JP2013087844A - Radial roller bearing retainer - Google Patents

Radial roller bearing retainer Download PDF

Info

Publication number
JP2013087844A
JP2013087844A JP2011228035A JP2011228035A JP2013087844A JP 2013087844 A JP2013087844 A JP 2013087844A JP 2011228035 A JP2011228035 A JP 2011228035A JP 2011228035 A JP2011228035 A JP 2011228035A JP 2013087844 A JP2013087844 A JP 2013087844A
Authority
JP
Japan
Prior art keywords
diameter side
axial
outer diameter
inner diameter
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011228035A
Other languages
Japanese (ja)
Other versions
JP5831120B2 (en
Inventor
Yutaka Ishibashi
豊 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011228035A priority Critical patent/JP5831120B2/en
Priority to PCT/JP2012/076736 priority patent/WO2013058246A1/en
Priority to KR1020137034426A priority patent/KR101521378B1/en
Priority to US13/824,797 priority patent/US8944696B2/en
Priority to CN201280036045.3A priority patent/CN103688070B/en
Priority to EP12842246.6A priority patent/EP2770221B1/en
Publication of JP2013087844A publication Critical patent/JP2013087844A/en
Application granted granted Critical
Publication of JP5831120B2 publication Critical patent/JP5831120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a radial roller bearing retainer 7b which is excellent in assembling workability and whose behavior during use can be stabilized even when the axial size is small.SOLUTION: The retainer 7b is made of a synthetic resin and structured to have a discontinuous part 11a at one place in the circumferential direction. Ends 12c, 12d provided sandwiching the discontinuous part 11a are engaged with each other in a mating manner by an engagement part 13a so as not to be relatively displaced in the axial and radial directions. In addition, axial sizes are made different between a pair of outer diameter side engagement pieces 14c, 14d and a pair of inner diameter side engagement pieces 15c, 15d that structure the engagement part 13a to make a gap (α1) between the end faces in the circumferential direction of the engagement pieces 14c, 15c having larger axial sizes and counterpart faces smaller than a gap (β1) concerning the engagement pieces 14d, 15d having smaller axial sizes. Thereby, a sufficient contact area is secured when opposing end faces 17c, 17d with the discontinuous part 11 interposed therebetween contact with each other, thus solving the problem.

Description

この発明は、合成樹脂製で、弾性的に拡径できる機能を備えた、ラジアルころ(ニードルを含む)軸受用保持器の改良に関する。具体的には、軸方向寸法(幅寸法)が小さい構造を採用した場合にも、使用時の挙動を安定させられる構造を実現するものである。   The present invention relates to an improvement in a radial roller (including a needle) bearing retainer made of a synthetic resin and having a function of elastically expanding the diameter. Specifically, even when a structure having a small axial dimension (width dimension) is adopted, a structure that can stabilize the behavior during use is realized.

各種機械装置の回転支持部のうち、大きなラジアル荷重が加わる部分に、図5〜6に示す様なラジアルころ軸受1が組み込まれている。このラジアルころ軸受1は、使用時にも回転しないハウジング(又は使用時に回転する歯車やローラ)等の外径側部材2の内周面に設けた円筒面状の外輪軌道3と、回転軸(又は支持軸)等の軸4の外周面に設けた円筒面状の内輪軌道5との間に、複数のころ(ニードル)6を、保持器7により保持した状態で転動自在に設けて成る。   A radial roller bearing 1 as shown in FIGS. 5 to 6 is incorporated in a portion to which a large radial load is applied among the rotation support portions of various mechanical devices. The radial roller bearing 1 includes a cylindrical outer ring raceway 3 provided on an inner peripheral surface of an outer diameter side member 2 such as a housing (or a gear or roller that rotates during use) that does not rotate during use, and a rotary shaft (or A plurality of rollers (needles) 6 are provided so as to be able to roll while being held by a cage 7 between a cylindrical surface-like inner ring raceway 5 provided on the outer peripheral surface of the shaft 4 such as a support shaft).

このうちの保持器7は、合成樹脂材料により、全体を円筒状に構成している。この様な保持器7は、軸方向に間隔をあけて互いに同心に配置された、それぞれが円環状である1対のリム部8、8と、円周方向に亙って間欠的に、これら両リム部8、8同士の間に掛け渡される状態で設けられた複数本の柱部9、9とを備える。そして、円周方向に隣り合う柱部9、9と前記両リム部8、8とにより四方を囲まれた部分を、それぞれ前記各ころ6を転動自在に保持する為のポケット10、10としている。この様な保持器7は、これら各ポケット10、10内に前記各ころ6を転動自在に保持した状態で、前記外径側部材2の内周面と前記軸4の外周面との間に、これら外径側部材2及び軸4に対する相対回転を自在に設けられている。そして、前記保持器7は、前記各ころ6の公転運動に伴って、前記外径側部材2及び前記軸4に対し回転する。   Of these, the cage 7 is entirely made of a synthetic resin material in a cylindrical shape. Such a cage 7 includes a pair of rim portions 8 and 8 that are arranged concentrically at intervals in the axial direction, each having an annular shape, and intermittently extending in the circumferential direction. A plurality of column portions 9 and 9 provided in a state of being spanned between both rim portions 8 and 8 are provided. And the part surrounded by the four sides by the column parts 9 and 9 and the said rim | limb parts 8 and 8 adjacent to the circumferential direction as the pockets 10 and 10 for hold | maintaining each said roller 6 so that rolling is possible respectively. Yes. Such a cage 7 is formed between the inner peripheral surface of the outer diameter side member 2 and the outer peripheral surface of the shaft 4 in a state where the rollers 6 are rotatably held in the pockets 10 and 10. The outer diameter side member 2 and the shaft 4 are freely rotatable relative to each other. The cage 7 rotates with respect to the outer diameter side member 2 and the shaft 4 along with the revolving motion of the rollers 6.

この様なラジアルころ軸受1を組み立てるべく、前記保持器7を、前記内輪軌道5の周囲に配置させるには、この保持器7を、前記軸4の端部から挿通し、更に前記内輪軌道5の周囲まで軸方向に移動させる。ところが、この場合に、前記軸4の外周面のうち、軸方向に関してこの軸4の端部と前記内輪軌道5との間部分に、その外径寸法が前記保持器7の内径寸法よりも大きい、外向フランジ状の鍔部等の障害物が存在すると、この障害物が邪魔になって、前記保持器7を前記内輪軌道5の周囲まで軸方向に移動させる事ができなくなる。   In order to assemble such a radial roller bearing 1, the cage 7 is disposed around the inner ring raceway 5 so that the cage 7 is inserted from the end of the shaft 4, and the inner ring raceway 5 is further inserted. Move in the axial direction to the periphery of. However, in this case, the outer diameter of the outer peripheral surface of the shaft 4 is larger than the inner diameter of the cage 7 at the portion between the end of the shaft 4 and the inner ring raceway 5 in the axial direction. If there is an obstacle such as an outward flange-shaped flange, the obstacle becomes an obstacle, and the cage 7 cannot be moved in the axial direction to the periphery of the inner ring raceway 5.

そこで、この様な不都合を解消できる保持器として、例えば特許文献1には、円周方向1個所に不連続部を設けた保持器(割型保持器)が記載されている。図7は、前記特許文献1に記載された保持器7aを示している。この保持器7aは、合成樹脂製で、円周方向1個所に不連続部11を設けている。又、この不連続部11を挟んで設けられた端部12a、12b同士を、係合部13により、軸方向及び径方向に関する相対変位を不能に係合(凹凸係合)させている。   Therefore, as a cage that can eliminate such inconvenience, for example, Patent Document 1 describes a cage (split type cage) provided with a discontinuous portion at one place in the circumferential direction. FIG. 7 shows a cage 7a described in Patent Document 1. The cage 7a is made of synthetic resin and has a discontinuous portion 11 at one place in the circumferential direction. Further, the end portions 12a and 12b provided across the discontinuous portion 11 are engaged with each other by the engaging portion 13 so that relative displacement in the axial direction and the radial direction is impossible (concave engagement).

この為に、前記端部12a、12b毎に、それぞれが円周方向に延出した外径側係合片14a、14b及び内径側係合片15a、15bを1組ずつ形成している。具体的には、一方の端部12aのうち、外径側半部の軸方向片半部に前記外径側係合片14aを、内径側半部の軸方向他半部に前記内径側係合片15aを、それぞれ形成している。又、他方の端部12bのうち、外径側半部の軸方向他半部に外径側係合片14bを、内径側半部の軸方向片半部に内径側係合片15bを、それぞれ形成している。そして、前記係合部13の外径側半部と内径側半部とで、1対の外径側係合片14a、14b同士及び1対の内径側係合片15a、15b同士をそれぞれ軸方向に係合させると共に、同じく軸方向片半部と軸方向他半部とで、前記各外径側係合片14a、14bと前記各内径側係合片15b、15aとを、それぞれ径方向に係合させる。尚、図示の例では、前記各端部12a、12b同士が係合していない状態を示しているが、前記保持器7aをラジアルころ軸受に組み込んだ状態では、前記不連続部11の幅が狭まり係合する。   For this purpose, one set of outer diameter side engaging pieces 14a, 14b and inner diameter side engaging pieces 15a, 15b each extending in the circumferential direction is formed for each of the end portions 12a, 12b. Specifically, of the one end portion 12a, the outer diameter side engaging piece 14a is disposed on the outer half of the outer diameter side half and the inner diameter side of the inner half of the inner diameter side half. Each piece 15a is formed. Further, of the other end portion 12b, the outer diameter side engaging piece 14b is disposed in the other half portion in the axial direction of the outer diameter side half portion, and the inner diameter side engaging piece 15b is disposed in the axial direction half portion of the inner diameter side half portion. Each is formed. In addition, the outer diameter side half and the inner diameter side half of the engaging portion 13 each have a pair of outer diameter side engaging pieces 14a and 14b and a pair of inner diameter side engaging pieces 15a and 15b as shafts. In the same manner, the outer diameter side engaging pieces 14a, 14b and the inner diameter side engaging pieces 15b, 15a are respectively radially connected by the axial half and the other axial half. Engage with. In the illustrated example, the end portions 12a and 12b are not engaged with each other. However, when the retainer 7a is incorporated in a radial roller bearing, the width of the discontinuous portion 11 is as follows. Narrow and engage.

