JP2013087023A - Method of producing graphene thin film using microwave - Google Patents

Method of producing graphene thin film using microwave Download PDF

Info

Publication number
JP2013087023A
JP2013087023A JP2011230242A JP2011230242A JP2013087023A JP 2013087023 A JP2013087023 A JP 2013087023A JP 2011230242 A JP2011230242 A JP 2011230242A JP 2011230242 A JP2011230242 A JP 2011230242A JP 2013087023 A JP2013087023 A JP 2013087023A
Authority
JP
Japan
Prior art keywords
thin film
graphene thin
graphene
metal material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011230242A
Other languages
Japanese (ja)
Inventor
Masahiro Ueda
昌宏 植田
Akira Omoda
亮 面田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2011230242A priority Critical patent/JP2013087023A/en
Publication of JP2013087023A publication Critical patent/JP2013087023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a graphene thin film with simple and inexpensive equipment through simple processes, since a conventional dry graphene synthesis method such as CVD requires controlled supply of a material gas in the coexistence of high temperature, a vacuum, an inert gas atmosphere, and a reducing agent (e.g., hydrogen) while a conventional wet graphene synthesis method whereby graphene oxide is reduced to obtain graphene also requires processes under the coexistence of high temperature, an inert gas atmosphere, and a reducing agent (e.g., hydrogen).SOLUTION: After applying a solution or a dispersion of a conductive polymer to the surface of any metal material among copper, cobalt, nickel, and ruthenium to form a coating film, the graphene thin film is formed on the surface of the metal material by microwave treatment.

Description

本発明は、グラフェン薄膜の作製方法に関する。   The present invention relates to a method for manufacturing a graphene thin film.

現在、いくつかのグラフェンの作製方法が知られている。例えば、CVD法による透明性や導電性の優れた大面積のグラフェン薄膜の作製法が、知られている(非特許文献1)。また、プラズマ法による大面積のグラフェン薄膜の作製法も提案されている(特許文献1)。しかしながら、かような乾式法は、高温、真空、不活性気体雰囲気、還元剤(例えば水素)共存下、原料ガスの十分制御された供給が求められる。触媒を用いた炭素材料の焼成(非特許文献2)や酸化グラフェンを還元してグラフェンを得る湿式法(非特許文献3)にしても同様に高温、不活性気体雰囲気、還元剤(例えば水素)共存下での製造工程が必要である。
これら従来のグラフェン薄膜の作成方法においては、精巧で高価な設備と、複雑かつ煩雑で厳密な製造工程管理が要求される。製造面のみならず設備のメンテナンスや安全管理においても細心の配慮が求められる。自ずと不都合なコスト増加を余儀なくされる。このような状況から、簡便で低価格なグラフェン薄膜の作製方法が切望されていた。
Currently, several methods for producing graphene are known. For example, a method for producing a large-area graphene thin film having excellent transparency and conductivity by a CVD method is known (Non-Patent Document 1). In addition, a method for producing a large-area graphene thin film by a plasma method has been proposed (Patent Document 1). However, such a dry method requires a sufficiently controlled supply of the source gas in the presence of high temperature, vacuum, inert gas atmosphere, and reducing agent (for example, hydrogen). Similarly, high temperature, inert gas atmosphere, reducing agent (for example, hydrogen) is also used in the calcination of a carbon material using a catalyst (Non-Patent Document 2) and the wet method (Non-Patent Document 3) in which graphene is reduced by reducing graphene oxide. A manufacturing process in the presence of coexistence is required.
These conventional methods for producing graphene thin films require sophisticated and expensive equipment and complicated, complicated and strict manufacturing process management. Careful consideration is required not only for manufacturing but also for equipment maintenance and safety management. Naturally, an inconvenient cost increase is forced. Under such circumstances, a simple and inexpensive method for producing a graphene thin film has been desired.

