JP2013091433A - Plastic-worked article, method for manufacturing the same, torsion beam, torsion beam assy, torsion beam suspension device, and method for manufacturing torsion beam - Google Patents

Plastic-worked article, method for manufacturing the same, torsion beam, torsion beam assy, torsion beam suspension device, and method for manufacturing torsion beam Download PDF

Info

Publication number
JP2013091433A
JP2013091433A JP2011234995A JP2011234995A JP2013091433A JP 2013091433 A JP2013091433 A JP 2013091433A JP 2011234995 A JP2011234995 A JP 2011234995A JP 2011234995 A JP2011234995 A JP 2011234995A JP 2013091433 A JP2013091433 A JP 2013091433A
Authority
JP
Japan
Prior art keywords
torsion beam
section
shaped
manufacturing
closed cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011234995A
Other languages
Japanese (ja)
Other versions
JP5927841B2 (en
Inventor
Manabu Wada
学 和田
Keinosuke Iguchi
敬之助 井口
Takasato Fukushi
孝聡 福士
Masaaki Mizumura
正昭 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011234995A priority Critical patent/JP5927841B2/en
Publication of JP2013091433A publication Critical patent/JP2013091433A/en
Application granted granted Critical
Publication of JP5927841B2 publication Critical patent/JP5927841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plastic-worked article formed by deforming a material having a cylindrical part from the outside to the inside of the cylindrical part, configured to improve fatigue strength against an external force, such as a torsional force to be applied in a circumferential direction of the cylindrical part, and to provide a method for manufacturing the plastic-worked article, a torsion beam manufactured by applying the method for manufacturing the plastic-worked article, a torsion beam Assy, a torsion beam suspension device, and a method for manufacturing a torsion beam.SOLUTION: The method for manufacturing a torsion beam for connecting right and left arms in a suspension device includes: adding deformation from the outside to the inside in the longitudinal direction of a material tube to form a substantially V shape or a substantially U shape; applying circumferential tensile stress to the substantially V-shaped or substantially U-shaped closed cross section; uniformly adjusting the circumferential stress distributed in the thickness direction of the material constituting the substantially V-shape or U-shape; and reducing residual stress after spring-back.

Description

この発明は、疲労を抑制することが可能な塑性加工品、塑性加工品の製造方法、トーションビーム、トーションビームAssy、トーションビーム式サスペンション装置、トーションビームの製造方法に関する。   The present invention relates to a plastic processed product capable of suppressing fatigue, a method of manufacturing a plastic processed product, a torsion beam, a torsion beam assembly, a torsion beam suspension device, and a method of manufacturing a torsion beam.

周知のように、プラント等の構成部材から自動車用部品まで、筒状部を有する材料の該筒状部に外方から内方に向かって変位する成形を施すことが、種々の産業分野で広く用いられている。
例えば、自動車用のトーションビーム式サスペンション装置は、トーションビームと、左右の車輪を支持する左右一対のアームと、スプリング受部と、スプリングと、アブソーバとを備えており、左右のアームはトーションビームにより連結され、トーションビームは車体の左右側から中央に伸びるピボット軸を介して車体と揺動可能に接続されている。
As is well known, it is widely used in various industrial fields to form a cylindrical part of a material having a cylindrical part, which is displaced from the outside to the inside, from components such as plants to automobile parts. It is used.
For example, a torsion beam type suspension device for an automobile includes a torsion beam, a pair of left and right arms that support left and right wheels, a spring receiving portion, a spring, and an absorber, and the left and right arms are connected by a torsion beam. The torsion beam is swingably connected to the vehicle body via a pivot shaft extending from the left and right sides of the vehicle body to the center.

トーションビームは、左右のトレーリングアームと接続される接合部と、トーションビームの長手方向と直交する閉断面が略V字状又は略U字状の閉断面とされ路面から車体が受ける外力を主に捻れ剛性により車体のロール剛性を確保するトーション部とを備え、例えば、パイプをその軸線方向に沿って塑性加工することにより成形されている(例えば、特許文献1参照。)。   The torsion beam has a joint portion connected to the left and right trailing arms, and a closed section perpendicular to the longitudinal direction of the torsion beam has a substantially V-shaped or substantially U-shaped closed section, and the external force received by the vehicle body from the road surface is mainly twisted. And a torsion part that secures the roll rigidity of the vehicle body by rigidity, and is formed by, for example, plastic processing of a pipe along its axial direction (see, for example, Patent Document 1).

しかしながら、トーションビーム式サスペンション装置のトーションビームは、充分なロール剛性を備えていても、路面からの外力によって、車輪、アームを介して複雑な応力分布が発生して、車両の使用状況によりトーションビームの疲労が進展し易くなる場合があり、トーションビームに発生する疲労亀裂を抑制することに対する技術が開示されている(例えば、特許文献2参照。)。   However, even if the torsion beam of the torsion beam suspension device has sufficient roll rigidity, a complex stress distribution is generated via the wheels and arms due to the external force from the road surface, and the torsion beam fatigues depending on the use condition of the vehicle. A technique for suppressing fatigue cracks that occur in a torsion beam in some cases is disclosed (for example, see Patent Document 2).

特開2011−635号公報JP 2011-635 A 特開2007−76410号公報JP 2007-76410 A

しかしながら、トーションビームが、上述のように路面から受ける外力によって疲労が進展し易くなることは、筒状部を有する鋼材に成形を施した場合に共通している。そこで、発明者らは、筒状部を有する鋼材の該筒状部に外方から内方に向かう変位を成形し、この成形部における疲労を鋭意研究した結果、例えば、圧縮応力が減少して引張応力が増加した場合でも、成形部の厚さ方向に分布する周方向の応力(圧縮応力、引張応力)分布を均一に近づけて引張応力の平均値を低くすることにより、疲労の進展が抑制されて疲労強度が向上するとの知見を得た。   However, the fact that the torsion beam is easily fatigued by the external force received from the road surface as described above is common when the steel material having the cylindrical portion is molded. Therefore, the inventors formed a displacement from the outside to the inside of the tubular portion of the steel material having the tubular portion, and as a result of earnestly studying fatigue in the formed portion, for example, the compression stress is reduced. Even when tensile stress increases, fatigue progress is suppressed by reducing the average value of tensile stress by making the circumferential stress distribution (compressive stress, tensile stress) distributed in the thickness direction of the molded part closer to uniform. And gained the knowledge that fatigue strength is improved.

本発明は、このような事情を考慮してなされたもので、筒状部を有する材料に筒状部の外方から内方に向かう変位が成形された塑性加工品に関して、筒状部の周方向に作用する捻り力等の外力に対する疲労強度が向上可能な塑性加工品、この塑性加工品の製造方法、この塑性加工品の製造方法を応用して製造したトーションビーム、トーションビームAssy、トーションビーム式サスペンション装置、及びトーションビームの製造方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and relates to a plastic work product in which a displacement from the outside of the tubular portion toward the inside is formed in the material having the tubular portion. Plastic processed product capable of improving fatigue strength against external force such as torsional force acting in the direction, manufacturing method of this plastic processed product, torsion beam manufactured by applying this manufacturing method of plastic processed product, torsion beam assembly, torsion beam suspension device And a method of manufacturing a torsion beam.

上記課題を解決するために、この発明は以下の手段を提案している。
請求項1に記載の発明は、金属材料、又は金属と樹脂とからなる複合材料により構成されて筒状部を有する材料に前記筒状部の外方から内方に向かう変位を与えて成形部とした塑性加工品の製造方法であって、前記筒状部を外方から内方に向かって変位する成形部を成形し、前記成形部に、前記成形部が構成する閉断面に周方向の引張応力を付与して、前記成形部の厚さ方向に分布する周方向の応力を均一に近づけ、スプリングバック後の残留応力を低減することを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
According to the first aspect of the present invention, a molded part is formed by applying a displacement inward from the outside of the cylindrical part to a material having a cylindrical part made of a metal material or a composite material composed of a metal and a resin. A method for manufacturing a plastic processed product, comprising: forming a molded part that displaces the cylindrical part from the outside to the inside; and forming the molded part in a circumferential direction on a closed cross section formed by the molded part. By applying a tensile stress, the stress in the circumferential direction distributed in the thickness direction of the molded part is made closer to uniform, and the residual stress after springback is reduced.

請求項5に記載の発明は、塑性加工品であって、請求項1〜4に記載の塑性加工品の製造方法を用いて製造したことを特徴とする。   The invention according to claim 5 is a plastic work product, and is manufactured using the method for producing a plastic work product according to any one of claims 1 to 4.

この発明に係る塑性加工品、塑性加工品の製造方法によれば、筒状部の外方から内方に向かう変位を与えて成形部とする場合に、筒状部に成形部を成形しながら、又は成形した後に、成形部が構成する閉断面に周方向(閉断面を構成する肉が延在する方向)の引張応力を付与するので、筒状部の厚さ方向に分布する周方向の応力(圧縮応力、引張応力)を均一に近づけることができる。その結果、スプリングバック後に対象部位における引張応力の最大値又は平均値を低くすることができ、圧縮応力が減少して引張応力が増加した場合でも、疲労亀裂の発生が抑制されて疲労強度を向上することができる。   According to the plastic processed product and the method of manufacturing a plastic processed product according to the present invention, when a molded part is formed by giving a displacement from the outside of the cylindrical part to the inside, the molded part is molded into the cylindrical part. Or, after molding, a tensile stress in the circumferential direction (the direction in which the meat constituting the closed section extends) is applied to the closed section formed by the molded section, so that the circumferential direction distributed in the thickness direction of the tubular section Stress (compressive stress, tensile stress) can be made close to uniform. As a result, the maximum or average value of the tensile stress at the target site can be lowered after springback, and even if the compressive stress decreases and the tensile stress increases, the occurrence of fatigue cracks is suppressed and the fatigue strength is improved. can do.

