JP2013090143A - Optical subscriber-side device and optical communication system - Google Patents

Optical subscriber-side device and optical communication system Download PDF

Info

Publication number
JP2013090143A
JP2013090143A JP2011228953A JP2011228953A JP2013090143A JP 2013090143 A JP2013090143 A JP 2013090143A JP 2011228953 A JP2011228953 A JP 2011228953A JP 2011228953 A JP2011228953 A JP 2011228953A JP 2013090143 A JP2013090143 A JP 2013090143A
Authority
JP
Japan
Prior art keywords
optical
optical signal
intensity
reception intensity
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011228953A
Other languages
Japanese (ja)
Inventor
Susumu Nishihara
晋 西原
Hiroko Nomura
紘子 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011228953A priority Critical patent/JP2013090143A/en
Publication of JP2013090143A publication Critical patent/JP2013090143A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To mitigate an input dynamic range and a response speed required for an OLT optical receiver.SOLUTION: An ONU 1 includes: a reception signal intensity report unit 133 for measuring the reception intensity of a downward optical signal simultaneously transmitted from an OLT; based on the reception intensity of the downward optical signal measured by the reception signal intensity report unit 133, an LD drive condition controller 14 for controlling the transmission intensity of an upward optical signal transmitted to the OLT, to allow the reception intensity of an upward optical signal, burst received by the OLT, to be substantially constant irrespective of each ONU.

Description

本発明は、複数の光加入者側装置が1つの光局側装置に接続される受動光ネットワーク構成に関する。   The present invention relates to a passive optical network configuration in which a plurality of optical subscriber side devices are connected to one optical station side device.

光アクセスシステムの代表的な網構成として、光加入者側装置(Optical Network Unit:ONU)と光局側装置(Optical Line Terminal:OLT)とが1対1で接続されるシングルスター構成(Single Star:SS)と、複数のONUが1つのOLTに接続される受動光ネットワーク(Passive Optical Network:PON)構成とがある。   As a typical network configuration of an optical access system, a single star configuration (Single Star Unit) in which an optical subscriber unit (Optical Network Unit: ONU) and an optical station side device (Optical Line Terminal: OLT) are connected one-to-one. SS) and a passive optical network (PON) configuration in which a plurality of ONUs are connected to one OLT.

SS方式においては、ONUがOLTを占有出来るので、高速通信が可能であるが、装置コストが高いという欠点がある。一方、PON方式においては、複数のONUが1つのOLTや光ファイバ設備を共有するために、経済性に優れるという理由から、多くの光アクセスシステムでは、PON方式が採用されている。   In the SS system, since the ONU can occupy the OLT, high-speed communication is possible, but there is a disadvantage that the apparatus cost is high. On the other hand, in the PON system, since a plurality of ONUs share one OLT and optical fiber equipment, the PON system is adopted in many optical access systems because it is economical.

PON方式の下り伝送は連続モードで、各ONUへの信号は時分割多重(Time Division Multiplexing:TDM)されて伝送される。下り信号は全てのONUにブロードキャストされ、各ONUは自分宛の信号のみ選択受信する。   PON downlink transmission is a continuous mode, and signals to each ONU are transmitted in a time division multiplexing (TDM) manner. The downstream signal is broadcast to all ONUs, and each ONU selectively receives only the signal addressed to itself.

一方、上り伝送では、時分割多元接続(Time Division Multiple Access:TDMA)によって、信号の衝突を避けるために、各ONUはOLTから指定されたタイミングで信号を伝送する。ONUとOLTの間の伝送距離がONU毎に異なるために、各ONUからの上り信号は互いに強度と位相が異なり間欠的であるという特徴があり、上り信号はバーストモードと呼ばれる。   On the other hand, in uplink transmission, each ONU transmits a signal at a timing designated by the OLT in order to avoid signal collision by time division multiple access (TDMA). Since the transmission distance between the ONU and the OLT is different for each ONU, the upstream signals from each ONU have a characteristic that they are intermittent with different strengths and phases, and the upstream signal is called a burst mode.

従来技術におけるONUの構成を図1に示す。ONU1は、WDMフィルタ11、光送信器12、光受信器13を有する。WDMフィルタ11は、波長の異なる光信号を分岐/結合する機能を有する。PON方式では一般に、上り信号と下り信号とで異なる波長を用いて通信するので、混信を防ぐためにWDMフィルタ11を用いる。   The configuration of the ONU in the prior art is shown in FIG. The ONU 1 includes a WDM filter 11, an optical transmitter 12, and an optical receiver 13. The WDM filter 11 has a function of branching / combining optical signals having different wavelengths. In general, the PON system uses different wavelengths for the upstream signal and downstream signal, so the WDM filter 11 is used to prevent interference.

光送信器12は、レーザダイオード(Laser Diode:LD)121、LD駆動器(LD Driver:LDD)122、自動パワー制御器(Automatic Power Controller:APC)123を有する。LD駆動器122は、LD121に流れる電流を送信信号に基づき駆動し、対応する光信号を出力する。APC123は、LD121の出力光信号強度が一定値になるよう制御する機能を有する。   The optical transmitter 12 includes a laser diode (LD) 121, an LD driver (LDD) 122, and an automatic power controller (APC) 123. The LD driver 122 drives the current flowing through the LD 121 based on the transmission signal and outputs a corresponding optical signal. The APC 123 has a function of controlling the output optical signal intensity of the LD 121 to be a constant value.

