザダイオードなどの固体発光素子を光源として用いた画像投影装置が提案されており、このような固体発光素子を用いた画像投影装置は、高電圧電源が不要であること、光源である固体発光素子の使用寿命が長いこと、耐衝撃性が優れていることなどの点で、高圧放電ランプを用いた画像投影装置と比較して有利である。
然るに、上記の画像投影装置においては、それぞれ赤色、緑色および青色の光を発する3種類の固体発光素子を用いることが必要となるが、発光量の高い緑色光を放射する固体発光素子がないため、画像投影装置の光源として十分な光量を得ることが困難である。
このような事情から、緑色の光を発する固体発光素子の代わりに、励起光源からの励起光(例えば青色の光)を受けて緑色の蛍光を発する蛍光体物質を含有する蛍光体層が透光性基板上に形成されてなる波長変換型光源装置が用いられている。
Conventionally, a short arc type high-pressure discharge lamp has been used as a light source of an image projection apparatus such as a liquid crystal projector. Thus, in recent years, an image projection apparatus using a solid light emitting element such as a light emitting diode or a laser diode as a light source has been proposed, and an image projection apparatus using such a solid light emitting element does not require a high voltage power source. In addition, the solid-state light emitting device as a light source is advantageous in comparison with an image projection apparatus using a high-pressure discharge lamp in that it has a long service life and excellent impact resistance.
However, in the above image projection apparatus, it is necessary to use three types of solid light emitting elements that emit red, green, and blue light, respectively, but there is no solid light emitting element that emits green light with a high light emission amount. It is difficult to obtain a sufficient amount of light as a light source for the image projection apparatus.
For this reason, instead of a solid-state light emitting device that emits green light, a phosphor layer containing a phosphor material that emits green fluorescence upon receiving excitation light (for example, blue light) from an excitation light source is transparent. A wavelength conversion type light source device formed on a conductive substrate is used.

然るに、蛍光体物質は、励起光を受けたときにその光エネルギーの一部を熱エネルギーに変換するものであるため、波長変換型光源装置においては、蛍光体層に局所的に励起光が照射されると、当該蛍光体が高い温度に発熱する結果、発光効率が低下する、という問題がある。
このような問題を解決するため、ガラス等よりなる円形基板上に蛍光体層が形成されてなる発光ホイールと、この発光ホイールを回転駆動する回転駆動機構とを備えてなる波長変換型光源装置が提案されている(特許文献1参照)。このような構成によれば、蛍光体層に局所的に励起光が照射されることが回避されるため、発光効率が低下することを抑制することができる。
However, since the phosphor substance converts a part of the light energy to heat energy when receiving the excitation light, in the wavelength conversion type light source device, the phosphor layer is locally irradiated with the excitation light. Then, as a result of the phosphor generating heat at a high temperature, there is a problem that the light emission efficiency is lowered.
In order to solve such a problem, there is provided a wavelength conversion type light source device including a light emitting wheel in which a phosphor layer is formed on a circular substrate made of glass or the like, and a rotation driving mechanism that rotationally drives the light emitting wheel. It has been proposed (see Patent Document 1). According to such a structure, since it is avoided that excitation light is locally irradiated to a fluorescent substance layer, it can suppress that luminous efficiency falls.

しかしながら、上記の変換型光源装置においては、面積の大きい発光ホイールや、これを回転駆動させるための回転駆動機構を搭載することが必要であるため、装置全体の構造が複雑で大型のものになる、という問題がある。   However, in the above conversion type light source device, it is necessary to mount a light emitting wheel having a large area and a rotation driving mechanism for rotating the light emitting wheel, so that the structure of the entire device is complicated and large. There is a problem.

特開2010−237443号公報JP 2010-237443 A

本発明は、以上のような事情に基づいてなされたものであって、その目的は、蛍光体層を冷却することができ、これにより、高い発光効率が得られ、しかも、小型化を図ることができる波長変換型光源装置を提供することにある。   The present invention has been made based on the circumstances as described above, and an object of the present invention is to cool the phosphor layer, whereby high luminous efficiency can be obtained and the size can be reduced. It is an object of the present invention to provide a wavelength conversion type light source device capable of achieving the above.

本発明の波長変換型光源装置は、励起光源からの励起光を受けて波長変換する波長変換型光源装置において、
励起光源からの励起光が入射される励起光入射用窓部材と、この励起光入射用窓部材を介して入射された励起光を受けて蛍光を放射する蛍光体層と、この蛍光体層からの蛍光が出射される蛍光出射用窓部材と、前記励起光および前記蛍光を反射する光反射面が形成された光反射部材とを有すると共に、前記励起光入射用窓部材、前記蛍光出射用窓部材および前記光反射部材における光反射面に包囲されることによって、前記励起光および前記蛍光が交錯する波長変換空間が形成されてなり、
前記蛍光体層は、前記波長変換空間内における前記光反射部材の光反射面上に形成されており、
前記励起光入射用窓部材は、前記励起光を透過すると共に前記蛍光を反射する光学特性を有し、前記蛍光出射用窓部材は、前記蛍光を透過すると共に前記励起光を反射する光学特性を有することを特徴とする。
The wavelength conversion type light source device of the present invention is a wavelength conversion type light source device that receives excitation light from an excitation light source and performs wavelength conversion.
From the excitation light incident window member into which the excitation light from the excitation light source is incident, a phosphor layer that emits fluorescence upon receiving the excitation light incident through the excitation light incident window member, and from the phosphor layer A fluorescence emission window member from which the fluorescence is emitted, and a light reflection member on which the excitation light and a light reflection surface for reflecting the fluorescence are formed, the excitation light incidence window member, and the fluorescence emission window By being surrounded by the light reflecting surface of the member and the light reflecting member, a wavelength conversion space where the excitation light and the fluorescence intersect is formed,
The phosphor layer is formed on a light reflecting surface of the light reflecting member in the wavelength conversion space,
The excitation light incident window member has an optical characteristic of transmitting the excitation light and reflecting the fluorescence, and the fluorescence emission window member has an optical characteristic of transmitting the fluorescence and reflecting the excitation light. It is characterized by having.

このような波長変換型光源装置においては、前記光反射部材は、内周面に光反射面が形成された筒状のものであり、当該光反射部材における両端の開口を塞ぐよう、前記励起光入射用窓部材および前記蛍光出射用窓部材が配置されていることが好ましい。
また、前記光反射部材は、内面に光反射面が形成された凹部を有すると共に当該凹部に通ずる貫通孔を有し、当該光反射部材の貫通孔の開口を塞ぐよう、前記励起光入射用窓部材が配置され、当該光反射部材の凹部の開口を塞ぐよう、前記蛍光出射用窓部材が配置されていることが好ましい。
In such a wavelength conversion type light source device, the light reflecting member is a cylindrical member having a light reflecting surface formed on an inner peripheral surface, and the excitation light is blocked so as to close the openings at both ends of the light reflecting member. It is preferable that the incident window member and the fluorescence emitting window member are disposed.
The light reflecting member has a recess having a light reflecting surface formed on the inner surface and a through hole that communicates with the recess, and the excitation light incident window is configured to close the opening of the through hole of the light reflecting member. It is preferable that the fluorescent light emission window member is disposed so as to close the opening of the concave portion of the light reflecting member.

また、本発明の波長変換型光源装置は、励起光源からの励起光を受けて波長変換する波長変換型光源装置において、
内面に光反射面が形成された凹部を有する光反射部材と、この光反射部材の凹部の開口を塞ぐよう配置された、励起光源からの励起光が入射されると共に後記蛍光体層からの蛍光が出射される窓部材と、この窓部材を介して入射された励起光を受けて蛍光を放射する蛍光体層と、前記励起光および前記蛍光を反射する光反射面が形成された光反射部材とを有すると共に、前記窓部材および前記光反射部材における光反射面に包囲されることによって、前記励起光および前記蛍光が交錯する波長変換空間が形成されてなり、
前記蛍光体層は、前記波長変換空間内における前記光反射部材の光反射面上に形成されており、
前記窓部材は、特定の入射角以上の角度範囲において前記励起光を反射する光学特性を有することを特徴とする。
Further, the wavelength conversion type light source device of the present invention is a wavelength conversion type light source device that receives the excitation light from the excitation light source and converts the wavelength.
A light reflecting member having a recess having a light reflecting surface formed on the inner surface, and excitation light from an excitation light source disposed so as to close the opening of the recess of the light reflecting member and fluorescence from a phosphor layer described later A light reflecting member formed with a window member from which light is emitted, a phosphor layer that receives excitation light incident through the window member and emits fluorescence, and a light reflecting surface that reflects the excitation light and the fluorescence And is surrounded by a light reflecting surface in the window member and the light reflecting member, thereby forming a wavelength conversion space where the excitation light and the fluorescence intersect,
The phosphor layer is formed on a light reflecting surface of the light reflecting member in the wavelength conversion space,
The window member has an optical characteristic of reflecting the excitation light in an angle range greater than a specific incident angle.

