JP2013084416A - Electric device - Google Patents

Electric device Download PDF

Info

Publication number
JP2013084416A
JP2013084416A JP2011222937A JP2011222937A JP2013084416A JP 2013084416 A JP2013084416 A JP 2013084416A JP 2011222937 A JP2011222937 A JP 2011222937A JP 2011222937 A JP2011222937 A JP 2011222937A JP 2013084416 A JP2013084416 A JP 2013084416A
Authority
JP
Japan
Prior art keywords
separator
negative electrode
positive electrode
electrolyte
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011222937A
Other languages
Japanese (ja)
Inventor
Kazuki Miyatake
一希 宮竹
Hironobu Muramatsu
宏信 村松
Takashi Honda
崇 本田
Haruyuki Saito
治之 齊藤
Fumihiro Miki
文博 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011222937A priority Critical patent/JP2013084416A/en
Priority to PCT/JP2012/074425 priority patent/WO2013051416A1/en
Publication of JP2013084416A publication Critical patent/JP2013084416A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide means of restricting reduction in cell energy density and also improving life characteristics in an electric device which uses a separator having heat resistant insulation layers laminated one on another on the surface of a porous base body.SOLUTION: In an electric device, at least one electric cell layer consisting of a cathode, an electrolyte layer having a nonaqueous electrolyte held in a separator, and an anode which are each laminated in that order is included. The separator includes a heat resistant insulation layer containing a porous base body layer, inorganic particles formed on one or both sides of the porous base body layer, and a binder, and also satisfies the expression (1) below. In the expression, x is a ratio (L/V) of the nonaqueous electrolyte, L, to the total cubic volume of holes in the cathode, the anode and the separator, V, where x≥1, and y is a ratio (Vs/V) of the cubic volume of holes in the separator, Vs, to the total cubic volume of holes in the cathode, the anode and the separator, V, where y>0.

Description

本発明は、リチウムイオン二次電池、電気二重層キャパシタなどの電気デバイスに関する。より詳しくは、本発明は、電気デバイスの耐久性を向上させるための改良に関する。   The present invention relates to an electric device such as a lithium ion secondary battery and an electric double layer capacitor. More particularly, the present invention relates to improvements for improving the durability of electrical devices.

近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。   In recent years, in order to cope with global warming, reduction of the amount of carbon dioxide is eagerly desired. In the automobile industry, there is a great expectation for reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV). Electric devices such as secondary batteries for motor drive that hold the key to their practical application. Is being actively developed.

モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用二次電池と比較して極めて高い出力特性、及び高いエネルギーを有することが求められている。従って、全ての電池の中で比較的高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。   As a secondary battery for driving a motor, it is required to have extremely high output characteristics and high energy as compared with a consumer secondary battery used in a mobile phone, a notebook personal computer or the like. Therefore, lithium ion secondary batteries having a relatively high theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.

また、リチウムイオン二次電池はそのエネルギー密度の高さや繰り返し充放電に対する耐久性の高さから電動車両に好適であると考えられ、一層の高容量化が図られるとともに、安全性の確保がますます重要となっている。   Lithium-ion secondary batteries are considered suitable for electric vehicles because of their high energy density and durability against repeated charging and discharging, which will further increase the capacity and ensure safety. It has become increasingly important.

リチウムイオン二次電池は、一般に、正極活物質等を正極集電体の両面に塗布した正極と、負極活物質等を負極集電体の両面に塗布した負極とが、セパレータに非水電解液または非水電解質ゲルを保持した電解質層を介して接続され、電池ケースに収納される構成を有する。そして、リチウムイオンが電極活物質中に吸蔵・放出されることにより電池の充放電反応が起こる。   A lithium ion secondary battery generally includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector. Or it has the structure connected through the electrolyte layer holding nonaqueous electrolyte gel, and accommodated in a battery case. The lithium ion is occluded / released in the electrode active material, thereby causing a charge / discharge reaction of the battery.

セパレータには、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能および隔壁としての機能を併せ持つことが求められる。このようなセパレータとしては、通常、ポリエチレン(PE)やポリプロピレン(PP)などのような電気絶縁性の熱可塑性樹脂から構成される微多孔膜が多く用いられている。   The separator is required to have both a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode and a function as a partition wall. As such a separator, usually, a microporous film composed of an electrically insulating thermoplastic resin such as polyethylene (PE) or polypropylene (PP) is often used.

しかし、このような熱可塑性樹脂からなるセパレータは、その材質の柔軟性から機械的強度に問題があることが知られている。特に、高温条件下においては、セパレータが熱収縮し、セパレータを介して対向している正極と負極とが接触するなどして内部短絡が生じうる。よって、電池作製時の熱処理や、充放電反応時の反応熱などによる熱収縮を抑制するべく、樹脂の微多孔膜の表面に、無機粒子のフィラーを含む耐熱性多孔質層を積層させた耐熱絶縁層付セパレータが開発されている(例えば、特許文献1)。   However, it is known that a separator made of such a thermoplastic resin has a problem in mechanical strength due to the flexibility of the material. In particular, under a high temperature condition, the separator is thermally contracted, and an internal short circuit may occur due to contact between the positive electrode and the negative electrode facing each other through the separator. Therefore, a heat resistant porous layer containing a filler of inorganic particles is laminated on the surface of the resin microporous film in order to suppress heat shrinkage due to heat treatment during battery fabrication or reaction heat during charge / discharge reaction. A separator with an insulating layer has been developed (for example, Patent Document 1).

一方、電池の安全性を向上させるべく、セパレータに保持される非水電解液についても改良が行われている。例えば、特許文献2には、熱可塑性樹脂から構成されるセパレータを使用した非水電解質二次電池において、正極、負極、およびセパレータの総空孔容積に対する非水電解液の注入量を制御することにより電池の安全性を向上させる方法が開示されている。当該文献によると、電池内に注入する電解液の量を規定することにより、異常発生時に生成する非水電解液の分解ガスによる電池内圧の上昇を抑制でき、その結果、優れたサイクル寿命性能および安全性を兼ね備えた電池を提供できる、としている。   On the other hand, in order to improve the safety of the battery, the non-aqueous electrolyte retained in the separator has also been improved. For example, in Patent Document 2, in a non-aqueous electrolyte secondary battery using a separator made of a thermoplastic resin, the injection amount of the non-aqueous electrolyte with respect to the total pore volume of the positive electrode, the negative electrode, and the separator is controlled. Discloses a method for improving battery safety. According to this document, by regulating the amount of electrolyte injected into the battery, it is possible to suppress an increase in the internal pressure of the battery due to the decomposition gas of the non-aqueous electrolyte generated when an abnormality occurs, resulting in excellent cycle life performance and The company says it can provide batteries with safety.

国際公開第2007/066768号パンフレットInternational Publication No. 2007/066768 Pamphlet 特開2001−196094号公報JP 2001-196094 A

特許文献1に記載されるような耐熱絶縁層付セパレータは、耐熱性多孔質層を構成する無機粒子の表面に電解質が吸着しやすく、熱可塑性樹脂セパレータに比べて、電解質を吸収しやすい。このため、特許文献1のような耐熱絶縁層付セパレータに、特許文献2に記載されるような電解質量の制御技術を適用した場合には、充放電に伴ってセル全体に対する電解質が不足し、寿命特性が低下するという問題がある。   The separator with a heat-resistant insulating layer as described in Patent Document 1 is likely to absorb the electrolyte on the surface of the inorganic particles constituting the heat-resistant porous layer, and absorbs the electrolyte more easily than the thermoplastic resin separator. For this reason, when the electrolytic mass control technology as described in Patent Document 2 is applied to a separator with a heat-resistant insulating layer as in Patent Document 1, the electrolyte for the entire cell is insufficient with charge and discharge, There is a problem that the life characteristics are deteriorated.

かかる問題に対処すべく、耐熱絶縁層付セパレータ内の電解質量を増加させた場合には、寿命特性は向上するものの、セル重量の増加と充放電効率の低下が生じ、セルのエネルギー密度が低下する。   In order to cope with this problem, when the electrolytic mass in the separator with a heat-resistant insulating layer is increased, the life characteristics are improved, but the cell weight is increased and the charge / discharge efficiency is decreased, and the energy density of the cell is decreased. To do.

そこで本発明は、多孔質基体層の表面に耐熱絶縁層を積層した耐熱絶縁層付セパレータを使用した電気デバイスにおいて、セルのエネルギー密度の低下を抑制しつつ、寿命特性を向上させうる手段を提供することを目的とする。   Therefore, the present invention provides means for improving the life characteristics while suppressing a decrease in the energy density of a cell in an electrical device using a separator with a heat-resistant insulating layer in which a heat-resistant insulating layer is laminated on the surface of a porous substrate layer. The purpose is to do.

本発明者らは、上記の課題に鑑み、鋭意研究を積み重ねた。その結果、セルの総空孔体積に対する非水電解質量の比率(x)とセルの総空孔体積に対するセパレータの空孔体積の比率(y)とを特定の関係に制御することによって、上記課題が解決されることを見出した。   In view of the above problems, the present inventors have made extensive studies. As a result, by controlling the ratio of the nonaqueous electrolytic mass to the total pore volume of the cell (x) and the ratio of the pore volume of the separator to the total pore volume of the cell (y) to a specific relationship, Has been found to be resolved.

すなわち本発明は、正極、セパレータに非水電解質が保持されてなる電解質層、および負極がこの順に積層されてなる少なくとも1つの単電池層を有する電気デバイスに関する。そして、前記セパレータは、多孔質基体層と前記多孔質基体層の片面または両面に形成された無機粒子およびバインダーを含む耐熱絶縁層とを有し、かつ、下記式(1)を満たす。   That is, the present invention relates to an electric device having a positive electrode, an electrolyte layer in which a nonaqueous electrolyte is held in a separator, and at least one single cell layer in which a negative electrode is laminated in this order. The separator has a porous substrate layer and a heat-resistant insulating layer containing inorganic particles and a binder formed on one or both surfaces of the porous substrate layer, and satisfies the following formula (1).

上記式中、xは正極、負極、およびセパレータの総空孔体積Vに対する非水電解質量Lの比率(L/V)であって、x≧1であり;yは正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(Vs/V)であって、y>0である。   In the above formula, x is the ratio (L / V) of the nonaqueous electrolytic mass L to the total pore volume V of the positive electrode, the negative electrode, and the separator, and x ≧ 1; y is the positive electrode, negative electrode, and separator The ratio (Vs / V) of the void volume Vs of the separator to the total void volume V, where y> 0.

本発明によれば、耐熱絶縁層付セパレータを使用した際に必要となる該セパレータ内の電解質量の増大量を低減しつつ、充放電に伴うセルの電解質不足を防止できる。これにより、セルのエネルギー密度の低下を抑制しつつ、寿命特性を向上させることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the electrolyte shortage of the cell accompanying charging / discharging can be prevented, reducing the increase amount of the electrolytic mass in this separator required when using a separator with a heat-resistant insulating layer. This makes it possible to improve the life characteristics while suppressing a decrease in the energy density of the cell.