光受信器13は、フォトダイオード(Photo Diode:PD)131、等化増幅器(EQualizing Amplifier:EQA)132、受信信号強度通知器(Received Signal Strength Indicator:RSSI)133を有する。クロックデータ再生器(Clock and Data Recovery:CDR)は、光受信器13が有することもあるが、伝送装置の機能分担という観点から、光受信器13後段の論理回路装置2が有することもある。   The optical receiver 13 includes a photodiode (PD) 131, an equalizer amplifier (EQA) 132, and a received signal strength indicator (Received Signal Strength Indicator: RSSI) 133. The clock data regenerator (CDR) may be included in the optical receiver 13, but may be included in the logic circuit device 2 subsequent to the optical receiver 13 from the viewpoint of function sharing of the transmission apparatus.

受信信号強度通知器133は、PD131に流れる光電流強度をモニタする機能を有する。等化増幅器132は、インピーダンス変換増幅器(TransImpedance Amplifier:TIA)と振幅制限増幅器(LImiting Amplifier:LIA)を有する。CDRは、クロック再生回路(Clock Recovery Circuit:CRC)と識別再生回路(DEcision Circuit:DEC) を有する。光受信器13への入力光信号は、PD131によって電流信号に変換され、TIAにおいて電圧信号に変換され、LIAにおいて後段のCDRで識別再生可能なレベルに振幅制限されて増幅される。CDRにおいては、CRCが入力信号からクロック信号を抽出・再生し、その再生クロックによって与えられる識別タイミングで、DECが入力信号を識別再生し、後段の論理回路装置2へと再生信号を送出する。   The received signal strength notification device 133 has a function of monitoring the strength of the photocurrent flowing through the PD 131. The equalizing amplifier 132 includes an impedance conversion amplifier (Transimpedance Amplifier: TIA) and an amplitude limiting amplifier (LIMitting Amplifier: LIA). The CDR has a clock recovery circuit (CRC) and an identification recovery circuit (DEC). The input optical signal to the optical receiver 13 is converted into a current signal by the PD 131, converted into a voltage signal in the TIA, and amplified in an LIA with an amplitude limited to a level that can be discriminated and reproduced by a subsequent CDR. In the CDR, the CRC extracts and reproduces the clock signal from the input signal, and the DEC discriminates and reproduces the input signal at the identification timing given by the reproduction clock, and sends the reproduction signal to the logic circuit device 2 in the subsequent stage.

“A Burst−Mode 3R Receiver for 10−Gbit/s PON Systems With High Sensitivity,Wide Dynamic Range,and Fast Response” ,IEEE Journal of Lightwave Technology,Vol.26,No.1,pp.99−107,January 2008.“A Burst-Mode 3R Receiver for 10-Gbit / s PON Systems With High Sensitivity, Wide Dynamic Range, and Fast Response Venue, IEEE Journal of Forest. 26, no. 1, pp. 99-107, January 2008.

下り信号は連続モードであり、各ONUがOLTから受信する光信号強度は、原理的に一定であるが、大抵はユーザ毎には異なる。例えば、互いにOLTからの距離が異なる加入者Aと加入者Bとが任意のPON網においてOLTに接続されている際、各々がOLTから受信する光信号強度をそれぞれPdown_A、Pdown_Bとすると、Pdown_A≠Pdown_Bであり、Pdown_AおよびPdown_Bはそれぞれ原理的には変化しない。但し、光部品性能の経時変化によっては変化することも十分ある。 The downstream signal is a continuous mode, and the optical signal intensity received by each ONU from the OLT is constant in principle, but is usually different for each user. For example, when subscribers A and B having different distances from the OLT are connected to the OLT in an arbitrary PON network, the optical signal strengths received from the OLT are P down_A and P down_B , respectively. P down_A ≠ P down_B , and P down_A and P down_B do not change in principle. However, it may change depending on the change in optical component performance over time.

上り光信号はバーストモードであるため、OLTの光受信器を構成するTIA、LIAは強度の著しく異なるバースト信号を歪み無く増幅し、CRCは互いに異なる位相のバースト信号からクロック信号を抽出する必要がある。その際にはバースト信号毎に各々の受信回路は最適化される必要があるが、各回路はある一定の応答時間を必要とする。   Since the upstream optical signal is in burst mode, the TIA and LIA that constitute the OLT optical receiver amplify burst signals with significantly different intensities without distortion, and the CRC needs to extract the clock signal from burst signals of different phases. is there. In this case, each receiving circuit needs to be optimized for each burst signal, but each circuit requires a certain response time.

上り信号はTDMAであり、TIAやLIAの応答時間が長いと共有リソースである上り信号帯域が無駄になってしまうため、TIAやLIAに対しては高速応答性能が要求される。また、上り通信サービスを提供するという観点からは、多分岐化対応や広域収容のために大きな伝送路損失をサポートする必要があるため、等化増幅器を構成するTIAやLIAには高感度かつ広ダイナミックレンジな受信性能が求められる。   The uplink signal is TDMA, and if the response time of TIA or LIA is long, the uplink signal band, which is a shared resource, is wasted. Therefore, high-speed response performance is required for TIA and LIA. In addition, from the viewpoint of providing an uplink communication service, it is necessary to support a large transmission path loss for multi-branch support and wide-area accommodation, so that the TIA and LIA constituting the equalization amplifier have high sensitivity and wide range. Dynamic range reception performance is required.

従来技術におけるONUでの上り光信号の送信処理を図2に示す。第1ONUの方が第2ONUよりもOLTからの伝送距離が長く、伝送路損失が大きいものとする。   The upstream optical signal transmission processing in the ONU in the prior art is shown in FIG. It is assumed that the first ONU has a longer transmission distance from the OLT and a larger transmission path loss than the second ONU.