このような波長変換型光源装置においては、前記窓部材は、他の特定の入射角以上の角度範囲において前記蛍光を反射する光学特性を有するものであることが好ましい。   In such a wavelength conversion type light source device, it is preferable that the window member has an optical characteristic of reflecting the fluorescence in an angle range equal to or greater than another specific incident angle.

本発明の波長変換型光源装置においては、前記光反射部材は、熱伝導性を有することが好ましい。
また、前記蛍光体層を構成する蛍光体物質は、波長445nm以下の青色領域の励起光を受けて蛍光を放射するものであることが好ましい。
In the wavelength conversion light source device of the present invention, the light reflecting member preferably has thermal conductivity.
The phosphor material constituting the phosphor layer preferably emits fluorescence upon receiving excitation light in a blue region having a wavelength of 445 nm or less.

本発明の波長変換型光源装置によれば、励起光および蛍光が交錯する波長変換空間を形成する光反射部材における光反射面上に、蛍光体層が形成されているため、光反射部材を構成する材料として熱伝導性を有するものを用いることにより、蛍光体層に生じた熱を光反射部材を介して外部に排熱することが可能であり、従って、蛍光体層を冷却することができるので、高い発光効率が得られる。しかも、発光ホイールやこれを回転させるための回転機構を搭載することが不要であるため、装置の小型化を図ることができる。   According to the wavelength conversion type light source device of the present invention, since the phosphor layer is formed on the light reflection surface of the light reflection member that forms the wavelength conversion space where the excitation light and the fluorescence intersect, the light reflection member is configured. By using a material having thermal conductivity as the material to be used, it is possible to exhaust heat generated in the phosphor layer to the outside through the light reflecting member, and thus the phosphor layer can be cooled. Therefore, high luminous efficiency can be obtained. In addition, since it is not necessary to mount a light emitting wheel or a rotation mechanism for rotating the light emitting wheel, the apparatus can be reduced in size.

本発明の第1の実施の形態に係る波長変換型光源装置の要部の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the principal part of the wavelength conversion type light source device which concerns on the 1st Embodiment of this invention. 励起光入射用窓部材の一例における分光反射特性を模式的に示す分光反射率曲線図である。It is a spectral reflectance curve figure which shows typically the spectral reflection characteristic in an example of the window member for excitation light incidence. β−サイアロン系蛍光体およびシリケート系蛍光体の各々における温度特性を示す曲線図である。It is a curve figure which shows the temperature characteristic in each of (beta) -sialon type | system | group fluorescent substance and a silicate type | system | group fluorescent substance. 本発明の第2の実施の形態に係る波長変換型光源装置の構成を示す説明図であり、(a)は波長変換型光源装置の斜視図、(b)は波長変換型光源装置における要部の側面図、(c)は波長変換型光源装置における要部を切断して示す正面部分断面図、(d)は波長変換型光源装置における要部を切断して示す側面断面図である。It is explanatory drawing which shows the structure of the wavelength conversion type light source device which concerns on the 2nd Embodiment of this invention, (a) is a perspective view of a wavelength conversion type light source device, (b) is the principal part in a wavelength conversion type light source device. FIG. 6C is a front partial cross-sectional view showing the main part of the wavelength conversion type light source device by cutting, and FIG. 8D is a side cross-sectional view showing the main part of the wavelength conversion type light source device by cutting. 本発明の第3の実施の形態に係る波長変換型光源装置の要部の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the principal part of the wavelength conversion type light source device which concerns on the 3rd Embodiment of this invention. 窓部材の一例における分光反射特性を模式的に示す分光反射率曲線図である。It is a spectral reflectance curve figure which shows typically the spectral reflection characteristic in an example of a window member. 実施例に係る波長変換型光源装置に使用した窓部材における分光反射特性を示す分光反射率曲線図である。It is a spectral reflectance curve figure which shows the spectral reflection characteristic in the window member used for the wavelength conversion type light source device which concerns on an Example. 実施例に係る波長変換型光源装置における窓部材から出射される蛍光の光量を測定するための測定系の構成を示す説明図である。It is explanatory drawing which shows the structure of the measurement system for measuring the light quantity of the fluorescence radiate | emitted from the window member in the wavelength conversion type light source device which concerns on an Example. 実施例に係る波長変換型光源装置に基づき、熱構造解析により、蛍光体層の厚みを変化させたときの蛍光体層の表面温度のシミュレーションを行うことにより得られた、蛍光体層の表面温度と蛍光体層との厚みとの関係を示すグラフである。Surface temperature of the phosphor layer obtained by simulating the surface temperature of the phosphor layer when the thickness of the phosphor layer is changed by thermal structure analysis based on the wavelength conversion type light source device according to the example It is a graph which shows the relationship between thickness with a fluorescent substance layer.

以下、本発明の波長変換型光源装置の実施の形態について説明する。
図1は、本発明の第1の実施の形態に係る波長変換型光源装置の要部の構成を示す説明用断面図である。この波長変換型光源装置は、励起光源からの励起光L1を受けて波長変換するものであって、内周面に励起光源からの励起光L1および後述する蛍光体層20からの蛍光L2を反射する光反射面10aが形成された矩形の筒状の光反射部材10を備えている。この例の光反射部材10においては、筒状の基体11の内周面に光反射層12が形成されており、この光反射層12によって光反射面10aが形成されている。
光反射部材10の両端には、励起光源からの励起光L1が入射される矩形の板状の励起光入射用窓部材15および後述する蛍光体層20からの蛍光L2が出射される矩形の板状の蛍光出射用窓部材16が、当該光反射部材10の筒孔を介して互いに対向した状態で、当該光反射部材10における両端の開口を塞ぐよう配置されている。
Hereinafter, embodiments of the wavelength conversion type light source device of the present invention will be described.
FIG. 1 is an explanatory cross-sectional view showing a configuration of a main part of the wavelength conversion type light source device according to the first embodiment of the present invention. This wavelength conversion type light source device receives the excitation light L1 from the excitation light source and converts the wavelength, and reflects the excitation light L1 from the excitation light source and the fluorescence L2 from the phosphor layer 20 described later on the inner peripheral surface. A rectangular cylindrical light reflecting member 10 having a light reflecting surface 10a is provided. In the light reflecting member 10 of this example, the light reflecting layer 12 is formed on the inner peripheral surface of the cylindrical base 11, and the light reflecting surface 10 a is formed by the light reflecting layer 12.
At both ends of the light reflecting member 10, a rectangular plate-shaped excitation light incident window member 15 into which excitation light L1 from an excitation light source is incident and a rectangular plate from which fluorescence L2 from a phosphor layer 20 described later is emitted. The fluorescent emission window members 16 are arranged so as to close the openings at both ends of the light reflecting member 10 in a state of facing each other through the cylindrical hole of the light reflecting member 10.

そして、励起光入射用窓部材15、蛍光出射用窓部材16および光反射部材10における光反射面10aに包囲されることによって、励起光源からの励起光L1および後述する蛍光体層20からの蛍光L2が交錯する波長変換空間Sが形成されている。この波長変換空間S内における光反射部材10の光反射面上には、励起光源からの励起光L1を受けて蛍光L2を放射する蛍光体層20が形成されている。
また、光反射部材10の外周面を形成する4つの平面のうち、1つの平面(図1において下面)には、放熱フィンなどよりなる排熱用部材25が当該光反射部材11に接するよう設けられている。
Then, by being surrounded by the light reflecting surface 10a of the excitation light incident window member 15, the fluorescence emission window member 16, and the light reflecting member 10, the excitation light L1 from the excitation light source and the fluorescence from the phosphor layer 20 described later are provided. A wavelength conversion space S where L2 intersects is formed. On the light reflecting surface of the light reflecting member 10 in the wavelength conversion space S, a phosphor layer 20 that receives the excitation light L1 from the excitation light source and emits fluorescence L2 is formed.
Further, of the four planes forming the outer peripheral surface of the light reflecting member 10, a heat exhausting member 25 such as a heat radiating fin is provided on one plane (the lower surface in FIG. 1) so as to contact the light reflecting member 11. It has been.