ここで、筒状部を外方から内方に向かって変位する成形部とは、筒状部に外方から内方に窪む凹部が形成されることにより、材料(例えば、素材管等)の厚さ方向に圧縮応力と引張応力を伴う変位が形成されることをいい、外方から内方への押圧によるプレス成形、ハイドロフォーム成形、押圧部材による成形の他、周方向の座屈等により成形させてもよい。また、閉断面の周方向における外方から内方への変位に加えて、長手方向において外方から内方に変位していてもよい。   Here, the molded part that displaces the cylindrical part from the outside to the inside is a material (for example, a raw material pipe or the like) formed by forming a concave part recessed from the outside to the inside in the cylindrical part. This means that a displacement with compressive stress and tensile stress is formed in the thickness direction of the material. Press forming by pressing from outside to inside, hydroforming, forming by pressing member, buckling in the circumferential direction, etc. It may be formed by. Further, in addition to the displacement from the outside to the inside in the circumferential direction of the closed section, it may be displaced from the outside to the inside in the longitudinal direction.

また、成形部が構成する閉断面における周方向の引張応力の付与とは、成形部の厚さ方向に分布する周方向の応力を均一に近づけるのみでもよく、引張応力により変位が形成されることが好適であり、形成された変位がスプリングバック後に復元することがさらに好適である。
また、成形部が構成する閉断面における周方向の引張応力の付与は、閉断面の周方向に引張力を付与して行なう場合のほか、閉断面の側部に外力(圧力を含む)を付与し、又は対象部位近傍にルータ等により変位を与えて引張応力を形成してもよい。さらに、軸方向に圧縮応力を加えることによって、周方向に引張応力を形成してもよい。
In addition, the application of the circumferential tensile stress in the closed cross section formed by the molded part may only be to bring the circumferential stress distributed in the thickness direction of the molded part closer to uniform, and the displacement is formed by the tensile stress. It is more preferable that the formed displacement is restored after the spring back.
Moreover, in addition to applying tensile force in the circumferential direction of the closed cross-section, the application of external force (including pressure) to the side of the closed cross-section is applied to the circumferential stress in the closed cross-section formed by the molded part. Alternatively, a tensile stress may be formed by applying displacement by a router or the like in the vicinity of the target part. Furthermore, a tensile stress may be formed in the circumferential direction by applying a compressive stress in the axial direction.

また、この明細書において、金属材料、又は金属と樹脂とからなる複合材料により構成される材料とは、鉄鋼、アルミニウム等の金属(純金属、合金を含む)、これら金属と樹脂から構成される複合材料をいい、弾塑性変形が生じるものをいう。
複合材料の形態としては、複合材料の広がる方向に沿って、樹脂と金属が層状に配置されたクラッド構造、樹脂と金属繊維が配置されたもの、金属に樹脂板(クラッド)、樹脂繊維が配置されたもの、及び複合材料の広がる方向と交差(例えば、直交)する方向に沿って、樹脂材料と金属板が層状に配置されたもの、金属繊維が配置されたもの、金属内に樹脂板、樹脂繊維が配置されたもの、樹脂材料内に金属粒子が分散されたもの、金属内に樹脂が分散されたものを含むものとする。
Further, in this specification, a metal material or a material composed of a composite material composed of a metal and a resin is composed of metals (including pure metals and alloys) such as steel and aluminum, and these metals and resins. A composite material that is elastoplastically deformed.
As the form of the composite material, a clad structure in which resin and metal are arranged in layers along the spreading direction of the composite material, a structure in which resin and metal fiber are arranged, a resin plate (clad), and resin fiber are arranged on the metal A resin material and a metal plate arranged in a layered manner along a direction intersecting (for example, orthogonal) with the spreading direction of the composite material, a metal fiber arranged, a resin plate in the metal, It is intended to include those in which resin fibers are arranged, those in which metal particles are dispersed in a resin material, and those in which a resin is dispersed in a metal.

請求項2に記載の発明は、請求項1に記載の塑性加工品の製造方法であって、前記成形部に対する前記周方向の応力は、前記成形部の対象部位の外方に隙間を設けて前記成形部により構成される閉断面の内方を加圧することを特徴とする。   Invention of Claim 2 is a manufacturing method of the plastic workpiece of Claim 1, Comprising: The said stress of the said circumferential direction with respect to the said shaping | molding part provides a clearance gap outside the object site | part of the said shaping | molding part. The inside of the closed cross section constituted by the molding part is pressurized.

この発明に係る塑性加工品の製造方法によれば、成形部の外方に隙間を設けて、成形部により構成される閉断面の内方をハイドロフォームの液圧などにより加圧するので、厚さ方向に分布する周方向の応力を効率的に均一に近づけることができる。また、対象部位の外方に隙間を設けることにより、加圧によって対象部位の近傍のみが選択的に加工され、周方向の応力分布が大きい箇所のみ、厚さ方向に分布する周方向の応力を選択的に均一に近付けることができる。   According to the method of manufacturing a plastic processed product according to the present invention, a gap is provided on the outer side of the molded part, and the inner side of the closed cross section formed by the molded part is pressurized by the hydraulic pressure of the hydroform. The stress in the circumferential direction distributed in the direction can be made close to uniformity efficiently. In addition, by providing a gap outside the target part, only the vicinity of the target part is selectively processed by pressurization, and only the part having a large circumferential stress distribution is subjected to the circumferential stress distributed in the thickness direction. It is possible to selectively approach uniform.

請求項3に記載の発明は、請求項1に記載の塑性加工品の製造方法であって、前記成形部に対する前記周方向の応力は、前記成形部により構成される閉断面の内方を加圧しながら、前記筒状部の端部から材料を軸押しすることによって与えられることを特徴とする。   The invention according to claim 3 is the method of manufacturing a plastic workpiece according to claim 1, wherein the stress in the circumferential direction with respect to the molded part is applied to the inside of the closed cross section constituted by the molded part. It is provided by pressing the material from the end of the cylindrical part while pressing.

この発明に係る塑性加工品の製造方法によれば、材料の軸押しによって周方向に引張応力が形成されるので、厚さ方向に分布する周方向の応力を効率的に均一に近づけることができる。また、材料を軸押しすることにより、周方向に材料を伸延せずに引張応力を付与することができ、材料の肉厚の減少を伴わずに、厚さ方向に分布する周方向の応力を均一に近付けることができる。   According to the method for manufacturing a plastic processed product according to the present invention, since tensile stress is formed in the circumferential direction by axial pressing of the material, the circumferential stress distributed in the thickness direction can be efficiently and uniformly approximated. . Also, by axially pushing the material, tensile stress can be applied without extending the material in the circumferential direction, and circumferential stress distributed in the thickness direction can be applied without reducing the thickness of the material. Can be approached uniformly.

請求項4に記載の発明は、請求項1に記載の塑性加工品の製造方法であって、前記成形部に対する前記周方向の応力は、前記成形部の対象部位の外方に隙間を設けて、前記成形部により構成される閉断面の内方を加圧しながら、前記筒状部の端部から材料を軸押しすることによって与えられることを特徴とする。   Invention of Claim 4 is a manufacturing method of the plastic workpiece of Claim 1, Comprising: The said stress of the said circumferential direction with respect to the said shaping | molding part provides a clearance gap outside the object site | part of the said shaping | molding part. The material is provided by axially pressing the material from the end of the cylindrical part while pressurizing the inside of the closed section constituted by the molding part.

この発明に係る塑性加工品の製造方法によれば、成形部の外方に隙間を設けて、成形部により構成される閉断面の内方を液圧などにより加圧するので、厚さ方向に分布する周方向の応力を効率的に均一に近づけることができる。また、対象部位の外方に隙間を設けることにより、加圧によって対象部位の近傍のみが選択的に加工され、周方向の応力分布が大きい箇所のみ、厚さ方向に分布する周方向の応力を選択的に均一に近付けることができる。さらに、対象部位の外方に材料が塑性加工されて周方向に材料が伸延するが、材料を軸押しすることにより、材料の肉厚の減少を伴わずに、厚さ方向に分布する周方向の応力を均一に近づけることができる。   According to the method for manufacturing a plastic processed product according to the present invention, a gap is provided on the outer side of the molded part, and the inner side of the closed cross section constituted by the molded part is pressurized by hydraulic pressure or the like. It is possible to efficiently bring the circumferential stress to be close uniformly. In addition, by providing a gap outside the target part, only the vicinity of the target part is selectively processed by pressurization, and only the part having a large circumferential stress distribution is subjected to the circumferential stress distributed in the thickness direction. It is possible to selectively approach uniform. In addition, the material is plastically processed outward from the target part, and the material extends in the circumferential direction. By axially pushing the material, the circumferential direction is distributed in the thickness direction without reducing the thickness of the material. The stress can be made close to uniform.

請求項6に記載の発明は、サスペンション装置において左右のアームを連結し、車体の幅方向と直交する断面において、前記車体の前後方向における前端及び後端間が上下方向のいずれかに突出する略V字状又は略U字状の閉断面とされたトーションビームの製造方法であって、素材管の長手方向の少なくとも一部に前記素材管の外方から内方に向かう変位を与えて前記略V字状又は略U字状の閉断面を成形し、前記略V字状又は略U字状の閉断面に周方向の引張応力を付与して、前記略V字状又は略U字状を構成する材料の厚さ方向に分布する周方向の応力を均一に近づけることを特徴とする。   According to a sixth aspect of the present invention, the left and right arms are connected to each other in the suspension device, and in a cross section orthogonal to the width direction of the vehicle body, the front end and the rear end in the front-rear direction of the vehicle body protrude in either the vertical direction. A method for manufacturing a torsion beam having a V-shaped or substantially U-shaped closed cross section, wherein at least a part of the material tube in the longitudinal direction is displaced from the outside of the material tube toward the inside to form the substantially V A substantially U-shaped or substantially U-shaped closed section is formed, and a tensile stress in the circumferential direction is applied to the substantially V-shaped or substantially U-shaped closed section to constitute the substantially V-shaped or substantially U-shaped It is characterized in that the stress in the circumferential direction distributed in the thickness direction of the material to be made is made close to uniform.