時刻tが初期状態とし、時刻tで第1ONUおよび第2ONUに電源が入り、時刻tから正常動作し始めるものとする。第1ONUおよび第2ONUのLD駆動器122はLD121をバイアス電流Ibias_1および駆動電流idrv_1で駆動する。 Time t 0 is the initial state, the time t 0 the power enters the first 1ONU and second 2ONU, it is assumed that from the time t 1 starts to operate normally. The LD driver 122 of the first ONU and the second ONU drives the LD 121 with a bias current Ibias_1 and a drive current idrv_1 .

第1ONUは時刻tから上り信号の送信をOLTから許可されているとする。時刻tまでに第1ONUのLD121がセットアップを終え、時刻tまで上りデータを送信し、時刻tまでの間に第1ONUのLD121は発光を終える。 The 1ONU is from time t 1 is allowed to transmit an uplink signal from the OLT. LDs 121 of the 1ONU has finished up until the time t 2, the transmitted uplink data up to time t 3, LDs 121 of the 1ONU until time t 4 ends the emission.

第2ONUは時刻tから上り信号の送信をOLTから許可されているとする。時刻tまでに第2ONUのLD121がセットアップを終え、時刻tまで上りデータを送信し、時刻tまでの間に第2ONUのLD121は発光を終える。 The 2ONU is from the time t 5 is allowed to transmit an uplink signal from the OLT. LDs 121 of the 2ONU has finished up until the time t 6, and transmits the uplink data up to time t 7, LDs 121 of the 2ONU until time t 8 ends the emission.

従来技術におけるOLTでの上り光信号の受信処理を図3に示す。OLTの光受信器はバースト信号が入力されるという点がONUの光受信器とは異なるが、OLTの光受信器の構成はONUの光受信器の構成と同様なので特に図示しない。   FIG. 3 shows the reception processing of the upstream optical signal by the OLT in the prior art. Although the OLT optical receiver is different from the ONU optical receiver in that a burst signal is input, the configuration of the OLT optical receiver is not particularly shown because it is similar to the configuration of the ONU optical receiver.

時刻tから第1ONUの上りデータがOLTの光受信器に入力され、一定の応答時間の後、t10からt11までの間、正味のデータを受信し、t12までに消光する。時刻t13から第2ONUの上りデータがOLTの光受信器に入力され、一定の応答時間の後、t14からt15までの間、正味のデータを受信し、t16までに消光する。 Uplink data of the 1ONU from the time t 9 is inputted to the OLT of the optical receiver, after a certain response time, between the t 10 to t 11, receives a net data, quenched by t 12. Uplink data of the 2ONU from the time t 13 is input to the OLT of the optical receiver, after a certain response time, during the period from t 14 to t 15, it receives a net data, quenched by t 16.

図2より、第1ONUと第2ONUの上り光信号がONUの光送信器から出力される際の光信号パワーは、第1ONUと第2ONUとで差はない。なぜなら、LD121のバイアス電流と駆動電流が第1ONUと第2ONUとでほぼ同程度だからである。   From FIG. 2, there is no difference between the first ONU and the second ONU in the optical signal power when the upstream optical signals of the first ONU and the second ONU are output from the ONU optical transmitter. This is because the bias current and drive current of the LD 121 are approximately the same between the first ONU and the second ONU.

図3より、第1ONUと第2ONUの上り光信号がOLTの光受信器に入力される際の光信号パワー、つまりPD131を流れる光電流は、第1ONUと第2ONUとで異なり、それぞれIrcv1、Ircv2で、Ircv1<Ircv2である。なぜなら、第1ONUの方が第2ONUよりもOLTからの伝送距離が長く、OLTまでの伝送路損失が大きいからである。   From FIG. 3, the optical signal power when the upstream optical signals of the first ONU and the second ONU are input to the optical receiver of the OLT, that is, the photocurrent flowing through the PD 131 is different between the first ONU and the second ONU, and Ircv1 and Ircv2 respectively. And Ircv1 <Ircv2. This is because the first ONU has a longer transmission distance from the OLT than the second ONU, and the transmission line loss to the OLT is larger.

従って、従来のOLTの光受信器に対しては、広い範囲の入力パワーに対して誤り無く動作することだけでなく、上り帯域の利用効率を向上させるという観点から、互いに強度の異なる入力光信号に対する高速応答性能も併せて求められてきた。   Therefore, for conventional OLT optical receivers, input optical signals having different intensities from the viewpoint of not only operating without error for a wide range of input power but also improving the utilization efficiency of the upstream band. In addition, high-speed response performance has been demanded.

そこで、前記課題を解決するために、本発明は、OLTの光受信器に対して要求される入力ダイナミックレンジ及び応答速度を緩和することを目的とする。   Therefore, in order to solve the above-described problems, an object of the present invention is to reduce the input dynamic range and response speed required for an optical receiver of an OLT.

