JP2013087027A - Tin-doped indium oxide particle - Google Patents

Tin-doped indium oxide particle Download PDF

Info

Publication number
JP2013087027A
JP2013087027A JP2011230582A JP2011230582A JP2013087027A JP 2013087027 A JP2013087027 A JP 2013087027A JP 2011230582 A JP2011230582 A JP 2011230582A JP 2011230582 A JP2011230582 A JP 2011230582A JP 2013087027 A JP2013087027 A JP 2013087027A
Authority
JP
Japan
Prior art keywords
tin
particles
solution
indium oxide
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011230582A
Other languages
Japanese (ja)
Other versions
JP5706797B2 (en
Inventor
Junji Muramatsu
淳司 村松
Kiyoshi Kanie
澄志 蟹江
Takahiko Sakagami
貴彦 坂上
Takashi Sasaki
隆史 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Mitsui Mining and Smelting Co Ltd
Original Assignee
Tohoku University NUC
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Mitsui Mining and Smelting Co Ltd filed Critical Tohoku University NUC
Priority to JP2011230582A priority Critical patent/JP5706797B2/en
Publication of JP2013087027A publication Critical patent/JP2013087027A/en
Application granted granted Critical
Publication of JP5706797B2 publication Critical patent/JP5706797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine-grain tin-doped indium oxide particle having high dispersibility.SOLUTION: The tin-doped indium oxide particle is obtained by adding an indium source and a tin source into a solution, wherein hydroxide of a quaternary ammonium ion is dissolved in a reducing organic solvent, to react them, and then, heating the reaction resultant solution inside an autoclave to mature it under an autogenous pressure. A favorable tin-doped indium oxide particle is obtained using tetramethylammonium hydroxide as the hydroxide of the quaternary ammonium ion.

Description

本発明は、錫ドープ酸化インジウム粒子に関する。   The present invention relates to tin-doped indium oxide particles.

錫ドープ酸化インジウム(以下「ITO」ともいう。)微粒子の製造方法に関する従来の技術としては、例えば特許文献1に記載の技術が知られている。同文献においては、塩化インジウム及び塩化錫の混合水溶液を、アンモニウム炭酸塩中に滴下し、温度5℃〜95℃、最終pH2〜8の条件下でインジウムと錫の水酸化物を共沈させ、該沈殿を加熱分解する方法が提案されている。   As a conventional technique related to a method for producing tin-doped indium oxide (hereinafter also referred to as “ITO”) fine particles, for example, a technique described in Patent Document 1 is known. In this document, a mixed aqueous solution of indium chloride and tin chloride is dropped into ammonium carbonate to coprecipitate indium and tin hydroxides under conditions of a temperature of 5 ° C to 95 ° C and a final pH of 2 to 8, A method for thermally decomposing the precipitate has been proposed.

ITO微粒子の製造方法の別法として、特許文献2に記載の方法も知られている。同文献に記載の方法では、重炭酸アンモニウム水溶液等の塩基性水溶液を激しく攪拌しながら、そこにインジウム化合物と錫化合物との混合水溶液を滴下してゲルを生成させている。次いで生成したゲルを溶媒置換して有機溶媒中に分散させ、この有機分散液を加熱処理してITO分散液を得ている。   As another method for producing ITO fine particles, a method described in Patent Document 2 is also known. In the method described in this document, a basic aqueous solution such as an aqueous ammonium bicarbonate solution is vigorously stirred, and a mixed aqueous solution of an indium compound and a tin compound is dropped therein to form a gel. Next, the produced gel is solvent-substituted and dispersed in an organic solvent, and this organic dispersion is heat-treated to obtain an ITO dispersion.

特開1993−201731号公報Japanese Patent Laid-Open No. 1993-201731 特開2004−123403号公報JP 2004-123403 A

特許文献1の記載によれば、前記の製造方法を採用することで、超微粒でかつ低抵抗のITOが得られるとされている。しかし前記の製造方法においては、インジウム及び錫の加水分解によって生成した水酸化物が凝集しやすい傾向にある。それに起因して、分散性の高いITO微粒を得ることが容易でない場合がある。また、特許文献2に記載の方法によれば、液中に錫含有のオキシ水酸化インジウムを含む水酸化インジウムの粒子が生成するが、オキシ水酸化インジウムのみの微粒子とはならない。更には、いずれの方法も、均一なITO粒子のサイズを、数nmから数十nm程度まで自由に制御することができない。   According to the description of Patent Document 1, it is said that ITO having ultrafine particles and low resistance can be obtained by adopting the above manufacturing method. However, in the production method described above, the hydroxide produced by hydrolysis of indium and tin tends to aggregate. As a result, it may not be easy to obtain highly dispersible ITO fine particles. Further, according to the method described in Patent Document 2, indium hydroxide particles containing tin-containing indium oxyhydroxide are generated in the liquid, but the particles are not only indium oxyhydroxide. Furthermore, none of the methods can freely control the uniform ITO particle size from several nanometers to several tens of nanometers.

したがって本発明の課題は、前述した従来技術が有する欠点を解消し得るITO粒子を提供することにある。   Therefore, the subject of this invention is providing the ITO particle which can eliminate the fault which the prior art mentioned above has.

本発明は、第四級アンモニウムイオンの水酸化物が還元性有機溶媒に溶解してなる溶液に、インジウム源及び錫源を添加し反応を行い、次いでオートクレーブ内において加熱して自生圧力下に熟成を行うことで得られた錫ドープ酸化インジウム粒子を提供するものである。   The present invention performs a reaction by adding an indium source and a tin source to a solution in which a hydroxide of a quaternary ammonium ion is dissolved in a reducing organic solvent, and then aging under an autogenous pressure by heating in an autoclave. The present invention provides tin-doped indium oxide particles obtained by performing the above.

本発明の錫ドープ酸化インジウム粒子は、微粒で分散性が高く、かつサイズ制御されているものである。   The tin-doped indium oxide particles of the present invention are fine, highly dispersible, and size-controlled.