請求項10に記載の発明は、トーションビームであって、請求項6〜9に記載のトーションビームの製造方法を用いて製造したことを特徴とする。   A tenth aspect of the present invention is a torsion beam, which is manufactured using the torsion beam manufacturing method according to the sixth to ninth aspects.

請求項11に記載の発明は、トーションビームAssyであって、請求項10に記載のトーションビームを備えることを特徴とする。   The invention described in claim 11 is a torsion beam Assy, comprising the torsion beam described in claim 10.

請求項12に記載の発明は、トーションビーム式サスペンション装置であって、請求項11に記載のトーションビームを備えることを特徴とする。   A twelfth aspect of the present invention is a torsion beam suspension device, comprising the torsion beam according to the eleventh aspect.

この発明に係るトーションビームの製造方法、トーションビーム、トーションビームAssy、トーションビーム式サスペンション装置によれば、トーションビームに略V字状又は略U字状の閉断面を成形した後に、閉断面に周方向の引張応力を付与するので、材料の厚さ方向に分布する周方向の応力を均一に近づけることができる。
その結果、スプリングバック後に圧縮応力が減少して引張応力が増加した場合でも、対象部位における引張応力の平均値を低くなって疲労亀裂の発生が抑制され、ひいては所望のサスペンション性能を確保しつつトーションビームの疲労強度を向上することができる。
According to the torsion beam manufacturing method, torsion beam, torsion beam assembly, and torsion beam suspension device according to the present invention, after forming a substantially V-shaped or U-shaped closed section on the torsion beam, a circumferential tensile stress is applied to the closed section. Therefore, the stress in the circumferential direction distributed in the thickness direction of the material can be made close to uniform.
As a result, even if the compressive stress decreases after springback and the tensile stress increases, the average value of the tensile stress at the target site is lowered, the occurrence of fatigue cracks is suppressed, and as a result, the torsion beam is secured while ensuring the desired suspension performance. The fatigue strength of can be improved.

請求項7に記載の発明は、請求項6に記載のトーションビームの製造方法であって、前記略V字状又は略U字状の閉断面における周方向の引張応力を付与するために、疲労強度向上の対象とされる前記略V字状又は略U字状の閉断面の外方に隙間を設けて、前記閉断面の内方を加圧することを特徴とする。   The invention according to claim 7 is the method of manufacturing the torsion beam according to claim 6, wherein the fatigue strength is applied to impart a circumferential tensile stress in the substantially V-shaped or substantially U-shaped closed section. A gap is provided outside the substantially V-shaped or substantially U-shaped closed cross-section to be improved, and the inside of the closed cross-section is pressurized.

この発明に係るトーションビームの製造方法によれば、疲労強度向上の対象とされる閉断面の外方に隙間を設けて、閉断面の内方をハイドロフォームの液圧などにより加圧して閉断面内方から外方に向かう均一な力により略V字状又は略U字状の閉断面の周方向に引張応力を付与するので、厚さ方向に分布する周方向の応力を効率的に均一に近づけることができる。また、対象部位の外方に隙間を設けることにより、加圧により対象部位の近傍のみが選択的に加工され、周方向の応力分布が大きい箇所のみ、厚さ方向に分布する周方向の応力を選択的に均一に近付けることができる。   According to the method of manufacturing a torsion beam according to the present invention, a gap is provided outside the closed cross-section to be improved in fatigue strength, and the inside of the closed cross-section is pressurized by the hydraulic pressure of the hydroform or the like. A tensile force is applied in the circumferential direction of the substantially V-shaped or U-shaped closed cross section by a uniform force from the outer side to the outer side, so that the circumferential stress distributed in the thickness direction can be efficiently and uniformly approached. be able to. In addition, by providing a gap outside the target part, only the vicinity of the target part is selectively processed by pressurization, and only the part having a large circumferential stress distribution is subjected to the circumferential stress distributed in the thickness direction. It is possible to selectively approach uniform.

請求項8に記載の発明は、請求項6に記載のトーションビームの製造方法であって、前記略V字状又は略U字状の閉断面における周方向の引張応力を付与するために、疲労強度向上の対象とされる前記略V字状又は略U字状の閉断面の内方を加圧しながら、前記素材管の端部から材料を軸押しすることを特徴とする。   The invention according to claim 8 is the torsion beam manufacturing method according to claim 6, wherein the tensile strength in the circumferential direction in the substantially V-shaped or substantially U-shaped closed cross section is imparted. A material is axially pressed from an end portion of the material tube while pressurizing the inside of the substantially V-shaped or substantially U-shaped closed cross section to be improved.

この発明に係るトーションビームの製造方法によれば、材料の軸押しによって周方向に引張応力が形成されるので、厚さ方向に分布する周方向の応力を効率的に均一に近づけることができる。また、材料を軸押しすることにより、周方向に材料を伸長せずに引張応力を付与することができ、材料の肉厚の減少を伴わずに、厚さ方向に分布する周方向の応力を均一に近付けることができる。   According to the torsion beam manufacturing method according to the present invention, since the tensile stress is formed in the circumferential direction by axial pressing of the material, the circumferential stress distributed in the thickness direction can be made to approach efficiently and uniformly. Also, by axially pushing the material, tensile stress can be applied without stretching the material in the circumferential direction, and the circumferential stress distributed in the thickness direction can be reduced without reducing the thickness of the material. Can be approached uniformly.

請求項9に記載の発明は、請求項6に記載のトーションビームの製造方法であって、前記略V字状又は略U字状の閉断面における周方向の引張応力を付与するために、疲労強度向上の対象とされる前記略V字状又は略U字状の閉断面の外方に隙間を設けて、前記成形部により構成される閉断面の内方を加圧しながら、前記素材管の端部から材料を軸押しすることを特徴とする。   The invention according to claim 9 is the method of manufacturing a torsion beam according to claim 6, wherein the fatigue strength is applied in order to apply a tensile stress in the circumferential direction in the substantially V-shaped or substantially U-shaped closed section. An end of the material tube is formed by providing a gap outside the substantially V-shaped or substantially U-shaped closed cross section to be improved and pressurizing the inside of the closed cross section constituted by the molding portion. The material is axially pressed from the part.

この発明に係るトーションビームの製造方法によれば、疲労強度向上の対象とされる閉断面の外方に隙間を設けて、閉断面の内方をハイドロフォームの液圧などにより加圧して閉断面内方から外方に向かう均一な力により略V字状又は略U字状の閉断面の周方向に引張応力を付与するので、厚さ方向に分布する周方向の応力を効率的に均一に近づけることができる。また、対象部位の外方に隙間を設けることにより、加圧により対象部位の近傍のみが選択的に加工され、周方向の応力分布が大きい箇所のみ、厚さ方向に分布する周方向の応力を選択的に均一に近付けることができる。さらに、対象部位の外方に材料が塑性加工されて周方向に材料が伸長するが、材料を軸押しすることにより、材料の肉厚の減少を伴わずに、厚さ方向に分布する周方向の応力を均一に近づけることができる。   According to the method of manufacturing a torsion beam according to the present invention, a gap is provided outside the closed cross-section to be improved in fatigue strength, and the inside of the closed cross-section is pressurized by the hydraulic pressure of the hydroform or the like. A tensile force is applied in the circumferential direction of the substantially V-shaped or U-shaped closed cross section by a uniform force from the outer side to the outer side, so that the circumferential stress distributed in the thickness direction can be efficiently and uniformly approached. be able to. In addition, by providing a gap outside the target part, only the vicinity of the target part is selectively processed by pressurization, and only the part having a large circumferential stress distribution is subjected to the circumferential stress distributed in the thickness direction. It is possible to selectively approach uniform. Furthermore, the material is plastically processed outward from the target part, and the material expands in the circumferential direction. By axially pushing the material, the circumferential direction is distributed in the thickness direction without reducing the thickness of the material. The stress can be made close to uniform.

この発明に係る塑性加工品、塑性加工品の製造方法によれば、成形部の厚さ方向に分布する周方向の応力(圧縮応力、引張応力)を均一に近づけることができる。その結果、スプリングバック後に対象部位における引張応力の最大値又は平均値を低くすることができ、圧縮応力が減少して引張応力が増加した場合でも、疲労亀裂の発生が抑制されて疲労強度を向上することができる。
また、この発明に係るトーションビーム、トーションビームAssy、トーションビーム式サスペンション装置、トーションビームの製造方法によれば、トーションビームの疲労強度を向上することができ、ひいてはトーションビームAssy、トーションビーム式サスペンション装置の耐久性を向上することができる。
According to the plastic processed product and the method of manufacturing a plastic processed product according to the present invention, the circumferential stress (compressive stress, tensile stress) distributed in the thickness direction of the molded part can be made close to uniform. As a result, the maximum or average value of the tensile stress at the target site can be lowered after springback, and even if the compressive stress decreases and the tensile stress increases, the occurrence of fatigue cracks is suppressed and the fatigue strength is improved. can do.
In addition, according to the torsion beam, torsion beam assembly, torsion beam suspension device, and torsion beam manufacturing method according to the present invention, it is possible to improve the fatigue strength of the torsion beam, thereby improving the durability of the torsion beam assembly and torsion beam suspension device. Can do.