光局側装置が複数の光加入者側装置に一斉送信する下り光信号について、送信強度は複数の光加入者側装置について等しいが、受信強度は複数の光加入者側装置について伝送路損失の差異を反映して異なる。そこで、複数の光加入者側装置が光局側装置に送信する上り光信号について、受信強度が複数の光加入者側装置について等しくなるように、送信強度が複数の光加入者側装置について伝送路損失の差異を反映して異なるようにする。つまり、それぞれの光加入者側装置での下り光信号の受信強度に基づいて、それぞれの光加入者側装置での上り光信号の送信強度を制御するようにする。   For downstream optical signals transmitted simultaneously from the optical station side device to a plurality of optical subscriber side devices, the transmission strength is the same for the plurality of optical subscriber side devices, but the reception strength is the transmission path loss for the plurality of optical subscriber side devices. Different to reflect the difference. Therefore, for the upstream optical signal transmitted from the plurality of optical subscriber side devices to the optical station side device, the transmission intensity is transmitted to the plurality of optical subscriber side devices so that the reception strength is the same for the plurality of optical subscriber side devices. It will be different to reflect the difference in road loss. That is, the transmission intensity of the upstream optical signal in each optical subscriber side apparatus is controlled based on the reception intensity of the downstream optical signal in each optical subscriber side apparatus.

具体的には、本発明は、光局側装置から一斉送信された下り光信号の受信強度を計測する受信強度計測部と、前記受信強度計測部が計測した下り光信号の受信強度に基づいて、前記光局側装置に送信される上り光信号の送信強度を制御することにより、前記光局側装置でバースト受信される上り光信号の受信強度を各光加入者側装置によらず略一定強度とする送信強度制御部と、を備えることを特徴とする光加入者側装置である。   Specifically, the present invention is based on a reception intensity measurement unit that measures the reception intensity of a downstream optical signal that is simultaneously transmitted from the optical station side device, and a reception intensity of the downstream optical signal that is measured by the reception intensity measurement unit. By controlling the transmission intensity of the upstream optical signal transmitted to the optical station side apparatus, the reception intensity of the upstream optical signal burst-received by the optical station side apparatus is substantially constant regardless of each optical subscriber side apparatus. An optical subscriber-side apparatus comprising: a transmission intensity control unit configured to be an intensity.

また、本発明は、下り信号を一斉送信する光局側装置と、前記光局側装置から一斉送信された下り光信号の受信強度をそれぞれ計測し、それぞれ計測した下り光信号の受信強度に基づいて、前記光局側装置にそれぞれ送信する上り光信号の送信強度をそれぞれ制御することにより、前記光局側装置でバースト受信される上り光信号の受信強度をそれぞれ略同一強度とする複数の光加入者側装置と、を備えることを特徴とする光通信システムである。   The present invention also measures an optical station side device that broadcasts a downlink signal simultaneously and a reception intensity of the downstream optical signal that is broadcast from the optical station side device, and is based on the measured reception strength of the downstream optical signal. Thus, by controlling the transmission intensity of each upstream optical signal to be transmitted to each of the optical station side devices, a plurality of lights each having substantially the same reception intensity of the upstream optical signal burst received by the optical station side device. An optical communication system comprising a subscriber-side device.

この構成によれば、複数の光加入者側装置が光局側装置に送信する上り光信号について、受信強度が複数の光加入者側装置について等しくなるため、光局側装置の光受信器に対して要求される入力ダイナミックレンジ及び応答速度を緩和することができる。   According to this configuration, the reception intensity of the upstream optical signals transmitted from the plurality of optical subscriber side devices to the optical station side device is the same for the plurality of optical subscriber side devices. On the other hand, the required input dynamic range and response speed can be relaxed.

また、本発明は、前記送信強度制御部は、前記受信強度計測部が計測した下り光信号の受信強度が高いほど、前記光局側装置に送信される上り光信号の送信強度を低く制御することを特徴とする光加入者側装置である。   In the present invention, the transmission intensity control unit controls the transmission intensity of the upstream optical signal transmitted to the optical station side device to be lower as the reception intensity of the downstream optical signal measured by the reception intensity measurement unit is higher. An optical subscriber side device characterized by the above.

また、本発明は、前記複数の光加入者側装置は、それぞれ計測した下り光信号の受信強度が高いほど、前記光局側装置にそれぞれ送信する上り光信号の送信強度を低くそれぞれ制御することを特徴とする光通信システムである。   In the present invention, each of the plurality of optical subscriber-side devices controls a lower transmission intensity of the upstream optical signal to be transmitted to the optical station-side apparatus as the measured downstream optical signal reception intensity is higher. Is an optical communication system.

この構成によれば、下り光信号の受信強度及び上り光信号の送信強度を対応付ける相関関係を利用して、複数の光加入者側装置が光局側装置に送信する上り光信号について、受信強度を複数の光加入者側装置について等しくすることができる。   According to this configuration, with respect to the upstream optical signal transmitted from the plurality of optical subscriber side devices to the optical station side device using the correlation that associates the reception strength of the downstream optical signal and the transmission strength of the upstream optical signal, the reception strength Can be made equal for a plurality of optical subscriber side devices.

また、本発明は、前記受信強度計測部が計測した下り光信号の受信強度に対応して、前記送信強度制御部が制御する上り光信号の送信強度を記憶している強度対応記憶部、をさらに備えることを特徴とする光加入者側装置である。   Further, the present invention provides an intensity correspondence storage unit that stores the transmission intensity of the upstream optical signal controlled by the transmission intensity control unit in correspondence with the reception intensity of the downstream optical signal measured by the reception intensity measurement unit. It is an optical subscriber side device further provided.

また、本発明は、前記複数の光加入者側装置は、それぞれ計測した下り光信号の受信強度に対応して、それぞれ制御する上り光信号の送信強度をそれぞれ記憶していることを特徴とする光通信システムである。   Further, the present invention is characterized in that each of the plurality of optical subscriber side devices stores the transmission intensity of each upstream optical signal to be controlled, corresponding to the measured reception intensity of each downstream optical signal. It is an optical communication system.

