JP2013090514A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2013090514A
JP2013090514A JP2011231197A JP2011231197A JP2013090514A JP 2013090514 A JP2013090514 A JP 2013090514A JP 2011231197 A JP2011231197 A JP 2011231197A JP 2011231197 A JP2011231197 A JP 2011231197A JP 2013090514 A JP2013090514 A JP 2013090514A
Authority
JP
Japan
Prior art keywords
power transmission
unit
communication
power
semiconductor switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011231197A
Other languages
Japanese (ja)
Inventor
Yuki Takahashi
優希 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011231197A priority Critical patent/JP2013090514A/en
Publication of JP2013090514A publication Critical patent/JP2013090514A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission device, having good transmission efficiency with reduced manufacturing cost by simplifying a protection circuit to protect a communication circuit.SOLUTION: In a non-contact power transmission device 1 performing power transmission and communication in a contactless manner, a power transmission device 2 includes power transmission coil 5, power transmission unit 7, communication processing unit 8, control unit 9, semiconductor switch 4 and shared matching unit 6. Also, a power reception device 3 includes a power reception coil 15. The semiconductor switch 4 is connected in series to the communication processing unit 8, and the communication processing unit 8 and the power transmission unit 7 are connected in parallel. Further, the power transmission coil 5 is connected to the power transmission unit 7 and the semiconductor switch 4 through the shared matching unit 6, and the control unit 9 is connected to the power transmission unit 7 and the communication processing unit 8. The semiconductor switch 4 conducts at communication processing with the power reception device 3, and is switched off at power transmission, so as to switch over the communication processing unit 8 to the power transmission unit 7.

Description

本発明は、電磁結合や電磁界共鳴を利用して、非接触で電力伝送とデータ通信を行う、非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission apparatus that performs non-contact power transmission and data communication using electromagnetic coupling or electromagnetic resonance.

近年、電子部品の小型化に伴い、携帯電話や携帯型音楽プレーヤ等に代表される携帯電子機器は、小型化や軽量化が図られ、広く普及している。更に近年、携帯電子機器は多機能化および高速処理化が図られ、それに伴い携帯電子機器が必要とする電力量が増加傾向にある。しかし、一般的な携帯電子機器は、内蔵した二次電池に充電した電力により駆動しており、二次電池の電力が不足する度に二次電池を充電する構成のものが多い。   In recent years, with the miniaturization of electronic components, portable electronic devices typified by mobile phones and portable music players are becoming more and more popular due to the reduction in size and weight. Further, in recent years, portable electronic devices have been made multifunctional and high-speed processing, and accordingly, the amount of power required for the portable electronic devices has been increasing. However, general portable electronic devices are driven by electric power charged in a built-in secondary battery, and often have a configuration in which the secondary battery is charged every time the power of the secondary battery is insufficient.

最近では、電磁誘導や磁気共鳴の原理を利用し、金属接点がなくても電力伝送を可能にする非接触電力伝送技術を用いた非接触電力伝送装置の需要が高まっている。非接触電力伝送技術は、電気的接点を必要としないため、感電や短絡の危険性がないことに加えて、接点不良がないことや耐久性に優れるといった特徴を有している。   Recently, there is an increasing demand for a non-contact power transmission device using a non-contact power transmission technology that utilizes the principles of electromagnetic induction and magnetic resonance and enables power transmission without a metal contact. The non-contact power transmission technology does not require an electrical contact, so that it has no danger of an electric shock or a short circuit, and also has features such as no contact failure and excellent durability.

非接触電力伝送装置は誤動作等の防止や効率の良い電力伝送のために、受電装置の認証情報や充電容量などの制御情報を送電装置側と受電装置側間で通信する必要がある。そのため、一般的には、送電装置と受電装置間で認証情報や制御情報等の情報通信を行い、送電装置側で受電装置が適合機器であるか等の確認を行った後に、電力伝送を行っている。   The non-contact power transmission apparatus needs to communicate authentication information of the power receiving apparatus and control information such as a charging capacity between the power transmitting apparatus side and the power receiving apparatus side in order to prevent malfunction and the like and efficiently transmit power. For this reason, in general, information communication such as authentication information and control information is performed between the power transmission device and the power receiving device, and power transmission is performed after confirming whether the power receiving device is a compatible device on the power transmission device side. ing.