本発明の代表的な一実施形態である扁平型(積層型)の非双極型リチウムイオン二次電池(積層型電池)の基本構成を示す概略図である。1 is a schematic diagram illustrating a basic configuration of a flat (stacked) non-bipolar lithium ion secondary battery (stacked battery) that is a representative embodiment of the present invention. 本発明の一実施形態に使用される耐熱絶縁層付セパレータを模式的に表した断面概略図である。It is the cross-sectional schematic which represented typically the separator with a heat resistant insulating layer used for one Embodiment of this invention. 実施例および比較例で得られた各評価用セルのパラメータxおよびyと容量維持比(寿命特性)との関係を示すグラフである。It is a graph which shows the relationship between parameter x and y of each cell for evaluation obtained by the Example and the comparative example, and capacity | capacitance maintenance ratio (lifetime characteristic).

以下、図面を参照しながら、本実施形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, the present embodiment will be described with reference to the drawings. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following embodiments. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.

本発明の一形態に係る電気デバイスは、リチウムイオン二次電池である。すなわち、本発明の一実施形態によれば、正極、セパレータに非水電解質が保持されてなる電解質層、および負極がこの順に積層されてなる少なくとも1つの単電池層を有するリチウムイオン二次電池であって、前記セパレータは、多孔質基体層と前記多孔質基体層の片面または両面に形成された無機粒子およびバインダーを含む耐熱絶縁層とを有し、かつ、下記式(1)を満たす、リチウムイオン二次電池が提供される。   An electric device according to one embodiment of the present invention is a lithium ion secondary battery. That is, according to one embodiment of the present invention, in a lithium ion secondary battery having a positive electrode, an electrolyte layer in which a nonaqueous electrolyte is held in a separator, and at least one single cell layer in which a negative electrode is laminated in this order. The separator has a porous base layer and a heat-resistant insulating layer containing inorganic particles and a binder formed on one or both sides of the porous base layer, and satisfies the following formula (1): An ion secondary battery is provided.

上記式中、xは正極、負極、およびセパレータの総空孔体積Vに対する非水電解質量Lの比率(L/V)であって、x≧1であり;yは正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(Vs/V)であって、y>0である。   In the above formula, x is the ratio (L / V) of the nonaqueous electrolytic mass L to the total pore volume V of the positive electrode, the negative electrode, and the separator, and x ≧ 1; y is the positive electrode, negative electrode, and separator The ratio (Vs / V) of the void volume Vs of the separator to the total void volume V, where y> 0.

リチウムイオン二次電池の構造および形態は特に制限されず、従来公知の多様な構造に適用されうる。好ましくは積層型(扁平型)の電池である。以下の説明では、代表的な実施形態として本発明の電池が積層型(扁平型)のリチウムイオン二次電池である場合を例に挙げて説明するが、本発明の技術的範囲は下記の形態のみに制限されない。   The structure and form of the lithium ion secondary battery are not particularly limited, and can be applied to various conventionally known structures. A stacked (flat) battery is preferred. In the following description, a case where the battery of the present invention is a laminated (flat) lithium ion secondary battery will be described as an example as a representative embodiment, but the technical scope of the present invention is as follows. Is not limited to only.

図1は、本発明の一実施形態である扁平型(積層型)の非双極型リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を示す概略図である。図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。   FIG. 1 is a schematic diagram showing a basic configuration of a flat (stacked) non-bipolar lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) according to an embodiment of the present invention. As shown in FIG. 1, the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior body. .

ここで、発電要素21は、負極集電体11の両面に負極活物質層13が配置された負極と、セパレータ17と、正極集電体12の両面に正極活物質層15が配置された正極とを積層した構成を有している。具体的には、1つの負極活物質層13とこれに隣接する正極活物質層15とが、セパレータ17を介して対向するようにして、負極、セパレータおよび正極がこの順に積層されている。これにより、隣接する負極、セパレータおよび正極は、1つの単電池層(単セル)19を構成する。したがって、本実施形態の積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。   Here, the power generation element 21 includes a negative electrode in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11, a separator 17, and a positive electrode in which the positive electrode active material layer 15 is disposed on both surfaces of the positive electrode current collector 12. Are stacked. Specifically, the negative electrode, the separator, and the positive electrode are laminated in this order so that one negative electrode active material layer 13 and the positive electrode active material layer 15 adjacent to the negative electrode active material layer 13 face each other with the separator 17 therebetween. Thereby, the adjacent negative electrode, separator, and positive electrode constitute one single battery layer (single cell) 19. Therefore, it can be said that the stacked battery 10 of the present embodiment has a configuration in which a plurality of the single battery layers 19 are stacked and electrically connected in parallel.

なお、発電要素21の両最外層に位置する最外層負極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面または両面に正極活物質層が配置されているようにしてもよい。   In addition, although the negative electrode active material layer 13 is arrange | positioned only in the single side | surface at all the outermost layer negative electrode collectors located in both outermost layers of the electric power generation element 21, an active material layer may be provided in both surfaces. That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. Further, by reversing the arrangement of the positive electrode and the negative electrode as compared with FIG. 1, the outermost positive electrode current collector is positioned on both outermost layers of the power generation element 21, and the outermost positive electrode current collector is disposed on one or both surfaces of the outermost layer positive electrode current collector. A positive electrode active material layer may be disposed.

負極集電体11および正極集電体12は、各電極(負極および正極)と導通される負極集電板25および正極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。負極集電板25および正極集電板27はそれぞれ、必要に応じて負極リードおよび正極リード(図示せず)を介して、各電極の負極集電体11および正極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。   The negative electrode current collector 11 and the positive electrode current collector 12 are attached to a negative electrode current collector plate 25 and a positive electrode current collector plate 27 that are electrically connected to the respective electrodes (negative electrode and positive electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29. The negative electrode current collector plate 25 and the positive electrode current collector plate 27 are ultrasonically welded to the negative electrode current collector 11 and the positive electrode current collector 12 of each electrode via a negative electrode lead and a positive electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.

積層型電池1において、セパレータ17の少なくとも1つは、多孔質基体層と前記多孔質基体層の片面または両面に形成された無機粒子およびバインダーを含む耐熱絶縁層とを有してなるセパレータ(以下、「耐熱絶縁層付セパレータ」とも称する)である。すなわち、積層型電池1は、正極と前記負極との間に介在する耐熱絶縁層付セパレータを備える。これにより、積層型電池1は、シャットダウン機能を確保しつつも、熱収縮を抑制する、安全性の高いリチウムイオン二次電池でありうる。なお、耐熱絶縁層付セパレータ以外のせパレータは、従来のセパレータ、例えば、熱可塑性樹脂からなる微多孔膜でありうる。好ましくは、図1に示すセパレータ17の全てが耐熱絶縁層付セパレータで構成される。   In the stacked battery 1, at least one of the separators 17 includes a porous substrate layer and a heat-resistant insulating layer containing inorganic particles and a binder formed on one side or both sides of the porous substrate layer (hereinafter referred to as “a separator”). , Also referred to as “separator with heat-resistant insulating layer”). That is, the multilayer battery 1 includes a separator with a heat-resistant insulating layer interposed between a positive electrode and the negative electrode. Thereby, the laminated battery 1 can be a highly safe lithium ion secondary battery that suppresses thermal shrinkage while ensuring a shutdown function. The separator other than the separator with the heat-resistant insulating layer may be a conventional separator, for example, a microporous film made of a thermoplastic resin. Preferably, all of the separators 17 shown in FIG. 1 are constituted by a separator with a heat-resistant insulating layer.

積層型電池1は、通常、発電要素21を外装体であるラミネートシート29の内部に配置した後、非水電解質をラミネートシート29の内部に注入し、発電要素21内部に存在する空孔に電解質を含浸させ、真空下で端部をシールすることにより製造される。したがって、非水電解質は、発電要素21(正極、負極、およびセパレータ)内部に存在する空孔やラミネートシート29内の発電要素21の外部空間20に存在し、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を果たすこととなる。   In the stacked battery 1, the power generation element 21 is usually disposed inside a laminate sheet 29 that is an exterior body, and then a nonaqueous electrolyte is injected into the laminate sheet 29, and the electrolyte is placed in the pores existing inside the power generation element 21. And the ends are sealed under vacuum. Therefore, the non-aqueous electrolyte exists in pores existing in the power generation element 21 (positive electrode, negative electrode, and separator) and in the external space 20 of the power generation element 21 in the laminate sheet 29, and moves between the positive and negative electrodes during charging and discharging. It will serve as a lithium ion carrier.

本発明では、発電要素21(正極、負極、およびセパレータ)内部に存在する空孔体積(セルの総空孔体積)に対する非水電解質量の比率(x)とセルの総空孔体積に対するセパレータの空孔体積の比率(y)とが特定の関係にあることを特徴とする。   In the present invention, the ratio (x) of the nonaqueous electrolysis mass to the pore volume (total pore volume of the cell) existing inside the power generation element 21 (positive electrode, negative electrode, and separator) and the separator to the total pore volume of the cell. The ratio (y) of the pore volume is in a specific relationship.

従来、耐熱絶縁層付セパレータを使用した電池では、充放電に伴ってセル全体に対する電解質が不足し、寿命特性が低下するという問題があった。また、単に電解質量を増加させた場合には、寿命特性は向上するものの、セル重量の増加と充放電効率の低下が生じ、セルのエネルギー密度が低下する。このように、寿命特性と高エネルギー密度とを両立することは困難であった。   Conventionally, a battery using a separator with a heat-resistant insulating layer has a problem that the electrolyte for the entire cell becomes insufficient with charge / discharge, and the life characteristics deteriorate. Further, when the electrolytic mass is simply increased, the life characteristics are improved, but the cell weight is increased and the charge / discharge efficiency is decreased, and the energy density of the cell is decreased. Thus, it has been difficult to achieve both life characteristics and high energy density.

これに対して、本発明者らは、xとyとが特定の関係にある場合には、耐熱絶縁層付セパレータを使用した場合であっても、電解質不足が防止されるとともに、セルのエネルギー密度の低下を抑制でき、優れた電池性能と耐久性とを兼ね備えた電池が得られることを見出した。   On the other hand, when the x and y are in a specific relationship, the present inventors can prevent the lack of electrolyte and reduce the energy of the cell even when the separator with a heat-resistant insulating layer is used. It was found that a decrease in density can be suppressed, and a battery having excellent battery performance and durability can be obtained.

具体的には、積層型電池10は下記式(1)を満たす。   Specifically, the stacked battery 10 satisfies the following formula (1).

耐久性の一層の向上を図る上でより好ましくは、積層型電池10は下記式(2)を満たす。   More preferably, in order to further improve the durability, the laminated battery 10 satisfies the following formula (2).

特に好ましくは、積層型電池10は下記式(3)を満たす。下記式(3)を満たす積層型電池1は特に優れた耐久性を有する。   Particularly preferably, the stacked battery 10 satisfies the following formula (3). The laminated battery 1 satisfying the following formula (3) has particularly excellent durability.