この構成によれば、下り光信号の受信強度及び上り光信号の送信強度を対応付ける記憶部を利用して、複数の光加入者側装置が光局側装置に送信する上り光信号について、受信強度を複数の光加入者側装置について等しくすることができる。   According to this configuration, by using the storage unit that associates the reception intensity of the downstream optical signal and the transmission intensity of the upstream optical signal, the reception intensity of the upstream optical signal transmitted from the plurality of optical subscriber side apparatuses to the optical station side apparatus is determined. Can be made equal for a plurality of optical subscriber side devices.

本発明は、OLTの光受信器に対して要求される入力ダイナミックレンジ及び応答速度を緩和することができる。   The present invention can reduce the input dynamic range and response speed required for an OLT optical receiver.

従来技術におけるONUの構成を示す図である。It is a figure which shows the structure of ONU in a prior art. 従来技術におけるONUでの上り光信号の送信処理を示す図である。It is a figure which shows the transmission process of the upstream optical signal in ONU in a prior art. 従来技術におけるOLTでの上り光信号の受信処理を示す図である。It is a figure which shows the reception process of the upstream optical signal in OLT in a prior art. 本発明におけるONUの構成を示す図である。It is a figure which shows the structure of ONU in this invention. 本発明におけるONUでの上り光信号の送信処理を示す図である。It is a figure which shows the transmission process of the upstream optical signal in ONU in this invention. 本発明におけるOLTでの上り光信号の受信処理を示す図である。It is a figure which shows the reception process of the upstream optical signal in OLT in this invention. 本発明におけるONUでの動作条件を示す図である。It is a figure which shows the operating condition in ONU in this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

本発明におけるONUの構成を図4に示す。ONU1は、WDMフィルタ11、光送信器12、光受信器13、LD駆動条件制御器14、素子動作条件格納テーブル15を有し、論理回路装置2に接続される。光送信器12は、LD121、LD駆動器122、自動パワー制御器123を有し、論理回路装置2に接続される。光受信器13は、PD131、等化増幅器132、受信信号強度通知器133を有し、論理回路装置2に接続される。   The configuration of the ONU in the present invention is shown in FIG. The ONU 1 includes a WDM filter 11, an optical transmitter 12, an optical receiver 13, an LD drive condition controller 14, and an element operation condition storage table 15, and is connected to the logic circuit device 2. The optical transmitter 12 includes an LD 121, an LD driver 122, and an automatic power controller 123, and is connected to the logic circuit device 2. The optical receiver 13 includes a PD 131, an equalizing amplifier 132, and a received signal strength notification device 133, and is connected to the logic circuit device 2.

素子動作条件格納テーブル15は、例えば不揮発性メモリのような記憶素子であって、PD131に流れる光電流値やLD121の駆動条件を対応付ける情報が格納される。LD駆動条件制御器14は、素子動作条件格納テーブル15、自動パワー制御器123、受信信号強度通知器133のそれぞれに接続されており、受信信号強度通知器133から読み出したPD131の光電流値を素子動作条件格納テーブル15に書き込み、また、素子動作条件格納テーブル15にセットされたLD121の駆動条件を読み込み、LD121の駆動条件を自動パワー制御器123に対して設定する。   The element operating condition storage table 15 is a storage element such as a nonvolatile memory, for example, and stores information associating the value of the photocurrent flowing through the PD 131 and the driving condition of the LD 121. The LD drive condition controller 14 is connected to each of the element operation condition storage table 15, the automatic power controller 123, and the reception signal strength notification device 133, and the photocurrent value of the PD 131 read from the reception signal strength notification device 133 is determined. Write to the element operation condition storage table 15, read the drive condition of the LD 121 set in the element operation condition storage table 15, and set the drive condition of the LD 121 to the automatic power controller 123.

上の方法は、下り光信号の受信強度及び上り光信号の送信強度を対応付ける記憶部を利用する方法であるが、次の方法は、下り光信号の受信強度及び上り光信号の送信強度を対応付ける相関関係を利用する方法である。つまり、下り光信号の受信強度が高いほど、上り光信号の送信強度を低くする方法を用いる。または、下り光信号の受信強度に反比例して、上り光信号の送信強度を制御する方法を用いる。   The above method uses a storage unit that associates the reception intensity of the downstream optical signal and the transmission intensity of the upstream optical signal. The following method associates the reception intensity of the downstream optical signal and the transmission intensity of the upstream optical signal. This is a method of using correlation. That is, a method of lowering the transmission intensity of the upstream optical signal is used as the reception intensity of the downstream optical signal is higher. Alternatively, a method of controlling the transmission intensity of the upstream optical signal in inverse proportion to the reception intensity of the downstream optical signal is used.