特開2010−212619号公報JP 2010-212619 A

Iijima, S., et al., Nature Nanotechnology, 5, 574(2010)Iijima, S., et al., Nature Nanotechnology, 5, 574 (2010) Tour, J.M., et al. Nature, doi:10.1038/nature09579Tour, J.M., et al. Nature, doi: 10.1038 / nature09579 Bao, Z., et al., ACS Nano, 2, 463(2008)Bao, Z., et al., ACS Nano, 2, 463 (2008)

上記のように、従来のグラフェン薄膜の作成方法においては、精巧で高価な設備と、複雑かつ煩雑で厳密な製造工程管理が必要であった。
本発明のグラフェン薄膜の作成方法は、簡易で安価な設備と簡便な工程でグラフェン薄膜の作製方法を提供するものである。
As described above, the conventional method for producing a graphene thin film requires sophisticated and expensive equipment and complicated, complicated and strict manufacturing process management.
The method for producing a graphene thin film of the present invention provides a method for producing a graphene thin film with simple and inexpensive equipment and simple steps.

本発明は、マイクロ波を使用することで、従来のいかなるグラフェン薄膜の作製と異なり、常温下、常湿度下、常圧下、空気雰囲気でも、簡便な工程と安価な設備でグラフェン薄膜作製を可能にした。すなわち、本発明は、触媒材料表面に導電性ポリマー薄膜を形成した後、マイクロ波処理することで金属材料表面にグラフェン薄膜を製造するものであって、以下の特徴を有している。   The present invention makes it possible to produce a graphene thin film with simple processes and inexpensive equipment at room temperature, normal humidity, normal pressure, and air atmosphere, unlike any conventional graphene thin film, using microwaves. did. That is, the present invention is to produce a graphene thin film on the surface of a metal material by forming a conductive polymer thin film on the surface of the catalyst material and then performing microwave treatment, and has the following characteristics.

〔1〕銅、コバルト、ニッケル、ルテニウムのうちのいずれかの金属材料の表面に導電性ポリマーの溶液又は分散液を塗布して塗膜を形成した後、マイクロ波処理することで前記金属材料の表面にグラフェン薄膜を形成することを特徴とするグラフェン薄膜の製造方法。
〔2〕前記金属材料が、板状又は箔状であることを特徴とする前記〔1〕に記載のグラフェン薄膜の製造方法。
〔3〕前記導電性ポリマーが、ポリピロール又はポリチオフェンにp型又はn型ドーパントをドープした導電性ポリマーであることを特徴とする前記〔1〕又は前記〔2〕に記載のグラフェン薄膜の製造方法。
〔4〕前記マイクロ波処理を、常温下、常湿度下、常圧下及び空気存在下で実施することを特徴とする前記〔1〕から前記〔3〕のいずれかに記載のグラフェン薄膜の製造方法。
[1] A conductive polymer solution or dispersion is applied to the surface of any one of copper, cobalt, nickel, and ruthenium to form a coating film, and then subjected to microwave treatment to form the metal material. A method for producing a graphene thin film, comprising forming a graphene thin film on a surface.
[2] The method for producing a graphene thin film according to [1], wherein the metal material is plate-shaped or foil-shaped.
[3] The method for producing a graphene thin film according to [1] or [2], wherein the conductive polymer is a conductive polymer obtained by doping polypyrrole or polythiophene with a p-type or n-type dopant.
[4] The method for producing a graphene thin film according to any one of [1] to [3], wherein the microwave treatment is performed at normal temperature, normal humidity, normal pressure, and in the presence of air. .

本発明により、簡易で安価な設備と簡便な工程で、グラフェン薄膜の作製が可能となった。   According to the present invention, a graphene thin film can be produced with simple and inexpensive equipment and a simple process.