上記式(1)〜(3)中、xは正極、負極、およびセパレータの総空孔体積Vに対する非水電解質量Lの比率(L/V)であり;yは正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(Vs/V)である。   In the above formulas (1) to (3), x is a ratio (L / V) of the nonaqueous electrolytic mass L to the total pore volume V of the positive electrode, the negative electrode, and the separator; y is the positive electrode, the negative electrode, and the separator This is the ratio (Vs / V) of the pore volume Vs of the separator to the total pore volume V.

パラメータxは、セルの総空孔体積Vに対する非水電解質量Lの比率(L/V)である。xが1である場合には、セルの総空孔体積Vと非水電解質量Lとが等しく、非水電解質の全てを正極、負極、およびセパレータ内の空孔に保持することができることを意味する。活物質の利用効率を向上させるためには、セル内の空孔が電解質で満たされていることが好ましい。かような点からx≧1である。   The parameter x is the ratio (L / V) of the nonaqueous electrolytic mass L to the total pore volume V of the cell. When x is 1, it means that the total pore volume V of the cell and the nonaqueous electrolytic mass L are equal, and all of the nonaqueous electrolyte can be retained in the positive electrode, the negative electrode, and the pores in the separator. To do. In order to improve the utilization efficiency of the active material, it is preferable that the pores in the cell are filled with the electrolyte. From such a point, x ≧ 1.

xが1を超える場合にはセル内の空孔体積を超える量の非水電解質が存在し、この場合、発電要素21(正極、負極、およびセパレータ)内部に存在する空孔に吸収されない過剰の非水電解質は、発電要素21の外部空間20に存在することとなる。したがって、xが大きいほど過剰の電解質の量が増加するため、充放電を繰り返した場合に生じる電解質の不足が防止でき、寿命特性を向上させることができる。かような観点から、より好ましくはx≧1.2であり、さらに好ましくはx≧1.4である。   When x exceeds 1, there is a nonaqueous electrolyte in an amount exceeding the pore volume in the cell. In this case, an excessive amount that is not absorbed by the pores existing inside the power generation element 21 (positive electrode, negative electrode, and separator). The non-aqueous electrolyte is present in the external space 20 of the power generation element 21. Therefore, the amount of excess electrolyte increases as x increases, so that the shortage of electrolyte that occurs when charging and discharging are repeated can be prevented, and the life characteristics can be improved. From such a viewpoint, x ≧ 1.2 is more preferable, and x ≧ 1.4 is more preferable.

一方、xの増加、すなわち、過剰な非水電解質量の増加は、セルのエネルギー密度の低下を招く。したがって、エネルギー密度の低下を抑制する点から、x≦2であることが好ましく、x≦1.8であることがより好ましい。   On the other hand, an increase in x, that is, an increase in excessive nonaqueous electrolytic mass causes a decrease in the energy density of the cell. Therefore, from the viewpoint of suppressing a decrease in energy density, x ≦ 2 is preferable, and x ≦ 1.8 is more preferable.

パラメータyは、正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(Vs/V)であり、セル内に存在する電解質に対してセパレータ内に保持された電解質が占める割合(セパレータ内電解質の占有率)を意味する。   The parameter y is a ratio (Vs / V) of the pore volume Vs of the separator to the total pore volume V of the positive electrode, the negative electrode, and the separator, and the electrolyte held in the separator with respect to the electrolyte present in the cell. It means the ratio (occupation ratio of the electrolyte in the separator).

パラメータyはy>0を満たす。パラメータyの上限は特に制限されない。ただし、パラメータyが大きいほど、発電に寄与しないセパレータの体積が増大し、エネルギー密度の低下を招く。したがって、y≦0.30であることが好ましく、y≦0.28であることがより好ましい。   The parameter y satisfies y> 0. The upper limit of the parameter y is not particularly limited. However, the larger the parameter y, the greater the volume of the separator that does not contribute to power generation, leading to a decrease in energy density. Therefore, y ≦ 0.30 is preferable, and y ≦ 0.28 is more preferable.

一方、パラメータyが小さいほど、セパレータのサイズが小さくなり、エネルギー密度は向上できるものの、所望のパラメータyの値を満足する厚みを有するセパレータを製造するのが困難となる。したがって、製造容易性の面から、例えば、ポリオレフィン系樹脂を多孔質基体層として使用した場合、好ましくはy≧0.24であり、より好ましくはy≧0.25である。   On the other hand, the smaller the parameter y, the smaller the size of the separator and the higher the energy density, but it becomes difficult to manufacture a separator having a thickness that satisfies the desired parameter y value. Therefore, from the viewpoint of ease of production, for example, when a polyolefin-based resin is used as the porous substrate layer, y ≧ 0.24 is preferable, and y ≧ 0.25 is more preferable.

セパレータの空孔容積Vsが大きいほど、耐熱絶縁層付セパレータの吸液による電解質不足が生じやすく、全体の電解質量Lを増加させる必要がある。本発明では、セパレータ内に保持される割合(Vs/V)を示すパラメータyと、セル空孔体積に対する電解質量比(L/V)を示すパラメータxとが上記特定の関係になるようにセル内の電解質が制御される。これにより、電解質量の増大に伴うエネルギー密度の低下を最小としつつ、セパレータの吸液による電解質不足が防止された電解質の注入が可能となる。   The larger the pore volume Vs of the separator, the more easily the electrolyte shortage occurs due to the liquid absorption of the separator with the heat-resistant insulating layer, and it is necessary to increase the total electrolytic mass L. In the present invention, the cell is set so that the parameter y indicating the ratio (Vs / V) retained in the separator and the parameter x indicating the electrolytic mass ratio (L / V) to the cell pore volume have the above specific relationship. The electrolyte inside is controlled. Accordingly, it is possible to inject an electrolyte in which an electrolyte shortage due to liquid absorption of the separator is prevented while minimizing a decrease in energy density accompanying an increase in electrolytic mass.

パラメータxは非水電解質量Lを正極、負極、およびセパレータの総空孔体積Vで除することにより算出され、パラメータyはセパレータの空孔体積Vsを正極、負極、およびセパレータの総空孔体積Vで除することにより算出される。   The parameter x is calculated by dividing the nonaqueous electrolytic mass L by the total pore volume V of the positive electrode, the negative electrode, and the separator, and the parameter y is the total pore volume of the positive electrode, the negative electrode, and the separator. Calculated by dividing by V.

ここで、非水電解質量Lは、非水電解質として液体電解質を使用する場合には液体電解質の体積を意味する。また、非水電解質としてポリマー電解質などの固体電解質を使用する場合には固体電解質の重量を固体電解質の真密度で除することにより算出される固体電解質の体積(=固体電解質の重量/固体電解質の真密度)を意味する。なお、「真密度」とは原材料の空孔を考慮しない理論密度をいう。   Here, the non-aqueous electrolyte mass L means the volume of the liquid electrolyte when a liquid electrolyte is used as the non-aqueous electrolyte. When a solid electrolyte such as a polymer electrolyte is used as the non-aqueous electrolyte, the volume of the solid electrolyte calculated by dividing the weight of the solid electrolyte by the true density of the solid electrolyte (= weight of the solid electrolyte / solid electrolyte True density). The “true density” refers to a theoretical density that does not consider the vacancies in the raw material.

セパレータの空孔体積Vsは、セパレータの体積、セパレータの重量、およびセパレータを構成する原材料の真密度から下記式を用いて算出される。なお、セパレータの体積、重量、原材料の真密度は、多孔質基体層および耐熱絶縁層を含むセパレータ全体の体積、重量、原材料の真密度である。   The pore volume Vs of the separator is calculated using the following formula from the separator volume, the separator weight, and the true density of the raw materials constituting the separator. The volume, weight, and true density of the raw material of the separator are the volume, weight, and true density of the raw material of the entire separator including the porous substrate layer and the heat-resistant insulating layer.

正極、負極、およびセパレータの総空孔体積Vは、正極、負極の空孔体積V、Vおよびセパレータの空孔体積Vsの総和から算出される。ここで、正極、負極の空孔体積V、Vは正極活物質層、負極活物質層の空孔体積を意味し、正極集電体、負極集電体に含まれる空孔は含まない。すなわち、正極、負極の空孔体積V、Vは、正極活物質層または負極活物質層の体積および重量、ならびに正極活物質層または負極活物質層を構成する原材料の真密度から下記式を用いて算出される。 The total pore volume V of the positive electrode, the negative electrode, and the separator is calculated from the sum of the pore volumes V 1 and V 2 of the positive electrode and the negative electrode and the pore volume Vs of the separator. Here, the pore volumes V 1 and V 2 of the positive electrode and the negative electrode mean the pore volumes of the positive electrode active material layer and the negative electrode active material layer, and do not include the voids contained in the positive electrode current collector and the negative electrode current collector. . That is, the pore volumes V 1 and V 2 of the positive electrode and the negative electrode are expressed by the following formula based on the volume and weight of the positive electrode active material layer or the negative electrode active material layer and the true density of the raw materials constituting the positive electrode active material layer or the negative electrode active material layer. Is calculated using

なお、上記V、V、Vsは、水銀圧入法による細孔分布測定から算出することもできる。さらに、Vsはセパレータの含水重量と乾燥重量との差から算出することもできる。 The above V 1, V 2, Vs may be calculated from the pore distribution measurement by mercury porosimetry. Furthermore, Vs can also be calculated from the difference between the moisture content of the separator and the dry weight.

以下、本実施形態の電池を構成する部材について、詳細に説明する。   Hereinafter, members constituting the battery of this embodiment will be described in detail.

[耐熱絶縁層付セパレータ(セパレータ)]
図2に、本発明の一実施形態に使用される耐熱絶縁層付セパレータを模式的に表した断面概略図を示す。図2に示すように、耐熱絶縁層付セパレータ1は、多孔質基体層31と多孔質基体層31の片面または両面に形成された無機粒子32およびバインダー33を含む耐熱絶縁層34とを有してなる。無機粒子32は、バインダー33を介して多孔質基体層31や隣接する無機粒子32と結合されている。図2に示すように、多孔質基体層3に空隙が存在し、無機粒子間に隙間が存在する。これらの空孔部に非水電解質が保持され、耐熱絶縁層付セパレータ1は、全体としてイオン伝導性を有する電解質層として機能する。
[Separator with heat-resistant insulating layer (separator)]
In FIG. 2, the cross-sectional schematic which represented typically the separator with a heat resistant insulating layer used for one Embodiment of this invention is shown. As shown in FIG. 2, the separator 1 with a heat-resistant insulating layer has a porous substrate layer 31 and a heat-resistant insulating layer 34 containing inorganic particles 32 and a binder 33 formed on one or both surfaces of the porous substrate layer 31. It becomes. The inorganic particles 32 are bonded to the porous substrate layer 31 and the adjacent inorganic particles 32 via the binder 33. As shown in FIG. 2, voids exist in the porous substrate layer 3, and gaps exist between the inorganic particles. A nonaqueous electrolyte is held in these pores, and the separator 1 with a heat-resistant insulating layer functions as an electrolyte layer having ion conductivity as a whole.