本発明の第1の実施形態に係るトーションビーム式リアサスペンション装置の概略を示す斜視図である。1 is a perspective view showing an outline of a torsion beam type rear suspension device according to a first embodiment of the present invention. 第1の実施形態に係るトーションビームAssyの概略を示す斜視図である。It is a perspective view which shows the outline of the torsion beam Assy which concerns on 1st Embodiment. 第1の実施形態に係るトーションビームAssyの概略を示す上面図である。It is a top view which shows the outline of the torsion beam Assy which concerns on 1st Embodiment. 第1の実施形態に係るトーションビームAssyの概略を示す下面図である。It is a bottom view which shows the outline of the torsion beam Assy which concerns on 1st Embodiment. 第1の実施形態に係るトーションビームの概略断面を示す図であり、(A)、(B)、(C)、(D)は、図2の矢視A−A、B−B、C−C、D−Dと対応する閉断面を示している。It is a figure which shows the schematic cross section of the torsion beam which concerns on 1st Embodiment, (A), (B), (C), (D) is the arrows AA, BB, CC of FIG. , DD corresponding to a closed cross section. 第1の実施形態に係るトーションビームの閉断面の詳細を示す図である。It is a figure which shows the detail of the closed cross section of the torsion beam which concerns on 1st Embodiment. 第1の実施形態に係るトーションビームの製造工程の概略を説明するブロック図である。It is a block diagram explaining the outline of the manufacturing process of the torsion beam which concerns on 1st Embodiment. 第1の実施形態に係るトーションビームの製造工程の概略を説明する図である。It is a figure explaining the outline of the manufacturing process of the torsion beam concerning a 1st embodiment. 第1の実施形態に係るトーションビームの作用を説明する図である。It is a figure explaining the effect | action of the torsion beam which concerns on 1st Embodiment. 第1の実施形態に係るトーションビームの作用の変形例を説明する図である。It is a figure explaining the modification of the effect | action of the torsion beam which concerns on 1st Embodiment. 第2の実施形態に係る塑性加工品を説明する図である。It is a figure explaining the plastic work goods which concern on 2nd Embodiment.

以下、図1から図10を参照して、本発明の第1の実施形態について説明する。
図1は、本発明の第1の実施形態に係るトーションビーム式リアサスペンション装置(トーションビーム式サスペンション装置)の概略を示す図であり、符号1はトーションビーム式リアサスペンション装置を、符号10はトーションビームAssyを、符号12はトーションビームを示している。なお、図に示した符号Fは車両の前方を、符号Rは後方を示している。
The first embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a diagram showing an outline of a torsion beam type rear suspension device (torsion beam type suspension device) according to a first embodiment of the present invention. Reference numeral 1 denotes a torsion beam type rear suspension device, reference numeral 10 denotes a torsion beam Assy, Reference numeral 12 denotes a torsion beam. In addition, the code | symbol F shown in the figure has shown the front of the vehicle, and the code | symbol R has shown back.

トーションビーム式リアサスペンション装置1は、図1に示すように、トーションビームAssy10と、トーションビームAssy10と車体とを連結するスプリング20と、アブソーバと30とを備え、トーションビームAssy10は車体の左右側から少し前側中央に伸びるピボット軸JL、JRを介して車体と接続され、車体に対して左右の車輪WL、WRが揺動可能とされている。なお、ピボット軸JL、JRの向きは、車体の前後方向と直交する構成であってもよい。   As shown in FIG. 1, the torsion beam type rear suspension device 1 includes a torsion beam Assy 10, a spring 20 that connects the torsion beam Assy 10 and the vehicle body, and an absorber 30, and the torsion beam Assy 10 is located slightly in front of the left and right sides of the vehicle body. The vehicle is connected to the vehicle body via extending pivot shafts JL and JR, and the left and right wheels WL and WR can swing with respect to the vehicle body. The orientation of the pivot shafts JL and JR may be configured to be orthogonal to the longitudinal direction of the vehicle body.

トーションビームAssy10は、図1、図2に示すように、左右の車輪WL、WRを回転自在に支持する左右一対のトレーリングアーム(アーム)11L、11Rと、トレーリングアーム11Lとトレーリングアーム11Rとを連結するトーションビーム12と、スプリング20を支持する左右一対のスプリング受部16L、16Rとを備えている。
また、トーションビーム12を挟んでピボット軸JL、JRの反対側には、スプリング20の一端側を支持するスプリング受部16L、16Rが形成されている。また、緩衝装置であるアブソーバの一端側が、図示しない緩衝受部に接続されるようになっている。
As shown in FIGS. 1 and 2, the torsion beam assembly 10 includes a pair of left and right trailing arms (arms) 11L and 11R that rotatably support the left and right wheels WL and WR, a trailing arm 11L, and a trailing arm 11R. And a pair of left and right spring receiving portions 16L and 16R for supporting the spring 20 are provided.
Further, spring receiving portions 16L and 16R that support one end side of the spring 20 are formed on the opposite side of the pivot shafts JL and JR with the torsion beam 12 interposed therebetween. Moreover, one end side of the absorber which is a buffer device is connected to a buffer receiving portion (not shown).

第1の実施形態では、トーションビーム12は、図3、図4、図5に示すように上方を頂部とする略V字状(一部略U字状)とされており、例えば、パイプをその軸線方向に沿って、例えば、プレス成形により塑性加工して形成されている。   In the first embodiment, the torsion beam 12 is substantially V-shaped (partially U-shaped) with the top at the top as shown in FIGS. 3, 4, and 5. Along the axial direction, for example, it is formed by plastic working by press molding.

また、トーションビーム12は、略V字状とされたトーション部12A、12B、12Cと、トレーリングアーム11L、11Rと接続される接続部12Dとを備え、トーション部12A、12B、12Cは、トーションビーム12の長手方向と直交する断面が車両前後方向に対称なトーション部12Aから接合部12Dに向かい漸次変位する構成とされている。なお、図5(A)、(B)、(C)、(D)は、図2の矢視A−A、B−B、C−C、D−Dと対応する閉断面を示している。   The torsion beam 12 includes torsion parts 12A, 12B, and 12C that are substantially V-shaped, and a connection part 12D that is connected to the trailing arms 11L and 11R. The torsion parts 12A, 12B, and 12C The cross section orthogonal to the longitudinal direction is gradually displaced from the torsion part 12A symmetrical in the vehicle longitudinal direction toward the joint part 12D. 5A, 5B, 5C, and 5D show closed cross sections corresponding to the arrows AA, BB, CC, and DD in FIG. .

図6は、トーション部に含まれる閉断面の一例として、閉断面12B(以下、トーション部12Bという)の詳細を説明する図である。
トーション部12Bは、図6に示すように、略V字状の突出(上側)外面13Aをなす第1壁部14と、くぼみ(下側)外面13Bをなす第2壁部15により囲まれた略V字状(又は略U字状)の閉断面とされており、第1壁部14には頂部14Tが形成され、第2壁部15には頂部15Tが形成されている。ここで、頂部は、第1壁部14、第2壁部15の屈曲部により構成されている。また、トーションビーム12の外壁部14と内壁部15とは、U字状の折返形状部12Kにより接続されている。
FIG. 6 is a diagram for explaining the details of a closed cross section 12B (hereinafter referred to as torsion section 12B) as an example of the closed cross section included in the torsion section.
As shown in FIG. 6, the torsion part 12B is surrounded by a first wall part 14 forming a substantially V-shaped protruding (upper) outer surface 13A and a second wall part 15 forming a hollow (lower) outer surface 13B. It has a substantially V-shaped (or substantially U-shaped) closed cross section, a top portion 14T is formed on the first wall portion 14, and a top portion 15T is formed on the second wall portion 15. Here, the top portion is constituted by a bent portion of the first wall portion 14 and the second wall portion 15. The outer wall portion 14 and the inner wall portion 15 of the torsion beam 12 are connected by a U-shaped folded shape portion 12K.

接続部12Dは、トーションビーム12をトレーリングアーム11L、11Rと接続する部位であり、図5(D)に示すように、トレーリングアーム11L、11Rの形状と接続可能な閉断面とされている。   The connecting portion 12D is a portion that connects the torsion beam 12 to the trailing arms 11L and 11R, and has a closed cross section that can be connected to the shape of the trailing arms 11L and 11R as shown in FIG.

