JP2013088367A - Sample cell and spectrophotometer - Google Patents

Sample cell and spectrophotometer Download PDF

Info

Publication number
JP2013088367A
JP2013088367A JP2011231235A JP2011231235A JP2013088367A JP 2013088367 A JP2013088367 A JP 2013088367A JP 2011231235 A JP2011231235 A JP 2011231235A JP 2011231235 A JP2011231235 A JP 2011231235A JP 2013088367 A JP2013088367 A JP 2013088367A
Authority
JP
Japan
Prior art keywords
sample cell
tube
wall surface
sample
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011231235A
Other languages
Japanese (ja)
Inventor
Shigeru Matsui
繁 松井
Hideyuki Akiyama
秀之 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011231235A priority Critical patent/JP2013088367A/en
Priority to PCT/JP2012/075295 priority patent/WO2013058084A1/en
Publication of JP2013088367A publication Critical patent/JP2013088367A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • G01N2030/746Optical detectors detecting along the line of flow, e.g. axial

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample cell structure and a spectrophotometer for performing measurement at a higher SN ratio while considering such a problem that measurement at a higher SN ratio requires long cell length, but when the cell length is extended, scatter of light advancing in the long cell should be considered.SOLUTION: The sample cell includes a tube formed like a thin tube and allowing fluid to pass the inside of the tube and a structure for covering the periphery of a capillary tube in contact with a part of an outer wall surface of the tube. The spectrophotometer uses the sample cell.

Description

本発明は、液体試料中に含まれる物質の濃度を分光吸光光度法により分析するのに用いられる試料セル及び分光光度計に関する。特に、液体クロマトグラフィーなどに用いて、低濃度物質を少ない試料量で高感度に分析するのに好適な試料セル及び分光光度計に関する。   The present invention relates to a sample cell and a spectrophotometer used for analyzing the concentration of a substance contained in a liquid sample by a spectrophotometric method. In particular, the present invention relates to a sample cell and a spectrophotometer suitable for use in liquid chromatography and the like to analyze a low concentration substance with a small amount of sample with high sensitivity.

所定の波長範囲における試料の吸収スペクトル、または特定の波長における試料の吸光度を計測する分析装置として、紫外・可視分光光度計が用いられる。   An ultraviolet / visible spectrophotometer is used as an analyzer for measuring the absorption spectrum of a sample in a predetermined wavelength range or the absorbance of the sample at a specific wavelength.

従来の代表的な紫外・可視分光光度計の構成は、例えば特許文献1に記載されているようなものである。これらの分光光度計では光源として、紫外域用の重水素放電管と、可視域用のハロゲンランプの2種類の光源を搭載し、これらの光源から発生した光をモノクロメータに通して所望の波長の単色光を取り出した後、光束を試料側光束と参照側光束の2つに分岐して、前者を試料を設置した試料セルに通し、後者を参照用の参照セルに通す。これら2光束が各セルを通過した後の各々の光量を計量し、その比を取ることにより透過スペクトルを得る。さらに透過スペクトルの縦軸である透過率を対数変換して吸光度とすることにより、吸収スペクトルが得られる。   The configuration of a conventional typical ultraviolet / visible spectrophotometer is as described in Patent Document 1, for example. These spectrophotometers are equipped with two types of light sources, a deuterium discharge tube for the ultraviolet region and a halogen lamp for the visible region, and the light generated from these light sources is passed through a monochromator to the desired wavelength. After the monochromatic light is taken out, the light beam is split into a sample-side light beam and a reference-side light beam, the former is passed through the sample cell in which the sample is placed, and the latter is passed through the reference cell for reference. A light transmission spectrum is obtained by measuring each light quantity after these two light fluxes pass through each cell and taking a ratio thereof. Furthermore, an absorption spectrum is obtained by logarithmically converting the transmittance, which is the vertical axis of the transmission spectrum, to obtain absorbance.

また、所望の波長範囲全体にわたる吸収スペクトルを短時間で測定したい場合には、例えば特許文献2に記載されているような、単色光を取り出すモノクロメータに代えて、広波長範囲の分光スペクトルを一度に取り出すポリクロメータと、複数の画素から成る一次元、または二次元のイメージセンサを組み合わせた分光光度計が用いられる。ポリクロメータを用いた分光光度計は、液体クロマトグラフ用の検出器として使われることが多い。   In addition, when it is desired to measure an absorption spectrum over the entire desired wavelength range in a short time, instead of a monochromator that takes out monochromatic light as described in Patent Document 2, for example, a spectral spectrum in a wide wavelength range is once used. A spectrophotometer is used that combines a polychromator to be extracted and a one-dimensional or two-dimensional image sensor composed of a plurality of pixels. A spectrophotometer using a polychromator is often used as a detector for a liquid chromatograph.

これらの分光光度計を用いて、液体試料中の所定の成分の濃度を分析する際には、一般的に、例えば図12に示すようなフローセル方式の試料セルを用い、前記試料セル内部の流路に前記液体試料を流し、前記流路の一端から測定用の光束を入射させ、他端から射出される光束の光量を測定する。   When analyzing the concentration of a predetermined component in a liquid sample using these spectrophotometers, for example, a flow cell type sample cell as shown in FIG. The liquid sample is caused to flow through the path, a measurement light beam is made incident from one end of the flow path, and the light amount of the light beam emitted from the other end is measured.

前記試料セルに濃度を分析したい所定の成分を含む液体試料を流したとき、前記流路から射出される光束の光量をI、前記試料セルに前記所定の成分を含まないブランク試料を流したとき、前記流路から射出される光束の光量をI0、前記所定の成分の濃度をC、前記測定用の光束が前記液体試料中を通過する距離、すなわち前記試料セルのセル長をLとしたとき、Lanbert-Beerの法則より、
〔数1〕
−log10(I/I0) ∝ C・L
の関係が成立する。数1の左辺の量がすなわち吸光度であり、数1は前記液体試料に対して測定される吸光度の大きさは、所定の成分の濃度Cとセル長Lの積に比例することを示している。
When a liquid sample containing a predetermined component whose concentration is to be analyzed is flowed to the sample cell, the amount of light emitted from the flow path is I, and a blank sample not containing the predetermined component is flowed to the sample cell , The amount of light emitted from the flow path is I 0 , the concentration of the predetermined component is C, the distance that the measurement light beam passes through the liquid sample, that is, the cell length of the sample cell is L From Lanbert-Beer's law,
[Equation 1]
-Log 10 (I / I 0 ) ∝ CL
The relationship is established. The amount on the left side of Equation 1 is the absorbance, and Equation 1 indicates that the absorbance measured for the liquid sample is proportional to the product of the concentration C and the cell length L of the predetermined component. .

この関係より、分析すべき濃度Cが小さい場合、セル長Lを長くすることで、左辺の吸光度を大きくすることができ、濃度分析を高感度化できることが分かる。セル長Lを長くして濃度分析を高感度化するための試料セルの構造は、例えば特許文献3および特許文献4に示されている。   From this relationship, it can be seen that when the concentration C to be analyzed is small, the absorbance on the left side can be increased by increasing the cell length L, and the concentration analysis can be made highly sensitive. The structure of a sample cell for increasing the sensitivity of concentration analysis by increasing the cell length L is disclosed in Patent Document 3 and Patent Document 4, for example.