このような処理を行う従来の構成として、電力伝送処理と通信処理とを1つのコイルで行う非接触電力伝送装置がある。しかし、1つのコイルで電力伝送処理と通信処理とを行う構成の場合、充電のための電力は通信信号に比べて大電力であるため、充電電力によって通信処理用の回路を破壊する可能性があった。   As a conventional configuration for performing such processing, there is a non-contact power transmission device that performs power transmission processing and communication processing with one coil. However, in the case of a configuration in which the power transmission process and the communication process are performed with one coil, the power for charging is larger than that of the communication signal, so there is a possibility that the circuit for communication processing is destroyed by the charging power. there were.

その対策として、従来は、充電電力から通信処理回路を保護するために通信処理回路に保護回路を介在させていた。このように、大電力から通信回路を保護するための保護回路を介在させた構成としては、例えば、特許文献1に開示された方法がある。   Conventionally, as a countermeasure, a protection circuit is interposed in the communication processing circuit in order to protect the communication processing circuit from the charging power. Thus, for example, there is a method disclosed in Patent Document 1 as a configuration in which a protection circuit for protecting a communication circuit from high power is interposed.

特開2003−348837号公報JP 2003-348837 A

しかしながら、従来技術のように通信回路を保護する為の保護回路を介在させた構成とすると、回路構成が煩雑化し、製造コストが増大するという課題があった。   However, when the protection circuit for protecting the communication circuit is interposed as in the prior art, there is a problem that the circuit configuration becomes complicated and the manufacturing cost increases.

そこで本発明は、通信回路を保護する為の保護回路を簡素化し、製造コストを削減した、伝送効率の良い非接触電力伝送装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a non-contact power transmission device with good transmission efficiency, in which a protection circuit for protecting a communication circuit is simplified and manufacturing cost is reduced.

上記の課題を解決するために、本発明による非接触電力伝送装置は、送電コイルを有する送電装置と、前記送電コイルに磁気的に結合する受電コイルを有する受電装置とからなる非接触電力伝送装置であり、前記送電装置はさらに、電力伝送部と、通信処理部と、制御部と、半導体スイッチと、共用整合部とを備え、前記共用整合部は前記電力伝送部に接続され、前記半導体スイッチの一端は前記共用整合部と前記電力伝送部の間に接続され、前記半導体スイッチの他端は前記通信処理部と接続され、前記送電コイルは前記共用整合部を介して前記電力伝送部および前記半導体スイッチに接続され、前記制御部は前記通信処理部と前記電力伝送部に接続されていることを特徴とする。   In order to solve the above problems, a non-contact power transmission apparatus according to the present invention comprises a power transmission apparatus having a power transmission coil and a power reception apparatus having a power reception coil that is magnetically coupled to the power transmission coil. The power transmission device further includes a power transmission unit, a communication processing unit, a control unit, a semiconductor switch, and a shared matching unit, and the shared matching unit is connected to the power transmission unit, and the semiconductor switch One end of the semiconductor switch is connected between the shared matching unit and the power transmission unit, the other end of the semiconductor switch is connected to the communication processing unit, the power transmission coil via the shared matching unit and the power transmission unit and the power transmission unit The control unit is connected to a semiconductor switch, and the control unit is connected to the communication processing unit and the power transmission unit.

また、本発明による非接触電力伝送装置は、前記共用整合部は、前記共用整合部の入力インピーダンスと、前記電力伝送部及び前記通信処理部の出力インピーダンスを等価にすることを特徴とする。   The contactless power transmission apparatus according to the present invention is characterized in that the shared matching unit equalizes an input impedance of the shared matching unit and an output impedance of the power transmission unit and the communication processing unit.

上記の構成により、通信回路を保護する為の保護回路を簡素化し、製造コストを削減した、伝送効率の良い非接触電力伝送装置が得られる。   With the above configuration, a non-contact power transmission device with high transmission efficiency can be obtained with a simplified protection circuit for protecting a communication circuit and reduced manufacturing costs.