又、1対のリム部8a、8bの周面には、それぞれ凹部16a、16bを形成している。具体的には、一方のリム部8aの外周面のうち、各ポケット10、10と軸方向に整合する部分に、径方向内方に向けて凹んだ凹部16a、16aを形成すると共に、他方のリム部8bの内周面のうち、前記各ポケット10、10と軸方向に整合する部分に、径方向外方に向けて凹んだ凹部16b、16bを形成している。   Further, concave portions 16a and 16b are formed on the peripheral surfaces of the pair of rim portions 8a and 8b, respectively. Specifically, in the outer peripheral surface of one rim portion 8a, recesses 16a and 16a that are recessed inward in the radial direction are formed in portions that are axially aligned with the pockets 10 and 10, and the other rim portion 8a On the inner peripheral surface of the rim portion 8b, concave portions 16b and 16b that are recessed radially outward are formed in portions that are aligned with the pockets 10 and 10 in the axial direction.

以上の様な構成を有する前記保持器7aは、1対の割型(金型素子)により構成される金型(アキシャルドロー型)のキャビティ内に合成樹脂を射出成形した後、これら両割型をそれぞれ軸方向に引き離す、所謂アキシャルドロー成形により形成されている。この為、金型の形状が複雑になる(軸方向に移動する1対の金型素子及び径方向に移動する複数の金型素子より構成される)ラジアルドロー型を使用して造られる保持器に比べて、製造コストを低く抑えられる。   The cage 7a having the above-described configuration is obtained by injecting synthetic resin into a cavity of a mold (axial draw type) constituted by a pair of split molds (mold elements), and then splitting these molds. These are formed by so-called axial draw molding in which they are separated in the axial direction. For this reason, the shape of the mold becomes complicated (a cage made of a radial draw type composed of a pair of mold elements moving in the axial direction and a plurality of mold elements moving in the radial direction). Compared to the above, the manufacturing cost can be kept low.

尚、アキシャルドロー成形は、1対の割型を軸方向に移動させて行う為、割型を取り出す際に、ころの脱落を防止すべく設けられた抜け止め部に、塑性変形や白化等の損傷を生じさせずに済む。この為、アキシャルドロー成形は、例えば、ポケットに組み込むころの直径が大きく、抜け止め部の体積が嵩む事に起因して、所謂無理抜き(抜け止め部を弾性的に押し拡げて金型素子を外径側に取り出す事)が困難になる場合や、ポケットに組み込むころ数が多く、柱部の剛性が低くなり、ころが脱落し易くなる事から、抜け止め部の体積を大きく確保する必要がある場合に用いられている。即ち、この様な保持器をラジアルドロー成形により造る場合、抜け止め部の体積を大きくした場合にも、抜け止め部のめくれが大きくなるだけで、十分な抜け止めが図れないのに対して、アキシャルドロー成形によれば、抜け止め部にめくれを生じさせずに済む為、十分な抜け止めを図れる為である。又、アキシャルドロー成形は、例えば柱部が各ころのピッチ円直径よりも径方向外側部分に配置される事で、金型素子を外径側に取り出す事が困難になる場合等にも用いられている。   In addition, since axial draw molding is performed by moving a pair of split molds in the axial direction, when taking out the split mold, a retaining part provided to prevent the rollers from falling off is subjected to plastic deformation, whitening, etc. It will not cause any damage. For this reason, axial draw molding, for example, is due to the large diameter of the roller incorporated in the pocket and the volume of the retaining part being increased, so-called forced removal (the retaining element is elastically expanded to expand the mold element. It is necessary to secure a large volume of the retaining part because it is difficult to take out to the outer diameter side, or the number of rollers incorporated in the pocket is large, the rigidity of the column part becomes low, and the roller easily falls off. Used in some cases. That is, when making such a cage by radial draw molding, even when the volume of the retaining part is increased, the retaining part only turns up, but sufficient retaining cannot be achieved. This is because, according to the axial draw molding, it is not necessary to turn over the retaining portion, so that sufficient retaining can be achieved. Axial draw molding is also used when, for example, it is difficult to take out the mold element to the outer diameter side by arranging the column part radially outside the pitch circle diameter of each roller. ing.

何れにしても、上述の様な構成を有する前記保持器7aの場合には、この保持器7aを弾性変形させる事に基づいて、前記不連続部11の幅を円周方向に拡げる事ができる。この為、この不連続部11の幅を、前記保持器7aを組み付ける回転軸等の軸の外径寸法よりも大きく拡げる事で、前記不連続部11の間にこの軸を通過させる様にして、前記保持器7aをこの軸の周囲に組み付ける事も可能になるし、或いは、前記保持器7aの内径寸法を、前記障害物を乗り越えられる程度に弾性的に拡げる事で、この保持器7aを前記軸の周囲に軸方向に移動させて組み付ける事も可能になる。   In any case, in the case of the cage 7a having the above-described configuration, the width of the discontinuous portion 11 can be expanded in the circumferential direction based on elastic deformation of the cage 7a. . For this reason, the width of the discontinuous portion 11 is made larger than the outer diameter of a shaft such as a rotating shaft for assembling the retainer 7a so that the shaft passes between the discontinuous portions 11. The retainer 7a can be assembled around the shaft, or the inner diameter of the retainer 7a can be elastically expanded so that the obstacle can be overcome. It can also be assembled by moving in the axial direction around the shaft.

ところが、上述した様な構成を有する保持器7aの場合には、軸方向寸法(幅寸法)の小さいラジアルころ軸受に組み込むべく、この保持器7aの軸方向寸法を小さくした場合に、次の様な不都合を生じる可能性がある。
即ち、前記保持器7aの場合には、前記係合部13を構成する全ての係合片14a、14b、15a、15bの軸方向寸法及び径方向寸法が、前記各端部12a、12bの軸方向寸法及び径方向寸法のおよそ1/2である。この為、前記各係合片14a、14b、15a、15bの円周方向端面の面積は、前記不連続部11を挟んで円周方向に対向する端面17a、17b全体の面積のおよそ1/4となる。しかも、前記保持器7aの組み付け状態での、前記各係合片14a、14b、15a、15bの円周方向端面と、これら各端面に円周方向に対向するそれぞれの相手面との間に形成される隙間の大きさを、全てで一致させる事は難しい。この理由は、隙間の大きさを全て同じに規制する事は、高い射出成形性や金型精度が要求され、製作上困難であると共に、製造コストの大幅な増大を招く為である。
However, in the case of the cage 7a having the above-described configuration, when the axial dimension of the cage 7a is reduced to be incorporated in a radial roller bearing having a small axial dimension (width dimension), the following is performed. May cause inconvenience.
That is, in the case of the retainer 7a, the axial dimensions and radial dimensions of all the engaging pieces 14a, 14b, 15a, 15b constituting the engaging portion 13 are the same as the shafts of the end portions 12a, 12b. Approximately one half of the directional dimension and the radial dimension. For this reason, the area of the circumferential end surfaces of the engaging pieces 14a, 14b, 15a, 15b is approximately 1/4 of the entire area of the end surfaces 17a, 17b opposed in the circumferential direction across the discontinuous portion 11. It becomes. Moreover, it is formed between the circumferential end surfaces of the engaging pieces 14a, 14b, 15a, 15b and the mating surfaces facing the respective end surfaces in the circumferential direction in the assembled state of the cage 7a. It is difficult to match the size of the gaps created. The reason for this is that restricting the size of all the gaps to be the same requires high injection moldability and mold accuracy, is difficult in production, and causes a significant increase in manufacturing cost.

この為、前記保持器7aを組み込んだラジアルころ軸受の運転時、前記両端面17a、17b同士が当接(衝突)する場合に、前記各係合片14a、14b、15a、15bのうちの何れかの係合片14a(14b、15a、15b)の円周方向端面とその相手面のみが当接する可能性があり、当接面積が小さくなる。但し、この様な場合にも、前記保持器7aの軸方向寸法が十分に大きければ、当接面積をある程度確保できる為、不都合を生じにくいが、この保持器7aの軸方向寸法が小さくなると、当接面積を十分に確保する事は難しくなる。そして、この様に当接面積を十分に確保できない場合には、前記両端面17a、17b同士が当接した場合に、これら両端面17a、17b同士が非平行になり(傾き)、前記各端部12a、12bの近傍に保持された各ころがスキューする結果、前記保持器7aの挙動が不安定になると言った不都合を生じる可能性がある。又、この保持器7aに負荷されるモーメント荷重が大きくなったり、この保持器7aが非円筒状に弾性変形する等して、この保持器7aの挙動が不安定になる可能性もある。更に、上述の様にしてスキューが発生したり、前記両端面17a、17b同士が当接した際の当接部分に応力が集中した場合、前記保持器7aの破損を引き起こす可能性もある。   For this reason, during operation of the radial roller bearing incorporating the cage 7a, when both end faces 17a, 17b come into contact (collision), any of the engagement pieces 14a, 14b, 15a, 15b There is a possibility that only the circumferential end surface of the engagement piece 14a (14b, 15a, 15b) and its mating surface are in contact with each other, and the contact area is reduced. However, even in such a case, if the axial dimension of the cage 7a is sufficiently large, the contact area can be secured to some extent, so that inconvenience is less likely to occur, but if the axial dimension of the cage 7a is small, It is difficult to secure a sufficient contact area. If a sufficient contact area cannot be ensured in this way, when both end surfaces 17a and 17b contact each other, the both end surfaces 17a and 17b become non-parallel (inclined), and each end As a result of skewing of the rollers held in the vicinity of the portions 12a and 12b, there is a possibility that the inconvenience that the behavior of the cage 7a becomes unstable is caused. Further, there is a possibility that the behavior of the cage 7a becomes unstable due to an increase in the moment load applied to the cage 7a or the elastic deformation of the cage 7a into a non-cylindrical shape. Further, when the skew occurs as described above or stress concentrates on the contact portion when the both end surfaces 17a and 17b contact each other, the cage 7a may be damaged.