本発明に用いられる金属材料として、銅、コバルト、ニッケル、ルテニウムを挙げることができる。中でも銅、コバルト、ニッケルが反応率と収率の面から好ましい。さらに銅が好ましい。粒子状や繊維状といった様々な形態を持った金属材料の使用が可能であるが、板状と箔状が、生成したグラフェンが透明電極等への応用が期待されていることから好ましい。   Examples of the metal material used in the present invention include copper, cobalt, nickel, and ruthenium. Of these, copper, cobalt, and nickel are preferable from the viewpoints of reaction rate and yield. Furthermore, copper is preferable. Although metal materials having various forms such as particles and fibers can be used, plate and foil are preferable because the generated graphene is expected to be applied to a transparent electrode or the like.

本発明に用いられるp型又はn型ドーパントをドープするポリマーとしては、ポリピロール類、ポリチオフェン類、ポリアニリン類、ポリアセチレン類、および、ポリフェニレンビニレン類等が挙げられる。中でもポリピロールおよびポリチオフェンが、反応率と収率の面から好ましい。   Examples of the polymer doped with the p-type or n-type dopant used in the present invention include polypyrroles, polythiophenes, polyanilines, polyacetylenes, and polyphenylene vinylenes. Of these, polypyrrole and polythiophene are preferable from the viewpoints of reaction rate and yield.

上記ポリマーをドープするドーパントとしては、p型ドーパントと称されるI、Br、AsF、HNO、FeCl、TCNQをはじめとする高分子鎖から電子を奪うものを使用しても、逆に、Na、Li、NH、テトラブチルアンモニウム等高分子鎖に電子を与えるn型ドーパントを使用しても良い。 As a dopant for doping the polymer, a dopant that removes electrons from a polymer chain including I 2 , Br 2 , AsF 5 , HNO 3 , FeCl 3 , and TCNQ, which is called a p-type dopant, Conversely, an n-type dopant that gives electrons to the polymer chain, such as Na, Li, NH 3 , and tetrabutylammonium, may be used.

導電性ポリマーとして好適な例としては、ポリピロールを硝酸でドープした導電性ポリマー、ポリチオフェンをポリスチレンスルホン酸でドープした導電性ポリマーなどを挙げることができる。   Preferable examples of the conductive polymer include a conductive polymer doped with polypyrrole with nitric acid, and a conductive polymer doped with polythiophene with polystyrene sulfonic acid.

これらの導電性ポリマーを溶媒に溶解または分散させた液状組成物を調製し、この液状組成物を金属材料表面に塗布することで塗膜を形成する。
塗布法は、スピンコーティングやバーコーティングの他通常一般に用いられる方法により行うことができ、高速のグラビアコーティング等も摘要可能である。
A liquid composition in which these conductive polymers are dissolved or dispersed in a solvent is prepared, and this liquid composition is applied to the surface of the metal material to form a coating film.
The coating method can be performed by a generally used method in addition to spin coating or bar coating, and high-speed gravure coating can be used.

また、塗料の塗布膜厚は、乾燥後の塗膜厚が薄膜になるように選ぶ。乾燥後の塗膜厚は、500nm以下が好ましい。また、100nm以下がさらに好ましい。乾燥後の塗膜厚が厚くなってもグラフェンは形成されるものの、グラフェン以外の不純物も副生するため、それらを除去しなければ高純度のグラフェン薄膜を得ることができない。   The coating thickness of the coating is selected so that the coating thickness after drying becomes a thin film. The coating thickness after drying is preferably 500 nm or less. Moreover, 100 nm or less is more preferable. Although graphene is formed even when the coating film thickness after drying is increased, impurities other than graphene are also produced as by-products, so that a high-purity graphene thin film cannot be obtained unless they are removed.