なお、耐熱絶縁層付セパレータ1は、多孔質基体層と耐熱絶縁層との間にその他の層が介在していてもよく、かような形態もまた、本発明の技術的範囲に包含される。   In addition, the separator 1 with a heat-resistant insulating layer may have other layers interposed between the porous substrate layer and the heat-resistant insulating layer, and such a form is also included in the technical scope of the present invention. .

(多孔質基体層)
多孔質基体層は、耐熱絶縁層を形成する際の基体として機能する。多孔質基体層を構成する材料は、特に制限はないが、熱可塑性樹脂および熱硬化性樹脂などの樹脂材料、金属材料、セルロース系材料などが使用できる。このうち、耐熱絶縁層付セパレータにシャットダウン機能を付与する観点から、樹脂材料からなる多孔質基体層(以下、「樹脂多孔質基体層」とも称する)を用いることが好ましい。
(Porous substrate layer)
The porous substrate layer functions as a substrate when the heat-resistant insulating layer is formed. The material constituting the porous substrate layer is not particularly limited, but resin materials such as thermoplastic resins and thermosetting resins, metal materials, cellulosic materials, and the like can be used. Among these, it is preferable to use a porous substrate layer made of a resin material (hereinafter also referred to as “resin porous substrate layer”) from the viewpoint of providing a separator with a heat-resistant insulating layer with a shutdown function.

樹脂多孔質基体層の材料(基材)としては、溶融温度が120〜200℃である樹脂を含むことが好ましく、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、またはモノマー単位としてエチレンおよびプロピレンを共重合して得られる共重合体(エチレン−プロピレン共重合体)などが挙げられる。これらのポリオレフィン系樹脂は、有機溶媒に対して化学的に安定であるという性質があり、電解質との反応性を低く抑えることができることから好ましい。これらの他、アクリルゴム、ブチルゴム、ニトリルゴム、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴムのようなゴム材料を樹脂多孔質基体層の樹脂材料として使用することもできる。   The material (substrate) of the resin porous substrate layer preferably includes a resin having a melting temperature of 120 to 200 ° C., for example, polyethylene (PE), polypropylene (PP), or ethylene and propylene as monomer units. Examples thereof include a copolymer (ethylene-propylene copolymer) obtained by copolymerization. These polyolefin resins are preferable because they have a property of being chemically stable with respect to an organic solvent and can suppress the reactivity with an electrolyte to a low level. In addition to these, rubber materials such as acrylic rubber, butyl rubber, nitrile rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber, and epichlorohydrin rubber can also be used as the resin material of the resin porous substrate layer.

さらに、溶融温度が120〜200℃である樹脂に加えて、溶融温度が200℃を超える樹脂または熱硬化性樹脂を含んでいてもよい。例えば、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリエチレンテレフタラート(PET)、ポリフッ化ビニリデン(PFDV)、ポリテトラフロロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリアミドイミド(PAI)、アラミド、フェノール樹脂、エポキシ樹脂(EP)、メラミン樹脂、尿素樹脂(UF)、アルキド樹脂、ポリウレタンが挙げられる。この際、樹脂多孔質基体層全体における溶融温度が120〜200℃である樹脂の割合が好ましくは50質量%以上、より好ましくは70%以上、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは100%である。   Furthermore, in addition to the resin having a melting temperature of 120 to 200 ° C., a resin having a melting temperature exceeding 200 ° C. or a thermosetting resin may be included. For example, polystyrene (PS), polyvinyl acetate (PVAc), polyethylene terephthalate (PET), polyvinylidene fluoride (PFDV), polytetrafluoroethylene (PTFE), polysulfone (PSF), polyethersulfone (PES), polyether Examples include ether ketone (PEEK), polyimide (PI), polyamideimide (PAI), aramid, phenol resin, epoxy resin (EP), melamine resin, urea resin (UF), alkyd resin, and polyurethane. At this time, the ratio of the resin having a melting temperature of 120 to 200 ° C. in the entire resin porous substrate layer is preferably 50% by mass or more, more preferably 70% or more, further preferably 90% or more, and particularly preferably 95% or more. Most preferably, it is 100%.

また、上述の材料を積層して樹脂多孔質基体層を形成してもよい。例えば、積層した形態の例としては、PP/PE/PPの3層構造の樹脂多孔質基体層が挙げられる。   Alternatively, the resin porous substrate layer may be formed by laminating the above materials. For example, as an example of the laminated form, a resin porous substrate layer having a three-layer structure of PP / PE / PP can be cited.

樹脂多孔質基体層の形状としては特に制限されず、例えば、織布、不織布、または微多孔膜からなる群から選択される少なくとも1種でありうる。   The shape of the resin porous substrate layer is not particularly limited, and may be, for example, at least one selected from the group consisting of a woven fabric, a nonwoven fabric, and a microporous membrane.

ここで、多孔質基体層の材料(基材)自体はイオン伝導を絶縁する役割を有していることから、高いイオン伝導性を確保するためには、多孔質基体層の形状は高多孔構造であることが好ましい。具体的には、多孔質基体層の空孔率は50%以上であることが好ましい。また、多孔質基体層の機械的強度を確保する上で、多孔質基体層の空孔率は85%以下であることが好ましい。中でも、緻密な空孔構造と機械的強度を確保する上で、多孔質基体層の形状は微多孔膜であることが好ましい。   Here, since the material (base material) of the porous substrate layer itself has a role of insulating ionic conduction, the shape of the porous substrate layer is a highly porous structure in order to ensure high ionic conductivity. It is preferable that Specifically, the porosity of the porous substrate layer is preferably 50% or more. In order to ensure the mechanical strength of the porous substrate layer, the porosity of the porous substrate layer is preferably 85% or less. Among these, in order to ensure a dense pore structure and mechanical strength, the shape of the porous substrate layer is preferably a microporous film.

多孔質基体層の厚さは基材の種類や形態により異なることから一義的に規定することはできない。一例をあげると、織布または不織布の厚さは、好ましくは5〜200μmであり、特に好ましくは5〜100μmである。厚さが5μm以上であれば電解質の保持性が良好であり、100μm以下であれば抵抗が過度に増大しにくい。また、微多孔膜の厚さは、単層あるいは多層で4〜60μmであることが望ましい。   Since the thickness of the porous substrate layer varies depending on the type and form of the substrate, it cannot be uniquely defined. As an example, the thickness of the woven or non-woven fabric is preferably 5 to 200 μm, particularly preferably 5 to 100 μm. If the thickness is 5 μm or more, the electrolyte retainability is good, and if it is 100 μm or less, the resistance is difficult to increase excessively. The thickness of the microporous membrane is preferably 4 to 60 μm for a single layer or multiple layers.

上述の多孔質基体層は、公知の方法で製造されうる。例えば、微多孔膜を製造する延伸開孔法および相分離法、ならびに不織布を製造する電界紡糸法等が挙げられる。   The above-mentioned porous substrate layer can be produced by a known method. For example, a stretch opening method and a phase separation method for producing a microporous membrane, an electrospinning method for producing a nonwoven fabric, and the like can be mentioned.

[耐熱絶縁層]
耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、温度上昇の際に増大するセパレータの内部応力を緩和することによって熱収縮抑制効果が得られる。また、機械的強度が高いことからセパレータの破膜が起こりにくい。さらに、その機械的強度の高さおよび熱収縮抑制効果から、製造工程でセパレータがカールしにくくなる。耐熱絶縁層は耐酸化性も有するため、正極に接する面の安定性が高い。
[Heat resistant insulation layer]
The heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder. By having the heat-resistant insulating layer, the mechanical strength of the separator with the heat-resistant insulating layer is improved, and the effect of suppressing thermal shrinkage is obtained by relaxing the internal stress of the separator that increases when the temperature rises. Further, since the mechanical strength is high, the separator is unlikely to break. Furthermore, due to the high mechanical strength and the effect of suppressing thermal shrinkage, the separator is less likely to curl during the manufacturing process. Since the heat-resistant insulating layer also has oxidation resistance, the stability of the surface in contact with the positive electrode is high.

(無機粒子)
無機粒子は、耐熱絶縁層の構成要素であり、耐熱絶縁層に機械的強度および熱収縮抑制効果を付与する。
(Inorganic particles)
The inorganic particles are a constituent element of the heat-resistant insulating layer and impart mechanical strength and a heat shrinkage suppressing effect to the heat-resistant insulating layer.

無機粒子としては、特に限定されず、公知のものが用いられうる。例えば、ジルコニウム、アルミニウム、ケイ素、およびチタンの酸化物、水酸化物、および窒化物、ならびにこれらの混合物または複合体が挙げられる。例えば、ケイ素、アルミニウム、ジルコニウム、またはチタンの酸化物は、シリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、またはチタニア(TiO)でありうる。これらの無機粒子は単独で、または2種以上を組み合わせて用いられうる。これらのうち、コストの観点から、シリカまたはアルミナを用いることが好ましい。 The inorganic particles are not particularly limited, and known particles can be used. Examples include oxides, hydroxides, and nitrides of zirconium, aluminum, silicon, and titanium, and mixtures or composites thereof. For example, the oxide of silicon, aluminum, zirconium, or titanium can be silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), or titania (TiO 2 ). These inorganic particles can be used alone or in combination of two or more. Of these, silica or alumina is preferably used from the viewpoint of cost.

無機粒子はそれぞれ固有の密度を有する。例えば、ジルコニアの密度は約5.7g/cmであり、アルミナの密度は約4.0g/cmであり、チタニアの密度は約3.9〜4.3g/cmであり、シリカの密度は約2.2g/cmである。用いられる無機粒子の種類によって必要とする無機粒子の量は異なり、一定重量で比較すると無機粒子の密度が高いほど優れた熱収縮抑制効果を示す傾向にある。よって、他の一実施形態において、無機粒子は、好ましくはジルコニアである。 Each inorganic particle has a specific density. For example, the density of the zirconia is about 5.7 g / cm 3, the density of the alumina is about 4.0 g / cm 3, the density of the titania is about 3.9~4.3g / cm 3, silica The density is about 2.2 g / cm 3 . The amount of inorganic particles required varies depending on the type of inorganic particles used, and when compared with a constant weight, the higher the density of the inorganic particles, the better the thermal shrinkage suppression effect. Thus, in another embodiment, the inorganic particles are preferably zirconia.

なお、無機粒子の粒子径については、特に制限されず、適宜調節されうる。   The particle size of the inorganic particles is not particularly limited and can be adjusted as appropriate.

(バインダー)
バインダーは、耐熱絶縁層の構成要素であり、隣接する無機粒子どうし、および無機粒子と樹脂多孔質基体層とを接着する機能を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、多孔質基体層および耐熱絶縁層の間の剥離強度が向上する。
(binder)
The binder is a constituent element of the heat-resistant insulating layer, and has a function of adhering adjacent inorganic particles, and the inorganic particles and the resin porous substrate layer. With the binder, the heat-resistant insulating layer is stably formed, and the peel strength between the porous substrate layer and the heat-resistant insulating layer is improved.