英国特許第1352909号明細書British Patent No. 1352909

本発明は、上述の様な事情に鑑み、所謂アキシャルドロー成形により造る事ができて、組み付け作業性が良好で、且つ、軸方向寸法が小さい場合にも使用時の挙動を安定させられるラジアルころ軸受用保持器を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a radial roller that can be manufactured by so-called axial draw molding, has good assembly workability, and can stabilize the behavior during use even when the axial dimension is small. The invention was invented to realize a bearing cage.

本発明のラジアルころ軸受用保持器は、1対の割型により構成される金型を使用した合成樹脂の射出成形(所謂アキシャルドロー成形)により一体に造られ、円周方向1個所に不連続部を有するものであり、1対のリム部と、複数本の柱部と、複数個のポケットと、係合部とを備える。
このうちの1対のリム部は、それぞれが欠円環状で、軸方向に間隔をあけて互いに同心に設けられている。又、これら両リム部の周面のうちで、前記各ポケットと軸方向に整合する部分には、径方向に凹んだ凹部がそれぞれ形成されている。又、これら各凹部の形成位置は、前記各ポケットの軸方向両側部分で径方向に関して反対である。
又、前記係合部は、前記不連続部を挟んで設けられた端部同士を、軸方向及び径方向に関する相対変位を不能に係合するものであり、これら端部毎にそれぞれ1組ずつ形成された、合計2組の外径側及び内径側係合片を備える。そして、前記係合部の外径側部分と内径側部分とで、1対の外径側係合片同士及び1対の内径側係合片同士をそれぞれ軸方向に係合させると共に、軸方向片側部分と軸方向他側部分とで、前記各外径側係合片と前記各内径側係合片とをそれぞれ径方向に係合させている。
The radial roller bearing retainer of the present invention is integrally formed by injection molding (so-called axial draw molding) of synthetic resin using a mold constituted by a pair of split molds, and is discontinuous at one place in the circumferential direction. And includes a pair of rim portions, a plurality of pillar portions, a plurality of pockets, and an engaging portion.
Of these, the pair of rim portions are each formed in an annular shape, and are provided concentrically with each other at intervals in the axial direction. Further, in the peripheral surfaces of both the rim portions, concave portions that are recessed in the radial direction are formed in portions that are aligned with the respective pockets in the axial direction. Further, the formation positions of these recesses are opposite in the radial direction at both axial portions of the pockets.
Further, the engaging portion engages the end portions provided across the discontinuous portion so that relative displacement in the axial direction and the radial direction is impossible, and one set is provided for each of these end portions. A total of two sets of outer diameter side and inner diameter side engaging pieces are formed. Then, the outer diameter side portion and the inner diameter side portion of the engaging portion respectively engage a pair of outer diameter side engagement pieces and a pair of inner diameter side engagement pieces in the axial direction, and in the axial direction. The outer diameter side engaging pieces and the inner diameter side engaging pieces are engaged in the radial direction by the one side portion and the other axial side portion, respectively.

特に本発明のラジアルころ軸受用保持器の場合には、前記1対の外径側係合片同士の軸方向寸法、及び、前記1対の内径側係合片同士の軸方向寸法を、それぞれ互いに異ならせている。且つ、前記係合部の外径側部分と内径側部分との両部分で、軸方向寸法が大きい係合片の円周方向端面とこの端面に円周方向に対向する相手面との間の隙間を、同じく軸方向寸法が小さい係合片の円周方向端面とこの端面に円周方向に対向する相手面との間の隙間よりも、それぞれ小さくしている。   Particularly in the case of the radial roller bearing retainer of the present invention, the axial dimension of the pair of outer diameter side engaging pieces and the axial dimension of the pair of inner diameter side engaging pieces are respectively They are different from each other. In addition, in both the outer diameter side portion and the inner diameter side portion of the engagement portion, between the circumferential end surface of the engagement piece having a large axial dimension and the opposing surface facing the end surface in the circumferential direction. The gaps are respectively made smaller than the gaps between the circumferential end surface of the engaging piece having a small axial dimension and the mating surface facing the end surface in the circumferential direction.

本発明を実施する場合に好ましくは、例えば請求項2に記載した発明の様に、軸方向寸法が大きい外径側係合片の円周方向端面と相手面との間の隙間と、軸方向寸法が大きい内径側係合片の円周方向端面と相手面との間の隙間とを、同じ大きさとする。
この場合に好ましくは、軸方向寸法が小さい外径側係合片の円周方向端面と相手面との間の隙間と、軸方向寸法が小さい内径側係合片の円周方向端面と相手面との間の隙間とを、同じ大きさとする。
Preferably, when carrying out the present invention, for example, as in the invention described in claim 2, the gap between the circumferential end surface of the outer diameter side engagement piece having a large axial dimension and the mating surface, and the axial direction The clearance between the circumferential end surface of the inner diameter side engagement piece having a large dimension and the mating surface is set to the same size.
In this case, preferably, the clearance between the circumferential end surface of the outer diameter side engaging piece having a small axial dimension and the mating surface, and the circumferential end surface of the inner diameter side engaging piece having a small axial dimension and the mating surface. And the same gap between them.

更に、本発明を実施する場合に好ましくは、例えば請求項3に記載した発明の様に、前記係合部の軸方向端部を、リム部の軸方向側面(外側面)よりも軸方向中央側にオフセットさせる。これにより、当該部分に挿入空間を形成する。   Further, when the present invention is carried out, preferably, as in the invention described in claim 3, for example, the axial end of the engaging portion is positioned in the axial center rather than the axial side surface (outer surface) of the rim portion. Offset to the side. Thereby, an insertion space is formed in the portion.

上述の様に構成する本発明のラジアルころ軸受用保持器によれば、組み付け作業性が良好で、且つ、軸方向寸法を小さくした場合にも使用時の挙動を安定させられる。
即ち、本発明のラジアルころ軸受用保持器は、合成樹脂製で、円周方向1個所に不連続部を有する為、このラジアルころ軸受用保持器を弾性変形させる事で、この不連続部の幅を円周方向に拡げる事ができる。この為、このラジアルころ軸受用保持器を組み付ける回転軸等の軸の外周面に外向フランジ状の鍔部等の障害物が存在する場合にも、このラジアルころ軸受用保持器をこの軸の周囲に容易に組み付ける事ができる。
又、本発明の場合には、1対の外径側係合片同士及び1対の内径側係合片同士の間で、軸方向寸法をそれぞれ互いに異ならせると共に、係合部の外径側部分と内径側部分とで、軸方向寸法が大きい係合片の円周方向端面と相手面との間の隙間を、軸方向寸法が小さい係合片の円周方向端面と相手面との間の隙間よりも、それぞれ小さくしている。この為、運転時に、前記不連続部を挟んで対向する端面同士が当接(衝突)した場合に、軸方向寸法が大きい係合片の円周方向端面を相手面に対し当接させる事ができる。従って、ラジアルころ軸受用保持器の軸方向寸法が小さい場合にも、前記両端面同士が当接する際の当接面積を十分に確保できる。この結果、ラジアルころ軸受用保持器の挙動が不安定になる事を有効に防止できる。
更に、本発明のラジアルころ軸受用保持器は、前記各係合片及び両リム部の形状を含め、射出成形後の保持器を傷める事なく、1対の割型同士を離隔させられる形状に規制されている。この為、所謂アキシャルドロー成形により造る事ができて、製造コストを低く抑えられる。
According to the radial roller bearing cage of the present invention configured as described above, the assembly workability is good and the behavior during use can be stabilized even when the axial dimension is reduced.
That is, the radial roller bearing retainer of the present invention is made of synthetic resin and has a discontinuous portion at one place in the circumferential direction. Therefore, by elastically deforming the radial roller bearing retainer, The width can be expanded in the circumferential direction. For this reason, even when there are obstacles such as flanges facing outward on the outer peripheral surface of the shaft such as the rotary shaft to which this radial roller bearing retainer is assembled, this radial roller bearing retainer is Can be assembled easily.
In the case of the present invention, the pair of outer diameter side engagement pieces and the pair of inner diameter side engagement pieces have different axial dimensions, and the outer diameter side of the engagement portion. A gap between the circumferential end surface of the engagement piece having a large axial dimension and the mating surface is formed between the circumferential end surface of the engagement piece having a small axial dimension and the mating surface. Each gap is smaller than the gap. For this reason, during operation, when the end faces facing each other across the discontinuous portion abut (collision), the circumferential end face of the engagement piece having a large axial dimension may be brought into contact with the mating face. it can. Therefore, even when the axial dimension of the radial roller bearing retainer is small, a sufficient contact area can be ensured when the both end surfaces are in contact with each other. As a result, it is possible to effectively prevent the behavior of the radial roller bearing retainer from becoming unstable.
Furthermore, the radial roller bearing retainer of the present invention has a shape that allows the pair of split molds to be separated from each other without damaging the retainer after injection molding, including the shapes of the engagement pieces and the rim portions. It is regulated. For this reason, it can be manufactured by so-called axial draw molding, and the manufacturing cost can be kept low.

又、請求項2に記載した発明によれば、前記両端面同士が当接した場合に、軸方向寸法が大きい外径側係合片及び内径側係合片のそれぞれの円周方向端面を、相手面に当接させられる。この為、当接面積をより大きく確保できて、ラジアルころ軸受用保持器の挙動を十分に安定させる事が可能になる。   Further, according to the invention described in claim 2, when the both end surfaces are in contact with each other, the circumferential end surfaces of the outer diameter side engagement piece and the inner diameter side engagement piece having large axial dimensions are obtained. It can be brought into contact with the mating surface. For this reason, it is possible to secure a larger contact area and sufficiently stabilize the behavior of the radial roller bearing retainer.