次に、図7、図8を参照して、第1の実施形態に係るトーションビーム12の製造方法について説明する。
図7は、トーションビーム12の製造方法の概略を示すブロック図である。
(1)まず、鋼管W0をプレス加工して、トーションビーム12の中間成形品(以下、トーションビームの中間成形品12Lという)を構成する略V字状(又は略U字状)のトーション部12A、12B、12Cと、接続部12Dを成形する(S1)。
トーションビーム12を成形する際のプレス加工の工程数は、任意に設定することができる。
(2)次に、プレス加工により形成された略V字状(又は略U字状)の疲労強度向上対象部位の外方に隙間を設ける(S2)。
前記S1のプレス加工に用いる金型に、あらかじめ外方に隙間を設けることにより、S1とS2の工程を同一としてもよい。
(3)次いで、トーションビームの中間成形品12Lの両端開口部を液密に密封して内方をハイドロフォームの液圧により加圧する。(S3)その結果、対象部位の閉断面における周方向の引張応力が付与され、対象部位の厚さ方向に分布する周方向応力が均一に近づき、スプリングバック後の周方向応力の平均値または最大値が低減する。
Next, a method for manufacturing the torsion beam 12 according to the first embodiment will be described with reference to FIGS.
FIG. 7 is a block diagram showing an outline of a method for manufacturing the torsion beam 12.
(1) First, the steel pipe W0 is pressed to form substantially V-shaped (or substantially U-shaped) torsion parts 12A and 12B constituting an intermediate molded product of the torsion beam 12 (hereinafter referred to as an intermediate molded product 12L of the torsion beam). 12C and the connecting portion 12D are formed (S1).
The number of press working steps when forming the torsion beam 12 can be arbitrarily set.
(2) Next, a clearance is provided outside the portion of the substantially V-shaped (or substantially U-shaped) fatigue strength improvement target formed by pressing (S2).
The steps of S1 and S2 may be made the same by previously providing a gap outward in the mold used for the press working of S1.
(3) Next, both end openings of the intermediate molded product 12L of the torsion beam are sealed in a liquid-tight manner, and the inside is pressurized by the hydraulic pressure of the hydroform. (S3) As a result, the circumferential tensile stress in the closed cross section of the target site is applied, the circumferential stress distributed in the thickness direction of the target site approaches uniformly, and the average value or maximum of the circumferential stress after springback The value is reduced.

図8は、トーションビーム12の製造方法の概略を示す図であり、図8(A)、(B)は図7のS1と、図8(C)は、図7のS2、S3と対応している。
(1)図8(A)に示すように、鋼管W0をプレス金型PAの下型P1と上型P2の間に配置し、下型P1と上型P2を相対移動させて型締し、上型P2の中子P3を前進させて鋼管W0をプレス成形する。
(2)図8(B)は、プレス成形の最終工程においてプレス金型PBにおいて、トーションビームの中間成形品12Lが成形された状態を示している。プレス成形の回数は、1回でも複数回でもよい。
(3)次に、図8(C)に示すように、トーションビームの中間成形品12Lを、U字状の折返形状部12Kの外方に金型の間に隙間Tが設けられた型P4、P5内に配置して、トーションビームの中間成形品10Aの内方をハイドロフォームにより加圧することにより対象部位に周方向の引張応力を付与する。
FIG. 8 is a diagram showing an outline of a method for manufacturing the torsion beam 12. FIGS. 8A and 8B correspond to S1 in FIG. 7, and FIG. 8C corresponds to S2 and S3 in FIG. Yes.
(1) As shown in FIG. 8 (A), the steel pipe W0 is disposed between the lower mold P1 and the upper mold P2 of the press mold PA, the lower mold P1 and the upper mold P2 are relatively moved, and the mold is clamped. The core P3 of the upper mold P2 is advanced to press-mold the steel pipe W0.
(2) FIG. 8B shows a state in which the intermediate molded product 12L of the torsion beam is molded in the press die PB in the final step of press molding. The number of press moldings may be one or more.
(3) Next, as shown in FIG. 8C, a torsion beam intermediate molded product 12L is formed by a mold P4 in which a gap T is provided between the molds outside the U-shaped folded shape portion 12K. It arrange | positions in P5 and the tension | pulling stress of the circumferential direction is provided to an object site | part by pressurizing the inner side of the intermediate molded product 10A of a torsion beam with hydroform.

次に、図9を参照して、トーションビーム12の作用について説明する。
図9(A)、(B)、(C)は、鋼管W0をプレス加工してトーションビームの中間成形品12Lを成形した場合の折返形状部12Kの厚さ方向に分布する周方向の応力を示す図である。なお、図中に示す矢印は右向きが引張応力を、左向きが圧縮応力を表している。
Next, the operation of the torsion beam 12 will be described with reference to FIG.
FIGS. 9A, 9B, and 9C show the circumferential stress distributed in the thickness direction of the folded portion 12K when the torsion beam intermediate formed product 12L is formed by pressing the steel pipe W0. FIG. In addition, as for the arrow shown in a figure, the right direction represents tensile stress and the left direction represents compressive stress.

図9(A)は、鋼管W0をプレス加工した後の折返形状部12Kの厚さ方向に分布する周方向の応力を示しており、中立線Zを挟んでトーションビームの中間品12Aの突出外側に引張応力S1が、内側に圧縮応力S2が形成されている。   FIG. 9A shows the stress in the circumferential direction distributed in the thickness direction of the folded portion 12K after the steel pipe W0 is pressed, and on the outside of the protrusion 12A of the intermediate product 12A of the torsion beam across the neutral line Z. The tensile stress S1 and the compressive stress S2 are formed inside.

図9(B)は、ハイドロフォームによりトーションビーム12Aの内方を加圧することで、折返形状部12Kに周方向の引張力Rを与え、周方向の引張応力S3を発生させた状態を示している。   FIG. 9B shows a state in which a circumferential tensile force R is applied to the folded shape portion 12K and a circumferential tensile stress S3 is generated by pressurizing the inside of the torsion beam 12A with hydroform. .

図9(C)は、折返形状部12Kに周方向の引張応力S3を与えたことにより、折返形状部12Kの圧縮応力S2が引張応力S11となり、折返形状部12Kが周方向に伸延された状態を示している。   FIG. 9C shows a state in which the tensile stress S2 of the folded shape portion 12K becomes the tensile stress S11 by applying the circumferential tensile stress S3 to the folded shape portion 12K, and the folded shape portion 12K is extended in the circumferential direction. Is shown.

図9(D)は、ハイドロフォームにより折返形状部12Kに形成された引張応力S11及び周方向の伸延が、ハイドロフォームによる加圧を解除することにより矢印SP方向にスプリングバックするのを示す概略図である。   FIG. 9D is a schematic diagram showing that the tensile stress S11 formed in the folded shape portion 12K by the hydroform and the extension in the circumferential direction spring back in the arrow SP direction by releasing the pressurization by the hydroform. It is.

図9(E)は、引張応力S11及び周方向の伸延がスプリングバックした後の一例を示す概略図であり、例えば、スプリングバック後の厚さ方向に分布する引張応力S12がプレス成形時の引張応力S1よりも小さくなる。また、圧縮応力S21、22が、プレス成形時の圧縮応力S2より小さくなることがより好適である。ここで、中立線Zは折返形状部12Kの外(凹側)に変位していることが好適であり、この変位は引張応力S3が付与されることにより実現される(図9(C)〜(E)参照)。   FIG. 9E is a schematic diagram showing an example after the tensile stress S11 and the circumferential extension are spring-backed. For example, the tensile stress S12 distributed in the thickness direction after the spring-back is a tensile force during press molding. It becomes smaller than the stress S1. Further, it is more preferable that the compressive stresses S21 and 22 are smaller than the compressive stress S2 at the time of press forming. Here, it is preferable that the neutral line Z is displaced to the outside (concave side) of the folded shape portion 12K, and this displacement is realized by applying a tensile stress S3 (FIG. 9C to FIG. 9C). (See (E)).

このように、スプリングバック後の引張応力の平均値、好適には局所的な引張応力の最大値を低減することにより、金属疲労の進展が抑制される。なお、図9(E)に示すスプリングバック後の厚さ方向の応力分布は一例を示すものであり、例えば、引張応力S21がプレス成形時の引張応力S1よりも小さければ、図9(E)に示す応力分布に限定されない。   Thus, the progress of metal fatigue is suppressed by reducing the average value of the tensile stress after springback, preferably the maximum value of the local tensile stress. The stress distribution in the thickness direction after the spring back shown in FIG. 9 (E) is an example. For example, if the tensile stress S21 is smaller than the tensile stress S1 during press molding, FIG. 9 (E) It is not limited to the stress distribution shown.

なお、図10は、トーションビーム12の作用の変形例を示す図であり、図9(E)と対応している。図10が、図9(E)と異なるのは、ハイドロフォームによる加圧を解除した後に、折返形状部12Kの厚さ方向に引張応力S31と一部に圧縮応力S32が分布し、中立線Zが折返形状部12Kの厚さ方向の内部に位置している点である。
このように、圧縮応力S32が一部に残留した場合であっても、スプリングバック後の引張応力の平均値、好適には局所的な引張応力の最大値が材料の降伏点以下とされることにより金属疲労が抑制される。なお、残留する引張応力の平均値又は局所的な引張応力の最大値が降伏点よりも大きい場合であっても、金属疲労を抑制することができる点で有効である。
FIG. 10 is a view showing a modified example of the action of the torsion beam 12, and corresponds to FIG. 9 (E). FIG. 10 differs from FIG. 9 (E) in that after releasing the pressure by the hydroform, the tensile stress S31 and the compressive stress S32 are partially distributed in the thickness direction of the folded shape portion 12K, and the neutral line Z Is located inside the folded shape portion 12K in the thickness direction.
Thus, even when the compressive stress S32 remains in part, the average value of the tensile stress after the springback, preferably the maximum value of the local tensile stress, should be below the yield point of the material. This suppresses metal fatigue. Even if the average value of the residual tensile stress or the maximum value of the local tensile stress is larger than the yield point, it is effective in that metal fatigue can be suppressed.

以上のように、折返形状部12Kが拡管されて、折返形状部12Kにトーションビーム中間品12Aの周方向に引張応力を発生させることにより、折返形状部12Kの厚さ方向に分布する応力に均一に近づけることができ、スプリングバック後に、引張応力の平均値、好適には局所的な引張応力の最大値を低減することができる。   As described above, the folded shape portion 12K is expanded, and a tensile stress is generated in the circumferential direction of the torsion beam intermediate product 12A in the folded shape portion 12K, so that the stress distributed uniformly in the thickness direction of the folded shape portion 12K is uniform. The average value of the tensile stress, preferably the maximum value of the local tensile stress, can be reduced after the springback.