図1は、実施例1で得られたITO粒子のXRD回折図である。1 is an XRD diffractogram of the ITO particles obtained in Example 1. FIG. 図2は、実施例1で得られたITO粒子の透過型電子顕微鏡像である。FIG. 2 is a transmission electron microscope image of the ITO particles obtained in Example 1. 図3は、実施例5で得られたITO粒子の透過型電子顕微鏡像である。FIG. 3 is a transmission electron microscope image of the ITO particles obtained in Example 5. 図4は、比較例1で得られた粒子の透過型電子顕微鏡像である。FIG. 4 is a transmission electron microscope image of the particles obtained in Comparative Example 1. 図5は、比較例2で得られた粒子の透過型電子顕微鏡像である。FIG. 5 is a transmission electron microscope image of the particles obtained in Comparative Example 2.

以下本発明を、その好ましい実施形態に基づき説明する。本発明のITO粒子は、微粒でかつ分散性が高いという二律背反の要求を同時に満たすことによって特徴付けられる。また本発明のITO粒子は、数nmから100nmまで粒径が制御されていることによっても特徴付けられる。詳細には、本発明のITO粒子は、その一次粒子の平均粒径が2.0〜10.0nm、特に3.0〜8.0nmという極めて微粒のものから、10.0〜50.0nmまでのものである。一次粒子の平均粒径は、本発明のITO粒子の透過型電子顕微鏡(TEM)像に基づき、粒子を横切る最大長さを測定し、測定値を平均したものである。測定数はN=50とする。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The ITO particles of the present invention are characterized by simultaneously satisfying the trade-off requirement of being fine and highly dispersible. The ITO particles of the present invention are also characterized by the fact that the particle size is controlled from several nm to 100 nm. Specifically, the ITO particles of the present invention have an average primary particle size of 2.0 to 10.0 nm, particularly 3.0 to 8.0 nm, and extremely fine particles of 10.0 to 50.0 nm. belongs to. The average particle size of the primary particles is obtained by measuring the maximum length across the particles based on the transmission electron microscope (TEM) image of the ITO particles of the present invention and averaging the measured values. The number of measurements is N = 50.

本発明のITO粒子は、上述のとおり微粒なものであることに加えて粒径が均一なものである。粒径の均一性に関しては、変動係数を尺度として表すことができる。本発明のITO粒子は、その変動係数が好ましくは10〜30%、更に好ましくは10〜20%である。変動係数は、(粒径の標準偏差/平均粒径)×100で算出される。標準偏差及び平均粒径は、50個以上のITO粒子の透過型電子顕微鏡(TEM)像に基づいて測定された粒子の粒径に基づき算出することができる。   In addition to being fine as described above, the ITO particles of the present invention have a uniform particle size. Regarding the uniformity of the particle diameter, the coefficient of variation can be expressed as a scale. The variation coefficient of the ITO particles of the present invention is preferably 10 to 30%, more preferably 10 to 20%. The coefficient of variation is calculated by (standard deviation of particle diameter / average particle diameter) × 100. The standard deviation and the average particle size can be calculated based on the particle size of particles measured based on a transmission electron microscope (TEM) image of 50 or more ITO particles.

本発明のITO粒子の形状に特に制限はないが、後述する製造方法に従い得られるITO粒子の場合には、形状は一般に立方体状、球状又はそれらの混合物である。しかし、ITOの生成条件や熟成の条件によっては他の形状となることもある。   Although there is no restriction | limiting in particular in the shape of the ITO particle | grains of this invention, In the case of the ITO particle | grains obtained according to the manufacturing method mentioned later, a shape is generally a cube shape, spherical shape, or those mixtures. However, other shapes may be formed depending on the ITO generation conditions and the aging conditions.

本発明のITO粒子が、上述のとおりの粒径や形状を有する場合、その比表面積は30〜80m2/g、特に40〜70m2/gとなることが好ましい。 When the ITO particles of the present invention have the particle size and shape as described above, the specific surface area is preferably 30 to 80 m 2 / g, particularly 40 to 70 m 2 / g.

本発明のITO粒子における錫のドープ量は、Sn/Inのモル比で表して0.03〜0.15、特に0.04〜0.10であることが、導電性や透明性等のITOに要求される種々の特性が高くなる点から好ましい。Sn/Inのモル比は、例えばITO粒子を鉱酸に溶解し、その溶液を対象としてICP発光分析装置を用いて測定することができる。   The amount of tin doped in the ITO particles of the present invention is 0.03 to 0.15, particularly 0.04 to 0.10, expressed in terms of a Sn / In molar ratio. It is preferable from the viewpoint that various characteristics required for the above are increased. The molar ratio of Sn / In can be measured, for example, by dissolving ITO particles in mineral acid and using the ICP emission analyzer for the solution.

本発明のITO粒子は、これを公知の溶媒及びバインダ等と混合することで、導電性インクとなる。この導電性インクを基材に塗布し塗膜を形成し、該塗膜を所定温度で焼成することで、透明性及び導電性が高い薄膜電極や電磁波シールドを得ることができる。上述したとおり、本発明のITO粒子は微粒でかつ分散性の高いものなので、これを用いて得られた薄膜電極や電磁波シールドは、全光線透過率が高く、かつ導電性の高いものとなる。   The ITO particles of the present invention are mixed with a known solvent, binder, and the like to form a conductive ink. By applying this conductive ink to a substrate to form a coating film and firing the coating film at a predetermined temperature, it is possible to obtain a thin film electrode and an electromagnetic wave shield with high transparency and conductivity. As described above, since the ITO particles of the present invention are fine and highly dispersible, the thin film electrode and electromagnetic wave shield obtained using the ITO particles have high total light transmittance and high conductivity.