光反射部材10における筒状基体11を構成する材料としては、良好な熱伝導性を有するもの、例えば熱伝導率が100W/m・K以上のものを用いることが好ましく、その具体例としては、アルミニウム、銅などの高熱伝導性金属材料、AlNなどのセラミックス材料を用いることが好ましい。
光反射層12としては、銀、アルミニウムなどの高光反射性金属材料よりなるもの、AlNよりなる粒径がミクロンオーダーの微粒子が堆積されてなるものを用いることができる。光反射層12を形成する方法としては、電解メッキ法、蒸着法などを利用することができる。
As a material constituting the cylindrical substrate 11 in the light reflecting member 10, it is preferable to use a material having good thermal conductivity, for example, a material having a thermal conductivity of 100 W / m · K or more. It is preferable to use a highly thermally conductive metal material such as aluminum or copper, or a ceramic material such as AlN.
As the light reflection layer 12, a layer made of a highly light reflective metal material such as silver or aluminum, or a layer formed by depositing fine particles of AlN having a particle size of the order of microns can be used. As a method of forming the light reflecting layer 12, an electrolytic plating method, a vapor deposition method, or the like can be used.

励起光入射用窓部材15に入射される励起光L1としては、波長445nm以下の青色領域の光を用いることが好ましい。このような励起光L1を放射する励起光源としては、青色発光ダイオード、青色レーザダイオードを用いることができる。   As the excitation light L1 incident on the excitation light incident window member 15, light in a blue region having a wavelength of 445 nm or less is preferably used. As the excitation light source that emits such excitation light L1, a blue light emitting diode or a blue laser diode can be used.

励起光入射用窓部材15は、励起光源からの励起光L1を透過すると共に蛍光体層20からの蛍光L2を反射する光学特性を有するものである。このような励起光入射用窓部材15としては、板状の透光性基体の表面にTiO2 およびSiO2 よりなる誘電体多層膜が形成されてなるものを用いることができる。
例えば励起光L1が、波長445nm以下の青色領域の光で、蛍光体層20からの蛍光L2が、波長500〜570nmの緑色領域の光である場合において、用いられる励起光入射用窓部材15の分光反射特性を模式的に示すと、図2(a)の通りである。図2(a)の分光反射率曲線図において、縦軸は分光反射率(%)を示し、横軸は入射光の波長(nm)を示す。この励起光入射用窓部材15は、波長445nmの光に対して良好な透過性を示し、波長500〜570nmの光に対して良好な反射性を示すものである。
The excitation light incident window member 15 has an optical characteristic of transmitting the excitation light L1 from the excitation light source and reflecting the fluorescence L2 from the phosphor layer 20. As such an excitation light incident window member 15, a member in which a dielectric multilayer film made of TiO 2 and SiO 2 is formed on the surface of a plate-like translucent substrate can be used.
For example, when the excitation light L1 is light in a blue region having a wavelength of 445 nm or less and the fluorescence L2 from the phosphor layer 20 is light in a green region having a wavelength of 500 to 570 nm, the excitation light incident window member 15 used A spectral reflection characteristic is schematically shown in FIG. In the spectral reflectance curve diagram of FIG. 2A, the vertical axis indicates the spectral reflectance (%), and the horizontal axis indicates the wavelength (nm) of incident light. The excitation light incident window member 15 exhibits good transparency with respect to light having a wavelength of 445 nm and exhibits good reflectivity with respect to light with a wavelength of 500 to 570 nm.

蛍光出射用窓部材16は、蛍光体層20からの蛍光L2を透過すると共に励起光源からの励起光L1を反射する光学特性を有するものである。このような蛍光出射用窓部材16としては、板状の透光性基体の表面にTiO2 およびSiO2 よりなる誘電体多層膜が形成されてなるものを用いることができる。
例えば励起光L1が、波長445nm以下の青色領域の光で、蛍光体層20からの蛍光L2が、波長500〜570nmの緑色領域の光である場合において、用いられる蛍光出射用窓部材16の分光反射特性を模式的に示すと、図2(b)の通りである。図2(b)の分光反射率曲線図において、縦軸は分光反射率(%)を示し、横軸は入射光の波長(nm)を示す。この蛍光出射用窓部材16は、波長445nmの光に対して良好な反射性を示し、波長500〜570nmの光に対して良好な透過性を示すものである。
The fluorescence emission window member 16 has an optical characteristic of transmitting the fluorescence L2 from the phosphor layer 20 and reflecting the excitation light L1 from the excitation light source. As such a fluorescence emission window member 16, a member in which a dielectric multilayer film made of TiO 2 and SiO 2 is formed on the surface of a plate-like translucent substrate can be used.
For example, when the excitation light L1 is light in a blue region having a wavelength of 445 nm or less and the fluorescence L2 from the phosphor layer 20 is light in a green region having a wavelength of 500 to 570 nm, the spectrum of the fluorescence emission window member 16 used is used. The reflection characteristics are schematically shown in FIG. In the spectral reflectance curve diagram of FIG. 2B, the vertical axis represents the spectral reflectance (%), and the horizontal axis represents the wavelength (nm) of incident light. The fluorescence emission window member 16 exhibits good reflectivity with respect to light having a wavelength of 445 nm and exhibits good transparency with respect to light with a wavelength of 500 to 570 nm.

蛍光体層20としては、例えばシリコーン樹脂よりなるバインダ樹脂中に蛍光体物質が含有されてなるものを用いることができる。
蛍光体層20を構成する蛍光体物質としては、励起光源からの励起光L1、例えば波長445nm以下の青色領域の光を受けて蛍光L2を放射するものが用いられ、特に波長500〜570nmの緑色領域の蛍光L2を放射するものが好ましい。このような蛍光体物質としては、比較的高い温度においても高い強度の蛍光L2が放射される耐熱安定性を有する点で、β−サイアロン系蛍光体、シリケート系蛍光体、YAG系蛍光体を用いることが好ましく、特にβ−サイアロン系蛍光体が好ましい。
As the phosphor layer 20, for example, a binder resin made of a silicone resin and containing a phosphor substance can be used.
As the phosphor material constituting the phosphor layer 20, an excitation light L1 from an excitation light source, for example, a material that emits fluorescence L2 upon receiving light in a blue region having a wavelength of 445 nm or less is used, and in particular, green having a wavelength of 500 to 570 nm. What emits the fluorescence L2 of an area | region is preferable. As such a phosphor substance, a β-sialon phosphor, a silicate phosphor, and a YAG phosphor are used because they have heat stability that allows high intensity fluorescence L2 to be emitted even at relatively high temperatures. In particular, β-sialon phosphors are preferred.

図3は、β−サイアロン系蛍光体およびシリケート系蛍光体の各々における温度特性を示す曲線図である。図3において、縦軸は蛍光体による発光強度(相対値)、横軸は蛍光体の温度(℃)を示し、曲線aはβ−サイアロン系蛍光体に係るもの、曲線bはシリケート系蛍光体に係るものを示す。この図に示すように、β−サイアロン系蛍光体およびシリケート系蛍光体は、いずれも100℃以下の温度であれば、強度の高い蛍光が放射されることが理解される。   FIG. 3 is a curve diagram showing temperature characteristics of each of the β-sialon phosphor and the silicate phosphor. In FIG. 3, the vertical axis indicates the emission intensity (relative value) of the phosphor, the horizontal axis indicates the temperature (° C.) of the phosphor, the curve a relates to the β-sialon phosphor, and the curve b indicates the silicate phosphor. The thing concerning is shown. As shown in this figure, it is understood that both the β-sialon phosphor and the silicate phosphor emit high intensity fluorescence when the temperature is 100 ° C. or lower.

蛍光体層20の厚みは、75μm以下であることが好ましく、より好ましくは30〜55μmである。蛍光体層20の厚みが過小である場合には、高い強度の蛍光L2を放射することが困難となることがある。一方、蛍光体層20の厚みが過大である場合には、蛍光体層20における厚み方向の熱抵抗が大きくなるため、当該蛍光体層20に発生した熱を効率よく光反射部材10に伝達することが困難となることがある。
また、蛍光体層20中には、例えばAl2 3 、MgOなどよりなる熱伝導性粒子が含有されていてもよく、これにより、蛍光体層20に発生した熱を高い効率で光反射部材10に伝達することができる。
The thickness of the phosphor layer 20 is preferably 75 μm or less, more preferably 30 to 55 μm. When the thickness of the phosphor layer 20 is too small, it may be difficult to emit high intensity fluorescence L2. On the other hand, when the thickness of the phosphor layer 20 is excessive, the heat resistance in the thickness direction of the phosphor layer 20 increases, so that the heat generated in the phosphor layer 20 is efficiently transmitted to the light reflecting member 10. Can be difficult.
In addition, the phosphor layer 20 may contain, for example, thermally conductive particles made of Al 2 O 3 , MgO, etc., whereby the heat generated in the phosphor layer 20 can be efficiently reflected by the light reflecting member. 10 can be transmitted.