金属材料表面に形成された前記導電性ポリマーを、不活性ガスや還元剤水素を使用せず、常温下、常湿度下、常圧下、空気存在下、マイクロ波処理することでグラフェン薄膜が作製できる。マイクロ波処理における昇温が瞬時に起こるため、金属材料表面に導電性ポリマーを塗布してマイクロ波処理を行うことにより、金属材料表面における、グラフェン形成速度が、酸化反応や燃焼反応といった副反応を上回ってグラフェン薄膜が生成すると推測される。
このことは、塗膜厚が厚くなると金属材料の表面から遠い部分に不純物が発生することからもわかる。
A graphene thin film can be produced by subjecting the conductive polymer formed on the surface of a metal material to microwave treatment at room temperature, normal humidity, normal pressure, in the presence of air without using an inert gas or a reducing agent hydrogen. . Since the temperature rise in the microwave treatment occurs instantaneously, by applying a conductive polymer to the metal material surface and performing the microwave treatment, the graphene formation rate on the metal material surface can cause side reactions such as oxidation reaction and combustion reaction. It is surmised that the graphene thin film is formed above the above.
This can also be seen from the fact that when the coating thickness is increased, impurities are generated in a portion far from the surface of the metal material.

マイクロ波照射装置の周波数は、それ以外の領域でも機能すると推測されるが、一般的な領域、すなわち、0.5〜6.5GHz程度が好ましい。出力は、一般的な領域、すなわち、100W〜1000W程度が好ましい。出力がこの範囲以下であれば、照射時間を延長することで、一方、出力がこの範囲以上であれば、照射時間を短縮することで良好なグラフェン薄膜を得ることができる。照射時間は、マイクロ波照射装置の周波数および出力が前記の領域であれば、数秒から数分で良好なグラフェン薄膜を形成できる。導電性ポリマーの種類によって照射時間は自ずと異なり、照射時間を延長したり短縮し対処できる。   Although it is estimated that the frequency of a microwave irradiation apparatus functions also in other area | regions, a general area | region, ie, about 0.5-6.5 GHz, is preferable. The output is preferably in a general region, that is, about 100 W to 1000 W. If the output is below this range, a good graphene thin film can be obtained by extending the irradiation time, and if the output is above this range, shortening the irradiation time. As long as the frequency and output of the microwave irradiation apparatus are in the above-mentioned range, the irradiation time can be a few seconds to a few minutes and a good graphene thin film can be formed. Depending on the type of conductive polymer, the irradiation time is naturally different, and the irradiation time can be extended or shortened.

金属材料表面に形成されたグラフェン薄膜は、他の適切な基体に移行することで様々な用途に供することができる。他の基体への移行は、次の手法が一般的である。すなわち、例えば、基体に透明なポリスチレンフィルムを選択する場合、ガラス転移温度より少し高い温度にポリスチレンフィルムを加熱した後、本発明で得られたグラフェン薄膜上に圧着する。その後、金属材料をエッチング液で溶解することで、生成したグラフェン薄膜をポリスチレンフィルムに転写することができる。もちろん、ポリスチレン以外の樹脂も転写の基体として使用できる。ポリエチレン、ポリプロピレン、ポリ塩化ビニル、PAN、PVAといった様々な(透明)汎用樹脂をはじめとし、ナイロン6やナイロン66のようなナイロン類、PMMAのようなポリアクリレート類、PETやPBTのようなポリエステル類、ポリカーボネート類、ポリイミド類、TACのようなセルロース系樹脂も例として挙げることができる。   The graphene thin film formed on the surface of the metal material can be used for various applications by moving to another appropriate substrate. The following method is generally used for transferring to another substrate. That is, for example, when a transparent polystyrene film is selected as the substrate, the polystyrene film is heated to a temperature slightly higher than the glass transition temperature and then pressed onto the graphene thin film obtained in the present invention. Then, the generated graphene thin film can be transferred to a polystyrene film by dissolving the metal material with an etching solution. Of course, resins other than polystyrene can also be used as a transfer substrate. Various (transparent) general-purpose resins such as polyethylene, polypropylene, polyvinyl chloride, PAN and PVA, nylons such as nylon 6 and nylon 66, polyacrylates such as PMMA, polyesters such as PET and PBT Cellulosic resins such as polycarbonates, polyimides and TAC can also be mentioned as examples.