特開昭61−53527号公報JP-A 61-53527 特開平11−108830号公報JP-A-11-108830 特開平5−196565号公報JP-A-5-196565 米国特許第2009/230028号公報US2009 / 230028

ここで、吸光度を精度良く測定するセルの構造について考える。   Here, the structure of a cell for measuring the absorbance with high accuracy will be considered.

前記試料セルを用いて所望の成分物質濃度を定量分析する際、計測される濃度値のS/N比は、主なノイズ要因が光由来のショットノイズであると仮定した場合、低濃度試料に対しては近似的に数2のように決定される。   When quantitatively analyzing a desired component substance concentration using the sample cell, the S / N ratio of the measured concentration value is assumed to be a low concentration sample, assuming that the main noise factor is light-derived shot noise. On the other hand, it is determined approximately as shown in Equation 2.

〔数2〕
S/N比 ≒ (L/T1 L)1/2・(1−T1 L)/(I0・V)1/2
L:セル長、V:セル容積、T1:セル長1mm時の透過率、
0:試料セル入射側端面での照度(フォトン数/mm2
ここで試料セルの容量を一定とした場合に、試料セルのセル長とそのときに得られるS/N比との関係を図13に示す。図13は、試料セルの容量が一定であれば、試料セル中の流路の断面積を小さくしてセル長を長くする方が、より良いS/N比を得る上で有利であることを示唆している。
[Equation 2]
S / N ratio ≒ (L / T 1 L ) 1/2 · (1-T 1 L ) / (I 0 · V) 1/2
L: cell length, V: cell volume, T 1 : transmittance at a cell length of 1 mm,
I 0 : Illuminance at the sample cell incident side end face (number of photons / mm 2 )
FIG. 13 shows the relationship between the cell length of the sample cell and the S / N ratio obtained at that time when the capacity of the sample cell is constant. FIG. 13 shows that if the capacity of the sample cell is constant, it is advantageous to obtain a better S / N ratio by reducing the cross-sectional area of the flow path in the sample cell and increasing the cell length. Suggests.

より良いS/N比で測定するためにはセル長を長くすることが良いことが分かったが、セル長を長くすると、長いセル中を進行する光の散乱について考慮しなければならない。本発明は、上記課題に鑑み、より良いS/N比で測定するための試料セル構造及び分光光度計を提供する。   In order to measure with a better S / N ratio, it has been found that it is better to increase the cell length. However, if the cell length is increased, the scattering of light traveling in the long cell must be considered. In view of the above problems, the present invention provides a sample cell structure and a spectrophotometer for measuring with a better S / N ratio.

上記目的を達成するために、本発明は、細管状に形成され内部を流体が通過するチューブと、チューブの外壁面の一部に接触した状態で該キャピラリチューブの周囲を覆う構造体を備えることを特徴とする試料セル及び当該試料セルを用いた分光光度計を提供する。   In order to achieve the above object, the present invention comprises a tube formed in a thin tube shape through which a fluid passes, and a structure that covers the periphery of the capillary tube in contact with a part of the outer wall surface of the tube. And a spectrophotometer using the sample cell.

本発明においては、試料セル中の流路容積、流路中に通す光束の伝導効率、および試料セル全体の耐圧強度を好適に保ちながら、セル長を長くし、濃度分析を高感度化するのに好適な試料セルを提供することができる。   In the present invention, while maintaining the flow path volume in the sample cell, the conduction efficiency of the light beam passing through the flow path, and the pressure resistance strength of the entire sample cell, the cell length is lengthened and the concentration analysis is made highly sensitive. A suitable sample cell can be provided.

本発明の第1の実施形態に係る試料セルの構造を示す図である。It is a figure which shows the structure of the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルにおいて円筒状に形成される構造体の第1の構成を示す図である。It is a figure which shows the 1st structure of the structure formed in a cylindrical shape in the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルにおいて円筒状に形成される構造体の第2の構成を示す図である。It is a figure which shows the 2nd structure of the structure formed in a cylindrical shape in the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルにおいて円筒状に形成される構造体の第3の構成を示す図である。It is a figure which shows the 3rd structure of the structure formed in a cylindrical shape in the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルにおいて円筒状に形成される構造体の第4の構成を示す図である。It is a figure which shows the 4th structure of the structure formed in a cylindrical shape in the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルにおいて円筒状に形成される構造体の第5の構成を示す図である。It is a figure which shows the 5th structure of the structure formed in a cylindrical shape in the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルにおいて円筒状に形成される構造体の第6の構成を示す図である。It is a figure which shows the 6th structure of the structure formed in a cylindrical shape in the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルにおいて円筒状に形成される構造体の第7の構成を示す図である。It is a figure which shows the 7th structure of the structure formed in a cylindrical shape in the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る試料セルの構造の第2の構成を示す図である。It is a figure which shows the 2nd structure of the structure of the sample cell which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る試料セルの構造を示す図である。It is a figure which shows the structure of the sample cell which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る分光光度計の構成を示す図である。It is a figure which shows the structure of the spectrophotometer which concerns on the 3rd Embodiment of this invention. 従来技術の試料セルの構造を示す図である。It is a figure which shows the structure of the sample cell of a prior art. 吸光度を測定する際のS/N比を説明する図である。It is a figure explaining the S / N ratio at the time of measuring an absorbance. 試料セル中での光束の反射を説明する図である。It is a figure explaining reflection of the light beam in a sample cell. 全反射現象を説明する図である。It is a figure explaining a total reflection phenomenon.

まず、本発明の原理について説明する。   First, the principle of the present invention will be described.

数2により、試料セルの容量が一定であれば、試料セル中の流路の断面積を小さくしてセル長を長くする方が、より良いS/N比を得る上で有利であることが分かった。そこで、セル長を長くする際に考慮しなければならない点を考察する。   According to Equation 2, if the capacity of the sample cell is constant, it is advantageous to obtain a better S / N ratio by reducing the cross-sectional area of the flow path in the sample cell and increasing the cell length. I understood. Therefore, the points that must be considered when increasing the cell length are considered.

(i)セル中を進行する光の散乱防止(全反射の利用)
試料セルの一端から前記液体試料中に測定用の光束を導入し、前記液体試料中を通過した後の前記光束を前記試料セルの他端から取り出す場合、取り出される光束は、
(1)前記セルの一端から入って他端まで直進して進んだ光束
(2)前記セルの一端から入って前記セル内面で1回以上反射して進んだ光束
に分けられるが、セル長が長くなると(1)の光束の比率は減少し、(2)の光束の比率が増す。また、(2)の光束においてはセル内での反射回数が増す。セル内での前記光束の反射は、図14(a)に示すように、前記液体試料と前記セル内面との界面で起こる場合の他、試料セルがキャピラリチューブのように透明材料で作られた管状の構造でできている場合には、図14(b)に示すように、セル外面とその外側の領域との界面でも起こる。これら図14(a)、(b)に示す反射率が低いと、前記試料セルの他端から取り出される光束の光量が減少し、良好なS/N比が得られなくなる。
(I) Prevention of scattering of light traveling through the cell (use of total reflection)
When a measurement beam is introduced into the liquid sample from one end of the sample cell and the beam after passing through the liquid sample is taken out from the other end of the sample cell, the extracted beam is
(1) A light beam that enters from one end of the cell and travels straight to the other end. (2) A light beam that enters from one end of the cell and reflects and travels at least once on the inner surface of the cell. As the length increases, the ratio of the luminous flux (1) decreases, and the ratio of the luminous flux (2) increases. In the case of (2), the number of reflections in the cell increases. As shown in FIG. 14A, the reflection of the light beam in the cell occurs at the interface between the liquid sample and the cell inner surface, and the sample cell is made of a transparent material like a capillary tube. In the case of a tubular structure, it also occurs at the interface between the cell outer surface and the outer region as shown in FIG. 14 (b). If the reflectivity shown in FIGS. 14A and 14B is low, the light quantity of the light beam extracted from the other end of the sample cell is reduced, and a good S / N ratio cannot be obtained.