上記の波長変換型光源装置においては、励起光源からの励起光L1が、例えば集束レンズ3を介して励起光入射用窓部材15に入射され、波長変換空間Sを介して直接、または蛍光出射用窓部材16若しくは光反射部材10における光反射面10aに反射された後、蛍光体層20に照射される。 そして、励起光L1が蛍光体層20に照射されることにより、当該蛍光体層20から励起光L1より波長が長い蛍光L2が放射される。この蛍光L2のうち、蛍光出射用窓部材16に向かって進む光は、当該蛍光出射用窓部材16から外部に出射され、光反射部材10に向かって進む光は、当該光反射部材10または励起光入射用窓部材15によって反射された後、蛍光出射用窓部材16から外部に出射される。
一方、励起光源からの励起光L1が蛍光体層20に照射されると、蛍光体層20において励起光L1によるエネルギーの一部が熱エネルギーに変換されるため、当該蛍光体層20に熱が発生するが、この蛍光体層20に生じた熱は、蛍光体層20から光反射部材10を介して排熱用部材25に伝達され、当該排熱用部材25によって外部に排熱され、これにより、蛍光体層20が冷却される。
以上において、蛍光体層20を構成する蛍光体物質として、β−サイアロン系蛍光体またはシリケート系蛍光体等を用いる場合には、当該蛍光体層20の温度が100℃以下に保持されるよう、光反射部材10、蛍光体層20および排熱用部材25が設計されていることが好ましい。
In the wavelength conversion type light source device described above, the excitation light L1 from the excitation light source is incident on the excitation light incident window member 15 through, for example, the focusing lens 3 and directly or through the wavelength conversion space S. After being reflected by the light reflecting surface 10a of the window member 16 or the light reflecting member 10, the phosphor layer 20 is irradiated. Then, by irradiating the phosphor layer 20 with the excitation light L1, fluorescence L2 having a longer wavelength than the excitation light L1 is emitted from the phosphor layer 20. Of the fluorescence L2, the light traveling toward the fluorescence emission window member 16 is emitted to the outside from the fluorescence emission window member 16, and the light traveling toward the light reflection member 10 is excited by the light reflection member 10 or the excitation. After being reflected by the light incident window member 15, the light is emitted to the outside from the fluorescence emission window member 16.
On the other hand, when the phosphor layer 20 is irradiated with the excitation light L1 from the excitation light source, a part of the energy generated by the excitation light L1 is converted into thermal energy in the phosphor layer 20, so that the phosphor layer 20 is heated. Although generated, the heat generated in the phosphor layer 20 is transmitted from the phosphor layer 20 to the exhaust heat member 25 through the light reflecting member 10, and is exhausted to the outside by the exhaust heat member 25. Thus, the phosphor layer 20 is cooled.
In the above, when a β-sialon-based phosphor or a silicate-based phosphor is used as the phosphor material constituting the phosphor layer 20, the temperature of the phosphor layer 20 is maintained at 100 ° C. or lower. It is preferable that the light reflecting member 10, the phosphor layer 20, and the exhaust heat member 25 are designed.

上記の波長変換型光源装置によれば、励起光L1および蛍光L2が交錯する波長変換空間Sを形成する光反射部材10における光反射面10a上に、蛍光体層20が形成されているため、光反射部材10を構成する材料として熱伝導性を有するものを用いることにより、蛍光体層20に生じた熱を光反射部材10を介して排熱用部材25から外部に排熱することが可能であり、従って、蛍光体層20を冷却することができるので、高い発光効率が得られる。しかも、発光ホイールやこれを回転させるための回転機構を搭載することが不要であるため、装置の小型化を図ることができる。
また、励起光入射用窓部材15は、励起光L1を透過すると共に蛍光L2を反射する光学特性を有し、蛍光出射用窓部材16は、蛍光L2を透過すると共に励起光を反射する光学特性を有するため、高い光の利用率が得られる。
According to the above wavelength conversion type light source device, since the phosphor layer 20 is formed on the light reflection surface 10a in the light reflection member 10 that forms the wavelength conversion space S where the excitation light L1 and the fluorescence L2 intersect, By using a material having thermal conductivity as the material constituting the light reflecting member 10, heat generated in the phosphor layer 20 can be exhausted from the heat exhausting member 25 to the outside through the light reflecting member 10. Therefore, since the phosphor layer 20 can be cooled, high luminous efficiency can be obtained. In addition, since it is not necessary to mount a light emitting wheel or a rotation mechanism for rotating the light emitting wheel, the apparatus can be reduced in size.
The excitation light incident window member 15 has an optical characteristic of transmitting the excitation light L1 and reflecting the fluorescence L2, and the fluorescence emission window member 16 is an optical characteristic of transmitting the fluorescence L2 and reflecting the excitation light. Therefore, a high light utilization rate can be obtained.

図4は、本発明の第2の実施の形態に係る波長変換型光源装置の構成を示す説明図であり、(a)は波長変換型光源装置の斜視図、(b)は波長変換型光源装置における要部の側面図、(c)は波長変換型光源装置における要部を切断して示す正面部分断面図、(d)は波長変換型光源装置における要部を切断して示す側面断面図である。この波長変換型光源装置は、励起光源からの励起光L1を受けて波長変換するものであって、略直方体状の基体11の一面に、内面に励起光源からの励起光L1および後述する蛍光体層20からの蛍光L2を反射する光反射面10aが形成された四角錐台状の凹部Dを有すると共に、当該基体11の一面に垂直な一側面から凹部Dに通ずる貫通孔Kを有する光反射部材10を備えている。この例の光反射部材10においては、基体11の凹部Dの内面に光反射層(図示省略)が形成されており、この光反射層によって光反射面10aが形成されている。 光反射部材10における基体11の一側面には、励起光源からの励起光L1が入射される矩形の板状の励起光入射用窓部材15が当該基体11の貫通孔Kを塞ぐよう配置され、基体11の一面には、後述する蛍光体層20からの蛍光L2が出射される矩形の板状の蛍光出射用窓部材16が、当該基体11の凹部Dの開口を塞ぐよう配置されている。励起光入射用窓部材15は、励起光源からの励起光L1を透過すると共に蛍光体層20からの蛍光L2を反射する光学特性を有するものであり、蛍光出射用窓部材16は、後述する蛍光体層20からの蛍光L2を透過すると共に励起光源からの励起光L1を反射する光学特性を有するものである。   4A and 4B are explanatory views showing the configuration of the wavelength conversion type light source device according to the second embodiment of the present invention. FIG. 4A is a perspective view of the wavelength conversion type light source device, and FIG. 4B is a wavelength conversion type light source. The side view of the principal part in an apparatus, (c) is a front fragmentary sectional view which cuts and shows the principal part in a wavelength conversion type light source device, (d) is the side sectional view which cuts and shows the principal part in a wavelength conversion type light source device It is. The wavelength conversion type light source device receives the excitation light L1 from the excitation light source and converts the wavelength. The excitation light L1 from the excitation light source on the inner surface of the substantially rectangular parallelepiped base 11 and a phosphor described later. Light reflection having a quadrangular pyramid-shaped concave portion D formed with a light reflecting surface 10a that reflects the fluorescence L2 from the layer 20 and having a through hole K that communicates with the concave portion D from one side surface perpendicular to one surface of the substrate 11. A member 10 is provided. In the light reflecting member 10 of this example, a light reflecting layer (not shown) is formed on the inner surface of the recess D of the base 11, and the light reflecting surface 10a is formed by this light reflecting layer. On one side surface of the substrate 11 in the light reflecting member 10, a rectangular plate-shaped excitation light incident window member 15 into which the excitation light L1 from the excitation light source is incident is disposed so as to close the through hole K of the substrate 11. On one surface of the substrate 11, a rectangular plate-shaped fluorescence emission window member 16 from which fluorescence L <b> 2 from a phosphor layer 20 described later is emitted is disposed so as to close the opening of the recess D of the substrate 11. The excitation light incident window member 15 has an optical characteristic of transmitting the excitation light L1 from the excitation light source and reflecting the fluorescence L2 from the phosphor layer 20, and the fluorescence emission window member 16 is a fluorescent light described later. It has an optical characteristic of transmitting the fluorescence L2 from the body layer 20 and reflecting the excitation light L1 from the excitation light source.