第1の実施形態に係るトーションビーム12によれば、折返形状部12Kの厚さ方向に分布する周方向の応力を均一に近づけて残留させ、スプリングバック後の引張応力を低減することで、金属疲労が抑制されて疲労強度を向上することができ、ひいては、所望のサスペンション性能を確保しつつトーションビームの金属疲労を効果的に低減することができる。   According to the torsion beam 12 according to the first embodiment, the stress in the circumferential direction distributed in the thickness direction of the folded shape portion 12K is made to remain uniformly close and the tensile stress after springback is reduced, thereby reducing the metal fatigue. Can be suppressed and the fatigue strength can be improved. As a result, the metal fatigue of the torsion beam can be effectively reduced while ensuring the desired suspension performance.

また、外形形状に関する変化は小さいため、トーションビームの形状が設定された後においても、車両部品の空間的な取り合いを気にすることなく疲労強度を向上することができる。   Further, since the change with respect to the outer shape is small, even after the shape of the torsion beam is set, the fatigue strength can be improved without worrying about the spatial relationship of the vehicle parts.

<実施例>
次に、本発明を実施例でさらに説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
<Example>
Next, the present invention will be further described with reference to examples. Conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is examples of these one condition. It is not limited to. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

実施例として、第1の実施形態の要領において、表1に示す素材管を用いて、表2に示すような複数の加工条件下でトーションビーム12を製造し、該トーションビームの折返形状部12Kにおける肉厚減少率と、残留応力の最大値およびと表層部における最大値を調べた。その結果を表2に示すが、本発明例のいずれもが比較例に比べて残留応力の最大値が低減し、疲労強度を向上することができると分かる。また、表層部の最大残留応力も減少し、疲労亀裂の発生を抑制できると分かる。   As an example, the torsion beam 12 is manufactured under a plurality of processing conditions as shown in Table 2 using the material pipe shown in Table 1 in the outline of the first embodiment, and the meat in the folded shape portion 12K of the torsion beam is obtained. The thickness reduction rate, the maximum value of residual stress, and the maximum value in the surface layer portion were examined. The results are shown in Table 2. It can be seen that any of the inventive examples can reduce the maximum residual stress and improve the fatigue strength as compared with the comparative example. Moreover, it turns out that the maximum residual stress of a surface layer part also reduces and generation | occurrence | production of a fatigue crack can be suppressed.

Figure 2013091433
Figure 2013091433

Figure 2013091433
Figure 2013091433

次に、図11を参照して、本発明の第2の実施形態について説明する。
図11は、本発明の第2の実施形態に係る、例えば、プラントに使用されて周方向の回動を繰り返す中空の回動軸(塑性加工品)50を示す図であり、図11(A)は、回動軸50の斜視図を、図11(B)は図11(A)におけるX−X断面を、図11(C)は図11(A)におけるY−Y断面を示している。
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 11 is a diagram showing a hollow rotating shaft (plastic work product) 50 used in a plant, for example, and repeatedly rotating in the circumferential direction, according to the second embodiment of the present invention. ) Is a perspective view of the rotating shaft 50, FIG. 11B is an XX section in FIG. 11A, and FIG. 11C is a YY section in FIG. 11A. .

次回動軸50は、回動軸外周に配置するセンサ(不図示)の頭部を回動軸50の外周面より内周側に配置するために回動軸50の内方に膨出する球面の一部からなる取付凹形状部(成形部)55が形成され、取付凹形状部55には、回動軸50の側方から見た場合の中央にセンサの取付孔56が形成されている。   The next rotation shaft 50 is a spherical surface that bulges inward of the rotation shaft 50 in order to dispose the head of a sensor (not shown) disposed on the outer periphery of the rotation shaft closer to the inner peripheral side than the outer peripheral surface of the rotation shaft 50. A mounting concave portion (molded portion) 55 is formed, and a sensor mounting hole 56 is formed in the center of the mounting concave portion 55 when viewed from the side of the rotation shaft 50. .

取付凹形状部55は、例えば、鋼管に押圧部材を外方から当接して、外方から内方に向かって押圧することにより成形されている。
取付凹形状部55を成形した後に、回動軸50の両端開口部を液密に封じし、取付凹形状部55における対象部位(疲労強度を向上させるべき対象部位)の外方に隙間を設けて外型を配置し、内方をハイドロフォームにより加圧して対象部位を外方に拡管して変位させる。
ハイドロフォームによる加圧を解除して、外方に変位した部位がスプリングバックする。
なお、取付孔56は、ハイドロフォームによる加圧終了後に、機械加工等により加工する。
The mounting concave portion 55 is formed by, for example, pressing a pressing member against the steel pipe from the outside and pressing the steel pipe from the outside to the inside.
After forming the mounting concave portion 55, the openings at both ends of the rotation shaft 50 are sealed in a liquid-tight manner, and a gap is provided outside the target portion (target portion where fatigue strength should be improved) in the mounting concave portion 55. The outer mold is placed, the inner part is pressurized with hydroform, the target part is expanded outward and displaced.
Release the pressure by the hydroform and the part displaced outwardly will spring back.
The attachment hole 56 is processed by machining or the like after completion of pressurization by hydroforming.

第2の実施形態に係る回動軸50によれば、取付凹形状部55が構成する閉断面に周方向の引張応力が付与されることにより、対象部位の厚さ方向に分布する周方向の応力を均一に近づけることができ、スプリングバック後の残留応力が低減して疲労強度を向上することができる。また、第2の実施形態によれば、対象部位の厚さ方向に分布する周方向の応力に加えて、鋼管の長手方向における応力についても均一に近づけることができる。   According to the rotating shaft 50 according to the second embodiment, a circumferential tensile stress is applied to the closed cross section formed by the mounting concave portion 55, so that the circumferential direction distributed in the thickness direction of the target portion. The stress can be made close to uniform, the residual stress after springback can be reduced, and the fatigue strength can be improved. Further, according to the second embodiment, in addition to the circumferential stress distributed in the thickness direction of the target portion, the stress in the longitudinal direction of the steel pipe can be made uniform.

なお、第2の実施形態においては、取付凹形状部55を押圧部材により成形する場合について説明したが、プレス成形等により成形させてもよいし、内方に膨出する球面の一部からなる取付凹形状部55に代えて他の形状に成形してもよい。   In addition, in 2nd Embodiment, although the case where the attachment concave shape part 55 was shape | molded with a press member was demonstrated, you may make it shape | mold by press molding etc., and it consists of a part of spherical surface which bulges inward. Instead of the concave mounting portion 55, it may be formed into another shape.

また、ハイドロフォームにより取付凹形状部55を拡管することにより付与する場合について説明したが、例えば、閉断面の周方向に直接引張力を加えてもよいしルータ等により変位を与えて引張応力を付与してもよい。   Moreover, although the case where the attachment concave shape part 55 is applied by expanding the tube by hydroforming has been described, for example, a tensile force may be applied directly in the circumferential direction of the closed section, or a tensile stress may be applied by applying a displacement by a router or the like. It may be given.

なお、本発明は、上記実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の変更をすることが可能である。
例えば、上記実施の形態においては、トーションビーム12の頂部14Tが上方に形成され、閉断面が車両の前後方向において対称とされた場合について説明したが、頂部14Tが下方に形成された構成としてもよい。また、閉断面を略V字状と略U字状のいずれとするかは任意に設定可能であり、閉断面が車両の前後方向において非対称に形成されていてもよい。また、引張応力S3を折返形状部12Kに付与する場合について説明したが、折返形状部12K以外の部位に適用してもよいことはいうまでもない。
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
For example, in the above-described embodiment, the case where the top portion 14T of the torsion beam 12 is formed upward and the closed section is symmetric in the vehicle front-rear direction has been described. However, the top portion 14T may be formed downward. . Further, whether the closed section is substantially V-shaped or U-shaped can be arbitrarily set, and the closed section may be formed asymmetrically in the vehicle front-rear direction. Moreover, although the case where the tensile stress S3 is applied to the folded shape portion 12K has been described, it goes without saying that the tensile stress S3 may be applied to portions other than the folded shape portion 12K.

また、上記実施の形態においては、周方向の引張応力をハイドロフォームにより与える場合について説明したが、閉断面内方から拡管する機械的手段等、ハイドロフォーム以外の閉断面の側部に外力(圧力を含む)を付与する手段、対象部位近傍にルータ等により変位を与えて引張応力を形成してもよい。   In the above embodiment, the case where the tensile stress in the circumferential direction is applied by the hydroform has been described. However, an external force (pressure) is applied to the side of the closed cross section other than the hydroform, such as mechanical means for expanding the pipe from the inside of the closed cross section. A tensile stress may be formed by applying a displacement by a router or the like in the vicinity of the target part.

また、上記実施の形態においては、トーションビーム式サスペンション装置がトーションビーム式リアサスペンション装置1である場合について説明したが、例えば、リーディングアーム式サスペンション装置に適用してもよい。   Further, in the above embodiment, the case where the torsion beam type suspension device is the torsion beam type rear suspension device 1 has been described, but it may be applied to, for example, a leading arm type suspension device.

また、上記第2の実施形態においては、塑性加工品が全長にわたって筒状とされた回動軸50である場合について説明したが、回動軸に限定されないことはいうまでもなく、鋼材の筒状部が、例えば、テーパを有している場合、鋼材の長さ方向の一部に筒状部が形成されている場合、成形部が長さ方向の一部に形成されている場合、又は成形部が複数形成されている場合に適用できることはいうまでもない。また成形部の位置、大きさは任意に設定することができる。   Moreover, in the said 2nd Embodiment, although the case where the plastic workpiece was the rotation axis | shaft 50 made into the cylinder shape over the full length was demonstrated, it cannot be overemphasized that it is not limited to a rotation axis | shaft. For example, when the shape part has a taper, when the cylindrical part is formed in a part of the length direction of the steel material, when the forming part is formed in a part of the length direction, or Needless to say, the present invention can be applied when a plurality of molded portions are formed. Further, the position and size of the molding part can be arbitrarily set.