上述の物性を有する本発明のITO粒子は、好適には以下に説明する還元性有機溶媒を用いた方法で得ることができる。詳細には、反応の出発物質として、還元性有機溶媒に溶解した第四級アンモニウムイオンの水酸化物の溶液(以下、この溶液を「塩基性有機溶液」ともいう。)並びにインジウム源及び錫源を用いる。そして、この塩基性有機溶液中にインジウム源及び錫源を添加する。つまり、塩基性有機溶液中に、反応の出発物質を添加して反応を起こさせる。このような添加の方法を採用し、かつ後述する特定条件下での熟成工程を行うことで、意外にも、微粒でかつ分散性の高いITO粒子が生成することが判明した。また、数nmから100nmまでの範囲で均一な粒径を制御できることが判明した。この製造方法に対し、塩基性有機溶液に代えて塩基性水溶液を用いた場合には、ITOではなく、錫ドープ水酸化インジウムが主生成物となってしまう(後述する比較例2参照)。   The ITO particles of the present invention having the above-mentioned physical properties can be preferably obtained by a method using a reducing organic solvent described below. Specifically, as a starting material for the reaction, a quaternary ammonium ion hydroxide solution dissolved in a reducing organic solvent (hereinafter, this solution is also referred to as “basic organic solution”), an indium source and a tin source. Is used. Then, an indium source and a tin source are added to the basic organic solution. That is, the reaction starting material is added to the basic organic solution to cause the reaction. Surprisingly, it was found that fine and highly dispersible ITO particles are produced by adopting such an addition method and performing an aging step under specific conditions described later. It was also found that a uniform particle size can be controlled in the range from several nm to 100 nm. When a basic aqueous solution is used instead of the basic organic solution for this production method, tin-doped indium hydroxide becomes the main product instead of ITO (see Comparative Example 2 described later).

本発明のITO粒子を製造するために用いる塩基性有機溶液に含まれる第四級アンモニウムイオンの水酸化物としては、テトラアルキルアンモニウムイオンの水酸化物を用いることが好ましく、その具体例としては、テトラメチルアンモニウムヒドロキシド(TMAOH)、テトラエチルアンモニウムヒドロキシド(TEAOH)、テトラブチルアンモニウムヒドロキシド(TBAOH)、テトラヘキシルアンモニウムヒドロキシド(THAOH)などが挙げられる。これらの化合物は1種又は2種以上を組み合わせて用いることができる。特に、テトラアルキルアンモニウムイオンの水酸化物としてTMAOHを用いることが、微粒で、かつ分散性の高いITO粒子を容易に得ることができる点から好ましい。第四級アンモニウムイオンの水酸化物に代えて、他の塩基性化合物、例えば水酸化ナトリウムを用いても、微粒でかつ分散性の高いITO粒子を得ることはできない(後述する比較例1参照)。   As the quaternary ammonium ion hydroxide contained in the basic organic solution used for producing the ITO particles of the present invention, it is preferable to use a tetraalkylammonium ion hydroxide. Examples include tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), and tetrahexylammonium hydroxide (THAOH). These compounds can be used alone or in combination of two or more. In particular, it is preferable to use TMAOH as a hydroxide of tetraalkylammonium ions from the viewpoint of easily obtaining fine ITO particles having high dispersibility. Even if another basic compound such as sodium hydroxide is used in place of the hydroxide of quaternary ammonium ions, it is not possible to obtain fine and highly dispersible ITO particles (see Comparative Example 1 described later). .

塩基性有機溶液中における第四級アンモニウムイオンの水酸化物の濃度は、該塩基性有機溶液に添加されるインジウム源及び錫源の加水分解が生じ、目的とするITOが首尾良く生成する範囲であれば特に制限はない。具体的には、第四級アンモニウムイオンの水酸化物の濃度は0.4〜2.0mol/L、特に0.8〜1.2mol/Lとすることが好ましい。   The concentration of the quaternary ammonium ion hydroxide in the basic organic solution is within a range where hydrolysis of the indium source and tin source added to the basic organic solution occurs and the target ITO is successfully formed. If there is no particular limitation. Specifically, the concentration of the quaternary ammonium ion hydroxide is preferably 0.4 to 2.0 mol / L, particularly 0.8 to 1.2 mol / L.

還元性有機溶媒は、インジウム源及び錫源を容易に溶解させる観点から、水に可溶であることが好ましい。また、還元性有機溶媒は、インジウム源及び錫源に対して還元作用を有するものである。該有機溶媒が還元作用を有することで、反応によって生成するITO中に酸素欠損を生じさせることができる。この観点から、還元性有機溶媒は還元性の水酸基を有していることが好ましい。   The reducing organic solvent is preferably soluble in water from the viewpoint of easily dissolving the indium source and the tin source. The reducing organic solvent has a reducing action on the indium source and the tin source. When the organic solvent has a reducing action, oxygen deficiency can be generated in the ITO produced by the reaction. From this viewpoint, the reducing organic solvent preferably has a reducing hydroxyl group.

上述の各観点から、還元性有機溶媒としては、ポリオール系化合物又はモノアルコール系化合物からなる有機溶媒を用いることが好ましい。ポリオール系の有機溶媒を用いると、一次粒子の平均粒径が2.0〜10.0nm、特に3.0〜8.0nmという極めて微粒のITO粒子が得られやすい。一方、モノアルコール系の有機溶媒を用いると、10.0〜50.0nm程度のITO粒子が得られやすい。ポリオール系の有機溶媒としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコールなどが挙げられる。特にエチレングリコールを用いることが、微粒でかつ分散性の高いITO粒子を容易に得ることができる点から好ましい。また、モノアルコール系の有機溶媒としては、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、ブタノールなどが挙げられる。特にメタノールを用いることが、粒子径制御の観点から好ましい。   From the above viewpoints, it is preferable to use an organic solvent composed of a polyol compound or a monoalcohol compound as the reducing organic solvent. When a polyol-based organic solvent is used, very fine ITO particles having an average primary particle diameter of 2.0 to 10.0 nm, particularly 3.0 to 8.0 nm, can be easily obtained. On the other hand, when a monoalcohol-based organic solvent is used, ITO particles of about 10.0 to 50.0 nm are easily obtained. Examples of the polyol organic solvent include ethylene glycol, diethylene glycol, triethylene glycol and the like. In particular, it is preferable to use ethylene glycol from the standpoint that ITO particles having fine particles and high dispersibility can be easily obtained. Examples of the monoalcohol-based organic solvent include methanol, ethanol, 1-propanol, 2-propanol, and butanol. It is particularly preferable to use methanol from the viewpoint of particle size control.