そして、励起光入射用窓部材15、蛍光出射用窓部材16および光反射部材10における光反射面10aに包囲されることによって、励起光源からの励起光L1および後述する蛍光体層20からの蛍光L2が交錯する波長変換空間Sが形成されており、この波長変換空間S内における光反射部材10の光反射面10a上には、励起光源からの励起光L1を受けて蛍光L2を放射する蛍光体層20が形成されている。また、光反射部材10における励起光入射用窓部材15が配置された一側面とは反対側の他側面には、放熱フィンなどよりなる排熱用部材25が当該光反射部材10に接するよう設けられている。   Then, by being surrounded by the light reflecting surface 10a of the excitation light incident window member 15, the fluorescence emission window member 16, and the light reflecting member 10, the excitation light L1 from the excitation light source and the fluorescence from the phosphor layer 20 described later are provided. A wavelength conversion space S where L2 crosses is formed, and the fluorescence that emits the fluorescence L2 upon receiving the excitation light L1 from the excitation light source on the light reflection surface 10a of the light reflecting member 10 in the wavelength conversion space S. A body layer 20 is formed. In addition, on the other side of the light reflecting member 10 opposite to the side on which the excitation light incident window member 15 is disposed, a heat exhausting member 25 made of heat radiation fins or the like is provided in contact with the light reflecting member 10. It has been.

この第2の実施の形態に係る波長変換型光源装置において、光反射部材10における筒状基体11および光反射層を構成する材料、励起光入射用窓部材15および蛍光出射用窓部材16を構成する材料、並びに蛍光体層20を構成する材料および厚みは、第1の実施の形態に係る波長変換型光源装置におけるものと同様である。   In the wavelength conversion type light source device according to the second embodiment, the material constituting the cylindrical base 11 and the light reflecting layer in the light reflecting member 10, the excitation light incident window member 15 and the fluorescence emitting window member 16 are configured. The material for forming the phosphor layer 20 and the thickness thereof are the same as those in the wavelength conversion type light source device according to the first embodiment.

上記の波長変換型光源装置においては、励起光源からの励起光L1が、励起光入射用窓部材15に入射され、波長変換空間Sを介して直接、または蛍光出射用窓部材16若しくは光反射部材10における光反射面10aに反射された後、蛍光体層20に照射される。 そして、励起光L1が蛍光体層20に照射されることにより、当該蛍光体層20から励起光L1より波長が長い蛍光L2が放射される。この蛍光L2のうち、蛍光出射用窓部材16に向かって進む光は、当該蛍光出射用窓部材16から外部に出射され、光反射部材10に向かって進む光は、当該光反射部材10または励起光入射用窓部材15によって反射された後、蛍光出射用窓部材16から外部に出射される。
一方、励起光源からの励起光L1が蛍光体層20に照射されると、蛍光体層20において励起光L1によるエネルギーの一部が熱エネルギーに変換されるため、当該蛍光体層20に熱が発生するが、この蛍光体層20に生じた熱は、蛍光体層20から光反射部材10を介して排熱用部材25に伝達され、当該排熱用部材25によって外部に排熱され、これにより、蛍光体層20が冷却される。
In the wavelength conversion light source device described above, the excitation light L1 from the excitation light source is incident on the excitation light incident window member 15 and directly through the wavelength conversion space S, or the fluorescence emission window member 16 or the light reflecting member. After being reflected by the light reflecting surface 10a of the fluorescent layer 10, the phosphor layer 20 is irradiated. Then, by irradiating the phosphor layer 20 with the excitation light L1, fluorescence L2 having a longer wavelength than the excitation light L1 is emitted from the phosphor layer 20. Of the fluorescence L2, the light traveling toward the fluorescence emission window member 16 is emitted to the outside from the fluorescence emission window member 16, and the light traveling toward the light reflection member 10 is excited by the light reflection member 10 or the excitation. After being reflected by the light incident window member 15, the light is emitted to the outside from the fluorescence emission window member 16.
On the other hand, when the phosphor layer 20 is irradiated with the excitation light L1 from the excitation light source, a part of the energy generated by the excitation light L1 is converted into thermal energy in the phosphor layer 20, so that the phosphor layer 20 is heated. Although generated, the heat generated in the phosphor layer 20 is transmitted from the phosphor layer 20 to the exhaust heat member 25 through the light reflecting member 10, and is exhausted to the outside by the exhaust heat member 25. Thus, the phosphor layer 20 is cooled.

上記の波長変換型光源装置によれば、励起光L1および蛍光L2が交錯する波長変換空間Sを形成する光反射部材10における光反射面10a上に、蛍光体層20が形成されているため、光反射部材10を構成する材料として熱伝導性を有するものを用いることにより、蛍光体層20に生じた熱を光反射部材10を介して排熱用部材25から外部に排熱することが可能であり、従って、蛍光体層20を冷却することができるので、高い発光効率が得られる。しかも、発光ホイールやこれを回転させるための回転機構を搭載することが不要であるため、装置の小型化を図ることができる。
また、励起光入射用窓部材15は、励起光L1を透過すると共に蛍光L2を反射する光学特性を有し、蛍光出射用窓部材16は、蛍光L2を透過すると共に励起光を反射する光学特性を有するため、高い光の利用率が得られる。
According to the above wavelength conversion type light source device, since the phosphor layer 20 is formed on the light reflection surface 10a in the light reflection member 10 that forms the wavelength conversion space S where the excitation light L1 and the fluorescence L2 intersect, By using a material having thermal conductivity as the material constituting the light reflecting member 10, heat generated in the phosphor layer 20 can be exhausted from the heat exhausting member 25 to the outside through the light reflecting member 10. Therefore, since the phosphor layer 20 can be cooled, high luminous efficiency can be obtained. In addition, since it is not necessary to mount a light emitting wheel or a rotation mechanism for rotating the light emitting wheel, the apparatus can be reduced in size.
The excitation light incident window member 15 has an optical characteristic of transmitting the excitation light L1 and reflecting the fluorescence L2, and the fluorescence emission window member 16 is an optical characteristic of transmitting the fluorescence L2 and reflecting the excitation light. Therefore, a high light utilization rate can be obtained.

図5は、本発明の第3の実施の形態に係る波長変換型光源装置の要部の構成を示す説明用断面図である。この波長変換型光源装置は、励起光源からの励起光L1を受けて波長変換するものであって、略直方体状の基体11の一面に、内面に励起光源からの励起光L1および後述する蛍光体層20からの蛍光L2を反射する光反射面10aが形成された部分球面状または部分楕円球面状の凹部Dを有する光反射部材10を備えている。この例の光反射部材10においては、基体11の凹部Dの内面に光反射層(図示省略)が形成されており、この光反射層によって光反射面10aが形成されている。
光反射部材10における基体11の一面には、励起光源からの励起光L1が入射されると共に、後述する蛍光体層20からの蛍光L2が出射される矩形の板状の窓部材17が、当該基体11の凹部Dの開口を塞ぐよう配置されている。
FIG. 5 is an explanatory cross-sectional view showing the configuration of the main part of the wavelength conversion type light source device according to the third embodiment of the present invention. The wavelength conversion type light source device receives the excitation light L1 from the excitation light source and converts the wavelength. The excitation light L1 from the excitation light source on the inner surface of the substantially rectangular parallelepiped base 11 and a phosphor described later. A light reflecting member 10 having a concave part D having a partial spherical shape or a partial elliptic spherical shape formed with a light reflecting surface 10a for reflecting the fluorescence L2 from the layer 20 is provided. In the light reflecting member 10 of this example, a light reflecting layer (not shown) is formed on the inner surface of the recess D of the base 11, and the light reflecting surface 10a is formed by this light reflecting layer.
A rectangular plate-like window member 17 from which excitation light L1 from an excitation light source is incident and fluorescence L2 from a phosphor layer 20 described later is emitted on one surface of the base 11 in the light reflecting member 10 is It arrange | positions so that the opening of the recessed part D of the base | substrate 11 may be plugged up.

そして、窓部材17および光反射部材10における光反射面10aに包囲されることによって、励起光源からの励起光L1および後述する蛍光体層20からの蛍光L2が交錯する波長変換空間Sが形成されており、この波長変換空間S内における光反射部材10の光反射面10a上には、励起光源からの励起光L1を受けて蛍光L2を放射する蛍光体層20が形成されている。また、光反射部材10における窓部材17が配置された一面とは反対側の他面には、放熱フィンなどよりなる排熱用部材25が当該光反射部材10に接するよう設けられている。   Then, by being surrounded by the light reflecting surface 10a of the window member 17 and the light reflecting member 10, a wavelength conversion space S in which excitation light L1 from the excitation light source and fluorescence L2 from the phosphor layer 20 described later cross is formed. On the light reflecting surface 10a of the light reflecting member 10 in the wavelength conversion space S, a phosphor layer 20 that receives the excitation light L1 from the excitation light source and emits fluorescence L2 is formed. In addition, on the other surface of the light reflecting member 10 opposite to the surface on which the window member 17 is disposed, a heat exhausting member 25 made of a heat radiating fin or the like is provided in contact with the light reflecting member 10.