こうして得られた本発明が供するグラフェン薄膜を転写した、透明なポリスチレン樹脂は、タッチパネルや透明電極として使用することができる。   The transparent polystyrene resin to which the graphene thin film provided by the present invention thus obtained is transferred can be used as a touch panel or a transparent electrode.

以下の実施例で本発明を更に詳しく説明するが、これらに実施例は、例示的なものであり、本発明は、これらの実施例により限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the examples are illustrative only, and the present invention is not limited to these examples.

〔実施例1〕
約100μの銅箔をスピンコーターに設置し、ポリスチレンスルホン酸でドープしたポリエチレンジオキシチオフェンの1重量%水溶液(エイチ・シー・スタルク社製)を約1mL滴下した。次に、500rpmで10秒間、続いて1000rpmで10秒間、さらの1500rpmで10秒間、銅箔を回転した。銅箔をスピンコーターから取り出し、室温で30分風乾した。十分乾燥した塗膜を形成した銅箔をマイクロ波照射装置に設置しマイクロ波照射を開始した。マイクロ波照射装置は、周波数2.5GHz、出力1000Wで、約15秒照射した。その後、処理品を取り出した。これらの操作は全て通常の空気雰囲気で実施した。
[Example 1]
About 100 μm of copper foil was placed on a spin coater, and about 1 mL of a 1 wt% aqueous solution of polyethylene dioxythiophene doped with polystyrene sulfonic acid (manufactured by H.C. Starck) was dropped. Next, the copper foil was rotated at 500 rpm for 10 seconds, then at 1000 rpm for 10 seconds, and further at 1500 rpm for 10 seconds. The copper foil was removed from the spin coater and air dried at room temperature for 30 minutes. A copper foil on which a sufficiently dried coating film was formed was placed in a microwave irradiation apparatus, and microwave irradiation was started. The microwave irradiation apparatus was irradiated at a frequency of 2.5 GHz and an output of 1000 W for about 15 seconds. Thereafter, the treated product was taken out. All these operations were performed in a normal air atmosphere.

〔実施例2〕
銅箔に代えて、ニッケル箔を使用した以外は実施例1と同様の操作を行った。
[Example 2]
It replaced with copper foil and performed operation similar to Example 1 except having used nickel foil.

〔実施例3〕
ポリスチレンスルホン酸でドープしたポリエチレンジオキシチオフェンの1重量%水溶液に代えて、1,3,6,7−テトラシアノ−1,4,5,8−テトラアザナフタレンでドープしたポリ(3−メチル−4−ピロールカルボン酸エチル)1重量%のジメチルアセトアミド溶液(化研産業社製)を使用した以外は実施例1と同様の操作を行った。
Example 3
Poly (3-methyl-4) doped with 1,3,6,7-tetracyano-1,4,5,8-tetraazanaphthalene instead of a 1% by weight aqueous solution of polyethylenedioxythiophene doped with polystyrene sulfonic acid -Ethyl pyrrole carboxylate) The same operation as in Example 1 was performed except that a 1% by weight dimethylacetamide solution (manufactured by Kaken Sangyo Co., Ltd.) was used.

〔実施例4〕
マイクロ波照射装置に周波数0.75GHz、出力600Wで、約30秒照射した以外は実施例1と同様の操作を行った。
Example 4
The same operation as in Example 1 was performed except that the microwave irradiation apparatus was irradiated at a frequency of 0.75 GHz and an output of 600 W for about 30 seconds.

〔実施例5〕
ポリスチレンスルホン酸でドープしたポリエチレンジオキシチオフェンの水溶液の濃度を2重量%に増加した以外は実施例1と同様の操作を行った。
Example 5
The same operation as in Example 1 was performed, except that the concentration of the aqueous solution of polyethylenedioxythiophene doped with polystyrene sulfonic acid was increased to 2% by weight.