このようにして調製された塩基性有機溶液中に、インジウム源及び錫源を添加する。インジウム源及び錫源は、これらを有機溶媒に溶解してなる溶液の状態で用いることが好ましい。この有機溶媒としては、塩基性有機溶液に含まれている有機溶媒と同様に、ポリオール系あるいはアルコール系有機溶媒等の還元性有機溶媒を用いることが好ましい。この場合、塩基性有機溶液に含まれている還元性有機溶媒と、インジウム源及び錫源を溶解するために用いられる還元性有機溶媒とは同種のものであってもよく、あるいは異種のものであってもよい。好ましくは同種のものを用いる。   An indium source and a tin source are added to the basic organic solution thus prepared. The indium source and tin source are preferably used in the form of a solution obtained by dissolving them in an organic solvent. As this organic solvent, it is preferable to use a reducing organic solvent such as a polyol-based or alcohol-based organic solvent, similarly to the organic solvent contained in the basic organic solution. In this case, the reducing organic solvent contained in the basic organic solution and the reducing organic solvent used for dissolving the indium source and the tin source may be the same or different. There may be. Preferably the same kind is used.

インジウム源及び錫源は、これらを有機溶媒に溶解した溶液が、同時に塩基性有機溶液中に添加されることが好ましい。同時添加を行うには、例えば(イ)インジウム源及び錫源の双方を含む有機溶液を、塩基性有機溶液中に添加する方法、及び(ロ)インジウム源を含む有機溶液と錫源を含む有機溶液を別個にかつ同時に塩基性有機溶液中に添加する方法が挙げられる。(イ)及び(ロ)のいずれの方法を採用する場合であっても、インジウム源及び錫源は、一括添加でもよく、あるいはある一定の時間にわたって添加してもよい。後者の場合には、添加の速度は一定でもよく、あるいは反応の進行に応じて添加の速度を変化させてもよい。この添加によって、液中にはITOが生成する。   The indium source and the tin source are preferably added to a basic organic solution at the same time as a solution obtained by dissolving them in an organic solvent. For simultaneous addition, for example, (b) a method of adding an organic solution containing both an indium source and a tin source into a basic organic solution, and (b) an organic solution containing an indium source and a tin source. A method of adding the solutions separately and simultaneously into the basic organic solution is mentioned. Even when any of the methods (a) and (b) is adopted, the indium source and the tin source may be added all at once or may be added over a certain period of time. In the latter case, the rate of addition may be constant or the rate of addition may be varied as the reaction proceeds. By this addition, ITO is generated in the liquid.

塩基性有機溶液中に添加されるインジウム源及び錫源の量は、インジウム源中のインジウムモル数及び錫源の中の錫のモル数の合計量に対する、塩基性有機溶液中の第四級アンモニウムイオンの水酸化物のモル数の比率が、2〜8、特に4〜8となるような量とすることが好ましい。また、インジウム源と錫源との比率は、モル比で表してSn/Inが0.03〜0.15、特に0.04〜0.10であることが好ましい。このような量のインジウム源及び錫源を添加することで、目的とするITO粒子を首尾良く生成させることができる。   The amount of indium source and tin source added to the basic organic solution is quaternary ammonium in the basic organic solution relative to the total number of indium moles in the indium source and the moles of tin in the tin source. It is preferable that the molar ratio of the ionic hydroxide is 2 to 8, particularly 4 to 8. Further, the ratio of the indium source to the tin source is expressed as a molar ratio, and Sn / In is preferably 0.03 to 0.15, particularly preferably 0.04 to 0.10. By adding such amounts of indium source and tin source, the desired ITO particles can be successfully produced.

塩基性有機溶液中にインジウム源及び錫源を添加するに際しての温度は一般に室温とすることができる。具体的には10〜50℃の温度範囲において、塩基性有機溶液中にインジウム源及び錫源を添加することが好ましい。この温度範囲を採用することで、生成したITO粒子の成長反応が過度に進行しなくなり、微粒のITO粒子を容易に得ることができる。尤も、塩基性有機溶液を加熱した状態下に、インジウム源及び錫源を添加しても差し支えない。塩基性有機溶液の加熱温度は、50〜250℃、特に100〜200℃に設定することが好ましい。塩基性有機溶液を加熱した状態下に、インジウム源及び錫源を添加する場合には、反応系の雰囲気を、アルゴンガス雰囲気等の不活性雰囲気とすることが、溶媒の分解やインジウム源及び錫源の酸化を防ぐための点から好ましい。   The temperature at which the indium source and the tin source are added to the basic organic solution can generally be room temperature. Specifically, it is preferable to add an indium source and a tin source to the basic organic solution in a temperature range of 10 to 50 ° C. By adopting this temperature range, the growth reaction of the generated ITO particles does not proceed excessively, and fine ITO particles can be easily obtained. However, an indium source and a tin source may be added while the basic organic solution is heated. The heating temperature of the basic organic solution is preferably set to 50 to 250 ° C, particularly 100 to 200 ° C. When an indium source and a tin source are added while the basic organic solution is heated, the reaction system atmosphere may be an inert atmosphere such as an argon gas atmosphere. It is preferable from the viewpoint of preventing oxidation of the source.

このようにしてITO粒子が生成したら、反応生成物の液を熟成工程に付す。熟成は、反応生成物の液をオートクレーブ内において自生圧力下に加熱することで行われる。この熟成を行うことでITO粒子の結晶性を高め、また所望の粒径に調整する。   When ITO particles are generated in this way, the reaction product liquid is subjected to an aging step. The aging is carried out by heating the reaction product liquid in an autoclave under autogenous pressure. By carrying out this aging, the crystallinity of the ITO particles is increased and adjusted to a desired particle size.

熟成工程における加熱温度は、190〜270℃、特に200〜250℃に設定することが、結晶性の高いITO粒子を容易に得ることができる観点から好ましい。熟成工程は、上述のとおりオートクレーブ内で行われるので、熟成工程における圧力は自生圧力となる。   The heating temperature in the aging step is preferably set to 190 to 270 ° C., particularly 200 to 250 ° C. from the viewpoint of easily obtaining ITO particles having high crystallinity. Since the aging step is performed in the autoclave as described above, the pressure in the aging step is an autogenous pressure.

熟成工程は、所望の粒径を有するITO粒子が得られるまで継続すればよい。例えば、例えばITO粒子が生成した反応生成物の液をオートクレーブ内に設置してから起算して3〜96時間、特に12〜24時間にわたり加熱することが好ましい。熟成は、静置状態で行ってもよく、あるいは撹拌下に行ってもよい。
となるので好ましい。
The aging step may be continued until ITO particles having a desired particle size are obtained. For example, it is preferable to heat for 3 to 96 hours, particularly 12 to 24 hours from the time when the reaction product liquid produced by ITO particles is placed in the autoclave. Aging may be carried out in a stationary state or under stirring.
Therefore, it is preferable.