この第3の実施の形態に係る波長変換型光源装置において、光反射部材10における筒状基体11および光反射層を構成する材料、並びに蛍光体層20を構成する材料および厚みは、第1の実施の形態に係る波長変換型光源装置におけるものと同様である。   In the wavelength conversion type light source device according to the third embodiment, the material constituting the cylindrical substrate 11 and the light reflecting layer in the light reflecting member 10 and the material and the thickness constituting the phosphor layer 20 are the same as those in the first embodiment. This is the same as that in the wavelength conversion type light source device according to the embodiment.

窓部材17は、蛍光体層20から放射される蛍光L2を透過すると共に、特定の入射角以上の角度範囲において励起光源からの励起光L1を反射し、かつ、特定の入射角未満の角度範囲においてレーザ光による励起光L1を透過する光学特性を有するものである。ここで、特定の入射角以上の角度範囲、すなわち励起光源からの励起光L1を反射し得る入射角の範囲は、30〜90°であることが好ましく、より好ましくは20〜90°である。特定の入射角すなわち励起光源からの励起光L1を反射し得る入射角の下限が過大である場合には、窓部材17を介して出射される励起光L1の光量が大きくなるため、励起光L1を高い効率で波長変換することが困難となることがある。
このような窓部材17としては、板状の透光性基体の表面にTiO2 およびSiO2 よりなる誘電体多層膜が形成されてなるものを用いることができる。
The window member 17 transmits the fluorescence L2 emitted from the phosphor layer 20, reflects the excitation light L1 from the excitation light source in an angle range equal to or greater than a specific incident angle, and has an angle range less than the specific incident angle. The optical characteristics of transmitting the excitation light L1 by the laser light in FIG. Here, the angle range above a specific incident angle, that is, the range of the incident angle that can reflect the excitation light L1 from the excitation light source is preferably 30 to 90 °, and more preferably 20 to 90 °. When the lower limit of the specific incident angle, that is, the incident angle at which the excitation light L1 from the excitation light source can be reflected is excessive, the amount of the excitation light L1 emitted through the window member 17 increases, and therefore the excitation light L1. It may be difficult to perform wavelength conversion with high efficiency.
As such a window member 17, a member in which a dielectric multilayer film made of TiO 2 and SiO 2 is formed on the surface of a plate-like translucent substrate can be used.

また、窓部材17は、他の特定の入射角以上の角度範囲において蛍光体層20から放射される蛍光L2を反射する光学特性を有するものであることが好ましい。ここで、他の特定の入射角以上の角度範囲、すなわち蛍光体層20から放射される蛍光L2を反射し得る入射角の範囲は、例えば55〜90°であることが好ましい。このような構成によれば、蛍光体層20から放射される蛍光L2のうち、窓部材17に対して他の特定の入射角未満の角度範囲で入射されたもののみが当該窓部材17を介して外部に出射されるため、指向性の高い光が得られる。   Moreover, it is preferable that the window member 17 has an optical characteristic which reflects the fluorescence L2 radiated | emitted from the fluorescent substance layer 20 in an angle range more than another specific incident angle. Here, it is preferable that the range of the incident angle which can reflect the fluorescence L2 radiated | emitted from the fluorescent substance layer 20, for example, the angle range beyond another specific incident angle is 55-90 degrees, for example. According to such a configuration, only the fluorescence L2 emitted from the phosphor layer 20 is incident on the window member 17 in an angle range less than another specific incident angle via the window member 17. Therefore, light having high directivity can be obtained.

例えば励起光L1が、波長445nm以下の青色領域の光で、蛍光体層20からの蛍光L2が、波長500〜570nmの緑色領域の光である場合において、用いられる窓部材17の分光反射特性を模式的に示すと、図6の通りである。図6の分光反射率曲線図において、縦軸は分光反射率(%)、横軸は入射光の波長(nm)を示し、実線a,a’は、入射角が0°のときの分光反射率曲線、破線b,b’は、入射角が30°のときの分光反射率曲線、破線c,c’は、入射角が55°のときの分光反射率曲線を示す。この窓部材17は、入射角が0°のときに、波長445nmの光および波長500〜570nmの光に対して良好な透過性を示し、入射角が30°のときに、波長445nmの光に対して良好な反射性を示すと共に波長500〜550nmの光に対して良好な透過性を示し、入射角が55°のときに、波長520〜570nmの光に対して良好な反射性を示すものである。   For example, when the excitation light L1 is light in the blue region with a wavelength of 445 nm or less and the fluorescence L2 from the phosphor layer 20 is light in the green region with a wavelength of 500 to 570 nm, the spectral reflection characteristics of the window member 17 used are This is schematically shown in FIG. In the spectral reflectance curve diagram of FIG. 6, the vertical axis indicates the spectral reflectance (%), the horizontal axis indicates the wavelength (nm) of the incident light, and the solid lines a and a ′ indicate the spectral reflection when the incident angle is 0 °. The rate curve, broken lines b and b ′ indicate the spectral reflectance curve when the incident angle is 30 °, and broken lines c and c ′ indicate the spectral reflectance curve when the incident angle is 55 °. The window member 17 exhibits good transmittance with respect to light having a wavelength of 445 nm and light having a wavelength of 500 to 570 nm when the incident angle is 0 °, and converts light having a wavelength of 445 nm when the incident angle is 30 °. It shows good reflectivity for the light with a wavelength of 500 to 550 nm and good reflectivity for the light with a wavelength of 520 to 570 nm when the incident angle is 55 °. It is.

上記の波長変換型光源装置においては、励起光源からの励起光L1が、特定の入射角未満の角度範囲で窓部材17に入射され、波長変換空間Sを介して直接、または窓部材17若しくは光反射部材10における光反射面10aに反射された後、蛍光体層20に照射される。そして、励起光L1が蛍光体層20に照射されることにより、当該蛍光体層20から励起光L1より波長が長い蛍光L2が放射される。この蛍光L2のうち、他の特定の入射角未満の角度範囲で窓部材17に入射した光は、当該窓部材17から外部に出射され、蛍光L2のうち、他の特定の入射角以上の角度範囲で窓部材17に入射した光は、当該窓部材17および光反射部材10の光反射面10aによって反射された後、窓部材17から外部に出射される。
一方、励起光源からの励起光L1が蛍光体層20に照射されると、蛍光体層20において励起光L1によるエネルギーの一部が熱エネルギーに変換されるため、当該蛍光体層20に熱が発生するが、この蛍光体層20に生じた熱は、蛍光体層20から光反射部材10を介して排熱用部材25に伝達され、当該排熱用部材25によって外部に排熱され、これにより、蛍光体層20が冷却される。
In the wavelength conversion type light source device described above, the excitation light L1 from the excitation light source is incident on the window member 17 in an angle range less than a specific incident angle, and directly or through the wavelength conversion space S or the window member 17 or light. After being reflected by the light reflecting surface 10a of the reflecting member 10, the phosphor layer 20 is irradiated. Then, by irradiating the phosphor layer 20 with the excitation light L1, fluorescence L2 having a longer wavelength than the excitation light L1 is emitted from the phosphor layer 20. Of this fluorescence L2, light that has entered the window member 17 in an angle range smaller than another specific incident angle is emitted to the outside from the window member 17, and the fluorescence L2 has an angle that is equal to or greater than another specific incident angle. The light incident on the window member 17 in the range is reflected by the window member 17 and the light reflecting surface 10a of the light reflecting member 10, and then emitted from the window member 17 to the outside.
On the other hand, when the phosphor layer 20 is irradiated with the excitation light L1 from the excitation light source, a part of the energy generated by the excitation light L1 is converted into thermal energy in the phosphor layer 20, so that the phosphor layer 20 is heated. Although generated, the heat generated in the phosphor layer 20 is transmitted from the phosphor layer 20 to the exhaust heat member 25 through the light reflecting member 10, and is exhausted to the outside by the exhaust heat member 25. Thus, the phosphor layer 20 is cooled.