本発明の実施の形態による非接触電力伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the non-contact electric power transmission apparatus by embodiment of this invention. 本発明の実施の形態による非接触電力伝送装置の動作を示すフロー図である。It is a flowchart which shows operation | movement of the non-contact electric power transmission apparatus by embodiment of this invention. 本発明の実施の形態による非接触電力伝送装置の電力伝送部と通信処理部の動作を示す状態遷移図である。It is a state transition diagram which shows operation | movement of the electric power transmission part and communication processing part of the non-contact electric power transmission apparatus by embodiment of this invention. 本発明の実施例による送電装置の整合部の一例を示す回路図である。It is a circuit diagram which shows an example of the matching part of the power transmission apparatus by the Example of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施の形態による非接触電力伝送装置の構成を示すブロック図である。図1に示すように、本実施の形態による非接触電力伝送装置1は送電装置2と受電装置3から構成される。送電装置2は、電力を送電する電力伝送部7と、通信を行う通信処理部8と、電力伝送部7と通信処理部8とを切り換える半導体スイッチ4と、電力伝送部7と通信処理部8と半導体スイッチ4の制御を行う制御部9と、共用整合部6と、電力伝送および受電装置3と通信信号の送受信を行う送電コイル5とを備えている。   FIG. 1 is a block diagram showing a configuration of a non-contact power transmission apparatus according to an embodiment of the present invention. As shown in FIG. 1, the non-contact power transmission device 1 according to this embodiment includes a power transmission device 2 and a power reception device 3. The power transmission device 2 includes a power transmission unit 7 that transmits power, a communication processing unit 8 that performs communication, a semiconductor switch 4 that switches between the power transmission unit 7 and the communication processing unit 8, a power transmission unit 7, and a communication processing unit 8. And a control unit 9 that controls the semiconductor switch 4, a shared matching unit 6, and a power transmission and reception coil 3 that transmits and receives communication signals to and from the power receiving device 3.

さらに、電力伝送部7は、充電電力を送電する充電アンプ10と、そのインピーダンス整合を行う充電用整合部11とを有し、通信処理部8は、通信信号を送信する通信アンプ12と、そのインピーダンス整合を行う通信用整合部13と、受電装置3が返信した通信信号を受信する受信部14を有している。   Furthermore, the power transmission unit 7 includes a charging amplifier 10 that transmits charging power, and a charging matching unit 11 that performs impedance matching. The communication processing unit 8 includes a communication amplifier 12 that transmits a communication signal, A communication matching unit 13 that performs impedance matching and a receiving unit 14 that receives a communication signal returned from the power receiving device 3 are provided.

また、本実施の形態による非接触電力伝送装置の受電装置3は、送電装置2からの電力を受電し、送電装置2と通信信号の送受信を行う受電コイル15と、二次電池17と、受電した電力を二次電池17に充電する為の充電部16と、通信信号の制御を行う通信部18とを備えている。   In addition, the power receiving device 3 of the non-contact power transmission device according to the present embodiment receives power from the power transmission device 2 and receives and transmits a communication signal with the power transmission device 2, a secondary battery 17, and a power reception device. The charging unit 16 for charging the secondary battery 17 with the power thus generated and the communication unit 18 for controlling the communication signal are provided.

送電コイル5は、受電コイル15と磁気的に結合して受電装置3に電力を送電するとともに、送電装置2と受電装置3間で通信信号の送受信を行う。   The power transmission coil 5 is magnetically coupled to the power reception coil 15 to transmit power to the power reception device 3, and transmits and receives communication signals between the power transmission device 2 and the power reception device 3.

ここで、一般的に半導体スイッチは、導通時に大電流を流すと発熱する可能性や、破損する恐れがある。よって、大電流による半導体スイッチ4の発熱や破損を防止するため、半導体スイッチ4は通信処理部8に直列に接続し、電力伝送部7に対して並列に接続することが望ましい。   Here, in general, a semiconductor switch may generate heat or be damaged when a large current is passed during conduction. Therefore, in order to prevent the semiconductor switch 4 from being heated or damaged due to a large current, it is desirable that the semiconductor switch 4 is connected in series to the communication processing unit 8 and connected in parallel to the power transmission unit 7.

共用整合部6は、インピーダンス変換回路にて構成され、送電コイル5のインピーダンスを下げ、半導体スイッチ4への印加電圧を下げる。これにより、半導体スイッチ4との接続部である共用整合部6の入力側は、送電コイル5との接続部である共用整合部6の出力側より電圧を下げられる。   The shared matching unit 6 is configured by an impedance conversion circuit, lowers the impedance of the power transmission coil 5, and lowers the voltage applied to the semiconductor switch 4. As a result, the voltage at the input side of the shared matching unit 6, which is a connection part with the semiconductor switch 4, can be lowered from the output side of the shared matching part 6, which is a connection part with the power transmission coil 5.