そこで、セル長を長くしても、前記試料セルの他端から取り出される光束の光量が減少しないようにするために、セル内で反射される際の反射率を高める技術として、前記特許文献3または4に記載されている、全反射現象を利用する技術がある。   Therefore, as a technique for increasing the reflectivity when reflected in a cell, in order to prevent the amount of light flux extracted from the other end of the sample cell from decreasing even if the cell length is increased, Patent Document 3 Alternatively, there is a technique described in 4 that uses the total reflection phenomenon.

全反射現象においては、反射界面に対する光束の入射角が、前記界面を構成する物質の屈折率の関係によって定まる臨界角を超える場合、前記界面での反射率が100%となる。ここで図15(a)のように、屈折率n1の物質1と屈折率n2の物質2が界面を構成しており、n1>n2で、物質1の側から光束を入射させる場合を考える。このとき臨界角θtは、
〔数3〕
Sinθt = n2/n1
となり、前記光束の入射角θがθ>θtのとき全反射が起こる。
In the total reflection phenomenon, when the incident angle of the light flux with respect to the reflective interface exceeds a critical angle determined by the relationship of the refractive index of the substance constituting the interface, the reflectivity at the interface is 100%. Here, as shown in FIG. 15A, a case is considered in which a substance 1 having a refractive index n1 and a substance 2 having a refractive index n2 form an interface, and n1> n2 and a light beam is incident from the substance 1 side. At this time, the critical angle θt is
[Equation 3]
Sinθt = n2 / n1
Thus, total reflection occurs when the incident angle θ of the luminous flux is θ> θt.

(ii)セルの構成物質(全反射を利用するためのセル構成物質)
積極的に全反射を起こすためのセルの構成物質について考慮しなければならない。
(Ii) Cell constituent materials (cell constituent materials for using total reflection)
Consideration must be given to the constituent materials of the cell to cause total internal reflection.

前記特許文献3に記載されているように、前記試料セル自体を前記液体試料よりも低い屈折率の材料で構成すれば、このような形で全反射が起こる。   As described in Patent Document 3, if the sample cell itself is made of a material having a refractive index lower than that of the liquid sample, total reflection occurs in this manner.

ここで、試料セルを構成する上で、物質2は固体であることが必要である。   Here, in configuring the sample cell, the substance 2 needs to be a solid.

次に図15(b)に示すように、屈折率n1の物質1と屈折率n3の物質3と屈折率n2の物質2が界面を構成しており、n1<n3かつn2<n3かつn1>n2で、物質1の側から光束を入射させる場合を考える。導出過程は省略するが、臨界角θtはこのときも上記の場合と同じ数3で与えられる。前記特許文献4に記載されているように、前記試料セルを管状の構造とし、前記管状の構造の外側の領域を前記液体試料よりも低い屈折率の材料で構成すれば、このような形で全反射が起こる。   Next, as shown in FIG. 15B, the substance 1 having a refractive index n1, the substance 3 having a refractive index n3, and the substance 2 having a refractive index n2 constitute an interface, and n1 <n3 and n2 <n3 and n1>. Consider a case where a light beam is incident from the material 1 side at n2. Although the derivation process is omitted, the critical angle θt is again given by the same number 3 as in the above case. As described in Patent Document 4, if the sample cell has a tubular structure and the outer region of the tubular structure is made of a material having a lower refractive index than that of the liquid sample, such a shape is obtained. Total reflection occurs.

この場合、試料セルを構成する上で、物質3は固体であることが必要であるが、物質2としては、必要に応じて気体または液体または固体の中から選ぶことができる。前記特許文献4では、物質3として液体を用いている。数3はまた、前記液体試料の屈折率n1を一定とした場合、全反射の他方の担い手の屈折率n2が小さければ小さいほど臨界角θtが大きくなることを示している。このことは、前記n2が小さいほど多くの光を前記試料セル中に導入して全反射現象を利用して他端まで伝導することができる、ということを意味する。   In this case, in configuring the sample cell, the substance 3 needs to be a solid, but the substance 2 can be selected from gas, liquid, or solid as necessary. In Patent Document 4, a liquid is used as the substance 3. Equation 3 also shows that when the refractive index n1 of the liquid sample is constant, the critical angle θt increases as the refractive index n2 of the other carrier for total reflection decreases. This means that the smaller n2 is, the more light can be introduced into the sample cell and conducted to the other end using the total reflection phenomenon.

ここで、前記n2として最も小さい値を実現できる可能性のあるものは、真空の他に、空気または他の適当な気体における約1.0という値である。ところが、前記特許文献3では前記セル自体を構成する固体材料の屈折率として実現可能な値はせいぜい1.2以上であり、前述の空気のような低い屈折率を実現することは不可能である。また、前記特許文献4では管状のセル内管の外側は所定の液体で満たしており、この場合も1.2以下の値を実現することは不可能である。   Here, there is a possibility that the smallest value of n2 can be realized is a value of about 1.0 in air or other suitable gas besides vacuum. However, in Patent Document 3, the value that can be realized as the refractive index of the solid material constituting the cell itself is 1.2 or more at most, and it is impossible to realize a low refractive index like the above-mentioned air. . Moreover, in the said patent document 4, the outer side of the tubular cell inner tube | pipe is filled with the predetermined | prescribed liquid, and it is impossible to implement | achieve the value below 1.2 also in this case.

(iii)セルの構造(さらにS/N向上に寄与するセル構造について)
さらに、前記屈折率n2を最小化できる物質として、空気または他の適当な気体を採用した場合に、以下の構成にすると更に良い。
(Iii) Cell structure (further, cell structure contributing to S / N improvement)
Further, when air or other suitable gas is employed as the material capable of minimizing the refractive index n2, the following configuration is further preferable.