下り光信号の受信強度に反比例して、上り光信号の送信強度を制御する方法について、以下に説明する。第1ONUとOLTの間の伝送距離をLとし、第2ONUとOLTの間の伝送距離をLとする。第1ONU及びOLTの間の送受信において、受信強度は送信強度の1/L(L>1)倍とする。第2ONU及びOLTの間の送受信において、受信強度は送信強度の1/L(L>1)倍とする。下り光信号の送信強度が、第1ONU及び第2ONUに対して等しくTdownであるとき、下り光信号の第1ONU及び第2ONUでの受信強度は、Rdown_1=Tdown/L及びRdown_2=Tdown/Lである。上り光信号の受信強度が、第1ONU及び第2ONUに対して等しくRupであるとき、上り光信号の第1ONU及び第2ONUでの送信強度は、Tup_1=Rup×L及びTup_2=Rup×Lである。そこで、Rdown×Tup=Tdown×Rup=一定が成立するように、Rdownに対してTupを決定する。 A method for controlling the transmission intensity of the upstream optical signal in inverse proportion to the reception intensity of the downstream optical signal will be described below. The transmission distance between the first 1ONU and OLT and L 1, the transmission distance between the first 2ONU the OLT and L 2. In the transmission / reception between the first ONU and the OLT, the reception strength is 1 / L 1 (L 1 > 1) times the transmission strength. In transmission / reception between the second ONU and the OLT, the reception intensity is 1 / L 2 (L 2 > 1) times the transmission intensity. When transmit power of the downlink optical signal is equally T down against the 1ONU and second 2ONU, reception intensity at the 1ONU and second 2ONU downstream optical signals, R down_1 = T down / L 1 and R down_2 = it is a T down / L 2. Reception intensity of the upstream optical signal, when it is equally R Stay up-against the 1ONU and second 2ONU, transmission intensity at the 1ONU and second 2ONU upstream optical signal, T up_1 = R up × L 1 and T up_2 = R up × L 2 . Therefore, T up is determined with respect to R down so that R down × T up = T down × R up = constant holds.

本発明におけるONUでの上り光信号の送信処理を図5に示す。第1ONUの方が第2ONUよりもOLTからの伝送距離が長く、伝送路損失が大きいものとする。時刻tが初期状態とし、時刻tで第1ONUおよび第2ONUに電源が入り、時刻tから正常動作し始めるものとする。 FIG. 5 shows upstream optical signal transmission processing in the ONU according to the present invention. It is assumed that the first ONU has a longer transmission distance from the OLT and a larger transmission path loss than the second ONU. Time t 0 is the initial state, the time t 0 the power enters the first 1ONU and second 2ONU, it is assumed that from the time t 1 starts to operate normally.

第1ONUにおいて、受信信号強度通知器133は、時刻tから第1ONUに対する入力光電流値Iin_1を出力する。LD駆動条件制御器14は、入力光電流値Iin_1を受信信号強度通知器133から読み出し、時刻tまでに素子動作条件格納テーブル15に書き込む。LD駆動条件制御器14は、素子動作条件格納テーブル15を参照し、LD121の最適バイアス電流Ibias_1および最適駆動電流idrv_1を、時刻tまでに自動パワー制御器123に対して設定する。上述したように、記憶部を利用することもでき、上り送信光信号強度と下り受信光信号強度との相関関係を利用することもできる。 In the 1ONU, received signal strength notifier 133, outputs the input light current value I IN_1 from time t 1 for the first 1ONU. The LD drive condition controller 14 reads the input photocurrent value I in — 1 from the received signal strength notifier 133 and writes it in the element operation condition storage table 15 by time t 2 . LD driving condition controller 14 refers to the device operation condition storing table 15, the optimum bias current I Bias_1 and optimum driving current i Drv_1 the LDs 121, set to the automatic power controller 123 by time t 3. As described above, the storage unit can be used, and the correlation between the uplink transmission optical signal intensity and the downlink reception optical signal intensity can also be used.

第2ONUにおいて、受信信号強度通知器133は、時刻tから第2ONUに対する入力光電流値Iin_2を出力する。LD駆動条件制御器14は、入力光電流値Iin_2を受信信号強度通知器133から読み出し、時刻tまでに素子動作条件格納テーブル15に書き込む。LD駆動条件制御器14は、素子動作条件格納テーブル15を参照し、LD121の最適バイアス電流Ibias_2および最適駆動電流idrv_2を、時刻tまでに自動パワー制御器123に対して設定する。上述したように、記憶部を利用することもでき、上り送信光信号強度と下り受信光信号強度との相関関係を利用することもできる。 In the second ONU, the received signal strength notifier 133 outputs the input photocurrent value I in_2 for the second ONU from time t 1 . The LD drive condition controller 14 reads the input photocurrent value I in — 2 from the received signal strength notifier 133 and writes it in the element operation condition storage table 15 by time t 2 . LD driving condition controller 14 refers to the device operation condition storing table 15, the optimum bias current I Bias_2 and optimum driving current i Drv_2 the LDs 121, set to the automatic power controller 123 by time t 3. As described above, the storage unit can be used, and the correlation between the uplink transmission optical signal intensity and the downlink reception optical signal intensity can also be used.

第1ONUは時刻tから上り信号の送信をOLTから許可されているとする。時刻tまでに第1ONUのLD121がセットアップを終え、時刻tまで上りデータを送信し、時刻tまでの間に第1ONUのLD121は発光を終える。 The 1ONU is from time t 3 is allowed to transmit an uplink signal from the OLT. LDs 121 of the 1ONU has finished up until the time t 4, and transmits the uplink data up to time t 5, LDs 121 of the 1ONU until time t 6 ends the emission.

第2ONUは時刻tから上り信号の送信をOLTから許可されているとする。時刻tまでに第2ONUのLD121がセットアップを終え、時刻tまで上りデータを送信し、時刻t10までの間に第2ONUのLD121は発光を終える。 The 2ONU is from the time t 7 is allowed to transmit an uplink signal from the OLT. LDs 121 of the 2ONU has finished up until the time t 8, and transmits the uplink data up to time t 9, LDs 121 of the 2ONU until time t 10 ends the emission.