上記の波長変換型光源装置によれば、励起光L1および蛍光L2が交錯する波長変換空間Sを形成する光反射部材10における光反射面10a上に、蛍光体層20が形成されているため、光反射部材10を構成する材料として熱伝導性を有するものを用いることにより、蛍光体層20に生じた熱を光反射部材10を介して排熱用部材25から外部に排熱することが可能であり、従って、蛍光体層20を冷却することができるので、高い発光効率が得られる。しかも、発光ホイールやこれを回転させるための回転機構を搭載することが不要であるため、装置の小型化を図ることができる。
また、窓部材17は、特定の入射角以上の角度範囲において励起光L1を反射する光学特性を有するため、高い光の利用率が得られる。
また、窓部材17が、他の特定の入射角以上の角度範囲において蛍光L2を反射する光学特性を有することにより、指向性の高い光を出射することができる。
According to the above wavelength conversion type light source device, since the phosphor layer 20 is formed on the light reflection surface 10a in the light reflection member 10 that forms the wavelength conversion space S where the excitation light L1 and the fluorescence L2 intersect, By using a material having thermal conductivity as the material constituting the light reflecting member 10, heat generated in the phosphor layer 20 can be exhausted from the heat exhausting member 25 to the outside through the light reflecting member 10. Therefore, since the phosphor layer 20 can be cooled, high luminous efficiency can be obtained. In addition, since it is not necessary to mount a light emitting wheel or a rotation mechanism for rotating the light emitting wheel, the apparatus can be reduced in size.
Further, since the window member 17 has an optical characteristic of reflecting the excitation light L1 in an angle range equal to or greater than a specific incident angle, a high light utilization rate can be obtained.
Further, since the window member 17 has an optical characteristic of reflecting the fluorescence L2 in an angle range equal to or greater than another specific incident angle, light with high directivity can be emitted.

以下、本発明の波長変換型光源装置の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
図5に示す構成に従い、下記の仕様の波長変換型光源装置を作製した。
〔励起光源〕
励起光源は、波長445nmの光を放射する青色発光ダイオードで、その出力が30Wのものである。
〔光反射部材〕
基体の材質は銅で、基体全体の寸法は、縦幅が20mm、横幅が10mm、奥行きが5mmである。凹部は、長軸の長さが7.9mm、短軸の長さが5.4mmの楕円球による部分楕円球面を有し、長軸に沿った断面において、楕円球の中心点から凹部の開口縁を結ぶ2つの直線のなす角が120°のものである。また、凹部の内面(光反射面)は、銀よりなる厚みが数百ナノメートルの光反射層によって形成されている。
〔窓部材〕
窓部材は、図7に示す分光反射特性を有するものである。図7において、縦軸は入射光の分光反射率(%)、横軸は入射光の波長(nm)を示し、曲線aは、入射角が0°のときの分光反射率曲線、曲線bは、入射角が20°のときの分光反射率曲線、曲線cは、入射角が30°のときの分光反射率曲線を示す。
〔蛍光体層〕
蛍光体層は、シリコーン樹脂中にβ−サイアロン系蛍光体が含有されてなり、その厚みが40μmである。
Specific examples of the wavelength conversion light source device of the present invention will be described below, but the present invention is not limited to these examples.
According to the configuration shown in FIG. 5, a wavelength conversion type light source device having the following specifications was produced.
[Excitation light source]
The excitation light source is a blue light emitting diode that emits light having a wavelength of 445 nm, and its output is 30 W.
(Light reflecting member)
The base material is copper, and the overall dimensions of the base are 20 mm in length, 10 mm in width, and 5 mm in depth. The concave portion has a partial ellipsoidal sphere formed by an elliptical sphere having a major axis length of 7.9 mm and a minor axis length of 5.4 mm. In the cross section along the major axis, the concave portion opens from the center point of the elliptical sphere. The angle between two straight lines connecting the edges is 120 °. Further, the inner surface (light reflecting surface) of the recess is formed by a light reflecting layer made of silver and having a thickness of several hundred nanometers.
(Window member)
The window member has spectral reflection characteristics shown in FIG. In FIG. 7, the vertical axis represents the spectral reflectance (%) of incident light, the horizontal axis represents the wavelength (nm) of incident light, the curve a represents the spectral reflectance curve when the incident angle is 0 °, and the curve b represents The spectral reflectance curve when the incident angle is 20 °, and the curve c show the spectral reflectance curve when the incident angle is 30 °.
(Phosphor layer)
The phosphor layer is made of a silicone resin containing a β-sialon phosphor and has a thickness of 40 μm.

上記の波長変換型光源装置における窓部材から出射される蛍光の光量を、図8に示す測定系を用い、以下のようにして測定した。
ファン7によって、波長変換型光源装置における排熱用部材25に冷却風を供給しながら、励起光源からの励起光を、その光路上に配置された、コリメータレンズ1、45°の角度に傾斜した光フィルタ2および集束レンズ3を介して波長変換型光源装置における窓部材17に入射した。ここで、光フィルタ2は、励起光源からの励起光を透過し、蛍光体層20からの蛍光を反射する光学特性を有するものである。そして、波長変換型光源装置における窓部材17から出射した蛍光を、光フィルタ2および集束レンズ系4を介して積分球5内に入射し、当該積分球5に設けられた受光器(図示省略)により、当該蛍光の光量を測定したところ、4000Lm(発光効率が133Lm/W)であり、高い効率で蛍光が放射されることが確認された。また、窓部材17への励起光の入射を開始してから10分間経過した後に、窓部材17から出射した蛍光の光量を測定したところ、蛍光の光量は大きな変化がなく安定に維持されていることが確認された。
The light quantity of the fluorescence emitted from the window member in the wavelength conversion type light source device was measured as follows using the measurement system shown in FIG.
While the cooling air is supplied to the exhaust heat member 25 in the wavelength conversion type light source device by the fan 7, the excitation light from the excitation light source is inclined at an angle of 45 ° with the collimator lens 1 arranged on the optical path. The light enters the window member 17 in the wavelength conversion type light source device through the optical filter 2 and the focusing lens 3. Here, the optical filter 2 has an optical characteristic of transmitting the excitation light from the excitation light source and reflecting the fluorescence from the phosphor layer 20. Then, the fluorescence emitted from the window member 17 in the wavelength conversion type light source device enters the integrating sphere 5 through the optical filter 2 and the focusing lens system 4, and a light receiver (not shown) provided in the integrating sphere 5. As a result, the light quantity of the fluorescence was measured to be 4000 Lm (the luminous efficiency was 133 Lm / W), and it was confirmed that the fluorescence was emitted with high efficiency. Further, when the amount of fluorescent light emitted from the window member 17 was measured after 10 minutes had passed since the excitation light was incident on the window member 17, the amount of fluorescent light remained stable with no significant change. It was confirmed.

上記の波長変換型光源装置に基づき、熱構造解析により、蛍光体層の厚みを変化させたときの蛍光体層の表面温度のシミュレーションを行い、蛍光体層の表面温度と蛍光体層との厚みとの関係を調べた。結果を図9に示す。図9において、縦軸は蛍光体層の表面温度(℃)、横軸は蛍光体層の厚みを示し、aは光反射部材の背面(図8において右面)の温度が30℃のときのもの、bは光反射部材の背面の温度が0℃のときのものである。この図から、蛍光体層の表面温度は、蛍光体層の厚みによって変化することが理解される。
また、光反射部材の背面の温度が30℃のときの蛍光体層の表面温度のシミュレーションを行ったところ、厚みが55μm以下の蛍光体層を形成することにより、蛍光体層の表面温度が100℃以下に維持されることが確認された。
Based on the wavelength conversion type light source device, the surface temperature of the phosphor layer is simulated by changing the thickness of the phosphor layer by thermal structure analysis, and the surface temperature of the phosphor layer and the thickness of the phosphor layer. I investigated the relationship with. The results are shown in FIG. In FIG. 9, the vertical axis indicates the surface temperature (° C.) of the phosphor layer, the horizontal axis indicates the thickness of the phosphor layer, and a indicates the temperature when the temperature of the back surface (right side in FIG. 8) of the light reflecting member is 30 ° C. , B are those when the temperature of the back surface of the light reflecting member is 0 ° C. From this figure, it is understood that the surface temperature of the phosphor layer varies depending on the thickness of the phosphor layer.
Further, when the surface temperature of the phosphor layer when the temperature of the back surface of the light reflecting member was 30 ° C. was simulated, the surface temperature of the phosphor layer was 100 by forming the phosphor layer having a thickness of 55 μm or less. It was confirmed that the temperature was maintained below ℃.