バインダーとしては、特に限定されず、公知のものが用いられうる。例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルが挙げられる。これらは単独で、または2種以上を組み合わせて用いられうる。これらのバインダーのうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、およびポリフッ化ビニリデン(PVDF)が好ましい。   It does not specifically limit as a binder, A well-known thing may be used. For example, carboxymethyl cellulose (CMC), polyacrylonitrile, cellulose, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR), isoprene rubber, butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), and methyl acrylate. These may be used alone or in combination of two or more. Of these binders, carboxymethyl cellulose (CMC), methyl acrylate, and polyvinylidene fluoride (PVDF) are preferred.

バインダーは、無機粒子間の接着および多孔質基体層と耐熱絶縁層との接着に寄与している。よって、バインダーは耐熱絶縁層の構成要素として必須である。バインダーの添加量は、耐熱絶縁層100質量%に対して2〜10質量%であることが好ましい。バインダーの添加量が2質量%以上の場合、耐熱絶縁層付セパレータの剥離強度が高くなり、耐振動性が向上することから好ましい。一方、バインダーの添加量が10質量%以下の場合、接着性が適度に保たれ、イオン伝導性を阻害する可能性が低減されうることから好ましい。   The binder contributes to adhesion between inorganic particles and adhesion between the porous substrate layer and the heat-resistant insulating layer. Therefore, the binder is essential as a component of the heat resistant insulating layer. It is preferable that the addition amount of a binder is 2-10 mass% with respect to 100 mass% of heat resistant insulating layers. When the addition amount of the binder is 2% by mass or more, it is preferable because the peel strength of the separator with a heat-resistant insulating layer is increased and vibration resistance is improved. On the other hand, when the addition amount of the binder is 10% by mass or less, the adhesiveness is appropriately maintained, and the possibility of inhibiting the ionic conductivity can be reduced.

耐熱絶縁層の厚みとしては、電池の種類や用途などに応じて適宜決定されるものであり、特に制限されるべきものではなく、例えば、多孔質基体の片面または両面に形成される耐熱絶縁層の厚みの合計が5〜200μm程度である。また、電気自動車(EV)やハイブリッド電気自動車(HEV)などのモータ駆動用二次電池などの用途においては、多孔質基体の両面に形成される耐熱絶縁層の厚みの合計が、例えば5〜200μm、好ましくは5〜20μm、より好ましくは6〜10μmである。耐熱絶縁層の厚みが、かかる範囲にあることで、厚さ方向の機械的強度を高めつつ、高出力性を確保できる。   The thickness of the heat-resistant insulating layer is appropriately determined according to the type and application of the battery, and should not be particularly limited. For example, the heat-resistant insulating layer formed on one side or both sides of the porous substrate. The total thickness is about 5 to 200 μm. In addition, in applications such as secondary batteries for driving motors such as electric vehicles (EV) and hybrid electric vehicles (HEV), the total thickness of the heat-resistant insulating layers formed on both surfaces of the porous substrate is, for example, 5 to 200 μm. The thickness is preferably 5 to 20 μm, more preferably 6 to 10 μm. When the thickness of the heat-resistant insulating layer is within such a range, high output performance can be secured while increasing the mechanical strength in the thickness direction.

耐熱絶縁層の空隙率は、特に制限されるものではないが、イオン伝導性の観点から、好ましくは40%以上であり、より好ましくは50%以上である。また、空隙率が40%以上であれば、電解質(電解液、電解質ゲル)の保持性が高められ、高出力の電池が得られうる。また、前記耐熱絶縁層の空隙率は、好ましくは70%以下であり、より好ましくは60%以下である。前記耐熱絶縁層の空隙率が70%以下であれば、十分な機械的強度が得られ、異物による短絡を防止する効果が高い。   The porosity of the heat-resistant insulating layer is not particularly limited, but is preferably 40% or more, more preferably 50% or more from the viewpoint of ion conductivity. Moreover, if the porosity is 40% or more, the retainability of the electrolyte (electrolytic solution, electrolyte gel) is improved, and a high-power battery can be obtained. The porosity of the heat-resistant insulating layer is preferably 70% or less, more preferably 60% or less. When the porosity of the heat-resistant insulating layer is 70% or less, sufficient mechanical strength is obtained, and the effect of preventing a short circuit due to foreign matter is high.

耐熱絶縁層付セパレータの総厚みとしては、特に制限されないが、通常5〜30μm程度であれば使用可能である。コンパクトな電池を得るためには、電解質層としての機能が確保できる範囲で極力薄くすることが好ましく、薄膜化して電池出力の向上に寄与するためには、セパレータの総厚みは、好ましくは20〜30μmであり、より好ましくは20〜25μmである。   The total thickness of the separator with a heat-resistant insulating layer is not particularly limited, but is usually about 5 to 30 μm. In order to obtain a compact battery, it is preferable to make it as thin as possible within a range in which the function as an electrolyte layer can be ensured, and in order to contribute to improvement of battery output by reducing the film thickness, the total thickness of the separator is preferably 20 to It is 30 micrometers, More preferably, it is 20-25 micrometers.

耐熱絶縁層付セパレータの製造方法は特に制限されず、公知の方法が使用されうる。例えば、多孔質基体層に、無機粒子およびバインダーが溶剤に分散された溶液を塗工し、前記溶剤を除去して乾燥することにより、耐熱絶縁層付セパレータが製造されうる。   The manufacturing method in particular of a separator with a heat-resistant insulating layer is not restrict | limited, A well-known method may be used. For example, a separator with a heat-resistant insulating layer can be manufactured by applying a solution in which inorganic particles and a binder are dispersed in a solvent to a porous substrate layer, removing the solvent, and drying.

この際用いられる溶剤としては、特に制限されないが、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられる。バインダーとしてポリフッ化ビニリデン(PVDF)を採用する場合には、NMPを溶媒として用いることが好ましい。溶剤を除去する温度は、特に制限はなく、用いられる溶剤によって適宜設定されうる。例えば、水を溶剤として用いた場合には、50〜70℃であり、NMPを溶剤として用いた場合には、70〜90℃でありうる。必要により減圧下で乾燥を行ってもよい。また、溶剤を完全に除去せずに、一部残存させてもよい。   The solvent used in this case is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like are used. When adopting polyvinylidene fluoride (PVDF) as a binder, it is preferable to use NMP as a solvent. The temperature at which the solvent is removed is not particularly limited and can be appropriately set depending on the solvent used. For example, when water is used as a solvent, the temperature may be 50 to 70 ° C., and when NMP is used as a solvent, the temperature may be 70 to 90 ° C. If necessary, drying may be performed under reduced pressure. Further, a part of the solvent may be left without being completely removed.

前記多孔質基体に耐熱絶縁層形成用組成物を塗布する際の目付けは特に制限されないが、好ましくは5〜20g/mであり、より好ましくは9〜13g/mである。上記範囲であれば、適当な空隙率および厚みを有する耐熱絶縁層が得られうる。塗工方法も特に制限はなく、例えば、ブレードコーター法、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。 The basis weight when applying the heat-resistant insulating layer forming composition to the porous substrate is not particularly limited, but is preferably 5 to 20 g / m 2 , more preferably 9 to 13 g / m 2 . If it is the said range, the heat-resistant insulating layer which has a suitable porosity and thickness can be obtained. There are no particular restrictions on the coating method, for example, blade coater method, knife coater method, gravure coater method, screen printing method, Mayer bar method, die coater method, reverse roll coater method, ink jet method, spray method, roll coater method, etc. Is mentioned.

[非水電解質]
非水電解質は、セパレータや活物質層内の空孔(発電要素21内の空孔)、あるいは、発電要素21の外部空間20に存在し、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を果たす。非水電解質としてはかような機能を発揮できるものであれば特に限定されないが、液体電解質またはポリマー電解質が用いられうる。
[Nonaqueous electrolyte]
The non-aqueous electrolyte is present in pores in the separator and the active material layer (holes in the power generation element 21) or in the external space 20 of the power generation element 21, and is a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge. Serves as a function. The nonaqueous electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a polymer electrolyte may be used.

液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられうる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のカーボネート類が例示される。また、支持塩(リチウム塩)としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極の合剤層に添加されうる化合物が同様に採用されうる。 The liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent that can be used as the plasticizer include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). As the supporting salt (lithium salt), Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 Compounds that can be added to the electrode mixture layer, such as SO 3, can be employed as well.

ポリマー電解質は、電解液(液体電解質)を含むゲルポリマー電解質(ゲル電解質)と、電解液を含まない真性ポリマー電解質に分類される。   The polymer electrolyte is classified into a gel polymer electrolyte (gel electrolyte) containing an electrolytic solution (liquid electrolyte) and an intrinsic polymer electrolyte containing no electrolytic solution.

ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することが容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されない。例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF−HFP)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。   The gel polymer electrolyte has a configuration in which the liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. Using a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block the ion conductivity between the layers. The ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited. For example, polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), polyethylene glycol (PEG), polyacrylonitrile (PAN), Examples thereof include polymethyl methacrylate (PMMA) and copolymers thereof.

真性ポリマー電解質は、上記のマトリックスポリマーにリチウム塩が溶解してなる構成を有し、有機溶媒を含まない。従って、電解質として真性ポリマー電解質を用いることで電池からの液漏れの心配がなく、電池の信頼性が向上しうる。   The intrinsic polymer electrolyte has a structure in which a lithium salt is dissolved in the above matrix polymer and does not contain an organic solvent. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.

ゲルポリマー電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。   The matrix polymer of gel polymer electrolyte or intrinsic polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator. A polymerization treatment may be performed.

これらの非水電解質は、1種単独であってもよいし、2種以上を組み合わせて用いてもよい。   These nonaqueous electrolytes may be used singly or in combination of two or more.

[電極]
(集電体)
集電体(負極集電体11、正極集電体12)としては、いずれも電池用の集電体材料として従来用いられている部材が適宜採用されうる。一例を挙げると、正極集電体および負極集電体としては、アルミニウム、ニッケル、鉄、ステンレス鋼(SUS)、チタンまたは銅が挙げられる。中でも、電子伝導性、電池作動電位という観点からは、正極集電体としてはアルミニウムが好ましく、負極集電体としては銅が好ましい。集電体の一般的な厚さは、10〜20μmである。ただし、この範囲を外れる厚さの集電体を用いてもよい。集電板についても、集電体と同様の材料で形成することができる。また、双極型電池用集電体としては上記集電体以外にも、樹脂材料に導電性フィラー(金属粒子やカーボン材料)を添加した樹脂集電体材料も適用されうる。樹脂材料の一例を挙げると、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリアミドなどの材料が挙げられる。
[electrode]
(Current collector)
As the current collectors (the negative electrode current collector 11 and the positive electrode current collector 12), any member conventionally used as a current collector material for a battery can be appropriately employed. As an example, examples of the positive electrode current collector and the negative electrode current collector include aluminum, nickel, iron, stainless steel (SUS), titanium, and copper. Among these, from the viewpoints of electron conductivity and battery operating potential, aluminum is preferable as the positive electrode current collector, and copper is preferable as the negative electrode current collector. A typical thickness of the current collector is 10 to 20 μm. However, a current collector having a thickness outside this range may be used. The current collector plate can also be formed of the same material as the current collector. In addition to the current collector, a resin current collector material obtained by adding a conductive filler (metal particles or carbon material) to the resin material can also be applied as the bipolar battery current collector. If an example of resin material is given, materials, such as polyethylene, a polypropylene, a polystyrene, a polyimide, polyamide, will be mentioned.