このようにして熟成工程が終了したら、オートクレーブ内から反応生成物の液を取り出し、液中の沈殿物をエタノール等の有機溶媒で1回又は2回以上洗浄した後、水で1回又は2回以上洗浄する。このようにして目的とするITO粒子が得られる。   When the aging step is completed in this manner, the reaction product liquid is taken out from the autoclave, and the precipitate in the liquid is washed once or twice with an organic solvent such as ethanol, and then once or twice with water. Wash above. In this way, the desired ITO particles are obtained.

このようにして得られたITO粒子は、上述のとおり微粒かつ分散性の高いものである。このITO粒子は、インクやペーストの原料として用いることができる。これらのインクやペーストを基板等に塗布し加熱処理を行うことで、導電性及び透明性の高い透明導電膜を得ることができる。   The ITO particles thus obtained are fine and highly dispersible as described above. The ITO particles can be used as a raw material for ink and paste. A transparent conductive film having high conductivity and transparency can be obtained by applying these inks and paste to a substrate or the like and performing heat treatment.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〕
0.8mol/Lテトラメチルアンモニウムヒドロキシド(TMAOH、東京化成工業T0676、10%メタノール溶液)のエチレングリコール(EG、和光純薬工業、試薬特級)溶液200mLを、500mLの四ツ口フラスコに入れた。TMAOHは、予めエバポレータを用いてメタノールを除去して使用した。これとは別に、塩化インジウム(和光純薬工業、試薬特級)を0.09mol/L含み、かつ塩化第二スズ(和光純薬工業、試薬特級)を0.01mol/L含む混合EG溶液を調製した。このIn/Sn混合EG溶液200mLを、撹拌下にあるTMAOHのEG溶液200mL中に、40mL/minの速度で室温(25℃)下に連続添加してITOの生成を行った。添加完了後の液12mLをオートクレーブに移した。このオートクレーブを、予め250℃に加熱しておいた電気炉内に載置し、24時間静置して熟成を行った。熟成の終了後、オートクレーブから取り出した液を遠心分離機に設置して遠心分離を行い、沈殿物を分離採集した。採集した沈殿物をエタノールで分散させ、その後再び遠心分離機で固液分離した。得られた沈殿物に対して、更に水を用いた分散と固液分離を2回繰り返すことで沈殿物の洗浄を行い、実施例1に係るITO粉末を得た。
[Example 1]
200 mL of an ethylene glycol (EG, Wako Pure Chemical Industries, reagent grade) solution of 0.8 mol / L tetramethylammonium hydroxide (TMAOH, Tokyo Chemical Industry T0676, 10% methanol solution) was placed in a 500 mL four-necked flask. . TMAOH was used after removing methanol with an evaporator in advance. Separately, a mixed EG solution containing 0.09 mol / L of indium chloride (Wako Pure Chemical Industries, reagent special grade) and 0.01 mol / L of stannic chloride (Wako Pure Chemical Industries, reagent special grade) is prepared. did. This In / Sn mixed EG solution (200 mL) was continuously added to a stirred TMAOH EG solution (200 mL) at a rate of 40 mL / min at room temperature (25 ° C.) to produce ITO. After completion of the addition, 12 mL of the solution was transferred to an autoclave. This autoclave was placed in an electric furnace that had been heated to 250 ° C. in advance, and allowed to stand for 24 hours for aging. After completion of aging, the liquid taken out from the autoclave was placed in a centrifuge and centrifuged to separate and collect the precipitate. The collected precipitate was dispersed with ethanol and then solid-liquid separated again with a centrifuge. The obtained precipitate was further washed twice by repeating dispersion and solid-liquid separation using water to obtain the ITO powder according to Example 1.

実施例1に係るITO粒子のX線回折(XRD)測定結果を図1に示す。得られた回折パターンは、酸化インジウムの回折パターンと一致しており、立方晶系酸化インジウムの単一組成であることが判明した。   The X-ray diffraction (XRD) measurement results of the ITO particles according to Example 1 are shown in FIG. The obtained diffraction pattern was consistent with the diffraction pattern of indium oxide, and was found to have a single composition of cubic indium oxide.

このITO粒子をTEM観察した。得られたTEM像を図2に示す。生成したITO粒子は、立方体に近い形状の粒子であった。またTEM像から測定した一次粒子の平均粒径、標準偏差及び変動係数を、以下の表1に示す。図2に示すTEM像から明らかなように、このITO粒子は凝集の程度が低く、分散性の高いものであることが判る。   The ITO particles were observed with a TEM. The obtained TEM image is shown in FIG. The generated ITO particles were particles having a shape close to a cube. Table 1 below shows the average particle diameter, standard deviation, and coefficient of variation of the primary particles measured from the TEM image. As is clear from the TEM image shown in FIG. 2, it can be seen that the ITO particles have a low degree of aggregation and a high dispersibility.

〔実施例2〕
本実施例は、実施例1においてオートクレーブ内での熟成温度を低くした例である。具体的には、熟成時間を220℃とした。これ以外は実施例1と同様にしてITO粒子を得た。生成したITO粒子(一次粒子)は立方体に近い形状の粒子であった。更に、XRDパターンを測定したところ、酸化インジウムの単一組成であった。TEM像から測定した一次粒子の平均粒径、標準偏差及び変動係数を、以下の表1に示す。
[Example 2]
In this example, the aging temperature in the autoclave was lowered in Example 1. Specifically, the aging time was 220 ° C. Other than this, ITO particles were obtained in the same manner as in Example 1. The generated ITO particles (primary particles) were particles having a shape close to a cube. Furthermore, when the XRD pattern was measured, it was a single composition of indium oxide. The average particle diameter, standard deviation and coefficient of variation of the primary particles measured from the TEM image are shown in Table 1 below.