本発明におけるOLTでの上り光信号の受信処理を図6に示す。時刻t11から第1ONUの上りデータがOLTの光受信器に入力され、一定の応答時間の後、t12からt13までの間、正味のデータを受信し、t14までに消光する。時刻t15から第2ONUの上りデータがOLTの光受信器に入力され、一定の応答時間の後、t16からt17までの間、正味のデータを受信し、t18までに消光する。 FIG. 6 shows reception processing of an upstream optical signal in the OLT according to the present invention. Uplink data of the 1ONU from the time t 11 is input to the OLT of the optical receiver, after a certain response time, between the t 12 to t 13, receives a net data, quenched by t 14. Uplink data of the 2ONU from the time t 15 is input to the OLT of the optical receiver, after a certain response time, between the t 16 to t 17, it receives a net data, quenched by t 18.

図6より、OLTの光受信器の入力光電流はIrcv1とほぼ一定であるため、OLTの光受信器に対する入力ダイナミックレンジ要求条件を緩和できる。また、要求入力ダイナミックレンジが狭くて良いので、入力強度が互いに異なるバースト信号に対して光受信器の状態を最適化するまでに要する応答時間も短縮することが出来る。一例として、本発明における第1ONUと第2ONUでの動作条件を図7に示すが、光ファイバの伝送距離やLD121やPD131などの部品の性能に依存する。   As shown in FIG. 6, since the input photocurrent of the optical receiver of the OLT is substantially constant as Ircv1, the input dynamic range requirement for the optical receiver of the OLT can be relaxed. Further, since the required input dynamic range may be narrow, the response time required for optimizing the state of the optical receiver for burst signals having different input intensities can be shortened. As an example, the operating conditions of the first ONU and the second ONU in the present invention are shown in FIG. 7, and depend on the transmission distance of the optical fiber and the performance of components such as the LD 121 and the PD 131.

本実施形態におけるONU1では、WDMフィルタ11を用いたが、必ずしもWDMフィルタ11を必要とするわけではなく、例えば方向多重(Direction Duplex Multiplexing:DDM)を用いる際はWDMフィルタ11が不要になる。また、ONU数として2台を例に説明したが、当然3台以上でも可能である。   In the ONU 1 in the present embodiment, the WDM filter 11 is used. However, the WDM filter 11 is not necessarily required, and the WDM filter 11 is not necessary when, for example, direction multiplexing (DDM) is used. In addition, although the number of ONUs has been described as an example, it is naturally possible to use three or more units.

本発明に係る光加入者側装置及び光通信システムは、OLTの光受信器に対して要求される入力ダイナミックレンジ及び応答速度を緩和するPONに適用することができる。   The optical subscriber side apparatus and the optical communication system according to the present invention can be applied to a PON that relaxes an input dynamic range and response speed required for an optical receiver of an OLT.

1:ONU
2:論理回路装置
11:WDMフィルタ
12:光送信器
13:光受信器
14:LD駆動条件制御器
15:素子動作条件格納テーブル
121:LD
122:LD駆動器
123:自動パワー制御器
131:PD
132:等化増幅器
133:受信信号強度通知器
1: ONU
2: Logic circuit device 11: WDM filter 12: Optical transmitter 13: Optical receiver 14: LD driving condition controller 15: Element operating condition storage table 121: LD
122: LD driver 123: Automatic power controller 131: PD
132: Equalization amplifier 133: Received signal strength notification device

Claims (6)

光局側装置から一斉送信された下り光信号の受信強度を計測する受信強度計測部と、
前記受信強度計測部が計測した下り光信号の受信強度に基づいて、前記光局側装置に送信される上り光信号の送信強度を制御することにより、前記光局側装置でバースト受信される上り光信号の受信強度を各光加入者側装置によらず略一定強度とする送信強度制御部と、
を備えることを特徴とする光加入者側装置。
A reception intensity measuring unit for measuring the reception intensity of the downstream optical signal transmitted from the optical station side device;
Based on the reception intensity of the downstream optical signal measured by the reception intensity measuring unit, the upstream station receives the burst received by the optical station side apparatus by controlling the transmission intensity of the upstream optical signal transmitted to the optical station side apparatus. A transmission intensity control unit that makes the reception intensity of the optical signal substantially constant regardless of each optical subscriber side device;
An optical subscriber-side apparatus comprising:
前記送信強度制御部は、前記受信強度計測部が計測した下り光信号の受信強度が高いほど、前記光局側装置に送信される上り光信号の送信強度を低く制御することを特徴とする、請求項1に記載の光加入者側装置。   The transmission intensity control unit controls the transmission intensity of the upstream optical signal transmitted to the optical station side device to be lower as the reception intensity of the downstream optical signal measured by the reception intensity measurement unit is higher. The optical subscriber side apparatus according to claim 1. 前記受信強度計測部が計測した下り光信号の受信強度に対応して、前記送信強度制御部が制御する上り光信号の送信強度を記憶している強度対応記憶部、
をさらに備えることを特徴とする、請求項1又は請求項2に記載の光加入者側装置。
In correspondence with the reception intensity of the downstream optical signal measured by the reception intensity measurement unit, an intensity correspondence storage unit that stores the transmission intensity of the upstream optical signal controlled by the transmission intensity control unit,
The optical subscriber side device according to claim 1 or 2, further comprising:
下り信号を一斉送信する光局側装置と、
前記光局側装置から一斉送信された下り光信号の受信強度をそれぞれ計測し、それぞれ計測した下り光信号の受信強度に基づいて、前記光局側装置にそれぞれ送信する上り光信号の送信強度をそれぞれ制御することにより、前記光局側装置でバースト受信される上り光信号の受信強度をそれぞれ略同一強度とする複数の光加入者側装置と、
を備えることを特徴とする光通信システム。
An optical station side device that simultaneously transmits downstream signals;
The reception intensity of the downstream optical signal transmitted from the optical station side apparatus is measured, and the transmission intensity of the upstream optical signal to be transmitted to the optical station side apparatus is determined based on the measured reception intensity of the downstream optical signal. By controlling each, a plurality of optical subscriber side devices each having substantially the same strength as the reception intensity of the upstream optical signal burst received by the optical station side device,
An optical communication system comprising:
前記複数の光加入者側装置は、それぞれ計測した下り光信号の受信強度が高いほど、前記光局側装置にそれぞれ送信する上り光信号の送信強度を低くそれぞれ制御することを特徴とする、請求項4に記載の光通信システム。   The plurality of optical subscriber side devices each control the transmission intensity of the upstream optical signal to be transmitted to the optical station side device lower as the measured downstream optical signal reception intensity is higher, respectively. Item 5. The optical communication system according to Item 4. 前記複数の光加入者側装置は、それぞれ計測した下り光信号の受信強度に対応して、それぞれ制御する上り光信号の送信強度をそれぞれ記憶していることを特徴とする、請求項4又は請求項5に記載の光通信システム。   The plurality of optical subscriber-side apparatuses respectively store transmission intensity of upstream optical signals to be controlled respectively corresponding to the measured reception intensity of downstream optical signals. Item 6. The optical communication system according to Item 5.
JP2011228953A 2011-10-18 2011-10-18 Optical subscriber-side device and optical communication system Pending JP2013090143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228953A JP2013090143A (en) 2011-10-18 2011-10-18 Optical subscriber-side device and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228953A JP2013090143A (en) 2011-10-18 2011-10-18 Optical subscriber-side device and optical communication system