(活物質層)
活物質層(正極活物質層15、負極活物質層13)は活物質(負極活物質、正極活物質)を含み、必要に応じて、バインダー、電気伝導性を高めるための導電助剤などを含む。また、活物質層の空孔には非水電解質が含まれうる。
(Active material layer)
The active material layers (the positive electrode active material layer 15 and the negative electrode active material layer 13) include an active material (a negative electrode active material, a positive electrode active material). If necessary, a binder, a conductive auxiliary agent for increasing electrical conductivity, and the like are included. Including. Moreover, the non-aqueous electrolyte may be contained in the pores of the active material layer.

各活物質層(13、15)に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、高容量化、反応性、サイクル耐久性の観点から、通常は0.1〜100μm程度であり、好ましくは1〜20μmである。   The average particle diameter of each active material contained in each active material layer (13, 15) is not particularly limited, but is usually about 0.1 to 100 μm from the viewpoint of high capacity, reactivity, and cycle durability. The thickness is preferably 1 to 20 μm.

各活物質層(13、15)中に含まれる成分の配合比は特に限定されず、リチウムイオン二次電池またはリチウムイオン電池についての公知の知見を適宜参照することにより、調整されうる。また、活物質層の厚さについても特に制限はなく、リチウムイオン二次電池またはリチウムイオン電池についての従来公知の知見が適宜参照されうる。一例を挙げると、活物質層の厚さは、2〜100μm程度である
(a)活物質
(i)正極活物質
正極活物質はリチウムの吸蔵放出が可能な材料であれば限定されず、リチウムイオン二次電池に通常用いられる正極活物質を利用することができる。具体的には、リチウム−マンガン複合酸化物(LiMnなど)、リチウム−ニッケル複合酸化物(LiNiOなど)、リチウム−コバルト複合酸化物(LiCoOなど)、リチウム−鉄複合酸化物(LiFeOなど)、リチウム−ニッケル−マンガン複合酸化物(LiNi0.5Mn0.5など)、リチウム−ニッケル−コバルト複合酸化物(LiNi0.8Co0.2など)、リチウム−遷移金属リン酸化合物(LiFePOなど)、およびリチウム−遷移金属硫酸化合物(LiFe(SO)などが挙げられる。上記正極活物質は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
The compounding ratio of the components contained in each active material layer (13, 15) is not particularly limited, and can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries or lithium ion batteries. Moreover, there is no restriction | limiting in particular also about the thickness of an active material layer, The conventionally well-known knowledge about a lithium ion secondary battery or a lithium ion battery can be referred suitably. For example, the thickness of the active material layer is about 2 to 100 μm. (A) Active material (i) Positive electrode active material The positive electrode active material is not limited as long as it is a material capable of occluding and releasing lithium. A positive electrode active material usually used for an ion secondary battery can be used. Specifically, lithium-manganese composite oxide (LiMn 2 O 4 etc.), lithium-nickel composite oxide (LiNiO 2 etc.), lithium-cobalt composite oxide (LiCoO 2 etc.), lithium-iron composite oxide ( LiFeO 2 etc.), lithium-nickel-manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 etc.), lithium-nickel-cobalt composite oxide (LiNi 0.8 Co 0.2 O 2 etc.), lithium - transition metal phosphate compound (such as LiFePO 4), and lithium - transition metal sulfate compound (Li x Fe 2 (SO 4 ) 3) , and the like. The positive electrode active material may be used alone or in the form of a mixture of two or more. Of course, negative electrode active materials other than those described above may be used.

(ii)負極活物質
負極活物質はリチウムを可逆的に吸蔵および放出できるものであれば特に制限されず、従来公知の負極活物質をいずれも使用できる。例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等)、低結晶性カーボン(ソフトカーボン、ハードカーボン)、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリルなどの炭素材料;一酸化ケイ素(SiO)、SiO(0<x<2)、二酸化スズ(SnO)、SnO(0<x<2)、SnSiO、炭化ケイ素(SiC)などのリチウム合金系負極材料;リチウム金属等の金属材料;リチウム−チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム−遷移金属複合酸化物などが挙げられる。上記負極活物質は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
(Ii) Negative electrode active material The negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium, and any conventionally known negative electrode active material can be used. For example, high crystalline carbon graphite (natural graphite, artificial graphite, etc.), low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen black, acetylene black, channel black, lamp black, oil furnace black, Carbon materials such as thermal black, fullerenes, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon fibrils; silicon monoxide (SiO), SiO x (0 <x <2), tin dioxide (SnO 2 ), SnO x (0 <x <2), lithium alloy negative electrode materials such as SnSiO 3 and silicon carbide (SiC); metal materials such as lithium metal; lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ), etc. Lithium Like transfer metal composite oxide. The negative electrode active material may be used alone or in the form of a mixture of two or more. Of course, negative electrode active materials other than those described above may be used.

(b)バインダー
バインダーは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。
(B) Binder The binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.

かようなバインダーとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)およびポリアクリロニトリル(PAN)などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレンブタジエンゴム(SBR)などのゴム系材料が挙げられる。   As such a binder, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), Thermosetting resins such as polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins And rubber-based materials such as styrene butadiene rubber (SBR).

(c)導電助剤
導電助剤とは、導電性を向上させるために配合される導電性の添加物をいう。本実施形態で使用しうる導電助剤は特に制限されず、従来公知のものを利用することができる。例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上、電解液の保液性の向上による信頼性向上に寄与しうる。
(C) Conductive aid The conductive aid refers to a conductive additive blended to improve conductivity. The conductive auxiliary agent that can be used in the present embodiment is not particularly limited, and conventionally known ones can be used. Examples thereof include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber. When the conductive assistant is included, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery and improvement of reliability due to improvement of liquid retention of the electrolytic solution.

(d)電解質
活物質層内に存在する非水電解質は、上記セパレータ内部や発電要素の外部空間に存在する非水電解質と同一であることが好ましいが、異なっていてもよい。なお、活物質層内に存在する非水電解質がセパレータ内部や発電要素の外部空間に存在する非水電解質と異なる場合、活物質層内の非水電解質として上述した液体電解質および/もしくはゲルポリマー電解質に替えて、またはこれに加えて、真性ポリマー電解質を使用してもよい。
(D) Electrolyte The nonaqueous electrolyte present in the active material layer is preferably the same as the nonaqueous electrolyte present in the separator or in the external space of the power generation element, but may be different. When the non-aqueous electrolyte present in the active material layer is different from the non-aqueous electrolyte present in the separator or in the external space of the power generation element, the liquid electrolyte and / or gel polymer electrolyte described above as the non-aqueous electrolyte in the active material layer Alternatively, or in addition, an intrinsic polymer electrolyte may be used.

[外装体]
リチウムイオン二次電池では、使用時の外部からの衝撃や環境劣化を防止するために、発電要素全体を外装体に収容するのが望ましい。外装体としては、従来公知の金属缶ケースを用いることができほか、アルミニウムを含むラミネートフィルムを用いた発電要素を覆うことができる袋状のケースを用いることができる。ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。
[Exterior body]
In a lithium ion secondary battery, it is desirable to accommodate the entire power generating element in an exterior body in order to prevent external impact and environmental degradation during use. As the exterior body, a conventionally known metal can case can be used, and a bag-like case that can cover a power generation element using a laminate film containing aluminum can be used. For example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.

なお、上記実施形態では、電気デバイスとして、ラミネートフィルムを外装材にするリチウムイオン二次電池(積層型電池1)を例示したが、これには限られない。他のタイプの二次電池、さらには一次電池にも適用できる。また電池だけでなく電気二重層キャパシタにも適用できる。   In the above embodiment, the lithium ion secondary battery (laminated battery 1) using a laminate film as an exterior material is illustrated as an electrical device, but the present invention is not limited to this. It can be applied to other types of secondary batteries and even primary batteries. Moreover, it can be applied not only to batteries but also to electric double layer capacitors.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。   The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.

[実施例1]
1.正極の作製
正極活物質としてのLiMn(85質量%)、導電助剤としてのアセチレンブラック(5質量%)、およびバインダーとしてのポリフッ化ビニリデン(PVDF)(10質量%)を混合した。この混合物をスラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)の適量に分散させ、正極活物質スラリーを調製した。この正極活物質スラリーを、正極集電体としてのアルミニウム集電箔(厚さ:20μm)の片面に塗布し、乾燥後プレスすることで片面の活物質層の厚みが60μmの正極を作製した。なお、正極(正極活物質層)の空孔率は30%であった。
[Example 1]
1. Production of Positive Electrode LiMn 2 O 4 (85% by mass) as a positive electrode active material, acetylene black (5% by mass) as a conductive additive, and polyvinylidene fluoride (PVDF) (10% by mass) as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP), which is a slurry viscosity adjusting solvent, to prepare a positive electrode active material slurry. This positive electrode active material slurry was applied to one side of an aluminum current collector foil (thickness: 20 μm) as a positive electrode current collector, dried and pressed to produce a positive electrode having a single-side active material layer thickness of 60 μm. Note that the porosity of the positive electrode (positive electrode active material layer) was 30%.

2.負極の作製
負極活物質としてのハードカーボン(90質量%)およびバインダーとしてのポリフッ化ビニリデン(PVDF)(10質量%)を混合した。この混合物をスラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)の適量に分散させ、負極活物質スラリーを調製した。この負極活物質スラリーを、負極集電体としての銅集電箔パンチングメタル(厚さ:20μm)の片面に塗布し、乾燥後プレスすることで片面の活物質層の厚みが50μmの負極を作製した。なお、負極(負極活物質層)の空孔率は35%であった。得られた負極を、電極部サイズが100mm×100mmとなるように、溶接するタブ部を残して打ち抜き、積層用の負極を作製した。
2. Production of Negative Electrode Hard carbon (90% by mass) as a negative electrode active material and polyvinylidene fluoride (PVDF) (10% by mass) as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP), which is a slurry viscosity adjusting solvent, to prepare a negative electrode active material slurry. This negative electrode active material slurry is applied to one side of a copper current collector punching metal (thickness: 20 μm) as a negative electrode current collector, dried and pressed to produce a negative electrode having a thickness of 50 μm on one side of the active material layer did. The porosity of the negative electrode (negative electrode active material layer) was 35%. The obtained negative electrode was punched out so that the electrode part size was 100 mm × 100 mm, leaving a tab part to be welded, and a negative electrode for lamination was produced.

3.耐熱絶縁層付セパレータの作製
無機粒子としてのアルミナ粒子1(平均粒子径:0.5μm、比表面積5g/m)(95質量%)およびバインダーとしてのポリフッ化ビニリデン(PVDF)(5質量%)を、スラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)の適量に分散させ、耐熱絶縁層スラリーを調整した。
3. Production of separator with heat-resistant insulating layer Alumina particles 1 (average particle size: 0.5 μm, specific surface area 5 g / m 2 ) (95% by mass) as inorganic particles and polyvinylidene fluoride (PVDF) (5% by mass) as a binder Was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP), which is a slurry viscosity adjusting solvent, to prepare a heat-resistant insulating layer slurry.

この耐熱絶縁層スラリーを樹脂多孔質基体であるポリエチレン(PE)微多孔膜(空孔率50%、膜厚15μm)の両面にブレードコーターにより塗布し、乾燥後プレスすることにより、PE微多孔膜の両面に耐熱絶縁層が形成された、耐熱絶縁層付セパレータを作製した。この際、正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(y=Vs/V)が0.250となるように耐熱絶縁層の厚みを調整した。なお、耐熱絶縁層付セパレータの空孔率は50%であった。   The heat-resistant insulating layer slurry is applied to both sides of a polyethylene (PE) microporous membrane (porosity 50%, film thickness 15 μm), which is a porous resin substrate, by a blade coater, dried and pressed to obtain a PE microporous membrane. A separator with a heat-resistant insulating layer in which a heat-resistant insulating layer was formed on both sides was prepared. At this time, the thickness of the heat-resistant insulating layer was adjusted so that the ratio of the pore volume Vs of the separator to the total pore volume V of the positive electrode, the negative electrode, and the separator (y = Vs / V) was 0.250. In addition, the porosity of the separator with a heat-resistant insulating layer was 50%.

3.評価用セルの作製
上記で作製した正極、負極、および耐熱絶縁層付セパレータを縦10cm、横10cmの大きさに切り出し、正極活物質層と負極活物質層とが、耐熱絶縁層付セパレータを介して対向させるように積層して評価用発電要素を作製した。なお、負極にはニッケル製タブリードを、正極にはアルミニウム製タブリードを超音波溶接にて接続させた。
3. Production of Evaluation Cell The positive electrode, negative electrode, and separator with a heat-resistant insulating layer produced above were cut into a size of 10 cm in length and 10 cm in width, and the positive electrode active material layer and the negative electrode active material layer were interposed via the separator with a heat-resistant insulating layer. The power generation element for evaluation was manufactured by stacking so as to face each other. The nickel tab lead was connected to the negative electrode, and the aluminum tab lead was connected to the positive electrode by ultrasonic welding.

次いで、前記の評価用発電要素を1対のラミネート外装の内部に設置し、電解液を注入後真空封止して評価用セルを作製した。なお、電解液は、1M LiPFをエチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1(体積比)の溶媒に溶解させたものを使用した。この際、正極、負極、およびセパレータの総空孔体積Vに対する非水電解質量Lの比率(x=L/V)が1.25となるように電解液量を調節した。 Next, the power generation element for evaluation was placed inside a pair of laminate sheaths, and an electrolyte was injected, followed by vacuum sealing to produce an evaluation cell. Incidentally, the electrolyte, a 1M LiPF 6 ethylene carbonate (EC): diethyl carbonate (DEC) = 1: 1 were used as dissolved in a solvent (volume ratio). At this time, the amount of the electrolyte was adjusted so that the ratio of the nonaqueous electrolytic mass L to the total pore volume V of the positive electrode, the negative electrode, and the separator (x = L / V) was 1.25.

[実施例2〜3、比較例1〜3]
正極、負極、およびセパレータの総空孔体積Vに対する非水電解質量Lの比率(x=L/V)が表1に示す値となるように電解液量を変更したこと以外は実施例1と同様の方法で評価用セルを作製した。
[Examples 2-3, Comparative Examples 1-3]
Example 1 except that the amount of the electrolyte was changed so that the ratio of the nonaqueous electrolytic mass L to the total pore volume V of the positive electrode, the negative electrode, and the separator (x = L / V) became the value shown in Table 1 An evaluation cell was produced in the same manner.

[実施例4]
耐熱絶縁層を構成する無機粒子としてアルミナ粒子1の代わりにアルミナ粒子1(平均粒子径:0.5μm、比表面積5g/m)およびアルミナ粒子2(平均粒子径:0.5μm、比表面積50g/m)を使用し、正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(y=Vs/V)が0.275となるように電解液量を変更した。これ以外は実施例1と同様の方法で評価用セルを作製した。
[Example 4]
As inorganic particles constituting the heat-resistant insulating layer, alumina particles 1 (average particle diameter: 0.5 μm, specific surface area 5 g / m 2 ) and alumina particles 2 (average particle diameter: 0.5 μm, specific surface area 50 g) are used instead of alumina particles 1. / M 2 ), and the amount of the electrolyte was changed so that the ratio of the pore volume Vs of the separator to the total pore volume V of the positive electrode, the negative electrode, and the separator (y = Vs / V) was 0.275. . Except for this, an evaluation cell was produced in the same manner as in Example 1.

[実施例5〜6、比較例4〜6]
正極、負極、およびセパレータの総空孔体積Vに対する非水電解質量Lの比率(x=L/V)が表1に示す値となるように電解液量を変更したこと以外は実施例4と同様の方法で評価用セルを作製した。
[Examples 5-6, Comparative Examples 4-6]
Example 4 except that the amount of the electrolytic solution was changed so that the ratio (x = L / V) of the nonaqueous electrolytic mass L to the total pore volume V of the positive electrode, the negative electrode, and the separator became the value shown in Table 1. An evaluation cell was produced in the same manner.

[実施例7]
耐熱絶縁層を構成する無機粒子としてのアルミナ粒子1およびアルミナ粒子2の混合比率を変更し、正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(y=Vs/V)が0.310となるようにした。これ以外は実施例4と同様の方法で評価用セルを作製した。
[Example 7]
The mixing ratio of alumina particles 1 and alumina particles 2 as inorganic particles constituting the heat-resistant insulating layer was changed, and the ratio of the separator pore volume Vs to the total pore volume V of the positive electrode, the negative electrode, and the separator (y = Vs / V) was set to 0.310. Other than this, an evaluation cell was produced in the same manner as in Example 4.

[実施例8、比較例7〜9]
正極、負極、およびセパレータの総空孔体積Vに対する非水電解液量Lの比率(x=L/V)が表1に示す値となるように電解質量を変更する以外は実施例7と同様の方法で評価用セルを作製した。
[Example 8, Comparative Examples 7 to 9]
The same as Example 7 except that the electrolytic mass was changed so that the ratio of the non-aqueous electrolyte amount L to the total pore volume V of the positive electrode, negative electrode, and separator (x = L / V) was the value shown in Table 1. An evaluation cell was prepared by the method described above.

[実施例9]
耐熱絶縁層を構成する無機粒子としてアルミナ粒子1の代わりにアルミナ(Al)粒子1(平均粒子径:0.5μm、比表面積5g/m)およびシリカ(SiO)粒子(平均粒子径:0.5μm、比表面積5g/m)を使用した。これ以外は、実施例1と同様の方法で評価用セルを作製した。
[Example 9]
As the inorganic particles constituting the heat-resistant insulating layer, alumina (Al 2 O 3 ) particles 1 (average particle size: 0.5 μm, specific surface area 5 g / m 2 ) and silica (SiO 2 ) particles (average particles) instead of alumina particles 1 (Diameter: 0.5 μm, specific surface area 5 g / m 2 ) was used. Except for this, an evaluation cell was produced in the same manner as in Example 1.

[実施例10]
耐熱絶縁層を構成する無機粒子としてアルミナ粒子1の代わりにアルミナ(Al)粒子1(平均粒子径:0.5μm、比表面積5g/m)およびジルコニア(ZrO)粒子(平均粒子径:0.5μm、比表面積5g/m)を使用した。これ以外は、実施例1と同様の方法で評価用セルを作製した。
[Example 10]
As the inorganic particles constituting the heat-resistant insulating layer, alumina (Al 2 O 3 ) particles 1 (average particle diameter: 0.5 μm, specific surface area 5 g / m 2 ) and zirconia (ZrO 2 ) particles (average particles) instead of alumina particles 1 (Diameter: 0.5 μm, specific surface area 5 g / m 2 ) was used. Except for this, an evaluation cell was produced in the same manner as in Example 1.

(評価)
上記の方法で作製した実施例および比較例の各評価用セルについて、25℃の雰囲気下、0.5Cで5時間初回充電放電を行った。
(Evaluation)
About each cell for an evaluation of the Example and comparative example which were produced by said method, initial charge discharge was performed for 5 hours at 0.5 C in 25 degreeC atmosphere.

次いで、各評価用セルに対しガス抜きを実施した後、45℃の雰囲気下、1Cの定電流にて100サイクルのサイクル試験を実施した。試験後の容量測定を満充電後1Cの条件で行い、各評価用セルの100サイクル後の放電容量を、比較例1の評価用セルの100サイクル後の放電容量を1とした場合の相対値(容量維持比)として表1に示した。また、実施例および比較例で得られた各評価用セルのパラメータxおよびyと容量維持比(寿命特性)との関係を図3に示した。図3中括弧書きで示されるのが各実施例および比較例におけるセルの容量維持比である。   Subsequently, after degassing each evaluation cell, a cycle test of 100 cycles was performed at a constant current of 1 C in an atmosphere at 45 ° C. The capacity measurement after the test is performed under the condition of 1C after full charge, and the discharge capacity after 100 cycles of each evaluation cell is the relative value when the discharge capacity after 100 cycles of the evaluation cell of Comparative Example 1 is 1. It is shown in Table 1 as (capacity maintenance ratio). FIG. 3 shows the relationship between the parameters x and y of each evaluation cell obtained in the examples and comparative examples and the capacity maintenance ratio (life characteristics). Shown in parentheses in FIG. 3 are the capacity retention ratios of the cells in each example and comparative example.

表1および図3から、式(1)を満たす実施例の評価用セルでは、サイクル試験後の容量維持比が高く、寿命特性が高く維持されることが確認される。特に、図3から式(1)を満たさない領域(比較例)では、xおよびyの変化(増加)に伴い容量維持率が大きく変化(増加)するのに対し、式(1)を満たす領域(実施例)では、xおよびyの変化に伴う容量維持率の変化が緩やかになっていることが確認される。すなわち、y=0.145x+0.075を境界として、式(1)を満たす場合には容量維持率が有意に高く維持されることがわかる。   From Table 1 and FIG. 3, it is confirmed that in the evaluation cell of the example satisfying the formula (1), the capacity maintenance ratio after the cycle test is high and the life characteristics are maintained high. In particular, in the region that does not satisfy Expression (1) from FIG. 3 (Comparative Example), the capacity retention ratio changes (increases) greatly as x and y change (increase), whereas the area that satisfies Expression (1) In (Example), it is confirmed that the change in the capacity maintenance ratio accompanying the change in x and y is moderate. That is, it can be seen that the capacity retention rate is maintained significantly high when Expression (1) is satisfied with y = 0.145x + 0.075 as the boundary.

さらに、式(2)および式(3)を満たす実施例の評価用セルでは、サイクル試験後の容量維持率がより一層向上し、寿命特性が一層向上することが確認される。   Furthermore, it is confirmed that in the evaluation cells of the examples satisfying the formulas (2) and (3), the capacity retention rate after the cycle test is further improved and the life characteristics are further improved.