〔実施例3〕
本実施例は、実施例1において用いたTMAOHのEG溶液の濃度を0.4mol/Lに低くした例である。これ以外は実施例1と同様にしてITO粒子を得た。生成したITO粒子(一次粒子)のXRDパターンを測定したところ、酸化インジウムの単一組成であった。TEM像から測定した一次粒子の平均粒径、標準偏差及び変動係数を、以下の表1に示す。
Example 3
In this example, the concentration of the TMAOH EG solution used in Example 1 was lowered to 0.4 mol / L. Other than this, ITO particles were obtained in the same manner as in Example 1. When the XRD pattern of the generated ITO particles (primary particles) was measured, it was a single composition of indium oxide. The average particle diameter, standard deviation and coefficient of variation of the primary particles measured from the TEM image are shown in Table 1 below.

〔実施例4〕
本実施例では、実施例1において用いたTMAOHのEG溶液に代えて、TMAOHのジエチレングリコール(DEG)溶液を用いた。また、TMAOHのDEG溶液と、In/Sn混合DEG溶液との混合温度を100℃に高めた。詳細には、TMAOHのDEG溶液を撹拌しながら100℃まで昇温し、そこに室温(25℃)のIn/Sn混合DEG溶液を添加した。このとき、系中をアルゴンガス雰囲気に保った。これら以外は実施例1と同様にしてITO粒子を得た。生成したITO粒子(一次粒子)は立方体状であった。更に、XRDパターンを測定したところ、酸化インジウムの単一組成であった。TEM像から測定した一次粒子の平均粒径、標準偏差及び変動係数を、以下の表1に示す。
Example 4
In this example, instead of the TMAOH EG solution used in Example 1, a TMAOH diethylene glycol (DEG) solution was used. Further, the mixing temperature of the TMAOH DEG solution and the In / Sn mixed DEG solution was increased to 100 ° C. Specifically, the TMAOH DEG solution was heated to 100 ° C. with stirring, and an In / Sn mixed DEG solution at room temperature (25 ° C.) was added thereto. At this time, the inside of the system was kept in an argon gas atmosphere. Except these, ITO particles were obtained in the same manner as in Example 1. The produced ITO particles (primary particles) were cubic. Furthermore, when the XRD pattern was measured, it was a single composition of indium oxide. The average particle diameter, standard deviation and coefficient of variation of the primary particles measured from the TEM image are shown in Table 1 below.

〔実施例5〕
本実施例では、実施例1において用いたTMAOHのEG溶液に代えて、TMAOHのメタノール(MeOH)溶液を用いた。また、オートクレーブ内での熟成温度を低くした。具体的には、熟成温度を200℃とした。詳細には、TMAOHのMeOH溶液を撹拌しながら、そこに室温(25℃)のIn/Sn混合MeOH溶液を添加した。これら以外は実施例1と同様にしてITO粒子を得た。得られたITO粒子のTEM観察結果を図3に示す。生成したITO粒子(一次)は立方体状であった。更に、XRDパターンを測定したところ、酸化インジウムの単一組成であった。TEM像から測定した一次粒子の平均粒径、標準偏差及び変動係数を、以下の表1に示す。
Example 5
In this example, instead of the TMAOH EG solution used in Example 1, a TMAOH methanol (MeOH) solution was used. In addition, the aging temperature in the autoclave was lowered. Specifically, the aging temperature was 200 ° C. Specifically, while stirring the MeOH solution of TMAOH, an In / Sn mixed MeOH solution at room temperature (25 ° C.) was added thereto. Except these, ITO particles were obtained in the same manner as in Example 1. The TEM observation result of the obtained ITO particles is shown in FIG. The produced ITO particles (primary) were cubic. Furthermore, when the XRD pattern was measured, it was a single composition of indium oxide. The average particle diameter, standard deviation and coefficient of variation of the primary particles measured from the TEM image are shown in Table 1 below.

〔実施例6〕
本実施例では、実施例5におけるオートクレーブ内での熟成温度を190℃まで下げた。それ以外は実施例5と同様にしてITO粒子を得た。生成したITO粒子(一次)は立方体状であった。更に、XRDパターンを測定したところ、酸化インジウムの単一組成であった。TEM像から測定した一次粒子の平均粒径、標準偏差及び変動係数を、以下の表1に示す。
Example 6
In this example, the aging temperature in the autoclave in Example 5 was lowered to 190 ° C. Otherwise, ITO particles were obtained in the same manner as in Example 5. The produced ITO particles (primary) were cubic. Furthermore, when the XRD pattern was measured, it was a single composition of indium oxide. The average particle diameter, standard deviation and coefficient of variation of the primary particles measured from the TEM image are shown in Table 1 below.

〔実施例7〕
本実施例では、実施例5において用いたTMAOHのMeOH溶液に代えて、テトラブチルアンモニウムヒドロキシド(TBAOH)のMeOH溶液を用いた。それ以外は実施例5と同様にしてITO粒子を得た。生成したITO粒子(一次)は立方体状であった。更に、XRDパターンを測定したところ、酸化インジウムの単一組成であった。TEM像から測定した一次粒子の平均粒径、標準偏差及び変動係数を、以下の表1に示す。
Example 7
In this example, instead of the MeOH solution of TMAOH used in Example 5, a MeOH solution of tetrabutylammonium hydroxide (TBAOH) was used. Otherwise, ITO particles were obtained in the same manner as in Example 5. The produced ITO particles (primary) were cubic. Furthermore, when the XRD pattern was measured, it was a single composition of indium oxide. The average particle diameter, standard deviation and coefficient of variation of the primary particles measured from the TEM image are shown in Table 1 below.

〔比較例1〕
本比較例では、実施例1において用いたTMAOHのEG溶液に代えて、0.8mol/LのNaOHのEG溶液を用いた。また、TMAOHのEG溶液と、In/Sn混合EG溶液との混合温度を100℃に高めた。詳細には、NaOHのEG溶液を撹拌しながら100℃まで昇温し、そこに、室温(25℃)のIn/Sn混合EG溶液を添加した。このとき、系中をアルゴンガス雰囲気に保った。これら以外は実施例1と同様にしてITO粒子を得た。得られたITO粒子のTEM像を図4示す。生成したITO粒子(一次粒子)は、凝集が激しく、その一次粒子の平均粒径を測定することができなかった。二次粒子径は100nm以上の不定形であった。XRDパターンを測定したところ、酸化インジウムの単一組成であった。
[Comparative Example 1]
In this comparative example, a 0.8 mol / L NaOH EG solution was used instead of the TMAOH EG solution used in Example 1. The mixing temperature of the TMAOH EG solution and the In / Sn mixed EG solution was increased to 100 ° C. Specifically, the NaOH EG solution was heated to 100 ° C. with stirring, and an In / Sn mixed EG solution at room temperature (25 ° C.) was added thereto. At this time, the inside of the system was kept in an argon gas atmosphere. Except these, ITO particles were obtained in the same manner as in Example 1. FIG. 4 shows a TEM image of the obtained ITO particles. The generated ITO particles (primary particles) were intensively aggregated, and the average particle size of the primary particles could not be measured. The secondary particle size was indefinite shape of 100 nm or more. When the XRD pattern was measured, it was a single composition of indium oxide.