この発明に係る塑性加工品、塑性加工品の製造方法、トーションビーム、トーションビームAssy、トーションビーム式サスペンション装置、トーションビームの製造方法によれば、疲労強度が向上されるので、産業上利用可能である。   According to the plastic processed product, the plastic processed product manufacturing method, the torsion beam, the torsion beam Assy, the torsion beam type suspension device, and the torsion beam manufacturing method according to the present invention, the fatigue strength is improved and can be used industrially.

W0 鋼管
1 トーションビーム式リアサスペンション装置(トーションビーム式サスペンション装置)
10 トーションビームAssy
12 トーションビーム
12K 折返形状部(対象部位)
50 回動軸(塑性加工品)
55 取付凹形状部(成形部)
W0 Steel pipe 1 Torsion beam type rear suspension device (torsion beam type suspension device)
10 Torsion Beam Assy
12 Torsion beam 12K Folding shape part (target part)
50 Rotating shaft (plastic processed product)
55 Mounting concave part (molded part)

Claims (12)

金属材料、又は金属と樹脂とからなる複合材料により構成されて筒状部を有する材料に前記筒状部の外方から内方に向かう変位を与えて成形部とした塑性加工品の製造方法であって、
前記筒状部を外方から内方に向かって変位する成形部を成形し、
前記成形部に、前記成形部が構成する閉断面に周方向の引張応力を付与して、前記成形部の厚さ方向に分布する周方向の応力を均一に近づけ、スプリングバック後の残留応力を低減することを特徴とする塑性加工品の製造方法。
A method of manufacturing a plastic work product that is made of a metal material or a composite material composed of a metal and a resin and that has a cylindrical portion and gives a displacement from the outside to the inside of the cylindrical portion to form a molded portion. There,
Molding a molded part that displaces the cylindrical part from the outside to the inside,
By applying a tensile stress in the circumferential direction to a closed cross section formed by the molded part, the molded part is made to approach the circumferential stress distributed in the thickness direction of the molded part uniformly, and the residual stress after springback is reduced. A method for producing a plastically processed product, characterized in that it is reduced.
請求項1に記載の塑性加工品の製造方法であって、
前記成形部に対する前記周方向の周方向の引張応力を付与するために、前記成形部の対象部位の外方に隙間を設けて前記成形部により構成される閉断面の内方を加圧することを特徴とする塑性加工品の製造方法。
A method for producing a plastic workpiece according to claim 1,
In order to give the circumferential tensile stress in the circumferential direction to the molded part, a gap is provided outside the target part of the molded part to pressurize the inner side of the closed cross section constituted by the molded part. A method for producing a plastic processed product.
請求項1に記載の塑性加工品の製造方法であって、
前記成形部に対する前記周方向の引張応力を付与するために、前記成形部により構成される閉断面の内方を加圧しながら、前記成形部の管端部から材料を軸押しすることを特徴とする塑性加工品の製造方法。
A method for producing a plastic workpiece according to claim 1,
In order to apply the circumferential tensile stress to the molded part, the material is axially pressed from the pipe end of the molded part while pressurizing the inside of the closed cross section constituted by the molded part. A method for manufacturing a plastic processed product.
請求項1に記載の塑性加工品の製造方法であって、
前記成形部に対する前記周方向の引張応力を付与するために、前記成形部の対象部位の外方に隙間を設けて、前記成形部により構成される閉断面の内方を加圧しながら、前記成形部の管端部から材料を軸押しすることを特徴とする塑性加工品の製造方法。
A method for producing a plastic workpiece according to claim 1,
In order to apply the circumferential tensile stress to the molded part, a gap is provided outside the target part of the molded part, and the inner side of the closed cross section constituted by the molded part is pressed while the molded part is pressed. A method of manufacturing a plastic processed product, characterized in that a material is axially pressed from a pipe end of the part.
請求項1〜4に記載の塑性加工品の製造方法を用いて製造したことを特徴とする塑性加工品。   A plastic processed product manufactured using the method for manufacturing a plastic processed product according to claim 1. サスペンション装置において左右のアームを連結し、車体の幅方向と直交する断面において、前記車体の前後方向における前端及び後端間が上下方向のいずれかに突出する略V字状又は略U字状の閉断面とされたトーションビームの製造方法であって、
素材管の長手方向の少なくとも一部に前記素材管の外方から内方に向かう変位を与えて前記略V字状又は略U字状の閉断面を成形し、
前記略V字状又は略U字状の閉断面に周方向の引張応力を付与して、前記略V字状又は略U字状を構成する材料の厚さ方向に分布する周方向の応力を均一に近づけ、スプリングバック後の残留応力を低減することを特徴とするトーションビームの製造方法。
In the suspension device, the left and right arms are connected, and in a cross section perpendicular to the width direction of the vehicle body, the front and rear ends of the vehicle body in the front-rear direction have a substantially V-shape or a substantially U-shape projecting in either the vertical direction. A method for producing a torsion beam having a closed cross-section,
Forming a substantially V-shaped or substantially U-shaped closed cross section by giving a displacement from the outside to the inside of the material tube in at least a part of the longitudinal direction of the material tube;
Applying a circumferential tensile stress to the substantially V-shaped or substantially U-shaped closed cross section, the circumferential stress distributed in the thickness direction of the material constituting the substantially V-shaped or substantially U-shaped A method for producing a torsion beam, characterized in that the residual stress after springback is reduced to be close to uniform.
請求項6に記載のトーションビームの製造方法であって、
前記略V字状又は略U字状の閉断面における周方向の引張応力を付与するために、疲労強度向上の対象とされる前記略V字状又は略U字状の閉断面の外方に隙間を設けて、前記閉断面の内方を加圧することを特徴とするトーションビームの製造方法。
It is a manufacturing method of the torsion beam according to claim 6,
In order to give a tensile stress in the circumferential direction in the substantially V-shaped or substantially U-shaped closed cross section, the outer side of the substantially V-shaped or substantially U-shaped closed cross section, which is an object of fatigue strength improvement. A method for producing a torsion beam, wherein a gap is provided to pressurize the inside of the closed section.
請求項6に記載のトーションビームの製造方法であって、
前記略V字状又は略U字状の閉断面における周方向の引張応力を付与するために、前記閉断面の内方を加圧しながら、前記成形部の管端部から材料を軸押しすることを特徴とするトーションビームの製造方法。
It is a manufacturing method of the torsion beam according to claim 6,
In order to apply the tensile stress in the circumferential direction in the substantially V-shaped or substantially U-shaped closed cross section, the material is axially pressed from the tube end of the molded portion while pressurizing the inside of the closed cross section. A method of manufacturing a torsion beam.
請求項6に記載のトーションビームの製造方法であって、
前記略V字状又は略U字状の閉断面における周方向の引張応力を付与するために、疲労強度向上の対象とされる前記略V字状又は略U字状の閉断面の外方に隙間を設けて、前記閉断面の内方を加圧しながら、前記成形部の管端部から材料を軸押しすることを特徴とするトーションビームの製造方法。
It is a manufacturing method of the torsion beam according to claim 6,
In order to give a tensile stress in the circumferential direction in the substantially V-shaped or substantially U-shaped closed cross section, the outer side of the substantially V-shaped or substantially U-shaped closed cross section, which is an object of fatigue strength improvement. A method for producing a torsion beam, characterized in that a material is axially pressed from a tube end portion of the forming portion while providing a gap and pressurizing the inside of the closed section.
請求項6〜9に記載のトーションビームの製造方法を用いて製造したことを特徴とするトーションビーム。   A torsion beam manufactured using the method for manufacturing a torsion beam according to claim 6. 請求項10に記載のトーションビームを備えることを特徴とするトーションビームAssy。   A torsion beam Assy comprising the torsion beam according to claim 10. 請求項11に記載のトーションビームAssyを備えることを特徴とするトーションビーム式サスペンション装置。   A torsion beam type suspension apparatus comprising the torsion beam assembly according to claim 11.
JP2011234995A 2011-10-26 2011-10-26 Torsion beam, torsion beam assembly, torsion beam suspension device, and torsion beam manufacturing method Active JP5927841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234995A JP5927841B2 (en) 2011-10-26 2011-10-26 Torsion beam, torsion beam assembly, torsion beam suspension device, and torsion beam manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234995A JP5927841B2 (en) 2011-10-26 2011-10-26 Torsion beam, torsion beam assembly, torsion beam suspension device, and torsion beam manufacturing method

Publications (2)

Publication Number Publication Date
JP2013091433A true JP2013091433A (en) 2013-05-16
JP5927841B2 JP5927841B2 (en) 2016-06-01

Family

ID=48614907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234995A Active JP5927841B2 (en) 2011-10-26 2011-10-26 Torsion beam, torsion beam assembly, torsion beam suspension device, and torsion beam manufacturing method

Country Status (1)

Country Link
JP (1) JP5927841B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690159A (en) * 2015-02-11 2015-06-10 柳州市金元机械制造有限公司 Processing method for rear suspension assembly
WO2017155056A1 (en) * 2016-03-10 2017-09-14 新日鐵住金株式会社 Method for manufacturing automobile component, and automobile component
JP6213705B1 (en) * 2016-05-10 2017-10-18 新日鐵住金株式会社 Torsion beam manufacturing method, torsion beam manufacturing apparatus, and torsion beam
WO2017195706A1 (en) * 2016-05-10 2017-11-16 新日鐵住金株式会社 Torsion beam manufacturing method, torsion beam manufacturing device, and torsion beam
KR20180086487A (en) 2016-03-30 2018-07-31 신닛테츠스미킨 카부시키카이샤 Torsion beam manufacturing method and torsion beam manufacturing apparatus
DE102018117994A1 (en) 2017-07-27 2019-01-31 Mazda Motor Corporation TORSION STAB MOUNT FOR ONE VEHICLE, AND TORSION STICK FOR ONE VEHICLE
WO2019069631A1 (en) 2017-10-04 2019-04-11 新日鐵住金株式会社 Torsion beam manufacturing method and torsion beam manufacturing device
CN109985989A (en) * 2017-12-29 2019-07-09 浙江拓为汽车部件有限公司 Torsion beam type rear axle hollow stabilizing rod heat expansion type equipment and compounding method
JP2021041856A (en) * 2019-09-12 2021-03-18 日本製鉄株式会社 Method of manufacturing torsion beam
CN113543906A (en) * 2019-03-18 2021-10-22 日本发条株式会社 Method for manufacturing stabilizer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335343A (en) * 2005-05-02 2006-12-14 Nippon Steel Corp Beam and its manufacturing method
JP2007069674A (en) * 2005-09-05 2007-03-22 Futaba Industrial Co Ltd Torsion beam type suspension and its manufacturing method
JP2007076410A (en) * 2005-09-12 2007-03-29 Nippon Steel Corp Automotive closed section member having excellent twist fatigue characteristics
JP2008030513A (en) * 2006-07-26 2008-02-14 Toyota Tsusho Corp Torsion beam, torsion beam type suspension, and method for manufacturing torsion beam
JP2008169455A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Method for improving strength of member
JP2009208577A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Manufacturing method for torsion beam
JP2011000635A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Method for manufacturing torsion beam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335343A (en) * 2005-05-02 2006-12-14 Nippon Steel Corp Beam and its manufacturing method
JP2007069674A (en) * 2005-09-05 2007-03-22 Futaba Industrial Co Ltd Torsion beam type suspension and its manufacturing method
JP2007076410A (en) * 2005-09-12 2007-03-29 Nippon Steel Corp Automotive closed section member having excellent twist fatigue characteristics
JP2008030513A (en) * 2006-07-26 2008-02-14 Toyota Tsusho Corp Torsion beam, torsion beam type suspension, and method for manufacturing torsion beam
JP2008169455A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Method for improving strength of member
JP2009208577A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Manufacturing method for torsion beam
JP2011000635A (en) * 2009-06-22 2011-01-06 Toyota Motor Corp Method for manufacturing torsion beam

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690159A (en) * 2015-02-11 2015-06-10 柳州市金元机械制造有限公司 Processing method for rear suspension assembly
WO2017155056A1 (en) * 2016-03-10 2017-09-14 新日鐵住金株式会社 Method for manufacturing automobile component, and automobile component
US11007839B2 (en) 2016-03-10 2021-05-18 Nippon Steel Corporation Automotive component manufacturing method and automotive component
KR102105350B1 (en) * 2016-03-10 2020-04-29 닛폰세이테츠 가부시키가이샤 Method for manufacturing automotive parts and automotive parts
JPWO2017155056A1 (en) * 2016-03-10 2018-03-15 新日鐵住金株式会社 Manufacturing method of automotive parts and automotive parts
KR20180110042A (en) * 2016-03-10 2018-10-08 신닛테츠스미킨 카부시키카이샤 Method for manufacturing automobile parts and parts for automobile
CN109070175A (en) * 2016-03-10 2018-12-21 新日铁住金株式会社 The manufacturing method and automobile part of automobile part
KR20180086487A (en) 2016-03-30 2018-07-31 신닛테츠스미킨 카부시키카이샤 Torsion beam manufacturing method and torsion beam manufacturing apparatus
US10618363B2 (en) 2016-03-30 2020-04-14 Nippon Steel Corporation Torsion beam manufacturing method and torsion beam manufacturing apparatus
EP3456558A4 (en) * 2016-05-10 2020-01-15 Nippon Steel Corporation Torsion beam manufacturing method, torsion beam manufacturing device, and torsion beam
US10888916B2 (en) 2016-05-10 2021-01-12 Nippon Steel Corporation Torsion beam manufacturing method, torsion beam manufacturing apparatus, and torsion beam
JP6213705B1 (en) * 2016-05-10 2017-10-18 新日鐵住金株式会社 Torsion beam manufacturing method, torsion beam manufacturing apparatus, and torsion beam
WO2017195706A1 (en) * 2016-05-10 2017-11-16 新日鐵住金株式会社 Torsion beam manufacturing method, torsion beam manufacturing device, and torsion beam
KR102104377B1 (en) * 2016-05-10 2020-04-24 닛폰세이테츠 가부시키가이샤 Torsion beam manufacturing method, torsion beam manufacturing apparatus and torsion beam
CN109070676A (en) * 2016-05-10 2018-12-21 新日铁住金株式会社 Torsion beam manufacturing method, torsion beam manufacturing device and torsion beam
KR20180126548A (en) 2016-05-10 2018-11-27 신닛테츠스미킨 카부시키카이샤 Torsion beam manufacturing method, torsion beam manufacturing apparatus and torsion beam
JP2019026012A (en) * 2017-07-27 2019-02-21 株式会社ワイテック Torsion beam structure of vehicle
DE102018117994A1 (en) 2017-07-27 2019-01-31 Mazda Motor Corporation TORSION STAB MOUNT FOR ONE VEHICLE, AND TORSION STICK FOR ONE VEHICLE
DE102018117994B4 (en) 2017-07-27 2022-06-23 Mazda Motor Corporation TORSION BAR SUSPENSION FOR A VEHICLE, AND TORSION BAR FOR A VEHICLE
US10688843B2 (en) 2017-07-27 2020-06-23 Y-Tec Corporation Vehicle torsion beam suspension and vehicle torsion beam
CN111050941B (en) * 2017-10-04 2022-04-01 日本制铁株式会社 Torsion beam manufacturing method and torsion beam manufacturing device
CN111050941A (en) * 2017-10-04 2020-04-21 日本制铁株式会社 Torsion beam manufacturing method and torsion beam manufacturing device
WO2019069631A1 (en) 2017-10-04 2019-04-11 新日鐵住金株式会社 Torsion beam manufacturing method and torsion beam manufacturing device
US11498107B2 (en) 2017-10-04 2022-11-15 Nippon Steel Corporation Torsion beam manufacturing method and torsion beam manufacturing apparatus
CN109985989A (en) * 2017-12-29 2019-07-09 浙江拓为汽车部件有限公司 Torsion beam type rear axle hollow stabilizing rod heat expansion type equipment and compounding method
CN109985989B (en) * 2017-12-29 2024-03-19 浙江拓为汽车部件有限公司 Torsion beam type rear axle hollow stabilizer bar thermal expansion manufacturing equipment and manufacturing method thereof
CN113543906A (en) * 2019-03-18 2021-10-22 日本发条株式会社 Method for manufacturing stabilizer
CN113543906B (en) * 2019-03-18 2023-09-08 日本发条株式会社 Method for manufacturing stabilizer
US11786960B2 (en) 2019-03-18 2023-10-17 Nhk Spring Co., Ltd. Method for manufacturing stabilizer
JP2021041856A (en) * 2019-09-12 2021-03-18 日本製鉄株式会社 Method of manufacturing torsion beam
JP7295425B2 (en) 2019-09-12 2023-06-21 日本製鉄株式会社 Manufacturing method of torsion beam

Also Published As

Publication number Publication date
JP5927841B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5927841B2 (en) Torsion beam, torsion beam assembly, torsion beam suspension device, and torsion beam manufacturing method
JP6515352B2 (en) Joint and manufacturing method of joint
US8616570B2 (en) Method for producing a control arm, and a control arm
JP5385296B2 (en) Molding method of clevis link
EP1166914A1 (en) Method of producing front axles for industrial vehicles
JP2010534163A (en) Tubular torsion beam for automobile rear wheel suspension and manufacturing method thereof
US10486487B2 (en) Stabilizer and method of manufacturing the same
WO2009139379A1 (en) Method of press-forming tubular member having irregular cross-sectional shape, and tubular member having irregular cross-sectional shape, formed by the press-forming method
JPWO2010128540A1 (en) Tailored blank material and method of manufacturing structural member using the same
KR20180110042A (en) Method for manufacturing automobile parts and parts for automobile
JP6213705B1 (en) Torsion beam manufacturing method, torsion beam manufacturing apparatus, and torsion beam
AU2009308522B2 (en) Arm material and a method for its manufacture
KR102104377B1 (en) Torsion beam manufacturing method, torsion beam manufacturing apparatus and torsion beam
JP6531875B1 (en) Torsion beam manufacturing method and torsion beam manufacturing apparatus
JP5137237B2 (en) Method for manufacturing vehicle suspension arm
JP5749708B2 (en) Manufacturing method of wheel rim for vehicle
JP6009266B2 (en) Manufacturing method of wheel rim for vehicle
JP5293040B2 (en) Deck pipe forming method
JP7295425B2 (en) Manufacturing method of torsion beam
KR20080103224A (en) Manufacturing method of torsion beam for rear suspension system using hydroforming
JP5314348B2 (en) Beam manufacturing method and beam
KR20130050413A (en) Torsion beam, torsion beam module and torsion beam producing method
JP2003072658A (en) Vehicle body structure member and manufacturing method therefor
JP2012011422A (en) Structure of tube member and method for manufacturing tube member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5927841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350