1 耐熱絶縁層付セパレータ、
10 積層型電池、
11 負極集電体、
12 正極集電体、
13 負極活物質層(負極)、
15 正極活物質層(正極)、
17 電解質層、
19 単電池層(単セル)、
20 外部空間、
21 発電要素、
25 負極集電板、
27 正極集電板、
29 外装体(ラミネートシート)、
31 (樹脂)多孔質基体層、
32 無機粒子、
33 バインダー、
34 耐熱絶縁層。
1 Separator with heat-resistant insulating layer,
10 stacked battery,
11 negative electrode current collector,
12 positive electrode current collector,
13 negative electrode active material layer (negative electrode),
15 positive electrode active material layer (positive electrode),
17 electrolyte layer,
19 Single battery layer (single cell),
20 external space,
21 power generation elements,
25 negative current collector,
27 positive current collector,
29 exterior body (laminate sheet),
31 (resin) porous substrate layer,
32 inorganic particles,
33 binder,
34 Heat-resistant insulating layer.

Claims (6)

正極、セパレータに非水電解質が保持されてなる電解質層、および負極がこの順に積層されてなる少なくとも1つの単電池層を有する電気デバイスであって、
前記セパレータは、多孔質基体層と前記多孔質基体層の片面または両面に形成された無機粒子およびバインダーを含む耐熱絶縁層とを有し、かつ、
下記式(1)を満たす、電気デバイス。
上記式中、xは正極、負極、およびセパレータの総空孔体積Vに対する非水電解質量Lの比率(L/V)であって、x≧1であり;yは正極、負極、およびセパレータの総空孔体積Vに対するセパレータの空孔体積Vsの比率(Vs/V)であって、y>0である。
An electrical device having a positive electrode, an electrolyte layer in which a nonaqueous electrolyte is held in a separator, and at least one single cell layer in which a negative electrode is laminated in this order,
The separator has a porous substrate layer and a heat-resistant insulating layer containing inorganic particles and a binder formed on one or both surfaces of the porous substrate layer, and
An electrical device that satisfies the following formula (1).
In the above formula, x is the ratio (L / V) of the nonaqueous electrolytic mass L to the total pore volume V of the positive electrode, the negative electrode, and the separator, and x ≧ 1; y is the positive electrode, negative electrode, and separator The ratio (Vs / V) of the void volume Vs of the separator to the total void volume V, where y> 0.
x≦2である、請求項1に記載の電気デバイス。   The electrical device of claim 1, wherein x ≦ 2. さらに下記式(2)を満たす、請求項1または2に記載の電気デバイス。
上記式中、xおよびyは、上記と同様の定義である。
Furthermore, the electrical device of Claim 1 or 2 which satisfy | fills following formula (2).
In the above formula, x and y have the same definitions as above.
さらに下記式(3)を満たす、請求項3に記載の電気デバイス。
上記式中、xおよびyは、上記と同様の定義である。
Furthermore, the electrical device of Claim 3 which satisfy | fills following formula (3).
In the above formula, x and y have the same definitions as above.
前記無機粒子が、ジルコニウム、アルミニウム、ケイ素、およびチタンの酸化物、水酸化物、および窒化物、ならびにこれらの混合物または複合体からなる群から選択される少なくとも1種を含む、請求項1〜4のいずれか1項に記載の電気デバイス。   The inorganic particles include at least one selected from the group consisting of oxides, hydroxides, and nitrides of zirconium, aluminum, silicon, and titanium, and mixtures or composites thereof. The electrical device according to any one of the above. 前記多孔質基体層を構成する材料が、ポリエチレン、ポリプロピレン、またはエチレン−プロピレン共重合体からなる群から選択される少なくとも1種を含む、請求項1〜5のいずれか1項に記載の電気デバイス。   The electrical device according to any one of claims 1 to 5, wherein the material constituting the porous substrate layer includes at least one selected from the group consisting of polyethylene, polypropylene, or ethylene-propylene copolymer. .
JP2011222937A 2011-10-07 2011-10-07 Electric device Pending JP2013084416A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011222937A JP2013084416A (en) 2011-10-07 2011-10-07 Electric device
PCT/JP2012/074425 WO2013051416A1 (en) 2011-10-07 2012-09-24 Electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222937A JP2013084416A (en) 2011-10-07 2011-10-07 Electric device

Publications (1)

Publication Number Publication Date
JP2013084416A true JP2013084416A (en) 2013-05-09

Family

ID=48043578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222937A Pending JP2013084416A (en) 2011-10-07 2011-10-07 Electric device

Country Status (2)

Country Link
JP (1) JP2013084416A (en)
WO (1) WO2013051416A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191943A (en) * 2014-03-27 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Lithium ion capacitor, power storage module, and method of manufacturing lithium ion capacitor
JP2015210848A (en) * 2014-04-23 2015-11-24 オートモーティブエナジーサプライ株式会社 Nonaqueous electrolyte secondary battery
JPWO2014185378A1 (en) * 2013-05-15 2017-02-23 株式会社クレハ Non-aqueous electrolyte secondary battery structure, non-aqueous electrolyte secondary battery, and method for producing the structure
JP2018063920A (en) * 2016-10-14 2018-04-19 日産自動車株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2019074029A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
WO2019074025A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Method for producing electrode for nonaqueous electrolyte secondary battery
WO2019074030A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
WO2021060414A1 (en) * 2019-09-25 2021-04-01 積水化学工業株式会社 Power storage element and method for manufacturing power storage element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158702A1 (en) * 2016-03-14 2017-09-21 株式会社村田製作所 Electrical storage device
WO2017158704A1 (en) * 2016-03-14 2017-09-21 株式会社村田製作所 Electrical storage device
EP3453785A1 (en) * 2017-09-07 2019-03-13 Kabushiki Kaisha Toshiba Membrane electrode assembly, electrochemical cell, and electrochemical device
JP7198041B2 (en) * 2018-10-24 2022-12-28 株式会社エンビジョンAescジャパン battery
JP7159848B2 (en) * 2018-12-20 2022-10-25 Tdk株式会社 secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294294A (en) * 1999-04-02 2000-10-20 Denso Corp Nonaqueous electrolyte secondary battery
JP2002015774A (en) * 2000-06-29 2002-01-18 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte lithium secondary cell
JP2002270225A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP5128786B2 (en) * 2005-05-31 2013-01-23 パナソニック株式会社 Battery module
JP2007123238A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
JP2010062113A (en) * 2008-09-08 2010-03-18 Nec Tokin Corp Lithium ion secondary battery
JP2010113804A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
JP5574404B2 (en) * 2009-07-16 2014-08-20 Necエナジーデバイス株式会社 Lithium ion secondary battery
JP5370102B2 (en) * 2009-11-27 2013-12-18 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014185378A1 (en) * 2013-05-15 2017-02-23 株式会社クレハ Non-aqueous electrolyte secondary battery structure, non-aqueous electrolyte secondary battery, and method for producing the structure
JP2015191943A (en) * 2014-03-27 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Lithium ion capacitor, power storage module, and method of manufacturing lithium ion capacitor
JP2015210848A (en) * 2014-04-23 2015-11-24 オートモーティブエナジーサプライ株式会社 Nonaqueous electrolyte secondary battery
US9680153B2 (en) 2014-04-23 2017-06-13 Automotive Energy Supply Corporation Nonaqueous electrolyte secondary battery
JP2018063920A (en) * 2016-10-14 2018-04-19 日産自動車株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2019071225A (en) * 2017-10-10 2019-05-09 日産自動車株式会社 Method for manufacturing electrode for nonaqueous electrolyte secondary battery
CN111213263A (en) * 2017-10-10 2020-05-29 日产自动车株式会社 Method for manufacturing electrode for nonaqueous electrolyte secondary battery
WO2019074030A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
JP2019071227A (en) * 2017-10-10 2019-05-09 日産自動車株式会社 Electrode for nonaqueous electrolyte secondary battery
JP2019071226A (en) * 2017-10-10 2019-05-09 日産自動車株式会社 Electrode for nonaqueous electrolyte secondary battery
WO2019074029A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
CN111201642A (en) * 2017-10-10 2020-05-26 日产自动车株式会社 Electrode for nonaqueous electrolyte secondary battery
WO2019074025A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Method for producing electrode for nonaqueous electrolyte secondary battery
CN111213263B (en) * 2017-10-10 2023-11-03 日产自动车株式会社 Method for manufacturing electrode for nonaqueous electrolyte secondary battery
US11664502B2 (en) 2017-10-10 2023-05-30 Nissan Motor Co., Ltd. Electrode for non-aqueous electrolyte secondary battery
JP7029922B2 (en) 2017-10-10 2022-03-04 日産自動車株式会社 Manufacturing method of electrodes for non-aqueous electrolyte secondary batteries
JP7133301B2 (en) 2017-10-10 2022-09-08 日産自動車株式会社 Electrodes for non-aqueous electrolyte secondary batteries
JP7145600B2 (en) 2017-10-10 2022-10-03 日産自動車株式会社 Electrodes for non-aqueous electrolyte secondary batteries
JPWO2021060414A1 (en) * 2019-09-25 2021-11-11 積水化学工業株式会社 Power storage element and manufacturing method of power storage element
WO2021060414A1 (en) * 2019-09-25 2021-04-01 積水化学工業株式会社 Power storage element and method for manufacturing power storage element

Also Published As

Publication number Publication date
WO2013051416A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2013051416A1 (en) Electrical device
JP6003041B2 (en) Separator with heat-resistant insulation layer
JP6575972B2 (en) Nonaqueous electrolyte secondary battery
JP5910164B2 (en) Nonaqueous electrolyte secondary battery
KR101689496B1 (en) Non-aqueous electrolyte secondary battery
JP6007315B2 (en) Nonaqueous electrolyte secondary battery
JP5966285B2 (en) Separator with heat-resistant insulation layer
KR102113656B1 (en) Manufacturing method of secondary battery
JP2014137985A (en) Secondary battery
JP2015095329A (en) Lithium ion secondary battery
US9847518B2 (en) Separator with heat-resistant insulation layer
WO2015034080A1 (en) Separator, and electrical storage device using same
US11302954B2 (en) Nonaqueous electrolyte secondary battery
JP2013127845A (en) Electric device
JP6740011B2 (en) Non-aqueous electrolyte secondary battery
JP6958272B2 (en) Non-aqueous electrolyte secondary battery
JP6102442B2 (en) Lithium ion secondary battery
JP6004088B2 (en) Nonaqueous electrolyte secondary battery
JP2007242348A (en) Lithium-ion secondary battery
KR102061442B1 (en) Nonaqueous electrolyte secondary battery
CN112447941B (en) Nonaqueous electrolyte secondary battery
JPWO2017212595A1 (en) Non-aqueous electrolyte secondary battery
JP2020061332A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP7096978B2 (en) Non-aqueous electrolyte secondary battery
JP6585843B2 (en) Nonaqueous electrolyte secondary battery