Publications (1)

Publication Number Publication Date
JP2013090143A true JP2013090143A (en) 2013-05-13

Family

ID=48533630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228953A Pending JP2013090143A (en) 2011-10-18 2011-10-18 Optical subscriber-side device and optical communication system

Country Status (1)

Country Link
JP (1) JP2013090143A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139730A (en) * 1983-01-31 1984-08-10 Fujitsu Ltd Optical data bus transmission system
JPH04248727A (en) * 1991-02-04 1992-09-04 Nippon Telegr & Teleph Corp <Ntt> Transmission output level control circuit
JPH07264131A (en) * 1994-03-17 1995-10-13 Fujitsu Ltd Optical subscriber transmitting system and subscriber unit used for the same
JPH10163960A (en) * 1996-11-28 1998-06-19 Nec Eng Ltd Optical burst transmission/reception circuit
JP2011061790A (en) * 2009-09-07 2011-03-24 Korea Electronics Telecommun Optical network unit and method of operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139730A (en) * 1983-01-31 1984-08-10 Fujitsu Ltd Optical data bus transmission system
JPH04248727A (en) * 1991-02-04 1992-09-04 Nippon Telegr & Teleph Corp <Ntt> Transmission output level control circuit
JPH07264131A (en) * 1994-03-17 1995-10-13 Fujitsu Ltd Optical subscriber transmitting system and subscriber unit used for the same
JPH10163960A (en) * 1996-11-28 1998-06-19 Nec Eng Ltd Optical burst transmission/reception circuit
JP2011061790A (en) * 2009-09-07 2011-03-24 Korea Electronics Telecommun Optical network unit and method of operating the same

Similar Documents

Publication Publication Date Title
US8571058B2 (en) Terminal apparatus, data transmission system and data transmission method
US20090208227A1 (en) Optical apparatus and use method thereof for passive optical network system
JP4969432B2 (en) PON system, optical signal receiving method, and OLT
WO2015154389A1 (en) Optical transceiving module and configuration method and device for operating parameter thereof
JP2005006313A (en) Optical power equalizing apparatus for passive optical communication network
JP2006345284A (en) Transmission system and station apparatus
WO2020181549A1 (en) Power saving mechanisms for high speed passive optical network
JP5460253B2 (en) Base station side optical transceiver and optical subscriber transmission system
CN104009801B (en) The optical signal processing method of a kind of optical-fiber network and device
KR20140104801A (en) Wavelength division multiplexing optical transmitter and operating method for the same
Khan et al. Review of studies that integrate the free space optics with fiber optics
JP2013219599A (en) Multirate optical signal receiving device and method
US8340519B2 (en) Passive optical network comprising an optical burst mode receiver
JP4809811B2 (en) Burst light receiving method and apparatus
JP2013090143A (en) Optical subscriber-side device and optical communication system
JP5650616B2 (en) Optical transmission / reception device control method, optical transmission / reception device, and optical communication system
JP5904365B2 (en) PON optical transmission system, station side apparatus, and optical communication method
JP2011061790A (en) Optical network unit and method of operating the same
KR101242417B1 (en) Apparatus for transmitting optical signal in Passive Optical Network
JP5903133B2 (en) Optical transmission / reception device control method, optical transmission / reception device, and optical communication system
CN112740580B (en) Method and device for saving energy of optical network
JP2019009722A (en) Intra-station apparatus and optical communication control method
JP2012080377A (en) Burst receiver, burst reception control method, and system
JP5699678B2 (en) Optical receiver and communication system
JP2011229067A (en) Optical receiver and receiving method of optical signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526