ここで、一般的に、半導体スイッチが切られた状態で高電圧を印加すると、半導体スイッチが破損する恐れがある。そのため、共用整合部6を半導体スイッチ4と送電コイル5の間に介在させて、送電コイル5のインピーダンスを下げる。送電コイル5のインピーダンスが下がることで、半導体スイッチ4への印加電圧が下がり、半導体スイッチ4の破損を防止できる。   Here, generally, if a high voltage is applied in a state where the semiconductor switch is turned off, the semiconductor switch may be damaged. Therefore, the shared matching unit 6 is interposed between the semiconductor switch 4 and the power transmission coil 5 to lower the impedance of the power transmission coil 5. When the impedance of the power transmission coil 5 is lowered, the voltage applied to the semiconductor switch 4 is lowered, and the semiconductor switch 4 can be prevented from being damaged.

充電用整合部11は、インピーダンス変換や高周波ノイズ除去または直流除去などのフィルタ回路等で構成され、充電アンプ10のインピーダンスと送電コイル5のインピーダンスを整合させる。   The charging matching unit 11 includes a filter circuit such as impedance conversion, high-frequency noise removal, or direct current removal, and matches the impedance of the charging amplifier 10 and the impedance of the power transmission coil 5.

通信用整合部13は、インピーダンス変換や高周波ノイズ除去または直流除去などのフィルタ回路等で構成され、通信アンプ12のインピーダンスと送電コイル5のインピーダンスを整合させる。   The communication matching unit 13 includes a filter circuit or the like for impedance conversion, high-frequency noise removal, or direct current removal, and matches the impedance of the communication amplifier 12 and the impedance of the power transmission coil 5.

また、共用整合部6を介在させることによって、充電用整合部11および通信用整合部13の出力インピーダンスと共用整合部6の入力インピーダンスを等価にし、充電電力および通信信号の伝送損失を抑制できる。   Further, by interposing the common matching unit 6, the output impedance of the matching unit for charging 11 and the matching unit for communication 13 and the input impedance of the common matching unit 6 can be equivalent, and transmission loss of charging power and communication signal can be suppressed.

電力伝送と通信信号の送受信を共通のアンテナで行う構成において、通信回路を保護するための保護回路として、半導体スイッチを一つ組み込むことで、電力伝送部と通信処理部の切り換えを行うことができ、従来技術に比べて保護回路の簡素化が可能となり、製造コストが削減できる。   In a configuration in which power transmission and transmission / reception of communication signals are performed using a common antenna, switching between the power transmission unit and communication processing unit can be performed by incorporating a single semiconductor switch as a protection circuit for protecting the communication circuit. Thus, the protection circuit can be simplified as compared with the prior art, and the manufacturing cost can be reduced.

本発明の非接触電力伝送装置において、半導体スイッチの代わりにメカニカルリレーを用いる事もできる。メカニカルリレーは機械的接点で構成されるスイッチであるため、導通時の抵抗が微小であり、電力伝送部に直列に接続することもできる。しかし、スイッチング速度が高速で、接点磨耗がないため寿命が長く、無接点のためにスイッチの入り切り時のノイズが抑制でき、さらに小型および軽量で実装性に優れる半導体スイッチが望ましい。半導体スイッチまたはメカニカルリレーの使用は目的に応じて適宜選択すれば良い。また、半導体スイッチは、電界効果トランジスタやフォトリレーを用いることが好ましい。   In the non-contact power transmission device of the present invention, a mechanical relay can be used instead of the semiconductor switch. Since the mechanical relay is a switch composed of mechanical contacts, the resistance at the time of conduction is very small, and it can be connected in series to the power transmission unit. However, it is desirable to have a semiconductor switch that has a high switching speed, has a long life because there is no contact wear, can suppress noise when the switch is turned on and off because of no contact, and is small, light, and excellent in mountability. The use of a semiconductor switch or a mechanical relay may be appropriately selected according to the purpose. The semiconductor switch preferably uses a field effect transistor or a photo relay.

ここで、受電装置側のアンテナとして、充電と通信を共通のコイルで行う1つのアンテナ構成としたが、充電用と通信用のそれぞれのアンテナとして2つのアンテナ構成としても良い。   Here, although the antenna on the power receiving apparatus side has one antenna configuration in which charging and communication are performed using a common coil, two antenna configurations may be used as the charging antenna and the communication antenna.

図2は本発明の実施の形態による非接触電力伝送装置の動作を示すフロー図である。本発明による非接触電力伝送装置は、主として識別情報取得処理と電力送電処理の2つの処理が行われることにより動作する。   FIG. 2 is a flowchart showing the operation of the non-contact power transmission apparatus according to the embodiment of the present invention. The non-contact power transmission apparatus according to the present invention operates mainly by performing two processes of an identification information acquisition process and a power transmission process.