上記の実施例で得られた生成物のラマン散乱スペクトルを測定し1000〜3000cm−1で観察されたピークの面積比を表1として一覧した。実施例5を除いて、いずれの実施例においても明確な2DバンドのピークとGバンドのピークが出現する一方、Dバンドのピークは、殆ど検出されることはなく、グラフェンが生成していることがわかる。実施例5では、2DバンドのピークとGバンドのピークの存在は確認できるものの、Dバンドのピークが顕著で、グラフェンの生成は認められるものの、非晶質炭素化合物が多く生成していると推測される。実施例5では、マイクロ波処理前、塗膜が厚膜故にグラフェン薄膜以外に非晶質炭素化合物が不純物として生成しているが、非晶質炭素化合物を除去することによりグラフェン薄膜を得ることができる。 The Raman scattering spectra of the products obtained in the above examples were measured, and the peak area ratios observed at 1000 to 3000 cm −1 are listed in Table 1. Except for Example 5, a clear 2D band peak and a G band peak appear in any of the examples, while the D band peak is hardly detected and graphene is generated. I understand. In Example 5, although the presence of the 2D band peak and the G band peak can be confirmed, the D band peak is remarkable and the formation of graphene is observed, but it is estimated that a large amount of amorphous carbon compound is generated. Is done. In Example 5, before the microwave treatment, an amorphous carbon compound is generated as an impurity other than the graphene thin film because the coating film is thick. However, the graphene thin film can be obtained by removing the amorphous carbon compound. it can.

Figure 2013087023
Figure 2013087023

本発明が提供するグラフェン薄膜は、半導体材料、透明導電材料、高熱伝導材料として使用することができる。したがって、これらの材料を必要とする様々な製品の作製に利用することができる。例えば、フレクシブル集積回路、透明電極、タッチパネル、および、ヒートシンクといった製品が代表例として挙げられる。


The graphene thin film provided by the present invention can be used as a semiconductor material, a transparent conductive material, or a high heat conductive material. Therefore, it can utilize for preparation of various products which require these materials. For example, representative examples include products such as a flexible integrated circuit, a transparent electrode, a touch panel, and a heat sink.


Claims (4)

銅、コバルト、ニッケル、ルテニウムのうちのいずれかの金属材料の表面に導電性ポリマーの溶液又は分散液を塗布して塗膜を形成した後、マイクロ波処理することで前記金属材料表面にグラフェン薄膜を形成することを特徴とするグラフェン薄膜の製造方法。   A graphene thin film is formed on the surface of the metal material by applying a solution or dispersion of a conductive polymer on the surface of a metal material of copper, cobalt, nickel, or ruthenium to form a coating film and then performing microwave treatment. A method for producing a graphene thin film, wherein 前記金属材料が、板状又は箔状であることを特徴とする請求項1に記載のグラフェン薄膜の製造方法。   The said metal material is plate shape or foil shape, The manufacturing method of the graphene thin film of Claim 1 characterized by the above-mentioned. 前記導電性ポリマーが、ポリピロール又はポリチオフェンにp型又はn型ドーパントをドープした導電性ポリマーであることを特徴とする請求項1又は請求項2に記載のグラフェン薄膜の製造方法。   The method for producing a graphene thin film according to claim 1, wherein the conductive polymer is a conductive polymer obtained by doping polypyrrole or polythiophene with a p-type or n-type dopant. 前記マイクロ波処理を、常温下、常湿度下、常圧下及び空気存在下で実施することを特徴とする請求項1から請求項3のいずれかに記載のグラフェン薄膜の製造方法。   The method for producing a graphene thin film according to any one of claims 1 to 3, wherein the microwave treatment is performed at normal temperature, normal humidity, normal pressure, and air.
JP2011230242A 2011-10-20 2011-10-20 Method of producing graphene thin film using microwave Pending JP2013087023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230242A JP2013087023A (en) 2011-10-20 2011-10-20 Method of producing graphene thin film using microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230242A JP2013087023A (en) 2011-10-20 2011-10-20 Method of producing graphene thin film using microwave

Publications (1)