〔比較例2〕
本実施例は、実施例1において、TMAOHのEG溶液に代えて、TMAOHの水溶液を用いた例である。これ以外は実施例1と同様にした。得られた粒子のTEM像を図5示す。生成した粒子(一次粒子)は100nm程度の直方体状に近い形状であった。XRDパターンを測定したところ、この粒子は水酸化インジウムの単一組成であった。
[Comparative Example 2]
This example is an example in which an aqueous solution of TMAOH was used instead of the EG solution of TMAOH in Example 1. The rest was the same as in Example 1. A TEM image of the obtained particles is shown in FIG. The generated particles (primary particles) had a shape close to a rectangular solid of about 100 nm. When the XRD pattern was measured, the particles had a single composition of indium hydroxide.

〔評価〕
実施例で得られたITO粒子及び比較例で得られた粒子についてインク通過性を以下の方法で評価した。その結果を以下の表1に示す。
[Evaluation]
The ink permeability of the ITO particles obtained in Examples and the particles obtained in Comparative Examples was evaluated by the following method. The results are shown in Table 1 below.

〔インク通過性の評価〕
ITO粒子10gとエチレングリコール40gとを混合した液に、ジルコニアビーズ(φ0.3mm)300gを加え、ペイントシェイカーを用いて3時間分散処理を行った。分散によって得られたスラリーを、加圧濾過器を使用して、0.8μmと0.45μmのメンブレンフィルターをそれぞれ通過させた。そのときのITO粒子の通過量及び時間を測定した。ITO粒子の通過量は、全量通過したときを「○」、50%以上90%未満の粒子が通過したときを「△」、50%未満の粒子しか通過しないときを「×」とした。
[Evaluation of ink permeability]
To a liquid obtained by mixing 10 g of ITO particles and 40 g of ethylene glycol, 300 g of zirconia beads (φ0.3 mm) was added, and dispersion treatment was performed for 3 hours using a paint shaker. The slurry obtained by the dispersion was passed through 0.8 μm and 0.45 μm membrane filters using a pressure filter. The passing amount and time of the ITO particles at that time were measured. The passing amount of the ITO particles is “◯” when all the particles pass, “Δ” when 50% or more and less than 90% of the particles pass, and “X” when only less than 50% of the particles pass.

表1及び図2〜図5に示す結果から明らかなように、各実施例で得られたITO粒子は、比較例1で得られたITO粒子よりもインク通過性が良好であることから、分散性が高く、粒径も制御されたものであることが判る。また、実施例1ないし4と、実施例5ないし7との対比から明らかなように、ポリオール系の有機溶媒を用いると、微粒のITO粒子が得られる一方、モノアルコール系の有機溶媒を用いると、それよりも大きな粒径のITO粒子が得られることが判る。   As is clear from the results shown in Table 1 and FIGS. 2 to 5, the ITO particles obtained in each example have better ink permeability than the ITO particles obtained in Comparative Example 1, and thus dispersed. It can be seen that the property is high and the particle size is also controlled. As is clear from the comparison between Examples 1 to 4 and Examples 5 to 7, when a polyol-based organic solvent is used, fine ITO particles can be obtained, whereas when a monoalcohol-based organic solvent is used. It can be seen that ITO particles having a larger particle diameter can be obtained.

Claims (6)

第四級アンモニウムイオンの水酸化物が還元性有機溶媒に溶解してなる溶液に、インジウム源及び錫源を添加し反応を行い、次いでオートクレーブ内において加熱して自生圧力下に熟成を行うことで得られた錫ドープ酸化インジウム粒子。   By adding an indium source and a tin source to a solution in which a hydroxide of a quaternary ammonium ion is dissolved in a reducing organic solvent, reacting, and then heating in an autoclave and aging under an autogenous pressure Obtained tin-doped indium oxide particles. 第四級アンモニウムイオンの水酸化物としてテトラメチルアンモニウムヒドロキシドを用いて得られた請求項1記載の錫ドープ酸化インジウム粒子。   The tin-doped indium oxide particles according to claim 1, obtained by using tetramethylammonium hydroxide as a hydroxide of quaternary ammonium ions. 還元性有機溶媒としてポリオール系化合物又はモノアルコール系化合物を用いて得られた請求項1又は2記載の錫ドープ酸化インジウム粒子。   The tin-doped indium oxide particles according to claim 1 or 2, obtained by using a polyol compound or a monoalcohol compound as the reducing organic solvent. ポリオール系化合物としてグリコール又はジエチレングリコールを用いるか、又はモノアルコール系化合物としてメタノールを用いて得られた請求項3記載の錫ドープ酸化インジウム粒子。   The tin-doped indium oxide particles according to claim 3, obtained by using glycol or diethylene glycol as the polyol compound or using methanol as the monoalcohol compound. オートクレーブ内における熟成温度を190〜270℃に設定して得られた請求項1ないし4のいずれかに記載の錫ドープ酸化インジウム粒子。   The tin-doped indium oxide particles according to any one of claims 1 to 4, obtained by setting the aging temperature in an autoclave to 190 to 270 ° C. 前記の溶液に、インジウム塩及び錫源を室温下に添加して反応させて得られたものである請求項1ないし5のいずれかに記載の錫ドープ酸化インジウム粒子。   6. The tin-doped indium oxide particles according to claim 1, wherein the tin-doped indium oxide particles are obtained by adding an indium salt and a tin source to the solution at room temperature for reaction.
JP2011230582A 2011-10-20 2011-10-20 Tin-doped indium oxide particles Active JP5706797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230582A JP5706797B2 (en) 2011-10-20 2011-10-20 Tin-doped indium oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230582A JP5706797B2 (en) 2011-10-20 2011-10-20 Tin-doped indium oxide particles