図3は本発明の実施の形態による非接触電力伝送装置の電力伝送部と通信処理部の動作を示す状態遷移図である。図2で示したフローチャートの処理を実施したときの、電力伝送部と通信処理部の動作の一例を示すタイミング図である。   FIG. 3 is a state transition diagram showing operations of the power transmission unit and the communication processing unit of the non-contact power transmission apparatus according to the embodiment of the present invention. FIG. 3 is a timing diagram illustrating an example of operations of a power transmission unit and a communication processing unit when the processing of the flowchart illustrated in FIG. 2 is performed.

図2、図3に示すように、送電装置2は、受電装置3が送電範囲内に載置されているかを確認するために、所定の間隔を置き、受電装置3の識別情報問い合わせ信号を送信する識別情報取得処理を行う。識別情報問い合わせ信号に対する応答がない場合は、一定の時間を置いて識別情報問い合わせ信号を繰り返し送信する。識別情報問い合わせ信号に対する応答を受信した場合、送電装置2は電力送電処理へ移行する。   As shown in FIG. 2 and FIG. 3, the power transmission device 2 transmits an identification information inquiry signal of the power reception device 3 at a predetermined interval in order to confirm whether the power reception device 3 is placed within the power transmission range. ID information acquisition processing is performed. If there is no response to the identification information inquiry signal, the identification information inquiry signal is repeatedly transmitted after a certain period of time. When the response to the identification information inquiry signal is received, the power transmission device 2 proceeds to the power transmission process.

ここで、識別情報問い合わせ信号は送電装置2の制御部9から出力され、通信アンプ12、通信用整合部13および半導体スイッチ4を介して共用整合部6を通り、送電コイル5から受電装置3に送信される。識別情報問い合わせ信号を受信した受電装置3は、通信部18で応答信号を生成するなどの処理を行い、送電開始が可能であることを示す通信信号を、受電コイル15を介して送電装置2に返信する。送電装置2では送電コイル5で受信した受電装置3からの通信信号を、共用整合部6、半導体スイッチ4、受信部14を介して制御部9に伝達する。この時、半導体スイッチ4は導通状態である。   Here, the identification information inquiry signal is output from the control unit 9 of the power transmission device 2, passes through the common matching unit 6 through the communication amplifier 12, the communication matching unit 13, and the semiconductor switch 4, and then passes from the power transmission coil 5 to the power receiving device 3. Sent. The power receiving device 3 that has received the identification information inquiry signal performs processing such as generating a response signal in the communication unit 18, and sends a communication signal indicating that power transmission can be started to the power transmitting device 2 via the power receiving coil 15. Send back. In the power transmission device 2, the communication signal from the power reception device 3 received by the power transmission coil 5 is transmitted to the control unit 9 via the common matching unit 6, the semiconductor switch 4, and the reception unit 14. At this time, the semiconductor switch 4 is in a conductive state.

電力送電処理では、二次電池17の充電容量を確認するための充電容量確認信号を、識別情報問い合わせ信号と同様の方法で受電装置3へ送信する。その後、送電装置2は受電装置3からの返信される充電容量を取得して、二次電池17の充電が満充電であるかの判断を行い、不十分の場合は電力を所定の時間だけ送電し、再び充電容量確認信号を送信する処理を繰り返す。   In the power transmission process, a charge capacity confirmation signal for confirming the charge capacity of the secondary battery 17 is transmitted to the power receiving device 3 in the same manner as the identification information inquiry signal. Thereafter, the power transmission device 2 acquires the charge capacity returned from the power reception device 3, determines whether the secondary battery 17 is fully charged, and transmits power for a predetermined time if insufficient. Then, the process of transmitting the charge capacity confirmation signal is repeated again.

この時、充電容量が満充電であると判断した場合は、送電装置2は電力送電処理をスキップして識別情報取得処理へ移行する。二次電池17が満充電の状態である場合、受電装置3は送電装置2へ信号を送信する代わりに、送電装置2の識別情報問い合わせ信号に応答しないという処理を行わせても良い。   At this time, when it is determined that the charging capacity is fully charged, the power transmission device 2 skips the power transmission process and proceeds to the identification information acquisition process. When the secondary battery 17 is in a fully charged state, the power receiving device 3 may perform a process of not responding to the identification information inquiry signal of the power transmitting device 2 instead of transmitting a signal to the power transmitting device 2.