更に、請求項3に記載した発明によれば、挿入空間内に位置決めピンを挿入した状態で、ラジアルころ軸受の自動組立(ポケット内へのころ挿入作業)を行える。この為、ラジアルころ軸受用保持器の円周方向に関する位置決めを容易に行う事ができて、組立作業の効率向上を図れる。又、前記空間を形成した分だけ、軽量化を図る事ができると共に、射出成形時のひけ防止の面からも有利になる。   Furthermore, according to the invention described in claim 3, automatic assembly of the radial roller bearing (roller insertion into the pocket) can be performed with the positioning pin inserted in the insertion space. Therefore, the radial roller bearing retainer can be easily positioned in the circumferential direction, and the efficiency of assembly work can be improved. Further, the weight can be reduced by the amount of the space formed, and it is advantageous in terms of preventing sink marks during injection molding.

本発明の実施の形態の第1例を示す斜視図。The perspective view which shows the 1st example of embodiment of this invention. 同じく別の向きから見た状態で示す斜視図。The perspective view shown in the state seen from another direction similarly. 本発明の実施の形態の第2例を示す斜視図。The perspective view which shows the 2nd example of embodiment of this invention. 同じく別の向きから見た状態で示す斜視図。The perspective view shown in the state seen from another direction similarly. 保持器を備えたラジアルころ軸受を組み込んだ回転支持部の断面図。Sectional drawing of the rotation support part incorporating the radial roller bearing provided with the holder | retainer. 保持器の円周方向一部を径方向外方から見た図。The figure which looked at the circumferential direction part of the cage | basket from the radial direction outer side. 特許文献1に記載された従来構造のラジアルころ軸受用保持器の斜視図。The perspective view of the radial roller bearing retainer of the conventional structure described in patent document 1. FIG.

[実施の形態の第1例]
図1〜2は、請求項1、2に対応する、本発明の実施の形態の第1例を示している。本例のラジアルころ(ニードル)軸受用の保持器7bは、軸方向に間隔をあけて互いに同心に配置された、それぞれが欠円環状である1対のリム部8c、8dと、円周方向に亙って間欠的に、これら両リム部8c、8d同士の間に掛け渡される状態で設けられた複数本の柱部9、9とを備える。そして、円周方向に隣り合う柱部9、9と前記両リム部8c、8dとにより四方を囲まれた部分を、それぞれ各ころ6(図5参照)を転動自在に保持する為のポケット10、10としている。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. The radial roller (needle) bearing retainer 7b of the present example includes a pair of rim portions 8c and 8d that are arranged concentrically at intervals in the axial direction, each having a ring shape, and a circumferential direction. Accordingly, a plurality of column portions 9 and 9 are provided in a state of being intermittently spanned between the two rim portions 8c and 8d. Pockets for holding the respective rollers 6 (see FIG. 5) so that they can freely roll in the portions surrounded by the four sides by the column portions 9 and 9 adjacent to each other in the circumferential direction and the rim portions 8c and 8d. 10 and 10.

又、本例の場合には、前記保持器7bを、図示しない1対の割型により構成される金型(アキシャルドロー型)のキャビティ内に、例えば、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、或いはこれらの樹脂に補強用繊維を混入したもの等、一般的な合成樹脂製保持器の場合と同様の合成樹脂を射出成形した後、前記両割型をそれぞれ軸方向に引き離す、所謂アキシャルドロー成形により造っている。   In the case of this example, the retainer 7b is placed in a cavity of a mold (axial draw type) constituted by a pair of split molds (not shown), for example, polyamide resin, polyphenylene sulfide resin, or these After injection molding the same synthetic resin as in the case of a general synthetic resin cage, such as a resin mixed with reinforcing fibers, the two split molds are pulled apart in the axial direction, so-called axial draw molding. Yes.

この為に、前記各リム部8c、8dの周面のうちで、前記各ポケット10、10と軸方向に整合する部分には、径方向内方に向けて凹んだ凹部16cと、径方向外方に向けて凹んだ凹部16dとを、円周方向に亙って交互に形成している。又、前記各ポケット10、10の軸方向両側部分には、径方向に関する形成位置が反対である前記凹部16cと前記凹部16dとを、それぞれ1つずつ配置している。又、これら各凹部16c、16dの円周方向に関する幅寸法は、前記各ポケット10、10の円周方向に関する幅寸法と同じであり、径方向に関する深さ寸法は、前記各リム部8c、8dの径方向に関する厚さ寸法の1/2である。この様な凹部16c、16dは、前記各割型を軸方向に移動させる際に、これら各割型のうちで前記各ポケット10、10を形成すべく設けられた部分を軸方向に通過させる。従って、この様な凹部16a、16bが形成された本例の保持器7bの場合には、前記各ポケット10、10をアキシャルドロー成形により形成できる。   For this purpose, a portion of the peripheral surface of each of the rim portions 8c and 8d that is aligned with the pockets 10 and 10 in the axial direction includes a concave portion 16c that is recessed radially inward, and a radially outer portion. Concave portions 16d that are recessed toward each other are alternately formed in the circumferential direction. Further, the concave portions 16c and the concave portions 16d, which are opposite to each other in the radial direction, are disposed on both side portions in the axial direction of the pockets 10 and 10, respectively. Further, the width dimension of each of the recesses 16c and 16d in the circumferential direction is the same as the width dimension of each of the pockets 10 and 10 in the circumferential direction, and the depth dimension in the radial direction is equal to each of the rim portions 8c and 8d. It is 1/2 of the thickness dimension in the radial direction. Such concave portions 16c and 16d allow portions of the split molds provided to form the pockets 10 and 10 to pass in the axial direction when the split molds are moved in the axial direction. Therefore, in the case of the retainer 7b of this example in which such recesses 16a and 16b are formed, the pockets 10 and 10 can be formed by axial draw molding.

又、前記保持器7bには、円周方向1個所に不連続部11aが設けられている。そして、この不連続部11aを挟んで両側に設けられた端部12c、12d(柱部9、9)同士を、係合部13aにより、軸方向及び径方向に関する相対変位を不能に凹凸係合させている。この為に、前記端部12c、12d毎に、それぞれが円周方向に延出した全体形状が略矩形板状(部分円筒状)の外径側係合片14c、14d及び内径側係合片15c、15dを1組ずつ形成している。具体的には、一方の端部12cのうち、外径側半部の軸方向片側(図1の右側、図2の左側)に前記外径側係合片14cを、内径側半部の軸方向他側(図1の左側、図2の右側)に前記内径側係合片15cを、それぞれ形成している。又、他方の端部12dのうち、外径側半部の軸方向他側に外径側係合片14dを、内径側半部の軸方向片側に内径側係合片15dを、それぞれ形成している。別な言い方をすれば、前記端部12c、12d毎に、外径側係合片14c、14d及び内径側係合片15c、15dにより構成される1組の凸部と、残部(係合片14c、14d、15c、15dから外れた部分)により構成される1組の凹部とを、それぞれ形成している。   Further, the retainer 7b is provided with a discontinuous portion 11a at one place in the circumferential direction. Then, the end portions 12c and 12d (column portions 9 and 9) provided on both sides of the discontinuous portion 11a are engaged with each other by the engaging portion 13a so that relative displacement in the axial direction and the radial direction is impossible. I am letting. For this purpose, for each of the end portions 12c and 12d, the outer diameter side engaging pieces 14c and 14d and the inner diameter side engaging pieces each having a generally rectangular plate shape (partial cylindrical shape) extending in the circumferential direction. One set of 15c and 15d is formed. Specifically, of the one end portion 12c, the outer diameter side engaging piece 14c is placed on one axial side of the outer diameter side half (the right side in FIG. 1 and the left side in FIG. 2), and the shaft on the inner diameter side half. The inner diameter side engaging pieces 15c are formed on the other side in the direction (left side in FIG. 1, right side in FIG. 2), respectively. Further, of the other end portion 12d, an outer diameter side engagement piece 14d is formed on the other axial side of the outer diameter side half, and an inner diameter side engagement piece 15d is formed on the one axial side of the inner diameter side half. ing. In other words, for each of the end portions 12c and 12d, a pair of convex portions constituted by outer diameter side engaging pieces 14c and 14d and inner diameter side engaging pieces 15c and 15d, and the remaining portion (engaging piece) 14c, 14d, 15c, and 15d) are formed as a pair of recesses.

従って、この様な位置関係に形成される前記各係合片14c、14d、15c、15dに就いても、前記各割型を軸方向に移動させる際に、これら各割型と干渉させずに済む。即ち、射出成形時に、その一部が前記外径側係合片14cの軸方向他側部分及び前記内径側係合片15dの軸方向他側部分に配置される片側の割型は、射出成形後には軸方向他側に抜かれる。これに対し、射出成形時に、その一部が前記外径側係合片14dの軸方向片側部分及び前記内径側係合片15cの軸方向片側部分に配置される他側の割型は、射出成形後には軸方向片側に抜かれる。従って、前記各割型を軸方向に移動させる際に、前記各係合片14c、14d、15c、15dが、これら各割型と干渉する事はない。   Accordingly, even when the engaging pieces 14c, 14d, 15c, and 15d formed in such a positional relationship are moved in the axial direction, the split pieces do not interfere with the split molds. That's it. That is, at the time of injection molding, the split mold on one side, a part of which is disposed on the other axial portion of the outer diameter side engaging piece 14c and the other axial portion of the inner diameter side engaging piece 15d, is injection molded. Later, it is pulled out to the other side in the axial direction. On the other hand, at the time of injection molding, the split mold on the other side, a part of which is arranged on one axial part of the outer diameter side engaging piece 14d and one axial part of the inner diameter side engaging piece 15c, is injected. After molding, it is pulled out to one side in the axial direction. Therefore, when the split molds are moved in the axial direction, the engagement pieces 14c, 14d, 15c, and 15d do not interfere with the split molds.

又、本例の場合、前記保持器7bをラジアルころ軸受に組み込んだ状態で、前記係合部13aの外径側半部と内径側半部とで、1対の外径側係合片14c、14d同士及び1対の内径側係合片15c、15d同士をそれぞれ軸方向に係合させると共に、同じく軸方向片半部と軸方向他半部とで、前記各外径側係合片14c、14dと前記各内径側係合片15d、15cとを、それぞれ径方向に係合させる。具体的には、前記1対の外径側係合片14c、14dの軸方向側面同士、及び、前記1対の内径側係合片15c、15dの軸方向側面同士を、それぞれ当接(乃至は近接対向)させる。又、前記外径側係合片14cの径方向内側面と前記内径側係合片15dの径方向外側面、及び、前記外径側係合片14dの径方向内側面と前記内径側係合片15cの径方向外側面とを、それぞれ当接(乃至は近接対向)させる。従って、この様な構成を有する本例の場合にも、前記各端部12c、12d同士の軸方向及び径方向(更には捩れ方向)に関する相対変位が不能になる。   In the case of this example, a pair of outer diameter side engaging pieces 14c are formed by the outer diameter side half portion and the inner diameter side half portion of the engaging portion 13a in a state where the cage 7b is incorporated in a radial roller bearing. 14d and the pair of inner diameter side engaging pieces 15c, 15d are respectively engaged in the axial direction, and each outer diameter side engaging piece 14c is similarly formed by the axial half piece and the other axial half portion. , 14d and the inner diameter side engaging pieces 15d, 15c are respectively engaged in the radial direction. Specifically, the axial side surfaces of the pair of outer diameter side engaging pieces 14c and 14d and the pair of inner diameter side engaging pieces 15c and 15d are in contact with each other (or through). Are close to each other). Further, the radially inner side surface of the outer diameter side engaging piece 14c and the radially outer side surface of the inner diameter side engaging piece 15d, and the radially inner side surface of the outer diameter side engaging piece 14d and the inner diameter side engagement The radially outer side surfaces of the pieces 15c are brought into contact with each other (or close to each other). Accordingly, even in the case of this example having such a configuration, relative displacement in the axial direction and the radial direction (and also the twist direction) between the end portions 12c and 12d becomes impossible.

特に本例の場合には、前記1対の外径側係合片14c、14d同士の軸方向寸法、及び、前記1対の内径側係合片15c、15d同士の軸方向寸法を、それぞれ互いに異ならせている。具体的には、前記1対の外径側係合片14c、14dのうち、前記一方の端部12cに設けられた外径側係合片14cの軸方向寸法を、前記他方の端部12dに設けられた外径側係合片14dの軸方向寸法よりも大きくしている。又、前記1対の内径側係合片15c、15dに就いても、前記一方の端部12cに設けられた内径側係合片15cの軸方向寸法を、前記他方の端部12dに設けられた内径側係合片15dの軸方向寸法よりも大きくしている。但し、前記1対の外径側係合片14c、14dの軸方向寸法の和、及び、前記1対の内径側係合片15c、15dの軸方向寸法の和は、それぞれ前記各端部12c、12dの軸方向寸法とそれぞれ同じになる様にしている。従って、本例の場合には、前記両外径側係合片14c、14d同士の軸方向に関する係合位置(図1中の実線X)、及び、前記両内径側係合片15c、15d同士の軸方向に関する係合位置(図2中の実線Y)が、前記保持器7bの軸方向中央位置(図1、2中の鎖線A)から、それぞれ軸方向に関して反対向きにずれている(オフセットしている)。又、本例の場合には、前記外径側係合片14cと前記外径側係合片14dとの軸方向寸法比、及び、前記内径側係合片15cと前記内径側係合片15dとの軸方向寸法比を、それぞれ3:2程度としている。この為、前記両外径側係合片14c、14d同士の係合位置と、前記両内径側係合片15c、15d同士の係合位置との、前記中央位置に対するオフセット量は同じである。   Particularly in the case of this example, the axial dimension of the pair of outer diameter side engaging pieces 14c, 14d and the axial dimension of the pair of inner diameter side engaging pieces 15c, 15d are mutually different. It is different. Specifically, of the pair of outer diameter side engaging pieces 14c and 14d, the axial dimension of the outer diameter side engaging piece 14c provided at the one end portion 12c is set to the other end portion 12d. It is made larger than the axial direction dimension of the outer diameter side engaging piece 14d provided on the outer side. Further, the axial dimension of the inner diameter side engaging piece 15c provided at the one end portion 12c is set at the other end portion 12d even with respect to the pair of inner diameter side engaging pieces 15c and 15d. The inner diameter side engagement piece 15d is larger than the axial dimension. However, the sum of the axial dimensions of the pair of outer diameter side engaging pieces 14c, 14d and the sum of the axial dimensions of the pair of inner diameter side engaging pieces 15c, 15d are respectively the end portions 12c. , 12d so as to have the same axial dimension. Therefore, in the case of this example, the engagement position (solid line X in FIG. 1) between the outer diameter side engagement pieces 14c and 14d and the inner diameter side engagement pieces 15c and 15d. The engagement position in the axial direction (solid line Y in FIG. 2) is offset in the opposite direction in the axial direction from the axial center position (chain line A in FIGS. 1 and 2) of the retainer 7b (offset). doing). Further, in the case of this example, the axial dimension ratio between the outer diameter side engaging piece 14c and the outer diameter side engaging piece 14d, and the inner diameter side engaging piece 15c and the inner diameter side engaging piece 15d. The axial dimensional ratio is about 3: 2. For this reason, the offset amount with respect to the center position is the same between the engagement position of the both outer diameter side engagement pieces 14c and 14d and the engagement position of the both inner diameter side engagement pieces 15c and 15d.

更に、前記各係合片14c、14d、15c、15dの径方向寸法は、前記各端部12c、12dの径方向寸法のおよそ1/2としている。この為、本例の場合には、軸方向寸法の大きい前記外径側係合片14c及び前記内径側係合片15cの円周方向端面の面積が、前記不連続部11aを挟んで対向する端面17c、17d全体の面積のおよそ3/10程度となり、前述した従来構造の保持器7aの場合(1/4)に比べて大きくできる。   Further, the radial dimension of each of the engagement pieces 14c, 14d, 15c, 15d is approximately ½ of the radial dimension of each of the end portions 12c, 12d. For this reason, in the case of this example, the areas of the circumferential end surfaces of the outer diameter side engaging piece 14c and the inner diameter side engaging piece 15c having large axial dimensions face each other across the discontinuous portion 11a. The total area of the end faces 17c and 17d is about 3/10, which can be made larger than the case (1/4) of the cage 7a having the conventional structure.

又、本例の場合には、前記保持器7bを組み込んだ状態での、各係合片14c、14d、15c、15dの円周方向端面と、これら各端面に円周方向にそれぞれ対向する相手面との間の隙間の大きさを、次の様に規制している。即ち、前記1対の外径側係合片14c、14dのうちで、軸方向寸法が大きい外径側係合片14cの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間α1の大きさを、同じく軸方向寸法が小さい外径側係合片14dの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間β1の大きさよりも小さくしている(α1<β1)。加えて、前記1対の内径側係合片15c、15dのうちで、軸方向寸法が大きい内径側係合片15cの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間γ1の大きさを、同じく軸方向寸法が小さい内径側係合片15dの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間δ1の大きさよりも小さくしている(γ1<δ1)。尚、図示の例では、前記隙間α1を前記隙間β1の0.7倍程度としており、前記隙間γ1を前記隙間δ1の0.7倍程度としている。   In the case of this example, the circumferential end surfaces of the engaging pieces 14c, 14d, 15c, and 15d in a state where the retainer 7b is incorporated, and counterparts that oppose these end surfaces in the circumferential direction, respectively. The size of the gap between the surfaces is regulated as follows. That is, of the pair of outer diameter side engagement pieces 14c and 14d, the circumferential end face of the outer diameter side engagement piece 14c having a large axial dimension, and the opposite face that faces the end face in the circumferential direction The size of the gap α1 between the outer circumferential side end face of the outer diameter side engagement piece 14d having a small axial dimension and the size of the gap β1 between the end face and the mating face facing the end face in the circumferential direction. (Α1 <β1). In addition, of the pair of inner diameter side engagement pieces 15c and 15d, a circumferential end surface of the inner diameter side engagement piece 15c having a large axial dimension and a counter surface facing the end surface in the circumferential direction. The size of the gap γ1 is smaller than the size of the gap δ1 between the circumferential end face of the inner diameter side engaging piece 15d having a small axial dimension and the opposite face in the circumferential direction. (Γ1 <δ1). In the illustrated example, the gap α1 is about 0.7 times the gap β1, and the gap γ1 is about 0.7 times the gap δ1.

更に、本例の場合には、軸方向寸法が大きい外径側係合片14cの円周方向端面と相手面との間の隙間α1の大きさを、軸方向寸法が大きい内径側係合片15cの円周方向端面と相手面との間の隙間γ1の大きさとを同じ(実質的に同じを含む)としている(α1=γ1)。加えて、軸方向寸法が小さい外径側係合片14dの円周方向端面と相手面との間の隙間β1の大きさを、軸方向寸法が小さい内径側係合片15dの円周方向端面と相手面との間の隙間δ1の大きさとを同じ(実質的に同じを含む)としている(β1=δ1)。
尚、本例の保持器7bは、前述した様に、アキシャルドロー成形により造られる為、両割型を軸方向に引き離した直後の状態では、前記両端部12c、12d同士は未だ係合していない(端部12c、12d同士の間に隙間が存在する)。但し、前記保持器7bが室温まで冷却される過程で保持器径が収縮していく為、図示の様に、前記両端部12c、12d同士が係合し、前記各係合片14c、14d、15c、15dの円周方向端面とそれぞれの相手面との間の隙間の大きさが、上述した様な関係になる。但し、実際の場合には、冷却の過程で前記保持器7bが所望通りに収縮しない場合もあり得るが、この保持器7bは合成樹脂製であり高弾性体である為、組み付け後に相手部材に倣い(弾性変形し)、所望の形状になる(隙間の関係が得られる)。又、軸方向寸法が小さい係合片14d、15dに関する隙間の大きさは、本例の場合の様に、同じ(β1=δ1)とする事が好ましいが、本発明を実施する場合に、これら両隙間の大きさは必ずしも同じに規制する必要はない。但し、これら各隙間の大きさは、運転時に前記保持器7bに作用する遠心力によって、前記係合部13aの係合が外れない(端部12c、12d同士が分離しない)様に、前記外径側係合片14dと前記内径側係合片15dとの少なくとも何れか一方の係合片が、軸方向及び径方向に隣接する係合片と係合できる(オーバーラップ量を確保できる)大きさに設定する。
Further, in the case of this example, the size of the gap α1 between the circumferential end surface of the outer diameter side engagement piece 14c having a large axial dimension and the mating surface is set to the inner diameter side engagement piece having a large axial dimension. The size of the gap γ1 between the circumferential end face of 15c and the counterpart surface is assumed to be the same (including substantially the same) (α1 = γ1). In addition, the size of the gap β1 between the circumferential end face of the outer diameter side engaging piece 14d having a small axial dimension and the mating face is set to the circumferential end face of the inner diameter side engaging piece 15d having a small axial dimension. The size of the gap δ1 between the contact surface and the mating surface is the same (including substantially the same) (β1 = δ1).
Since the cage 7b of this example is manufactured by axial draw molding as described above, the both ends 12c and 12d are still engaged with each other in the state immediately after the split molds are pulled apart in the axial direction. There is no gap (there is a gap between the end portions 12c and 12d). However, since the cage diameter shrinks in the process of cooling the cage 7b to room temperature, the both end portions 12c and 12d are engaged with each other as shown in the figure, and the engagement pieces 14c, 14d, The sizes of the gaps between the circumferential end surfaces of 15c and 15d and the respective mating surfaces have the relationship as described above. However, in the actual case, the cage 7b may not shrink as desired during the cooling process. However, since the cage 7b is made of synthetic resin and is a highly elastic body, It is copied (elastically deformed) to have a desired shape (a gap relationship is obtained). In addition, the size of the gaps related to the engagement pieces 14d and 15d having a small axial dimension is preferably the same (β1 = δ1) as in the present example. It is not necessary to restrict the size of both gaps to the same. However, the sizes of these gaps are such that the engagement portion 13a is not disengaged by the centrifugal force acting on the cage 7b during operation (the end portions 12c, 12d are not separated from each other). At least one of the radial side engaging piece 14d and the inner diameter side engaging piece 15d can be engaged with an engaging piece adjacent in the axial direction and the radial direction (amount of overlap can be ensured). Set to

以上の様な構成を有する本例の保持器7bによれば、組み付け作業性が良好で、且つ、軸方向寸法を小さくした場合にも使用時の挙動を安定させられる。
即ち、本例の保持器7bは、合成樹脂製であり、円周方向1個所に前記不連続部11aを有する為、この保持器7bを弾性変形させる事で、この不連続部11aの幅を円周方向に拡げる事ができる。この為、前記保持器7bを組み付ける回転軸等の軸の外周面に、外向フランジ状の鍔部等の障害物が存在する場合にも、この保持器7bをこの軸の周囲に容易に組み付ける事ができる。
According to the cage 7b of this example having the above-described configuration, the assembly workability is good and the behavior during use can be stabilized even when the axial dimension is reduced.
That is, the cage 7b of this example is made of synthetic resin and has the discontinuous portion 11a at one place in the circumferential direction, so that the width of the discontinuous portion 11a can be increased by elastically deforming the cage 7b. Can expand in the circumferential direction. For this reason, even when an obstacle such as an outward flange-shaped flange exists on the outer peripheral surface of a shaft such as a rotating shaft to which the cage 7b is assembled, the cage 7b can be easily assembled around the shaft. Can do.

又、本例の場合には、前記係合部13aを構成する1対の外径側係合片14c、14d同士及び1対の内径側係合片15c、15d同士の間で、軸方向寸法をそれぞれ互いに異ならせている。そして、軸方向寸法が大きい外径側係合片14c及び内径側係合片15cの円周方向端面と、これら各端面に円周方向に対向する相手面との間の隙間(α1、γ1)の大きさを、軸方向寸法が小さい外径側係合片14d及び内径側係合片15dの円周方向端面と、これら各端面に円周方向に対向する相手面との間の隙間(β1、δ1)の大きさよりも、それぞれ小さくしている(α1、γ1<β1、δ1)。更には、軸方向寸法が大きい外径側係合片14c及び内径側係合片15cに関する隙間の大きさを同じとしている(α1=γ1)。この為、運転時に、前記両端面17c、17d同士が当接(衝突)した場合に、軸方向寸法が大きい外径側係合片14c及び内径側係合片15cの円周方向端面を、それぞれの相手面に対し当接させる事ができる(この状態で、軸方向寸法が小さい外径側係合片14d及び内径側係合片15dの円周方向端面と相手面との間には微小隙間が形成される)。従って、前記保持器7bの軸方向寸法が小さい場合にも、前記両端面17c、17d同士が当接する際の当接面積を十分に確保できる(本例では、端面17c、17d全体の面積の3/5の部分で当接させられる)。この結果、これら両端面17c、17d同士が当接した場合に、これら両端面17c、17d同士が非平行になる(傾く)事を有効に防止できる。従って、前記各端部12c、12dの近傍に保持された各ころにスキューが生じる事を防止できて、前記保持器7bの挙動が不安定になる事を有効に防止できる。又、この保持器7bに負荷されるモーメント荷重が大きくなったり、この保持器7bが非円筒状に弾性変形する事を有効に防止する事もできる。更に、上述の様にスキューを抑制できると共に、当接面積を大きく確保できる事により応力集中を緩和できる為、前記保持器7bが破損する事も有効に防止できる。   In the case of this example, the axial dimension between the pair of outer diameter side engaging pieces 14c and 14d and the pair of inner diameter side engaging pieces 15c and 15d constituting the engaging portion 13a. Are different from each other. And the clearance gap ((alpha) 1, (gamma) 1) between the circumferential direction end surface of the outer diameter side engaging piece 14c and the inner diameter side engaging piece 15c with a large axial direction dimension, and the other surface which opposes these each end surface in the circumferential direction. Of the outer diameter side engaging piece 14d and the inner diameter side engaging piece 15d having a small axial dimension, and a clearance (β1) between the respective opposite end faces in the circumferential direction. , Δ1) are smaller than each other (α1, γ1 <β1, δ1). Furthermore, the size of the clearance between the outer diameter side engaging piece 14c and the inner diameter side engaging piece 15c having a large axial dimension is the same (α1 = γ1). Therefore, when the both end faces 17c and 17d come into contact (collision) with each other during operation, the circumferential end faces of the outer diameter side engagement piece 14c and the inner diameter side engagement piece 15c having large axial dimensions are respectively (In this state, there is a minute gap between the circumferential end surface of the outer diameter side engaging piece 14d and the inner diameter side engaging piece 15d having a small axial dimension and the other surface. Is formed). Therefore, even when the axial dimension of the cage 7b is small, a sufficient contact area can be secured when the both end faces 17c, 17d are in contact with each other (in this example, 3 of the total area of the end faces 17c, 17d). / 5 part). As a result, it is possible to effectively prevent the both end surfaces 17c and 17d from becoming non-parallel (tilted) when the both end surfaces 17c and 17d come into contact with each other. Accordingly, it is possible to prevent skew from occurring in the rollers held in the vicinity of the end portions 12c and 12d, and to effectively prevent the behavior of the cage 7b from becoming unstable. In addition, it is possible to effectively prevent the moment load applied to the cage 7b from becoming large and the cage 7b from being elastically deformed into a non-cylindrical shape. Furthermore, since the skew can be suppressed as described above and the stress concentration can be relaxed by securing a large contact area, it is possible to effectively prevent the cage 7b from being damaged.

更に、本例の保持器7bは、前記各係合片14c、14d、15c、15d及び前記両リム部8c、8dの形状を含め、1対の割型を軸方向に抜ける、即ち、射出成形後の保持器7bを傷める事なく、これら1対の割型同士を離隔させられる形状に規制されている。この為、所謂アキシャルドロー形成により造る事ができて、製造コストを低く抑えられる。   Further, the retainer 7b of this example includes a shape of each of the engagement pieces 14c, 14d, 15c, 15d and the rim portions 8c, 8d, and passes through a pair of split molds in the axial direction, that is, injection molding. The pair of split molds are regulated so as to be separated from each other without damaging the subsequent cage 7b. For this reason, it can be manufactured by so-called axial draw formation, and the manufacturing cost can be kept low.

[実施の形態の第2例]
図3〜4は、総ての請求項に対応する、本発明の実施の形態の第2例を示している。本例の保持器7cの場合には、両端部12e、12f同士を軸方向及び径方向に関する相対変位を不能に係合させる為の係合部13bの軸方向両端部を、リム部8e、8fの軸方向側面(外側面)よりも軸方向中央側にそれぞれオフセットさせている(偏らせている)。言い換えれば、前記係合部13bを、前記保持器7cの軸方向両端部を除いた、軸方向中間部にのみ設けている。この為に、本例の場合には、前記係合部13bを構成する各係合片14e、14f、15e、15fを、前記各端部12e、12fの軸方向端部には形成せず、軸方向中央側にオフセットさせた状態で形成している。別な言い方をすれば、前述した実施の形態の第1例の構造に関して、係合片14c、14d、15c、15dの軸方向端部を切除した如き形状としている。この様な構成により、本例の場合には、前記係合部13bの軸方向両側部分に、径方向両側部分及び軸方向に関してこの係合部13bとは反対側部分が開口した、挿入空間18a、18bをそれぞれ形成している。
[Second Example of Embodiment]
3-4 show a second example of an embodiment of the invention corresponding to all claims. In the case of the retainer 7c of this example, both end portions 12e, 12f are engaged with the rim portions 8e, 8f at both ends in the axial direction of the engaging portion 13b for making the relative displacement in the axial direction and the radial direction impossible. These are offset (biased) from the axial side surface (outer surface) to the axial center side. In other words, the engaging portion 13b is provided only in the middle portion in the axial direction excluding both end portions in the axial direction of the cage 7c. For this reason, in the case of this example, the engagement pieces 14e, 14f, 15e, 15f constituting the engagement portion 13b are not formed at the end portions in the axial direction of the end portions 12e, 12f. It is formed in a state offset to the axial center side. In other words, with respect to the structure of the first example of the above-described embodiment, the shape is such that the axial ends of the engagement pieces 14c, 14d, 15c, 15d are cut away. With such a configuration, in the case of this example, the insertion space 18a in which both sides in the axial direction of the engaging portion 13b and the portions on the opposite side to the engaging portion 13b with respect to the axial direction are opened. , 18b, respectively.

この様な本例の場合にも、1対の外径側係合片14e、14f同士の軸方向寸法、及び、1対の内径側係合片15e、15f同士の軸方向寸法を、前記第1例の場合と同様に、それぞれ互いに異ならせている。本例の場合には、前記1対の外径側係合片14e、14fのうち、他方の端部12fに設けられた外径側係合片14fの軸方向寸法を、一方の端部12eに設けられた外径側係合片14eの軸方向寸法よりも大きくしている。これに対し、前記1対の内径側係合片15e、15fのうち、一方の端部12eに設けられた内径側係合片15eの軸方向寸法を、他方の端部12fに設けられた内径側係合片15fの軸方向寸法よりも大きくしている。本例の場合、前記1対の外径側係合片14e、14fの軸方向寸法の和と、前記1対の内径側係合片15e、15fの軸方向寸法の和とは互いに等しく、これら各和は、前記各端部12e、12fの軸方向寸法から、前記各挿入空間18a、18bの軸方向寸法の和を引いた値と等しい。尚、本例では、前記外径側係合片14fと前記外径側係合片14eとの軸方向寸法比、及び、前記内径側係合片15eと前記内径側係合片15fとの軸方向寸法比を、それぞれ2:1程度としている。   Also in the case of this example, the axial dimension of the pair of outer diameter side engaging pieces 14e, 14f and the axial dimension of the pair of inner diameter side engaging pieces 15e, 15f are the same as the above. As in the case of one example, they are different from each other. In the case of this example, of the pair of outer diameter side engaging pieces 14e, 14f, the axial dimension of the outer diameter side engaging piece 14f provided at the other end 12f is set to the one end 12e. It is made larger than the axial direction dimension of the outer diameter side engaging piece 14e provided in this. On the other hand, of the pair of inner diameter side engaging pieces 15e and 15f, the axial dimension of the inner diameter side engaging piece 15e provided at one end 12e is set to the inner diameter provided at the other end 12f. It is larger than the axial dimension of the side engagement piece 15f. In the case of this example, the sum of the axial dimensions of the pair of outer diameter side engaging pieces 14e, 14f and the sum of the axial dimensions of the pair of inner diameter side engaging pieces 15e, 15f are equal to each other. Each sum is equal to a value obtained by subtracting the sum of the axial dimensions of the insertion spaces 18a and 18b from the axial dimension of the ends 12e and 12f. In this example, the axial dimensional ratio between the outer diameter side engaging piece 14f and the outer diameter side engaging piece 14e and the shaft between the inner diameter side engaging piece 15e and the inner diameter side engaging piece 15f are shown. The directional ratio is about 2: 1.

そして、本例の場合にも、前記1対の外径側係合片14e、14fのうちで、軸方向寸法が大きい外径側係合片14fの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間α2の大きさを、同じく軸方向寸法が小さい外径側係合片14eの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間β2の大きさよりも小さくしている(α2<β2)。加えて、前記1対の内径側係合片15e、15fのうちで、軸方向寸法が大きい内径側係合片15eの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間γ2の大きさを、同じく軸方向寸法が小さい内径側係合片15fの円周方向端面と、この端面に円周方向に対向する相手面との間の隙間δ2の大きさよりも小さくしている(γ2<δ2)。尚、図示の例では、前記隙間α2を前記隙間β2の0.7倍程度としており、前記隙間γ2を前記隙間δ2の0.7倍程度としている。   Also in the case of this example, of the pair of outer diameter side engagement pieces 14e and 14f, the circumferential end face of the outer diameter side engagement piece 14f having a large axial dimension, and the end face is circumferential. The size of the gap α2 between the opposing surface facing in the direction is set between the circumferential end surface of the outer diameter side engaging piece 14e having a small axial dimension and the opposing surface facing the end surface in the circumferential direction. The gap β2 is smaller than the gap β2 (α2 <β2). In addition, of the pair of inner diameter side engagement pieces 15e and 15f, a circumferential end surface of the inner diameter side engagement piece 15e having a large axial dimension and a counter surface facing the end surface in the circumferential direction. The size of the gap γ2 is smaller than the size of the gap δ2 between the circumferential end face of the inner diameter side engagement piece 15f having a small axial dimension and the opposite face facing the end face in the circumferential direction. (Γ2 <δ2). In the illustrated example, the gap α2 is about 0.7 times the gap β2, and the gap γ2 is about 0.7 times the gap δ2.

更に、本例の場合にも、軸方向寸法が大きい外径側係合片14fの円周方向端面と相手面との間の隙間α2の大きさを、軸方向寸法が大きい内径側係合片15eの円周方向端面と相手面との間の隙間γ2の大きさとを同じ(実質的に同じを含む)としている(α2=γ2)。加えて、軸方向寸法が小さい外径側係合片14eの円周方向端面と相手面との間の隙間β2の大きさを、軸方向寸法が小さい内径側係合片15fの円周方向端面と相手面との間の隙間δ2の大きさとを同じ(実質的に同じを含む)としている(β2=δ2)。   Furthermore, also in the case of this example, the size of the clearance α2 between the circumferential end surface of the outer diameter side engagement piece 14f having a large axial dimension and the counterpart surface is set to the inner diameter side engagement piece having a large axial dimension. The size of the gap γ2 between the circumferential end surface of 15e and the mating surface is the same (including substantially the same) (α2 = γ2). In addition, the size of the gap β2 between the circumferential end face of the outer diameter side engagement piece 14e having a small axial dimension and the mating face is set to the circumferential end face of the inner diameter side engagement piece 15f having a small axial dimension. The size of the gap δ2 between the contact surface and the mating surface is the same (including substantially the same) (β2 = δ2).

前述した様な挿入空間18a、18bが設けられた本例の保持器7cの場合には、ラジアルころ軸受の自動組立(ポケット10、10内へのころ挿入作業)を行う際に、前記各挿入空間18a、18b内に、それぞれ図示しない位置決めピンを挿入できる。この為、この位置決めピンの円周方向位置を正確に規制する事で、前記各ポケット10、10の円周方向位置を、前記各ころ6の挿入位置に正確に一致させる事ができる。従って、ラジアルころ軸受の組立作業の効率の向上を図れる。更に、前記各挿入空間18a、18bを形成した分だけ、前記保持器7cの軽量化を図れると共に、射出成形時のひけ防止の面からも有利になる。尚、前記1対の外径側係合片14e、14fのうちで、軸方向寸法が大きい外径側係合片14fの径方向外側面を、前記保持器7c(ポケット10、10)の円周方向位置を規制する際に利用するマーキングを付す為のスペースとして利用する事も可能である。
その他の構成及び作用効果に就いては、上述した実施の形態の第1例の場合とほぼ同様である。
In the case of the retainer 7c of the present example provided with the insertion spaces 18a and 18b as described above, each of the insertions is performed when performing automatic assembly of the radial roller bearing (roller insertion work into the pockets 10 and 10). Positioning pins (not shown) can be inserted into the spaces 18a and 18b, respectively. Therefore, by accurately regulating the circumferential position of the positioning pin, the circumferential positions of the pockets 10 and 10 can be made to exactly match the insertion positions of the rollers 6. Therefore, the efficiency of the assembly work of the radial roller bearing can be improved. Further, the cage 7c can be reduced in weight by the amount of the insertion spaces 18a and 18b formed, and it is advantageous from the standpoint of preventing sink marks during injection molding. Of the pair of outer diameter side engagement pieces 14e, 14f, the outer radial side surface of the outer diameter side engagement piece 14f having a large axial dimension is a circle of the cage 7c (pockets 10, 10). It can also be used as a space for marking that is used when regulating the circumferential position.
About another structure and an effect, it is substantially the same as the case of the 1st example of embodiment mentioned above.

1対の外径側係合片同士の係合位置と1対の内径側係合片同士の係合位置とは、前述した実施の形態の各例の様に、保持器の軸方向中央位置から軸方向に関して反対方向にオフセットさせても良いが、両端部同士の体積を均等にする面からは、同じ方向に且つ同じ量だけオフセットさせる事が好ましい。又、本発明を実施する場合に、各ポケットからのころの抜け止めを防止すべく、各柱部に抜け止め部を形成しても良い事は勿論である。又、位置決めピンを挿入する為の挿入空間は、係合部の軸方向両側に形成する場合に限定されず、片側にのみ形成する事もできる。   The engagement position between the pair of outer diameter side engagement pieces and the engagement position between the pair of inner diameter side engagement pieces are the center positions in the axial direction of the cage, as in each example of the embodiment described above. Although it may be offset in the opposite direction with respect to the axial direction, it is preferable to offset in the same direction and by the same amount from the aspect of equalizing the volumes of both ends. Moreover, when carrying out the present invention, it is needless to say that a retaining portion may be formed on each column portion in order to prevent the rollers from being detached from each pocket. Further, the insertion space for inserting the positioning pin is not limited to the case where it is formed on both sides in the axial direction of the engaging portion, and can be formed only on one side.

1 ラジアルころ軸受
2 外径側部材
3 外輪軌道
4 軸
5 内輪軌道
6 ころ
7、7a〜7c 保持器
8、8a〜8f リム部
9 柱部
10 ポケット
11、11a 不連続部
12a〜12f 端部
13、13a、13b 係合部
14a〜14f 外径側係合片
15a〜15f 内径側係合片
16a〜16d 凹部
17a〜17d 端面
18a、18b 挿入空間
DESCRIPTION OF SYMBOLS 1 Radial roller bearing 2 Outer diameter side member 3 Outer ring raceway 4 Axis 5 Inner ring raceway 6 Roller 7, 7a-7c Cage 8, 8a-8f Rim part 9 Column part 10 Pocket 11, 11a Discontinuous part 12a-12f End part 13 , 13a, 13b Engaging portion 14a-14f Outer diameter side engaging piece 15a-15f Inner diameter side engaging piece 16a-16d Recessed portion 17a-17d End face 18a, 18b Insertion space

Claims (3)

1対の割型により構成される金型を使用した合成樹脂の射出成形により一体に造られ、円周方向1個所に不連続部を有するものであり、
1対のリム部と、複数本の柱部と、複数個のポケットと、係合部とを備え、
このうちの1対のリム部は、それぞれが欠円環状で、軸方向に間隔をあけて互いに同心に設けられており、これら両リム部の周面のうちで、前記各ポケットと軸方向に整合する部分には、径方向に凹んだ凹部がそれぞれ形成されており、これら各凹部の形成位置は、前記各ポケットの軸方向両側部分で径方向に関して反対であり、
前記各柱部は、円周方向に亙って間欠的に、前記両リム部同士の間に掛け渡される状態で設けられており、
前記各ポケットは、前記両リム部と円周方向に隣り合う柱部とにより四周を囲まれる部分に設けられており、
前記係合部は、前記不連続部を挟んで設けられた端部同士の軸方向及び径方向に関する相対変位を不能に係合するもので、これら両端部のうちの一方の端部の外径側部分の軸方向片側部分に円周方向に延出する状態で設けられた外径側係合片及び同じく内径側部分の軸方向他側部分に円周方向に延出する状態で設けられた内径側係合片と、他方の端部の外径側部分の軸方向他側部分に円周方向に延出する状態で設けられた外径側係合片及び同じく内径側部分の軸方向片側部分に円周方向に延出する状態で設けられた内径側係合片とを備え、前記係合部の外径側部分と内径側部分とで、1対の外径側係合片同士及び1対の内径側係合片同士をそれぞれ軸方向に係合させると共に、同じく軸方向片側部分と軸方向他側部分とで、前記各外径側係合片と前記各内径側係合片とをそれぞれ径方向に係合させて成るものである、
ラジアルころ軸受用保持器に於いて、
前記1対の外径側係合片同士及び前記1対の内径側係合片同士の間で軸方向寸法がそれぞれ互いに異なっており、且つ、前記係合部の外径側部分と内径側部分との両部分で、軸方向寸法が大きい係合片の円周方向端面とこの端面に円周方向に対向する相手面との間の隙間が、軸方向寸法が小さい係合片の円周方向端面とこの端面に円周方向に対向する相手面との間の隙間よりもそれぞれ小さい事を特徴とするラジアルころ軸受用保持器。
It is made integrally by injection molding of synthetic resin using a mold composed of a pair of split molds, and has a discontinuous portion at one place in the circumferential direction.
A pair of rim portions, a plurality of pillar portions, a plurality of pockets, and an engaging portion;
Each of the pair of rim portions is an annular shape, and is provided concentrically with a gap in the axial direction. Of the peripheral surfaces of both rim portions, the pockets and the pockets are arranged in the axial direction. The matching portions are each formed with a concave portion that is recessed in the radial direction, and the positions where these concave portions are formed are opposite in the radial direction at both axial portions of the pockets,
Each of the column portions is provided in a state of being spanned between the rim portions intermittently over the circumferential direction,
Each of the pockets is provided in a portion surrounded by the four rims by the two rim portions and a column portion adjacent in the circumferential direction.
The engaging portion engages the relative displacement in the axial direction and the radial direction between the end portions provided across the discontinuous portion, and the outer diameter of one end portion of these both end portions. An outer diameter side engagement piece provided in a state extending in the circumferential direction on the one side portion in the axial direction of the side portion and a state extending in the circumferential direction on the other side portion in the axial direction of the inner diameter side portion. An inner diameter side engaging piece, an outer diameter side engaging piece provided in a circumferentially extending state on the other axial side portion of the outer diameter side portion of the other end portion, and an axially one side of the inner diameter side portion. An inner diameter side engaging piece provided in a state extending in a circumferential direction at the portion, and a pair of outer diameter side engaging pieces between the outer diameter side portion and the inner diameter side portion of the engaging portion, and A pair of inner diameter side engaging pieces are engaged with each other in the axial direction, and each outer diameter side engagement is similarly performed between the one axial side portion and the other axial side portion. Those formed by respectively engaged in the radial direction and each of the inner diameter side engagement piece and,
In radial roller bearing cages,
The pair of outer diameter side engagement pieces and the pair of inner diameter side engagement pieces have different axial dimensions, and the outer diameter side portion and the inner diameter side portion of the engagement portion. The gap between the circumferential end surface of the engagement piece having a large axial dimension and the opposing surface facing the end surface in the circumferential direction is the circumferential direction of the engagement piece having a small axial dimension. A radial roller bearing retainer, characterized in that it is smaller than the gap between the end face and the opposite face facing the end face in the circumferential direction.
1対の外径側係合片のうちで軸方向寸法が大きい外径側係合片の円周方向端面とこの端面に円周方向に対向する相手面との間の隙間と、1対の内径側係合片のうちで軸方向寸法が大きい内径側係合片の円周方向端面とこの端面に円周方向に対向する相手面との間の隙間とが同じ大きさである、請求項1に記載したラジアルころ軸受用保持器。   Of the pair of outer diameter side engagement pieces, a gap between the circumferential end surface of the outer diameter side engagement piece having a large axial dimension and the opposing surface facing the end surface in the circumferential direction, and a pair of The clearance between the circumferential end surface of the inner diameter side engagement piece having a large axial dimension among the inner diameter side engagement pieces and the opposing surface facing the end surface in the circumferential direction is the same size. The radial roller bearing retainer described in 1. 係合部の軸方向端部を、リム部の軸方向側面よりも軸方向中央側にオフセットさせる事で、当該部分に挿入空間が形成されている、請求項1〜2のうちの何れか1項に記載したラジアルころ軸受用保持器。   The insertion space is formed in the said part by offsetting the axial direction edge part of an engaging part to the axial direction center side rather than the axial direction side surface of a rim | limb part. The radial roller bearing retainer described in the section.
JP2011228035A 2011-10-17 2011-10-17 Radial roller bearing cage Active JP5831120B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011228035A JP5831120B2 (en) 2011-10-17 2011-10-17 Radial roller bearing cage
PCT/JP2012/076736 WO2013058246A1 (en) 2011-10-17 2012-10-16 Radial roller bearing retainer
KR1020137034426A KR101521378B1 (en) 2011-10-17 2012-10-16 Radial roller bearing retainer
US13/824,797 US8944696B2 (en) 2011-10-17 2012-10-16 Cage for radial roller bearing
CN201280036045.3A CN103688070B (en) 2011-10-17 2012-10-16 Radial roller bearing retainer
EP12842246.6A EP2770221B1 (en) 2011-10-17 2012-10-16 Radial roller bearing retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228035A JP5831120B2 (en) 2011-10-17 2011-10-17 Radial roller bearing cage

Publications (2)

Publication Number Publication Date
JP2013087844A true JP2013087844A (en) 2013-05-13
JP5831120B2 JP5831120B2 (en) 2015-12-09

Family

ID=48531961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228035A Active JP5831120B2 (en) 2011-10-17 2011-10-17 Radial roller bearing cage

Country Status (1)

Country Link
JP (1) JP5831120B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102137A (en) * 2013-11-22 2015-06-04 日本精工株式会社 Radial needle bearing cage
JPWO2016125299A1 (en) * 2015-02-06 2017-11-16 富士機械製造株式会社 Removable cover fixing structure and machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102137A (en) * 2013-11-22 2015-06-04 日本精工株式会社 Radial needle bearing cage
JPWO2016125299A1 (en) * 2015-02-06 2017-11-16 富士機械製造株式会社 Removable cover fixing structure and machine tool

Also Published As

Publication number Publication date
JP5831120B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2012036154A1 (en) Single-joint cage
KR101521378B1 (en) Radial roller bearing retainer
US20180010637A1 (en) Rolling bearing
KR101521379B1 (en) Cage for radial roller bearing
JP2013015200A (en) Conical roller bearing
JP5831120B2 (en) Radial roller bearing cage
JP2015017710A (en) Synthetic resin retainer and ball bearing
JP5805184B2 (en) Roller bearing cage and needle roller bearing
US9382946B2 (en) Split cage and roller bearing
JP4454336B2 (en) Linear motion bearing mechanism
JP2017116008A (en) Rolling bearing
JP2013245762A (en) Synthetic resin cage and ball bearing
WO2014010311A1 (en) Retainer for radial roller bearing
JP2010156439A (en) Snap cage and ball bearing
JP6197605B2 (en) Cage for radial needle bearing
JP2004068861A (en) Rolling bearing manufacturing method and rolling bearing
JP2015075190A (en) Split retainer for rolling bearing
WO2024014076A1 (en) Rolling bearing
JP5998694B2 (en) Radial roller bearing cage
JP2006144815A (en) Roller bearing
JP5831121B2 (en) Radial roller bearing cage
JP5974697B2 (en) Radial roller bearing cage
JP5834644B2 (en) One cage
JP2014231899A (en) Tapered roller bearing
JP2014047798A (en) Turning gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150