Publications (2)

Publication Number Publication Date
JP2013087027A true JP2013087027A (en) 2013-05-13
JP5706797B2 JP5706797B2 (en) 2015-04-22

Family

ID=48531302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230582A Active JP5706797B2 (en) 2011-10-20 2011-10-20 Tin-doped indium oxide particles

Country Status (1)

Country Link
JP (1) JP5706797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006498A1 (en) * 2017-07-03 2019-01-10 Newsouth Innovations Pty Limited A method of forming oxide quantum dots and uses thereof
CN111601774A (en) * 2018-01-15 2020-08-28 国立大学法人东北大学 ITO particles, dispersion liquid, and method for producing ITO film
JPWO2019138707A1 (en) * 2018-01-15 2021-01-07 国立大学法人東北大学 ITO particles, dispersion liquid, production method of ITO particles, production method of dispersion liquid, and production method of ITO film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242225A (en) * 2008-03-11 2009-10-22 Mitsui Mining & Smelting Co Ltd Tin-doped indium oxide particles and their manufacturing method
JP2010285332A (en) * 2008-07-10 2010-12-24 Tohoku Univ Process for producing ito particles, ito powder, coating material for transparent electroconductive material, and transparent electroconductive film
JP2011126746A (en) * 2009-12-18 2011-06-30 Tohoku Univ Ito powder, method for producing ito particle, coating material for transparent conductive material, and transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242225A (en) * 2008-03-11 2009-10-22 Mitsui Mining & Smelting Co Ltd Tin-doped indium oxide particles and their manufacturing method
JP2010285332A (en) * 2008-07-10 2010-12-24 Tohoku Univ Process for producing ito particles, ito powder, coating material for transparent electroconductive material, and transparent electroconductive film
JP2011126746A (en) * 2009-12-18 2011-06-30 Tohoku Univ Ito powder, method for producing ito particle, coating material for transparent conductive material, and transparent conductive film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014045722; Takafumi Sasaki et al.: '"One-step solvothermal synthesis of cubic-shaped ITO nanoparticles precisely controlled in size and' Journal of Materials Chemistry Vol.20, No.37, 20101007, p.8153-8157 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006498A1 (en) * 2017-07-03 2019-01-10 Newsouth Innovations Pty Limited A method of forming oxide quantum dots and uses thereof
CN111601774A (en) * 2018-01-15 2020-08-28 国立大学法人东北大学 ITO particles, dispersion liquid, and method for producing ITO film
JPWO2019138707A1 (en) * 2018-01-15 2021-01-07 国立大学法人東北大学 ITO particles, dispersion liquid, production method of ITO particles, production method of dispersion liquid, and production method of ITO film
JPWO2019138708A1 (en) * 2018-01-15 2021-01-07 国立大学法人東北大学 Method for Producing ITO Particles, Dispersion Solution and ITO Film
JP7089537B2 (en) 2018-01-15 2022-06-22 国立大学法人東北大学 ITO particles, dispersion liquid, production method of ITO particles, production method of dispersion liquid, and production method of ITO film
JP2022166134A (en) * 2018-01-15 2022-11-01 国立大学法人東北大学 Ito particle, dispersion and production method of ito film
CN111601774B (en) * 2018-01-15 2023-03-28 国立大学法人东北大学 ITO particles, dispersion liquid, and method for producing ITO film
US11692104B2 (en) 2018-01-15 2023-07-04 Tohoku University ITO particles, dispersion, and production method of ITO film
JP7455166B2 (en) 2018-01-15 2024-03-25 国立大学法人東北大学 Method for producing ITO particles, dispersion liquid, and ITO film
US11952508B2 (en) 2018-01-15 2024-04-09 Tohoku University ITO particles, dispersion, production method of ITO particles, production method of dispersion, and production method of ITO film

Also Published As

Publication number Publication date
JP5706797B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5589214B2 (en) ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film
JP4304343B2 (en) Zinc oxide fine particles, method for producing aggregates thereof and dispersion solution
US20080305025A1 (en) Methods for Production of Metal Oxide Nano Particles, and Nano Particles and Preparations Produced Thereby
TWI523813B (en) Tin oxide particles and the method for preparing the same
JP5618229B2 (en) ITO powder, method for producing ITO particles, coating for transparent conductive material and transparent conductive film
Wang et al. Preparation and characterization of nanometer-scale powders ceria by electrochemical deposition method
JP5472589B2 (en) Production method of ITO particles
JP5788694B2 (en) Fluorine-doped tin oxide particles and method for producing the same
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
WO2007049549A1 (en) Method for producing fine particles of salt, hydroxide or oxide, and fine particles of salt, hydroxide or oxide produced by such method
IL172838A (en) Methods for production of metal oxide nano particles with controlled properties and nano particles and preparations produced thereby
JP5706797B2 (en) Tin-doped indium oxide particles
Elen et al. Comparison of Two Novel Solution‐Based Routes for the Synthesis of Equiaxed ZnO Nanoparticles
JP2011100710A (en) Method of manufacturing conductive particulate and conductive particulate
KR101621831B1 (en) Ultrafine particles of titanium dioxide and process for producing the same
JP6025253B2 (en) Process for producing transition metal-supported alkaline rutile titanium oxide sol
CN116888076A (en) Metal-doped molybdenum sulfide powder and method for producing same
WO2014029005A1 (en) Method for continuous preparation of indium-tin coprecipitates and indium-tin-oxide nanopowders with substantially homogeneous indium/tin composition, controllable shape and particle size
JP2013011014A (en) Method for producing silver nanoparticle, ink and method for producing conductive film
JP5285412B2 (en) Tin-doped indium oxide particles and method for producing the same
WO2020217830A1 (en) Method for producing rare earth element-containing titanium hydroxide and titanium dioxide
Taniguchi et al. Insights into the solvothermal reaction for synthesizing tin (iv) oxide porous spheres
JP2013063442A (en) Dispersion liquid of photocatalyst particle and method of producing the same
JP6065286B2 (en) Method for producing strontium titanate fine particles
JP6200814B2 (en) Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150227

R150 Certificate of patent or registration of utility model

Ref document number: 5706797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250