ここで、電力の送電は、送電装置2の制御部9から出力され、充電アンプ10及び充電用整合部11を介して共用整合部6を通り、送電コイル5から受電装置3に送電される。この時、半導体スイッチ4は切られており、充電電力が通信処理部8に回り込むのを防止することができる。   Here, power transmission is output from the control unit 9 of the power transmission device 2, passes through the common matching unit 6 through the charging amplifier 10 and the charging matching unit 11, and is transmitted from the power transmission coil 5 to the power receiving device 3. At this time, the semiconductor switch 4 is turned off, and the charging power can be prevented from entering the communication processing unit 8.

受電装置3では、充電部16で送電された電力から直流電力を生成する整流化等の処理を行い、二次電池17を充電する。   In the power receiving device 3, the secondary battery 17 is charged by performing processing such as rectification that generates DC power from the power transmitted by the charging unit 16.

図3からもわかるように、識別情報取得処理時には、識別情報問い合わせ信号を送信して、その応答を受信するために、半導体スイッチ4は導通状態となっている。また、電力送電処理時には、充電容量確認信号を送信してその応答を受信する間は、半導体スイッチ4が導通状態となり通信処理部8が動作する。そして、電力伝送時は半導体スイッチ4が切られて電力伝送部7が動作する。   As can be seen from FIG. 3, in the identification information acquisition process, the semiconductor switch 4 is in a conductive state in order to transmit the identification information inquiry signal and receive the response. Further, during the power transmission process, the semiconductor switch 4 is in a conductive state and the communication processing unit 8 operates while a charge capacity confirmation signal is transmitted and a response is received. During power transmission, the semiconductor switch 4 is turned off and the power transmission unit 7 operates.

図4は本発明の実施例による送電装置の整合部の一例を示す回路図である。   FIG. 4 is a circuit diagram illustrating an example of a matching unit of the power transmission device according to the embodiment of the present invention.

電力伝送部は、直流除去のための充電用カップリングコンデンサ25と、高周波ノイズ除去のためのローパスフィルタ26(LPF)から成る充電用整合部23と、充電電力を伝送するための充電アンプ21とから構成した。   The power transmission unit includes a charging coupling capacitor 25 for removing direct current, a charging matching unit 23 including a low pass filter 26 (LPF) for removing high frequency noise, a charging amplifier 21 for transmitting charging power, Consists of.

通信処理部は、直流除去のための通信用カップリングコンデンサ27と、通信アンプ22の出力部と送電コイル31のインピーダンスを等価とするためにインピーダンス変換部28から成る通信用整合部24と、通信信号を送信するための通信アンプ22とから構成した。   The communication processing unit includes a communication coupling capacitor 27 for removing direct current, a communication matching unit 24 including an impedance conversion unit 28 for equalizing the impedance of the output unit of the communication amplifier 22 and the power transmission coil 31, and communication. It comprised from the communication amplifier 22 for transmitting a signal.

共用整合部29は、送電コイル31のインピーダンスを下げるためのコンデンサにより構成した。   The common matching unit 29 is configured by a capacitor for reducing the impedance of the power transmission coil 31.

半導体スイッチ30は通信処理部に直列に接続し、通信処理部と半導体スイッチは電力伝送部に対して並列に接続した。さらに、電力伝送部と通信処理部との接続部と送電コイル31の間に共用整合部29を接続した。   The semiconductor switch 30 was connected in series to the communication processing unit, and the communication processing unit and the semiconductor switch were connected in parallel to the power transmission unit. Further, the shared matching unit 29 is connected between the connection portion between the power transmission unit and the communication processing unit and the power transmission coil 31.

送電コイル31はインダクタンスLが586nHで抵抗Rが1Ωとした。この場合、充電電力および通信信号の周波数が13.56MHzで、送電コイルアンテナのインピーダンスは1+j50Ωであった。   The power transmission coil 31 had an inductance L of 586 nH and a resistance R of 1Ω. In this case, the frequency of the charging power and the communication signal was 13.56 MHz, and the impedance of the power transmission coil antenna was 1 + j50Ω.

共用整合部29のコンデンサの容量を240pFとすることで、共用整合部29と送電コイル31のインピーダンスは1+j1Ωに低下した。   By setting the capacitance of the capacitor of the shared matching unit 29 to 240 pF, the impedance of the shared matching unit 29 and the power transmission coil 31 is reduced to 1 + j1Ω.