1 コリメータレンズ
2 光フィルタ
3 集束レンズ
4 集束レンズ系
5 積分球
7 ファン
10 光反射部材
10a 光反射面
11 基体
12 光反射層
15 励起光入射用窓部材
16 蛍光出射用窓部材
17 窓部材
20 蛍光体層
25 排熱用部材
D 凹部
K 貫通孔
L1 励起光
L2 蛍光
S 波長変換空間
DESCRIPTION OF SYMBOLS 1 Collimator lens 2 Optical filter 3 Focusing lens 4 Focusing lens system 5 Integrating sphere 7 Fan 10 Light reflection member 10a Light reflection surface 11 Base 12 Light reflection layer 15 Excitation light incident window member 16 Fluorescence emission window member 17 Window member 20 Fluorescence Body layer 25 Exhaust heat member D Recess K K Through hole L1 Excitation light L2 Fluorescence S Wavelength conversion space

Claims (7)

励起光源からの励起光を受けて波長変換する波長変換型光源装置において、
励起光源からの励起光が入射される励起光入射用窓部材と、この励起光入射用窓部材を介して入射された励起光を受けて蛍光を放射する蛍光体層と、この蛍光体層からの蛍光が出射される蛍光出射用窓部材と、前記励起光および前記蛍光を反射する光反射面が形成された光反射部材とを有すると共に、前記励起光入射用窓部材、前記蛍光出射用窓部材および前記光反射部材における光反射面に包囲されることによって、前記励起光および前記蛍光が交錯する波長変換空間が形成されてなり、
前記蛍光体層は、前記波長変換空間内における前記光反射部材の光反射面上に形成されており、
前記励起光入射用窓部材は、前記励起光を透過すると共に前記蛍光を反射する光学特性を有し、前記蛍光出射用窓部材は、前記蛍光を透過すると共に前記励起光を反射する光学特性を有することを特徴とする波長変換型光源装置。
In the wavelength conversion type light source device that receives the excitation light from the excitation light source and converts the wavelength,
From the excitation light incident window member into which the excitation light from the excitation light source is incident, a phosphor layer that emits fluorescence upon receiving the excitation light incident through the excitation light incident window member, and from the phosphor layer A fluorescence emission window member from which the fluorescence is emitted, and a light reflection member on which the excitation light and a light reflection surface for reflecting the fluorescence are formed, the excitation light incidence window member, and the fluorescence emission window By being surrounded by the light reflecting surface of the member and the light reflecting member, a wavelength conversion space where the excitation light and the fluorescence intersect is formed,
The phosphor layer is formed on a light reflecting surface of the light reflecting member in the wavelength conversion space,
The excitation light incident window member has an optical characteristic of transmitting the excitation light and reflecting the fluorescence, and the fluorescence emission window member has an optical characteristic of transmitting the fluorescence and reflecting the excitation light. A wavelength conversion type light source device comprising:
前記光反射部材は、内周面に光反射面が形成された筒状のものであり、当該光反射部材における両端の開口を塞ぐよう、前記励起光入射用窓部材および前記蛍光出射用窓部材が配置されていることを特徴とする請求項1に記載の波長変換型光源装置。   The light reflecting member is a cylindrical member having a light reflecting surface formed on an inner peripheral surface, and the excitation light incident window member and the fluorescence emitting window member are closed so as to close the openings at both ends of the light reflecting member. The wavelength conversion type light source device according to claim 1, wherein: 前記光反射部材は、内面に光反射面が形成された凹部を有すると共に当該凹部に通ずる貫通孔を有し、当該光反射部材の貫通孔の開口を塞ぐよう、前記励起光入射用窓部材が配置され、当該光反射部材の凹部の開口を塞ぐよう、前記蛍光出射用窓部材が配置されていることを特徴とする請求項1に記載の波長変換型光源装置。   The light reflecting member has a recess having a light reflecting surface formed on the inner surface and has a through hole that communicates with the recess, and the excitation light incident window member closes the opening of the through hole of the light reflecting member. The wavelength conversion type light source device according to claim 1, wherein the fluorescence emission window member is disposed so as to close the opening of the concave portion of the light reflecting member. 励起光源からの励起光を受けて波長変換する波長変換型光源装置において、
内面に光反射面が形成された凹部を有する光反射部材と、この光反射部材の凹部の開口を塞ぐよう配置された、励起光源からの励起光が入射されると共に後記蛍光体層からの蛍光が出射される窓部材と、この窓部材を介して入射された励起光を受けて蛍光を放射する蛍光体層と、前記励起光および前記蛍光を反射する光反射面が形成された光反射部材とを有すると共に、前記窓部材および前記光反射部材における光反射面に包囲されることによって、前記励起光および前記蛍光が交錯する波長変換空間が形成されてなり、
前記蛍光体層は、前記波長変換空間内における前記光反射部材の光反射面上に形成されており、
前記窓部材は、特定の入射角以上の角度範囲において前記励起光を反射する光学特性を有することを特徴とする波長変換型光源装置。
In the wavelength conversion type light source device that receives the excitation light from the excitation light source and converts the wavelength,
A light reflecting member having a recess having a light reflecting surface formed on the inner surface, and excitation light from an excitation light source disposed so as to close the opening of the recess of the light reflecting member and fluorescence from a phosphor layer described later A light reflecting member formed with a window member from which light is emitted, a phosphor layer that receives excitation light incident through the window member and emits fluorescence, and a light reflecting surface that reflects the excitation light and the fluorescence And is surrounded by a light reflecting surface in the window member and the light reflecting member, thereby forming a wavelength conversion space where the excitation light and the fluorescence intersect,
The phosphor layer is formed on a light reflecting surface of the light reflecting member in the wavelength conversion space,
The wavelength conversion type light source device, wherein the window member has an optical characteristic of reflecting the excitation light in an angle range greater than a specific incident angle.
前記窓部材は、他の特定の入射角以上の角度範囲において前記蛍光を反射する光学特性を有することを特徴とする請求項4に記載の波長変換型光源装置。   5. The wavelength conversion type light source device according to claim 4, wherein the window member has an optical characteristic of reflecting the fluorescence in an angle range equal to or greater than another specific incident angle. 前記光反射部材は、熱伝導性を有することを特徴とする請求項1乃至請求項5のいずれかに記載の波長変換型光源装置。   6. The wavelength conversion type light source device according to claim 1, wherein the light reflecting member has thermal conductivity. 前記蛍光体層を構成する蛍光体物質は、波長445nm以下の青色領域の励起光を受けて蛍光を放射するものであることを特徴とする請求項1乃至請求項6のいずれかに記載の波長変換型光源装置。   7. The wavelength according to claim 1, wherein the phosphor material constituting the phosphor layer emits fluorescence upon receiving excitation light in a blue region having a wavelength of 445 nm or less. Conversion type light source device.
JP2011235775A 2011-10-27 2011-10-27 Wavelength conversion type light source device Pending JP2013093268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235775A JP2013093268A (en) 2011-10-27 2011-10-27 Wavelength conversion type light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235775A JP2013093268A (en) 2011-10-27 2011-10-27 Wavelength conversion type light source device

Publications (1)

Publication Number Publication Date
JP2013093268A true JP2013093268A (en) 2013-05-16

Family

ID=48616240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235775A Pending JP2013093268A (en) 2011-10-27 2011-10-27 Wavelength conversion type light source device

Country Status (1)

Country Link
JP (1) JP2013093268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103836349A (en) * 2013-12-31 2014-06-04 吴震 Light emitting device
JP2018128519A (en) * 2017-02-07 2018-08-16 株式会社小糸製作所 Light source device
WO2021187207A1 (en) * 2020-03-16 2021-09-23 ソニーグループ株式会社 Illuminating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103836349A (en) * 2013-12-31 2014-06-04 吴震 Light emitting device
CN103836349B (en) * 2013-12-31 2023-04-07 吴震 Light emitting device
JP2018128519A (en) * 2017-02-07 2018-08-16 株式会社小糸製作所 Light source device
WO2021187207A1 (en) * 2020-03-16 2021-09-23 ソニーグループ株式会社 Illuminating device

Similar Documents

Publication Publication Date Title
US10670951B2 (en) Wavelength conversion device, light-emitting device and projection system
JP5257420B2 (en) Light source device
JP5970661B2 (en) Wavelength conversion member, light source, and automotive headlamp
JP5269115B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, VEHICLE HEADLAMP, LIGHTING DEVICE, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5598974B2 (en) Lighting device
JP6111960B2 (en) Fluorescent light source device
JP2013130605A (en) Light source device and projector
JP5373742B2 (en) Light emitting device, vehicle headlamp, lighting device, and laser element
JP6457099B2 (en) Wavelength conversion member and light emitting device
JP5675248B2 (en) Light source device and lighting device
TWI598540B (en) Wavelength converting module and light source module using the same
JP5949872B2 (en) Fluorescent light source device
JP2013210439A (en) Light source device and projector
JP2013093268A (en) Wavelength conversion type light source device
CN209980000U (en) Novel transmission type wavelength conversion device and light source structure thereof
CN110764352B (en) Wavelength conversion device, laser fluorescent light source and projection equipment
CN114815483B (en) Transmission type wavelength conversion member and laser light source
JP6266796B2 (en) Light emitting device, lighting device, spotlight, vehicle headlamp, and endoscope
WO2017006796A1 (en) Grating element and light-emitting device
TWI767602B (en) Wavelength converting device
JP5648676B2 (en) Light source device
CN117515471A (en) Wavelength conversion module and light-emitting device
CN117515470A (en) Wavelength conversion module and light-emitting device
US20170219185A1 (en) Phosphor element