前述のように図15(a)の構成では屈折率n2の部分は固体でないと試料セルにならないため、屈折率n2の部分に空気または適切な気体を採用できるのは図15(b)の構成に限られる。ところで、図15(b)の構造では、試料セル中を進行する光束の中には、前記液体試料中をほとんど通過せずに、主に前記物質3(セル構成物質)内だけを進行する成分が存在し得る。このような光束は前記液体試料の濃度情報を反映しないため、前記液体試料の濃度分析の上で誤差を生じる要因となってしまう。この成分の比率は前記物質3の層が厚ければ厚いほど多くなることが容易に予想され、このことから前記物質3の層は薄いことがのぞましい。   As described above, in the configuration of FIG. 15 (a), the portion of refractive index n2 must be a solid to form a sample cell. Therefore, air or an appropriate gas can be used for the portion of refractive index n2 as shown in FIG. 15 (b). Limited to. By the way, in the structure of FIG. 15 (b), the light beam traveling in the sample cell hardly propagates through the liquid sample and mainly travels only in the substance 3 (cell constituent substance). Can exist. Since such a light flux does not reflect the concentration information of the liquid sample, it causes an error in the concentration analysis of the liquid sample. It is easily expected that the ratio of this component increases as the layer of the substance 3 is thicker. Therefore, it is preferable that the layer of the substance 3 is thin.

このとき、前記物質2を空気または他の適当な気体とした場合、前記物質3の層を薄くする、すなわち前記試料セルの流路を構成する管状構造の肉厚を薄くすると、流路中を流す前記液体試料の圧力を高くした場合に、前記管状構造が変形または破損する可能性がある。   At this time, when the substance 2 is air or other suitable gas, the layer of the substance 3 is thinned, that is, when the thickness of the tubular structure constituting the channel of the sample cell is reduced, When the pressure of the flowing liquid sample is increased, the tubular structure may be deformed or broken.

そこで、セル周辺に空気や他の気体がある状態でセルの耐圧強度を高める構造体をセル周囲に配置する。   Therefore, a structure that increases the pressure resistance of the cell in a state where air or other gas is present around the cell is disposed around the cell.

以下、本発明の実施形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<第1の実施形態>
図1は本発明の第1の実施形態の試料セルの構成を示す。本実施形態の試料セルでは、石英やサファイアなど、所望の波長範囲で透明な材料でできたキャピラリチューブ10内の流路11に流入口14から液体試料1を導入し、排出口15へ向けて流す。測定用の光束2は流路11の一方の端面16から流路中に導入し、他方の端面17から射出させる。キャピラリチューブ10の外壁面13は、概略前記キャピラリチューブの全長にわたって、内面に複数の凹凸を有する構造体20で被覆してある。前記構造体20は図2に示す、金属製の板21の一方の面に断面が三角形状の溝を複数刻んだものを、前記複数の三角形状の各稜線が前記キャピラリチューブ10の外壁面13に概略隙間なく内接するよう、円筒状に巻き付けたものである。前記キャピラリチューブ10の外壁面13と前記複数の三角形状の溝の間の領域は屈折率の小さな気体、ここでは空気が存在している。前記構造体20の稜線が前記キャピラリチューブの外壁面13と接触している面積は小さいため、前記キャピラリチューブ10の外壁面13の大部分の面積は空気と接している。この状態で、流路11の一方の端面16から流路11中に導入された光束の伝播の形態は、
(1)前記キャピラリチューブ10の外壁面13とその外側の空気との界面で全反射する
光束
(2)前記キャピラリチューブ10の内壁面12と前記液体試料1の界面で反射する光束
(3)前記キャピラリチューブ10の外壁面13とその外側で接触している前記構造体2
0の稜線との界面で反射する光束
の3種類が存在する。前記構造体20の稜線が前記キャピラリチューブ10の外壁面13と接触している面積が無視できる場合には、(1)と(3)の2種類のみを考えれば良く、(1)と(2)の光束の総光量を合算すれば、前記流路11の一方の端面16から流路11中に導入された光束は損失なく前記他方の端面17まで伝播することになる。
<First Embodiment>
FIG. 1 shows a configuration of a sample cell according to a first embodiment of the present invention. In the sample cell of this embodiment, the liquid sample 1 is introduced from the inlet 14 into the flow path 11 in the capillary tube 10 made of a transparent material in a desired wavelength range such as quartz or sapphire, and directed toward the outlet 15. Shed. The measurement light beam 2 is introduced into the flow path from one end face 16 of the flow path 11 and is emitted from the other end face 17. The outer wall surface 13 of the capillary tube 10 is covered with a structure 20 having a plurality of irregularities on the inner surface over the entire length of the capillary tube. As shown in FIG. 2, the structure 20 is formed by cutting a plurality of grooves having a triangular cross section on one surface of a metal plate 21, and each of the plurality of triangular ridge lines is an outer wall surface 13 of the capillary tube 10. Is wound in a cylindrical shape so as to be inscribed substantially without a gap. In the region between the outer wall surface 13 of the capillary tube 10 and the plurality of triangular grooves, gas having a small refractive index, here air, is present. Since the area where the ridge line of the structure 20 is in contact with the outer wall surface 13 of the capillary tube is small, most of the area of the outer wall surface 13 of the capillary tube 10 is in contact with air. In this state, the form of propagation of the light beam introduced into the flow path 11 from one end face 16 of the flow path 11 is
(1) A light beam totally reflected at the interface between the outer wall surface 13 of the capillary tube 10 and the air outside thereof (2) A light beam reflected at the interface between the inner wall surface 12 of the capillary tube 10 and the liquid sample 1 (3) The structure 2 in contact with the outer wall surface 13 of the capillary tube 10 on the outside thereof
There are three types of light flux reflected at the interface with the 0 ridgeline. When the area where the ridgeline of the structure 20 is in contact with the outer wall surface 13 of the capillary tube 10 can be ignored, only two types (1) and (3) need be considered, and (1) and (2 ) Is added, the light beam introduced from one end face 16 of the flow path 11 into the flow path 11 propagates to the other end face 17 without loss.

実際には、前記構造体20の稜線が前記キャピラリチューブ10の外壁面13と接触している面積はゼロではなく、有限の面積を有するが、前記構造体20を反射率の高い金属、例えばアルミニウムなどで構成すれば、(3)の存在による損失を最小化することができ、前記流路11の一方の端面16から流路11中に導入された光束の大部分は、前記他方の端面17まで効率良く伝播させることができる。   Actually, the area where the ridge line of the structure 20 is in contact with the outer wall surface 13 of the capillary tube 10 is not zero but has a finite area, but the structure 20 is made of a highly reflective metal such as aluminum. The loss due to the presence of (3) can be minimized, and most of the light beam introduced from one end face 16 of the flow path 11 into the flow path 11 is the other end face 17. Can be propagated efficiently.

また前述のように、前記キャピラリチューブ10の外壁面13が接する物質の屈折率が低いほど臨界角が大きくなり、前記流路11中により多くの光量を取り込み、前記流路11中を伝播させることができるが、本実施形態では、前記キャピラリチューブ10の外壁面13の大部分は、その外側に存在する空気と接触しており、空気の屈折率は概略1.0であるため、他の液体や固体と接している場合よりも大きな光量を取り込むことができる。   In addition, as described above, the lower the refractive index of the substance in contact with the outer wall surface 13 of the capillary tube 10, the larger the critical angle, so that more light is taken into the channel 11 and propagates through the channel 11. However, in this embodiment, most of the outer wall surface 13 of the capillary tube 10 is in contact with the air existing outside thereof, and the refractive index of air is approximately 1.0. It is possible to capture a larger amount of light than when it is in contact with a solid.

さらに、本実施形態では、前記キャピラリチューブ10の外壁面13は概略その全長にわたって概略均一に分布する複数の接触点、または接触線、または接触面で接する構造体20によって均等に支持されているため、前記流路11に高圧の液体を流した場合でも、前記キャピラリチューブ10が変形または破損してしまう危険を抑制することができる。   Furthermore, in the present embodiment, the outer wall surface 13 of the capillary tube 10 is evenly supported by a plurality of contact points, contact lines, or structures 20 that are in contact with the contact surface, which are substantially uniformly distributed over the entire length thereof. Even when a high-pressure liquid is allowed to flow through the flow path 11, the risk of the capillary tube 10 being deformed or damaged can be suppressed.

構造体20について、前記第1の実施形態では、前記内面に複数の凹凸を有する構造体20を、図2に示す板状の金属を円筒形に巻くことで形成したが、円筒形に形成された金属の内面に図2と同様の溝を形成したものを用いても、もちろん構わない。   Regarding the structure 20, in the first embodiment, the structure 20 having a plurality of irregularities on the inner surface is formed by winding a plate-shaped metal shown in FIG. 2 into a cylindrical shape. However, the structure 20 is formed in a cylindrical shape. Of course, it is possible to use a metal having the same groove as that shown in FIG.

また前記本実施形態では、前記構造体20の内面の複数の凹凸の形状として、図2に示す、断面が三角形状の複数の溝としたが、代わりに、図3に示す、稜または溝の断面が台形または矩形状である構造、図4に示す、複数の円柱または角柱、図5に示す、複数の三角錐または円錐、図6に示す、不定形状に仕上げた粗面のいずれかであっても、実質的に同様の効果が得られるのは明白である。また、図6のように内面を粗面に仕上げる代わりに、図7に示すように、前記構造体20自体を、本実施形態の試料セルを用いて分析を行う波長範囲の長波長端の波長よりも大きな径の気泡を含む発泡体または多孔質材料22で構成することにより、前記構造体20の内面が複数の凹凸を有するようにしても良い。さらに、前記構造体20を1種類の材料の内面に凹凸を設ける代わりに、図8に示すように、実質的に突起部として機能する物体を個別に準備し、それらを板状の構造体の一面、または円筒状の構造体の内面に離散的に配置するようにしても良い。このように実質的に突起部として機能する物体として、微粒子状の物体や細線状の物体24を用いることができる。   In the present embodiment, the plurality of concave and convex shapes on the inner surface of the structure 20 are a plurality of grooves having a triangular cross section as shown in FIG. 2, but instead of the ridges or grooves shown in FIG. The structure has a trapezoidal or rectangular cross section, a plurality of cylinders or prisms shown in FIG. 4, a plurality of triangular pyramids or cones shown in FIG. 5, and a rough surface finished in an irregular shape shown in FIG. However, it is clear that substantially the same effect can be obtained. Further, instead of finishing the inner surface rough as shown in FIG. 6, as shown in FIG. 7, the wavelength of the long wavelength end of the wavelength range in which the structure 20 itself is analyzed using the sample cell of this embodiment is used. The inner surface of the structure 20 may have a plurality of irregularities by forming it with a foam or porous material 22 containing bubbles having a larger diameter. Furthermore, instead of providing the structure 20 with irregularities on the inner surface of one type of material, as shown in FIG. 8, objects that substantially function as protrusions are individually prepared, and these are formed as plate-like structures. You may make it arrange | position discretely on one surface or the inner surface of a cylindrical structure. As such an object that substantially functions as a protrusion, a fine particle object or a fine wire object 24 can be used.

また、図9に示すように、前記構造体20のさらに外側を、保護用の管30、またはチューブ、またはコーティングで覆っても良く、このことにより本実施形態の前述の効果が損なわれることは無く、試料セル全体の強度をさらに強化することができる。   Further, as shown in FIG. 9, the outer side of the structure 20 may be covered with a protective tube 30, a tube, or a coating, which impairs the above-described effects of the present embodiment. And the strength of the entire sample cell can be further enhanced.

また第1の実施形態では、前記内面に複数の凹凸を有する構造体20の材質は、前記キャピラリチューブ外壁面との間での反射率を高めるために金属を用いたが、前記流路11を流す液体試料の屈折率よりも低い屈折率を有する物質、例えば多孔質シリカやテフロン(登録商標)AFなどの物質で構成し、前記キャピラリチューブ10の外壁面13との間で全反射が起こるようにしても良い。これらの多孔質シリカやテフロン(登録商標)AFが空気層の替わりとなって全反射を起こす。   In the first embodiment, the material of the structure 20 having a plurality of projections and depressions on the inner surface is metal in order to increase the reflectance with the outer wall surface of the capillary tube. It is made of a material having a refractive index lower than the refractive index of the flowing liquid sample, for example, a material such as porous silica or Teflon (registered trademark) AF so that total reflection occurs between the outer wall surface 13 of the capillary tube 10. Anyway. These porous silica and Teflon (registered trademark) AF cause total reflection instead of the air layer.

<第2の実施形態>
本発明の第2の実施形態を図10を参照しつつ説明する。図10は本発明の第2の実施形態の試料セルの構成を示す。なおここで、図10の試料セルを構成する要素のうち、キャピラリチューブ10、端部固定材40を除いたものについては、それらの構造、材質、および機能は、前記第1の実施形態に示したものと同じであるため詳細な説明は省略する。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIG. FIG. 10 shows a configuration of a sample cell according to the second embodiment of the present invention. Here, regarding the elements constituting the sample cell of FIG. 10 excluding the capillary tube 10 and the end fixing member 40, their structures, materials, and functions are shown in the first embodiment. Detailed description will be omitted.

本実施形態では、内面に複数の凹凸を有し、前記複数の凹凸の最大内接円の直径が前記キャピラリチューブ10の外径に概略等しくなるよう概略円筒状に形成された構造体20は、前記キャピラリチューブ10の両端部の被覆除外区間AおよびBを除く残りの区間で、前記キャピラリチューブ10を被覆している。前記第1の実施形態で示したように、前記構造体20内面の凹凸と前記キャピラリチューブ10の外壁面13の間の領域には空気が存在しており、この空気が前述のように全反射の際の臨界角を大きくする働きをしている。   In the present embodiment, the structure 20 having a plurality of irregularities on the inner surface and formed in a substantially cylindrical shape so that the diameter of the maximum inscribed circle of the plurality of irregularities is substantially equal to the outer diameter of the capillary tube 10 is: The capillary tube 10 is covered in the remaining sections excluding the coating exclusion sections A and B at both ends of the capillary tube 10. As shown in the first embodiment, air exists in the region between the irregularities on the inner surface of the structure 20 and the outer wall surface 13 of the capillary tube 10, and this air is totally reflected as described above. It works to increase the critical angle.

しかし、前記構造体20の端部AおよびBでは、前記領域は開放的に外的環境とつながっており、外的環境から前記領域に異物や汚染物質が流入する恐れがある。一方、前記構造体20は前記キャピラリチューブ10の外壁面13に接着剤等によって固定されているのではないため、その固定は強固なものではなく、前記構造体20または前記キャピラリチューブ10に外力が働くと、前記構造体20と前記キャピラリチューブ10の相対位置関係にずれを生じる可能性もある。そこで本実施形態では、前記端部AおよびBにおいて、端部固定材40によって前記構造体20を前記キャピラリチューブ10に対してずれないよう固定している。また前記端部固定材40は、前記構造体20内面の凹凸と前記キャピラリチューブ10の外壁面13の間の領域を外的環境から遮断して密閉する封止材としての機能も有している。   However, at the ends A and B of the structure 20, the region is openly connected to the external environment, and foreign matter and contaminants may flow into the region from the external environment. On the other hand, since the structure 20 is not fixed to the outer wall surface 13 of the capillary tube 10 with an adhesive or the like, the fixing is not strong, and external force is applied to the structure 20 or the capillary tube 10. If it works, the relative positional relationship between the structure 20 and the capillary tube 10 may be shifted. Therefore, in the present embodiment, the structure 20 is fixed to the capillary tube 10 at the ends A and B by the end fixing member 40 so as not to be displaced. Further, the end fixing member 40 also has a function as a sealing material that seals and seals the region between the irregularities on the inner surface of the structure 20 and the outer wall surface 13 of the capillary tube 10 from the external environment. .

本実施形態では、前記第1の実施形態において得られる、試料セル中の流路容積、流路中に通す光束の伝導効率、および試料セル全体の耐圧強度を好適に保ちながら、セル長を長くすることができる効果に加えて、構造体20がキャピラリチューブ10に対してずれることがないという効果、および前記構造体20内面の凹凸と前記キャピラリチューブ10の外壁面の間の領域に外的環境から異物や汚染物質が流入するのを防ぐという効果が得られる。また本実施形態では、前記構造体20内面の凹凸と前記キャピラリチューブ10の外壁面13の間の領域は密閉されているので、前記領域に存在する空気は必要に応じて大気圧より高く保つことも可能である。さらに、前記構造体20の内面や前記キャピラリチューブ10の外壁面13が空気中の酸素や水分などの作用によって変質することが懸念される場合などには、前記領域を空気の代わりに窒素などの不活性気体で置換することも可能である。   In the present embodiment, the cell length is increased while suitably maintaining the channel volume in the sample cell, the conduction efficiency of the light beam passing through the channel, and the pressure resistance of the entire sample cell obtained in the first embodiment. In addition to the effect that can be achieved, the effect that the structure 20 does not shift with respect to the capillary tube 10 and the external environment in the region between the irregularities on the inner surface of the structure 20 and the outer wall surface of the capillary tube 10 The effect of preventing the inflow of foreign matter and contaminants from is obtained. Moreover, in this embodiment, since the area | region between the unevenness | corrugation of the said structure 20 inner surface and the outer wall surface 13 of the said capillary tube 10 is sealed, the air which exists in the said area is kept higher than atmospheric pressure as needed. Is also possible. Furthermore, when there is a concern that the inner surface of the structure 20 or the outer wall surface 13 of the capillary tube 10 may be altered by the action of oxygen, moisture, or the like in the air, the region is replaced with nitrogen or the like. It is also possible to substitute with an inert gas.

<第3の実施形態>
本発明の第3の実施形態を図11を参照しつつ説明する。図11は本発明の前記第1の実施形態または第2の実施形態に示した試料セル100を搭載した、液体クロマトグラフの検知器として用いる場合などに好適な分光光度計の構成を示す。光源201にはハロゲンランプを、光源202には重水素放電ランプを用いる。光源201および202から出た光はダイクロイックミラー203で結合され、試料セル100に入射する。前記試料セル100は、流路11の内径が0.2mmで外径が0.3mmの石英製のキャピラリチューブ10、セル長が300mmであり、流路の容積は約9.4マイクロリットルのものを用いている。前記試料セル100を通過した光は結像レンズ204で集光された後、入射スリット205を経てポリクロメータ210に入射する。ポリクロメータ210で分光された光は前記ポリクロメータ210の出射側焦点面に、前記試料セル100中の液体試料の分光透過特性を反映した分光スペクトル像211を形成する。前記ポリクロメータ210の出射側焦点面には1024画素から成る一次元イメージセンサ212が設置してあり、前記分光スペクトル像211はこの一次元イメージセンサ212で電気信号に変換され増幅器223で増幅された後、A/D変換器226でデジタル化され、分光スペクトルデータ213としてコンピュータ230に取り込まれる。前記分光スペクトル像211の強度分布には、前記液体試料の分光透過特性だけでなく、光源201および202の分光発光特性、および前記ポリクロメータ210の分光効率特性などが乗算の形で反映されている。前記液体試料の分光透過特性のみを反映した透過スペクトルを得るため、コンピュータ230は最初に、濃度を分析したい所定の成分を含まないブランク試料を前記試料セル100に流した状態で取得した分光スペクトルデータ213を参照スペクトルデータとしてメモリ上に保存する。コンピュータ230は次に、濃度を分析したい所定の成分を含む液体試料を前記試料セル100に流した状態で分光スペクトルデータ213を取得し試料スペクトルデータとしてメモリ上に保存する。この試料スペクトルデータ中の各波長ごとの強度を、メモリ上に保存された前記参照スペクトルデータ中の対応する波長における強度で除算することにより、透過スペクトルデータが得られる。さらに、この透過スペクトルデータの各波長における強度を対数変換することにより、吸収スペクトルデータが得られる。前記吸収スペクトルデータ中の所望の1つまたは複数の波長における吸光度値を用いて、前記液体試料中の所定の成分の濃度が算出される。前記数1より、前記吸光度は前記所定の成分の濃度と前記試料セル100のセル長の積に比例するため、例えば従来一般的であったセル長10mmの試料セルと比べた場合、本実施形態では、同一濃度に対して吸光度を30倍に拡大することができる。また前述のように、前記キャピラリチューブ10の外壁面13が接する物質の屈折率が低いほど臨界角が大きくなり、前記流路11中により多くの光量を取り込み、前記流路11中を伝播させることができるが、本実施形態では、前記キャピラリチューブ10の外壁面13の大部分は、その外側に存在する空気と接触しており、空気の屈折率は概略1.0であるため、他の液体や固体と接している場合よりも大きな光量を取り込むことができる。さらに、本実施形態では、前記キャピラリチューブ10の外壁面13は概略その全長にわたって概略均一に分布する複数の接触点、または接触線、または接触面で接する構造体20によって均等に支持されているため、前記流路に高圧の液体を流した場合でも、前記キャピラリチューブ10が変形または破損してしまう危険を抑制することができる。
<Third Embodiment>
A third embodiment of the present invention will be described with reference to FIG. FIG. 11 shows a configuration of a spectrophotometer suitable for use as a detector of a liquid chromatograph equipped with the sample cell 100 shown in the first embodiment or the second embodiment of the present invention. A halogen lamp is used as the light source 201 and a deuterium discharge lamp is used as the light source 202. Light emitted from the light sources 201 and 202 is combined by the dichroic mirror 203 and enters the sample cell 100. The sample cell 100 has a quartz capillary tube 10 with a flow path 11 having an inner diameter of 0.2 mm and an outer diameter of 0.3 mm, a cell length of 300 mm, and a flow volume of about 9.4 microliters. Is used. The light that has passed through the sample cell 100 is collected by the imaging lens 204 and then enters the polychromator 210 through the entrance slit 205. The light dispersed by the polychromator 210 forms a spectral image 211 reflecting the spectral transmission characteristics of the liquid sample in the sample cell 100 on the exit-side focal plane of the polychromator 210. A one-dimensional image sensor 212 having 1024 pixels is installed on the focal plane on the emission side of the polychromator 210, and the spectral image 211 is converted into an electric signal by the one-dimensional image sensor 212 and amplified by an amplifier 223. After that, it is digitized by the A / D converter 226 and taken into the computer 230 as the spectral data 213. In the intensity distribution of the spectral image 211, not only the spectral transmission characteristics of the liquid sample but also the spectral emission characteristics of the light sources 201 and 202, the spectral efficiency characteristics of the polychromator 210, and the like are reflected in the form of multiplication. . In order to obtain a transmission spectrum that reflects only the spectral transmission characteristics of the liquid sample, the computer 230 first acquires spectral spectrum data acquired in a state in which a blank sample that does not contain a predetermined component whose concentration is to be analyzed flows in the sample cell 100. 213 is stored in the memory as reference spectrum data. Next, the computer 230 acquires the spectral data 213 in a state where a liquid sample containing a predetermined component whose concentration is to be analyzed is flowed to the sample cell 100, and stores it in the memory as sample spectral data. By dividing the intensity of each wavelength in the sample spectrum data by the intensity at the corresponding wavelength in the reference spectrum data stored in the memory, transmission spectrum data is obtained. Further, absorption spectrum data can be obtained by logarithmically converting the intensity at each wavelength of the transmission spectrum data. Using the absorbance values at the desired wavelength or wavelengths in the absorption spectrum data, the concentration of a predetermined component in the liquid sample is calculated. Since the absorbance is proportional to the product of the concentration of the predetermined component and the cell length of the sample cell 100 based on Equation 1, when compared with a conventional sample cell having a cell length of 10 mm, this embodiment Then, the absorbance can be expanded 30 times with respect to the same concentration. In addition, as described above, the lower the refractive index of the substance in contact with the outer wall surface 13 of the capillary tube 10, the larger the critical angle, so that more light is taken into the channel 11 and propagates through the channel 11. However, in this embodiment, most of the outer wall surface 13 of the capillary tube 10 is in contact with the air existing outside thereof, and the refractive index of air is approximately 1.0. It is possible to capture a larger amount of light than when it is in contact with a solid. Furthermore, in the present embodiment, the outer wall surface 13 of the capillary tube 10 is evenly supported by a plurality of contact points, contact lines, or structures 20 that are in contact with the contact surface, which are substantially uniformly distributed over the entire length thereof. Even when a high-pressure liquid is allowed to flow through the flow path, the risk that the capillary tube 10 is deformed or broken can be suppressed.

このように本実施形態では、試料セル中の流路容積、流路中に通す光束の伝導効率、および試料セル全体の耐圧強度を好適に保ちながら、セル長を長くした試料セルを用いているので、濃度分析を高感度化することができる。   As described above, in this embodiment, the sample cell having a long cell length is used while suitably maintaining the flow channel volume in the sample cell, the conduction efficiency of the light beam passing through the flow channel, and the pressure resistance of the entire sample cell. Therefore, the concentration analysis can be made highly sensitive.

1 液体試料
2 測定用の光束
10 キャピラリチューブ
11 流路
12 内壁面
13 外壁面
14 流入口
15 排出口
16、17 端面
20 構造体
21 板
22 多孔質材料
23 微粒子状の物体
24 細線状の物体
30 保護用の管
40 端部固定材
100 試料セル
200 分光光度計
201、202 光源
203 ダイクロイックミラー
204 結像レンズ
205 入射スリット
210 ポリクロメータ
211 分光スペクトル像
212 イメージセンサ
213 分光スペクトルデータ
223 増幅器
226 A/D変換器
230 コンピュータ
DESCRIPTION OF SYMBOLS 1 Liquid sample 2 Light beam 10 for measurement Capillary tube 11 Flow path 12 Inner wall surface 13 Outer wall surface 14 Inlet 15 Outlet 16, 17 End surface 20 Structure 21 Plate 22 Porous material 23 Fine particle object 24 Fine wire object 30 Protective tube 40 End fixing material 100 Sample cell 200 Spectrophotometer 201, 202 Light source 203 Dichroic mirror 204 Imaging lens 205 Entrance slit 210 Polychromator 211 Spectral spectral image 212 Image sensor 213 Spectral spectral data 223 Amplifier 226 A / D Converter 230 computer

Claims (13)

細管状に形成され内部を流体が通過するチューブと、チューブの外壁面の一部に接触した状態で該チューブの周囲を覆う構造体を備えることを特徴とする試料セル。   A sample cell comprising: a tube formed in a thin tube shape through which a fluid passes; and a structure that covers the periphery of the tube while being in contact with a part of the outer wall surface of the tube. 請求項1記載の試料セルにおいて、前記構造体の内壁面に凹凸部が設けられ、当該凹凸部の凸部と前記チューブの外壁面とが接触することを特徴とする試料セル。概略柱状または錐状または稜線状の突起を複数並べたものであることを特徴とする試料セル。   The sample cell according to claim 1, wherein an uneven portion is provided on the inner wall surface of the structure, and the protruded portion of the uneven portion and the outer wall surface of the tube are in contact with each other. A sample cell comprising a plurality of projections each having a substantially columnar shape, a cone shape, or a ridge shape. 請求項2記載の試料セルにおいて、前記構造体内壁面の凹凸部は、内面の粗面加工により設けられたことを特徴とする試料セル。   3. The sample cell according to claim 2, wherein the concavo-convex portion of the wall surface in the structure is provided by roughing the inner surface. 請求項2記載の試料セルにおいて、前記構造体内壁面は、前記波長範囲に属する波長よりも大きな径の気泡を含む発泡体または多孔質材料で構成されたことを特徴とする試料セル。   The sample cell according to claim 2, wherein the wall surface of the structure is made of a foam or a porous material containing bubbles having a diameter larger than a wavelength belonging to the wavelength range. 請求項2記載の試料セルにおいて、前記構造体内壁面に、微粒子状又は細線上の物体を配置することを特徴とするる試料セル。   3. The sample cell according to claim 2, wherein an object on a fine particle shape or a fine line is arranged on the wall surface of the structure. 請求項2記載の試料セルにおいて、前記構造体の凹凸部の前記チューブの外壁面に接触する部分が前記チューブを通過する液体の屈折率よりも低い屈折率を有する物質から構成されることを特徴とする試料セル。   3. The sample cell according to claim 2, wherein a portion of the concavo-convex portion of the structure that contacts the outer wall surface of the tube is made of a material having a refractive index lower than that of the liquid that passes through the tube. A sample cell. 請求項6記載の試料セルにおいて、前記構造体の内壁面の前記チューブの外壁面に接触する部分を構成する物質が金属であることを特徴とする試料セル。   7. The sample cell according to claim 6, wherein the substance constituting the portion of the inner wall surface of the structure that contacts the outer wall surface of the tube is a metal. 請求項1記載の試料セルにおいて、前記チューブ外壁面のうち前記構造体と接触する部分以外の部分が当該チューブ内部を流れる液体の屈折率より小さい屈折率の物質と接触することを特徴とする試料セル。   2. The sample cell according to claim 1, wherein a portion of the outer wall surface of the tube other than a portion in contact with the structure is in contact with a substance having a refractive index smaller than that of the liquid flowing in the tube. cell. 請求項8記載の試料セルにおいて、前記構造体と接触する部分以外の部分が気体と接触していることを特徴とする試料セル。   9. The sample cell according to claim 8, wherein a portion other than the portion in contact with the structure is in contact with a gas. 請求項1記載の試料セルにおいて、前記構造体と前記チューブの相対位置ずれを防止する固定材を設けることを特徴とする試料セル。   The sample cell according to claim 1, further comprising a fixing member that prevents a relative displacement between the structure and the tube. 請求項1記載の試料セルにおいて、前記端部固定材は、前記構造体端部と前記チューブとの間を密閉することを特徴とする試料セル。   The sample cell according to claim 1, wherein the end fixing member seals between the structure end and the tube. 光源と、光源からの光を試料セルに照射し、前記試料セル内を通過する試料により吸収された前記光の光量に基づいて前記試料を分析する分光光度計において、
前記試料セルは、細管状に形成され内部を流体が通過するチューブと、チューブの外壁面の一部に接触した状態で該チューブの周囲を覆う構造体を備えることを特徴とする分光光度計。
In a spectrophotometer that irradiates the sample cell with light from the light source and analyzes the sample based on the amount of light absorbed by the sample passing through the sample cell,
The sample cell includes a tube formed in a thin tube shape through which a fluid passes, and a structure that covers the periphery of the tube in contact with a part of the outer wall surface of the tube.
請求項12の分光光度計において、前記チューブ外壁面のうち前記構造体と接触する部分以外の部分が当該チューブ内部を流れる液体の屈折率より小さい屈折率の物質と接触することを特徴とする分光光度計。   13. The spectrophotometer according to claim 12, wherein a portion of the outer wall surface of the tube other than a portion in contact with the structure is in contact with a substance having a refractive index smaller than that of the liquid flowing in the tube. Photometer.
JP2011231235A 2011-10-21 2011-10-21 Sample cell and spectrophotometer Pending JP2013088367A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011231235A JP2013088367A (en) 2011-10-21 2011-10-21 Sample cell and spectrophotometer
PCT/JP2012/075295 WO2013058084A1 (en) 2011-10-21 2012-10-01 Sample cell and spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231235A JP2013088367A (en) 2011-10-21 2011-10-21 Sample cell and spectrophotometer

Publications (1)

Publication Number Publication Date
JP2013088367A true JP2013088367A (en) 2013-05-13

Family

ID=48140737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231235A Pending JP2013088367A (en) 2011-10-21 2011-10-21 Sample cell and spectrophotometer

Country Status (2)

Country Link
JP (1) JP2013088367A (en)
WO (1) WO2013058084A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510191A (en) * 2017-02-20 2020-04-02 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニアThe Regents of the University of California Highly efficient optical detection of biomolecules in microcapillaries
US10739240B2 (en) 2015-10-23 2020-08-11 Kawano Lab. Inc. Particle analyzer
US11303089B2 (en) 2017-02-20 2022-04-12 The Regents Of The University Of California Physically operable and mechanically reconfigurable light sources

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009970A1 (en) 2013-07-18 2015-01-22 Erythron Llc Spectroscopic measurements with parallel array detector
WO2015131151A2 (en) 2014-02-28 2015-09-03 Erythron, Llc Method and apparatus for determining markers of health by analysis of blood
WO2016168090A1 (en) 2015-04-14 2016-10-20 Nueon, Inc. Method and apparatus for determining markers of health by analysis of blood
WO2017165403A1 (en) 2016-03-21 2017-09-28 Nueon Inc. Porous mesh spectrometry methods and apparatus
WO2018085699A1 (en) 2016-11-04 2018-05-11 Nueon Inc. Combination blood lancet and analyzer
JP7343875B2 (en) 2017-02-28 2023-09-13 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア Optofluidic analyte detection system using multimode interference waveguide
JP7524737B2 (en) * 2020-11-27 2024-07-30 株式会社島津製作所 Structure of flow cell assembly for chromatography detector and method for manufacturing capillary

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342948B1 (en) * 1998-11-20 2002-01-29 Waters Investments Limited Dual pathlength system for light absorbance detection
AUPQ578300A0 (en) * 2000-02-22 2000-03-16 Varian Australia Pty Ltd Fluorescence measurement apparatus and method
JP3762677B2 (en) * 2001-01-29 2006-04-05 株式会社 堀場アドバンスドテクノ Cell for fluid analysis and analyzer using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739240B2 (en) 2015-10-23 2020-08-11 Kawano Lab. Inc. Particle analyzer
JP2020510191A (en) * 2017-02-20 2020-04-02 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニアThe Regents of the University of California Highly efficient optical detection of biomolecules in microcapillaries
US11303089B2 (en) 2017-02-20 2022-04-12 The Regents Of The University Of California Physically operable and mechanically reconfigurable light sources
US11549881B2 (en) 2017-02-20 2023-01-10 The Regents Of The University Of California High efficiency optical detection of biomolecules in micro-capillaries

Also Published As

Publication number Publication date
WO2013058084A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2013058084A1 (en) Sample cell and spectrophotometer
JP7129809B2 (en) Optical filters and spectrometers
US9194794B2 (en) Optical absorption spectroscopy
US11204308B2 (en) Optical detector of particles
FI95322C (en) Spectroscopic measuring sensor for analyzing media
US11747201B2 (en) Infrared spectrophotometer
WO2016129033A1 (en) Multi-channel spectrophotometer and data processing method for multi-channel spectrophotometer
EP3748339A2 (en) Device for gas analysis using raman spectroscopy
JP2007201475A (en) Narrow band transmission filter for euv radiation
JP2018518669A (en) Optical analysis system with optical delivery of an optical conduit
JP7233372B2 (en) particle optical detector
CN109716105B (en) Attenuated total reflection spectrometer
US11852529B2 (en) Signal collection spectrometer
WO2019038818A1 (en) Flow cell
US12072281B2 (en) Multipass optical spectroscopy cell having a single transmission path
WO2018193666A1 (en) Flow cell and detector equipped with flow cell
WO2018003045A1 (en) Beam splitter with aperture function, and detector provided with said beam splitter
JP2005147891A (en) Surface plasmon resonance sensor
JP7226561B2 (en) Liquid chromatograph detector
KR101222700B1 (en) Surface plasmon resonance system device
WO2023112358A1 (en) Spectrophotometer
Kiesel et al. Compact optical characterization platform for detection of bio-molecules in fluidic and aerosol samples
JP2010276427A (en) Gas sensor
Paull et al. Numerical Modelling of Light Propagation for Development of Capillary Electrophoretic and Photochemical Detection Systems
JP2005241522A (en) Fluid analyzer