充電用整合部23は、フィルタを複数用いて多段にしてもよいし、充電アンプ21の出力部と送電コイル31のインピーダンスを等価にするためにインピーダンス変換回路を追加してもよく、必要に応じて適宜決定すればよい。また、通信用整合部24は高周波ノイズ除去等のフィルタ回路を追加してもよい。   The matching unit for charging 23 may be multi-staged using a plurality of filters, or an impedance conversion circuit may be added to equalize the impedance of the output unit of the charging amplifier 21 and the power transmission coil 31, as necessary. May be determined as appropriate. Further, the communication matching unit 24 may add a filter circuit such as high-frequency noise removal.

充電用整合部23にローパスフィルタ26のような、GND(グランド)に並列接続される素子がある場合、通信信号送信時、通信アンプ22の出力部と送電コイル31のインピーダンスを等価とさせる等価回路に充電用整合部23の素子が含まれてしまうため、充電用整合部23を考慮してインピーダンスを合わせる必要がある。   When there is an element connected in parallel to GND (ground), such as a low-pass filter 26, in the matching unit 23 for charging, an equivalent circuit that equalizes the impedance of the output unit of the communication amplifier 22 and the power transmission coil 31 when transmitting a communication signal. Therefore, it is necessary to adjust the impedance in consideration of the charging matching unit 23.

充電アンプ21の構成は特に制限しないが、電解効果トランジスタで構成したスイッチングアンプが好ましい。また、通信アンプ22の構成は特に制限しないが、バイポーラトランジスタで構成したリニアアンプが好ましい。   The configuration of the charge amplifier 21 is not particularly limited, but a switching amplifier composed of a field effect transistor is preferable. Further, the configuration of the communication amplifier 22 is not particularly limited, but a linear amplifier configured with a bipolar transistor is preferable.

以上より、通信回路を保護する為の保護回路を簡素化し、製造コストを削減した、伝送効率の良い非接触電力伝送装置が得られる。   From the above, it is possible to obtain a non-contact power transmission device with good transmission efficiency, in which the protection circuit for protecting the communication circuit is simplified and the manufacturing cost is reduced.

以上、本発明の実施例を説明したが、本発明は、上記に限定されるものではなく、本発明の要旨を逸脱しない範囲で、構成の変更や修正、フローチャートの変更が可能である。例えば、共用整合部、充電用整合部および通信用整合部の回路設計は、充電電力および通信信号の周波数に応じて、適宜決定すれば良い。すなわち、当業者であれば成し得るであろう各種変形、修正もまた本発明に含まれることは勿論である。   As mentioned above, although the Example of this invention was described, this invention is not limited above, A structure change and correction and the change of a flowchart are possible in the range which does not deviate from the summary of this invention. For example, the circuit design of the shared matching unit, the charging matching unit, and the communication matching unit may be appropriately determined according to the charging power and the frequency of the communication signal. That is, it is a matter of course that various modifications and corrections that can be made by those skilled in the art are also included in the present invention.

1 非接触電力伝送装置
2 送電装置
3 受電装置
4、30 半導体スイッチ
5、31 送電コイル
6、29 共用整合部
7 電力伝送部
8 通信処理部
9 制御部
10、21 充電アンプ
11、23 充電用整合部
12、22 通信アンプ
13、24 通信用整合部
14 受信部
15 受電コイル
16 充電部
17 二次電池
18 通信部
25 充電用カップリングコンデンサ
26 ローパスフィルタ
27 通信用カップリングコンデンサ
28 インピーダンス変換部
DESCRIPTION OF SYMBOLS 1 Non-contact electric power transmission apparatus 2 Power transmission apparatus 3 Power receiving apparatus 4, 30 Semiconductor switch 5, 31 Power transmission coil 6, 29 Common matching part 7 Power transmission part 8 Communication processing part 9 Control part 10, 21 Charge amplifier 11, 23 Units 12 and 22 Communication amplifiers 13 and 24 Communication matching unit 14 Reception unit 15 Power receiving coil 16 Charging unit 17 Secondary battery 18 Communication unit 25 Charging coupling capacitor 26 Low-pass filter 27 Communication coupling capacitor 28 Impedance conversion unit

Claims (2)

送電コイルを有する送電装置と、前記送電コイルに磁気的に結合する受電コイルを有する受電装置とからなる非接触電力伝送装置であり、前記送電装置はさらに、電力伝送部と、通信処理部と、制御部と、半導体スイッチと、共用整合部とを備え、前記共用整合部は前記電力伝送部に接続され、前記半導体スイッチの一端は前記共用整合部と前記電力伝送部の間に接続され、前記半導体スイッチの他端は前記通信処理部と接続され、前記送電コイルは前記共用整合部を介して前記電力伝送部および前記半導体スイッチに接続され、前記制御部は前記通信処理部と前記電力伝送部に接続されていることを特徴とする非接触電力伝送装置。   A non-contact power transmission device comprising a power transmission device having a power transmission coil and a power reception device having a power reception coil that is magnetically coupled to the power transmission coil, wherein the power transmission device further includes a power transmission unit, a communication processing unit, A control unit, a semiconductor switch, and a shared matching unit, wherein the shared matching unit is connected to the power transmission unit, one end of the semiconductor switch is connected between the shared matching unit and the power transmission unit, The other end of the semiconductor switch is connected to the communication processing unit, the power transmission coil is connected to the power transmission unit and the semiconductor switch via the shared matching unit, and the control unit is configured to connect the communication processing unit and the power transmission unit. A non-contact power transmission device, characterized in that the non-contact power transmission device is connected. 前記共用整合部は、前記共用整合部の入力インピーダンスと、前記電力伝送部および前記通信処理部の出力インピーダンスを整合させることを特徴とする請求項1に記載の非接触電力伝送装置。   The non-contact power transmission apparatus according to claim 1, wherein the shared matching unit matches an input impedance of the shared matching unit with output impedances of the power transmission unit and the communication processing unit.
JP2011231197A 2011-10-21 2011-10-21 Non-contact power transmission device Pending JP2013090514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231197A JP2013090514A (en) 2011-10-21 2011-10-21 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231197A JP2013090514A (en) 2011-10-21 2011-10-21 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2013090514A true JP2013090514A (en) 2013-05-13

Family

ID=48533905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231197A Pending JP2013090514A (en) 2011-10-21 2011-10-21 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2013090514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536964A (en) * 2013-08-26 2016-11-24 クアルコム,インコーポレイテッド Systems and methods for efficient data communication and wireless power transfer coexistence
US10892647B2 (en) 2017-11-14 2021-01-12 Wits Co., Ltd. Wireless power transmitter with data communication provision

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536964A (en) * 2013-08-26 2016-11-24 クアルコム,インコーポレイテッド Systems and methods for efficient data communication and wireless power transfer coexistence
US10892647B2 (en) 2017-11-14 2021-01-12 Wits Co., Ltd. Wireless power transmitter with data communication provision

Similar Documents

Publication Publication Date Title
US10128689B2 (en) Systems and methods for enabling a universal back-cover wireless charging solution
US10020683B2 (en) Systems, apparatus, and method for a dual mode wireless power receiver
EP3022823B1 (en) System and method for efficient data communication and wireless power transfer coexistence
US9130369B2 (en) Wireless power overvoltage protection circuit with reduced power dissipation
EP2912751B1 (en) High power rf field effect transistor switching using dc biases
JP5324008B1 (en) Non-contact power transmission device
JP2013128385A (en) Non-contact power transmission system
US20130077360A1 (en) Systems, methods, and apparatus for rectifier filtering for input waveform shaping
EP3479457B1 (en) Apparatus and method for wireless power charging of subsequent receiver
WO2015022450A1 (en) Wireless near field communication device and power transmitter and a method for wirelessly transmitting operating power to another device
US10971951B2 (en) Electronic system having power adapter for wired and wireless charging
US9196418B2 (en) Push-pull driver with stage inversion and method of operation
US11296556B2 (en) Power relay device and system
JP2019096333A (en) Antenna device and electronic apparatus
JP2012070529A (en) Non-contact power transmission and communication system
JPWO2015099065A1 (en) Non-contact power receiving circuit, non-contact power receiving device, and non-contact power transmitting / receiving device
JP2013090514A (en) Non-contact power transmission device
WO2020000672A1 (en) Coil module charging circuit, two sets of coil module charging circuits, and charger
JP2012065455A (en) Non-contact charging system, electronic device, and method of protecting non-contact communication circuit
US20150064970A1 (en) Systems, apparatus, and methods for an embedded emissions filter circuit in a power cable
US20180233950A1 (en) Method and device for the contactless energy transfer to an apparatus equipped with a loudspeaker
JP2013143887A (en) Non contact power transmission apparatus and non contact power transmission system
CN218336020U (en) Antenna and electronic device configured for near field communication
US11043982B1 (en) Data transmitting circuit, data receiving circuit and data transferring apparatus
JP2012135169A (en) Non-contact power transmission device