Publication Number Publication Date
JP2013087023A true JP2013087023A (en) 2013-05-13

Family

ID=48531298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230242A Pending JP2013087023A (en) 2011-10-20 2011-10-20 Method of producing graphene thin film using microwave

Country Status (1)

Country Link
JP (1) JP2013087023A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016700A1 (en) * 2013-07-30 2015-02-05 Universiti Putra Malaysia Method for preparing catalysst-assisted polypyrrole nanoparticles decorated graphene film for high-performance supercapacitor
CN110040725A (en) * 2019-03-13 2019-07-23 中国科学院金属研究所 A kind of method of the uniform number of plies graphene film of quick preparation high quality
CN110066174A (en) * 2019-04-30 2019-07-30 冯德远 A kind of preparation method of Flexible graphene composite heat conduction film
CN111615320A (en) * 2020-06-30 2020-09-01 福建美庆热传科技有限公司 Cobalt-nickel-graphene composite wave-absorbing material and preparation method thereof
CN113445030A (en) * 2020-03-25 2021-09-28 北京石墨烯研究院 Method for improving cleanliness of graphene film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016700A1 (en) * 2013-07-30 2015-02-05 Universiti Putra Malaysia Method for preparing catalysst-assisted polypyrrole nanoparticles decorated graphene film for high-performance supercapacitor
CN110040725A (en) * 2019-03-13 2019-07-23 中国科学院金属研究所 A kind of method of the uniform number of plies graphene film of quick preparation high quality
CN110066174A (en) * 2019-04-30 2019-07-30 冯德远 A kind of preparation method of Flexible graphene composite heat conduction film
CN113445030A (en) * 2020-03-25 2021-09-28 北京石墨烯研究院 Method for improving cleanliness of graphene film
CN111615320A (en) * 2020-06-30 2020-09-01 福建美庆热传科技有限公司 Cobalt-nickel-graphene composite wave-absorbing material and preparation method thereof

Similar Documents

Publication Publication Date Title
Lyu et al. Large-area MXene electrode array for flexible electronics
Zhang et al. Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications
Cho et al. Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT: PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor
Mangu et al. MWCNT–polymer composites as highly sensitive and selective room temperature gas sensors
Rana et al. A graphene-based transparent electrode for use in flexible optoelectronic devices
Dehsari et al. Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices
Orangi et al. A review of the effects of electrode fabrication and assembly processes on the structure and electrochemical performance of 2D MXenes
Yin et al. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes
Huang et al. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics
Xue et al. Controllable synthesis of doped graphene and its applications
US20160064672A1 (en) Pedot:pss based electrode and method for manufacturing the same
US20150024122A1 (en) Graphene ink and method for manufacturing graphene pattern using the same
JP2013087023A (en) Method of producing graphene thin film using microwave
Naz et al. Niobium doped zinc oxide nanorods as an electron transport layer for high-performance inverted polymer solar cells
KR20150085523A (en) Film forming composition comprising graphene material and conducting polymer
Liu et al. Insight into the formation mechanism of graphene quantum dots and the size effect on their electrochemical behaviors
Wang et al. Graphene's role in emerging trends of capacitive energy storage
Trang et al. Preparation and characterization of graphene composites with conducting polymers
Feng et al. Copper-phenylacetylide nanobelt/single-walled carbon nanotube composites: mechanochromic luminescence phenomenon and thermoelectric performance
Lee et al. Influence of nonionic surfactant-modified PEDOT: PSS on graphene
Seki et al. Freestanding bilayers of drop-cast single-walled carbon nanotubes and electropolymerized poly (3, 4-ethylenedioxythiophene) for thermoelectric energy harvesting
Cheng et al. Enhancing the performance and stability of organic solar cells using solution processed MoO 3 as hole transport layer
Chen et al. Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties
Ugraskan et al. Enhanced thermoelectric properties of highly conductive poly (3, 4-ethylenedioxy thiophene)/exfoliated graphitic carbon nitride composites
Kim et al. Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells