JP2013082955A - Method for treating sintered product - Google Patents

Method for treating sintered product Download PDF

Info

Publication number
JP2013082955A
JP2013082955A JP2011221886A JP2011221886A JP2013082955A JP 2013082955 A JP2013082955 A JP 2013082955A JP 2011221886 A JP2011221886 A JP 2011221886A JP 2011221886 A JP2011221886 A JP 2011221886A JP 2013082955 A JP2013082955 A JP 2013082955A
Authority
JP
Japan
Prior art keywords
sintered product
treatment
jig
gas
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011221886A
Other languages
Japanese (ja)
Other versions
JP5653879B2 (en
Inventor
Tadayuki Tsutsui
井 唯 之 筒
Go Kobayashi
林 剛 小
Tatsuya Oishi
石 多津也 大
Takayuki Tanaka
中 貴 之 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Resonac Corp
Shinto Industrial Co Ltd
Original Assignee
Sintokogio Ltd
Hitachi Powdered Metals Co Ltd
Shinto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Hitachi Powdered Metals Co Ltd, Shinto Kogyo KK filed Critical Sintokogio Ltd
Priority to JP2011221886A priority Critical patent/JP5653879B2/en
Publication of JP2013082955A publication Critical patent/JP2013082955A/en
Application granted granted Critical
Publication of JP5653879B2 publication Critical patent/JP5653879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating a sintered product which achieves productivity improvement, laborsaving, quality improvement, and reduction of consumables.SOLUTION: The method for treating a sintered product is provided, in which steam treatment is performed and then gas soft nitriding treatment is performed on the sintered product. As a treatment container which contains the sintered product and/or a tool which supports the sintered product, the treatment container and/or the tool, having an aluminum diffusion coating layer formed on the surface thereof, are used, and also the gas soft nitriding treatment is performed without changing the treatment container and/or the tool after the steam treatment.

Description

本発明は、焼結品の処理方法に関し、具体的には、粉末冶金法により製造された焼結品に対して水蒸気処理を行い、次いでガス軟窒化処理を施す焼結品の処理方法に関する。   The present invention relates to a method for processing a sintered product, and more specifically, to a method for processing a sintered product that is subjected to steam treatment on a sintered product manufactured by a powder metallurgy method and then subjected to gas soft nitriding.

粉末冶金法で製造された焼結品(以後、本明細書において「焼結品」と呼称する)は、生産に際し材料の無駄が少なく、大量生産に向くことから、自動車を始めとする各種の機械部品等に適用が進んでいる。これら各機械部品においては、用途によっては硬さが必要とされる部品があり、この場合、焼結品に対して表面硬化処理を施して適用している。表面硬化処理としては、焼結品表面に硬化ガスを侵入ないし拡散させるものがあって、一般的にガス浸炭、ガス窒化、ガス軟窒化が多用されている。   Sintered products manufactured by powder metallurgy (hereinafter referred to as “sintered products” in this specification) are less wasteful of materials during production and are suitable for mass production. Application to machine parts is progressing. In each of these machine parts, there is a part that requires hardness depending on the application. In this case, the sintered product is applied with a surface hardening treatment. As the surface hardening treatment, there is a method in which a hardening gas enters or diffuses on the surface of the sintered product, and gas carburizing, gas nitriding, and gas soft nitriding are generally used.

ところで、粉末冶金法により製造された焼結品は、内部に製造方法に由来する微細な気孔を有しており、上記の表面硬化処理を行うにあたり、硬化ガスが比較的容易に焼結品内部にまで侵入することから、硬化層の厚みの制御が困難である。このため、焼結品を水蒸気に接触させることよりなる水蒸気処理(ホモ処理と呼称される場合もある)を施して、焼結品表面に開口する気孔を封孔した後、上記硬化処理を行う方法(特許文献1等)が提案されている。   By the way, the sintered product manufactured by the powder metallurgy method has fine pores derived from the manufacturing method inside, and when performing the above-mentioned surface hardening treatment, the curing gas is relatively easily contained inside the sintered product. Therefore, it is difficult to control the thickness of the cured layer. For this reason, after performing a water vapor treatment (sometimes referred to as a homo-treatment) comprising bringing the sintered product into contact with water vapor, the pores opened on the surface of the sintered product are sealed, and then the above curing treatment is performed. A method (Patent Document 1, etc.) has been proposed.

すなわち、水蒸気処理(ホモ処理)は、例えば加圧水蒸気を350〜400℃に予熱した後、500℃前後に加熱した過熱水蒸気を被処理物に通じることにより、被処理物表面に約5〜20μmの厚さのFe皮膜を形成させる技術であり、焼結品に適用された場合には、気孔表面に形成されるFe皮膜が膨脹することにより気孔を封孔する。 That is, in the steam treatment (homo treatment), for example, after preheated pressurized steam to 350 to 400 ° C., superheated steam heated to around 500 ° C. is passed through the workpiece, so that the surface of the workpiece is about 5 to 20 μm. This is a technique for forming a thick Fe 3 O 4 film, and when applied to a sintered product, the pores are sealed by expansion of the Fe 3 O 4 film formed on the surface of the pores.

このように気孔が封孔された焼結品に対してガス軟窒化処理を行うと、表面に形成された多孔質のFe層は一種のフィルターの役目を果たして窒素の侵入速度を均一化すること、および焼結品表層部の微細な気孔内部にもFeが生成しているので、焼結品内部への過剰な窒化ガスの侵入を防止することによって、比較的薄く安定した窒化層を得ることができる。また、部品の部位による窒化層厚のバラつき、および処理炉内での設置場所の違いによる窒化層厚さのバラつきが少なくなる。さらに、ガス軟窒化処理の場合、還元性ガスであるCO、Hが共存して炭素の存在が窒素の拡散を促進するだけでなく、並行して表面に形成したFeの還元が進み、最終的には表面にはほとんどFeが含まれない厚さ5〜20μm程度の窒化層が得られる。 When the gas soft nitriding treatment is performed on the sintered product in which pores are sealed in this way, the porous Fe 3 O 4 layer formed on the surface serves as a kind of filter, and the infiltration rate of nitrogen is uniform. Since Fe 3 O 4 is also generated inside the fine pores in the surface layer of the sintered product, it is relatively thin and stable by preventing excessive nitriding gas from entering the sintered product. A nitrided layer can be obtained. In addition, variations in the thickness of the nitride layer due to parts and variations in the thickness of the nitride layer due to differences in installation locations within the processing furnace are reduced. Furthermore, in the case of gas soft nitriding, not only the presence of carbon promotes the diffusion of nitrogen due to the coexistence of CO and H 2 as reducing gases, but also the reduction of Fe 3 O 4 formed on the surface in parallel. As a result, finally, a nitride layer having a thickness of about 5 to 20 μm with almost no Fe 3 O 4 on the surface is obtained.

上記のように処理を行うことで、内部に微細空間を有する焼結品であっても、水蒸気処理(ホモ処理)後にガス軟窒化することによって、薄く安定的な厚みの窒化層を得ることが可能である。   By performing the treatment as described above, a thin nitride layer having a stable thickness can be obtained by gas soft nitriding after steam treatment (homo treatment) even for a sintered product having a fine space inside. Is possible.

特公平04−070391号公報Japanese Examined Patent Publication No. 04-070391

一般的に、粉末冶金法で製造された焼結品に対して水蒸気処理やガス軟窒化処理を行う際には、焼結品の全表面が硬化ガスに接触しやすくなるように、焼結品をガス透過性容器(例えば、網カゴ、メッシュベルト等)に収容して、このガス透過性容器を支柱等で空中に保持ないし宙づりにしたり、焼結品を治具等に保持ないし積載して、水蒸気処理(ホモ処理)あるいはガス軟窒化処理に付すことが行われている。このようなガス透過性容器および治具等の利用は、焼結品の配置の適正化および処理の効率化等を図るために、特に重要である。   In general, when performing steam treatment or gas soft nitriding treatment on a sintered product manufactured by powder metallurgy, the sintered product is made so that the entire surface of the sintered product can easily come into contact with the curing gas. Is stored in a gas permeable container (for example, a mesh basket, mesh belt, etc.), and the gas permeable container is held or suspended in the air by a column or the like, or the sintered product is held or loaded on a jig or the like. , Steam treatment (homo treatment) or gas soft nitriding treatment is performed. Use of such gas permeable containers and jigs is particularly important in order to optimize the arrangement of the sintered products and increase the processing efficiency.

しかしながら、焼結品を収容するバスケット、それを支える支柱、その他の容器、治具類等は、高温強度を確保する為に、いずれも普通鋼、特殊鋼、オーステナイト系ステンレス鋼等の金属材料で構成されているのが一般的である。これらの容器、治具類等は、焼結品と共に水蒸気処理あるいはガス軟窒化処理に付されることになるので、例えば、水蒸気処理では焼結品だけでなくこれら金属製部材の表面にもFeもしくはFe等の鉄酸化物皮膜の形成されることになる。 However, the basket that holds the sintered product, the supporting column, other containers, jigs, etc. are all made of metal materials such as ordinary steel, special steel, and austenitic stainless steel to ensure high temperature strength. Generally, it is configured. Since these containers, jigs, etc. are subjected to steam treatment or gas soft nitriding treatment together with the sintered product, for example, in the steam treatment, not only the sintered product but also the surface of these metal members have Fe. An iron oxide film such as 3 O 4 or Fe 2 O 3 is formed.

従って、水蒸気処理に使用した容器、治具類等の金属製部材をそのまま使用してガス軟窒化処理を行うと、窒化ガスは、容器、治具類の還元までも行うことになる。その結果、焼結品が必要とする以上の窒化ガスが必要となり、更には容器、治具類の近傍に位置する焼結品への窒化ガスの安定供給が難しくなり、ガスのコストが高くつくだけでなく焼結品の窒化層厚のバラつきを拡大する要因となって、品質上重大な問題となる。   Therefore, when the gas soft nitriding treatment is performed by using the metal member such as the container and jig used for the steam treatment as it is, the nitriding gas is also performed until the container and the jig are reduced. As a result, more nitriding gas is required than the sintered product requires, and furthermore, it becomes difficult to stably supply the nitriding gas to the sintered product located near the container and jigs, resulting in high gas cost. In addition to increasing the variation in the nitrided layer thickness of the sintered product, it becomes a serious quality problem.

そこで、従来は水蒸気処理に使用する容器、治具類等の金属製部材と、ガス軟窒化に使用する容器、治具類等の金属製部材とは混用せずに、それぞれ専用に使用してきた。即ち、水蒸気処理後、容器、治具類と焼結品とをそのまま一旦処理炉から取り出して冷却したのち、焼結品をガス軟窒化専用の容器、治具に載せ換え、その後、ガス軟窒化炉に挿入する作業が必要で、作業手間の増加と処理炉の稼働率低下を余儀なくされるだけでなく、生産性向上を意図した品積み替え時間の短縮に伴い、部品類の当て傷の発生による不良率の増加が避けられない。また、容器、治貝類等の金属製部材は窒化を繰り返すことによって表層が過度に固くなり、加熱冷却を繰り返すうちに割れが入り、変形して使用に耐えられなくなる。   Therefore, conventionally, metallic members such as containers and jigs used for steam treatment and metallic members such as containers and jigs used for gas soft nitriding have not been mixed and have been used exclusively for each. . That is, after the steam treatment, the container, jigs and sintered product are once taken out of the processing furnace and cooled, and then the sintered product is replaced with a gas soft nitriding vessel and jig. It requires work to be inserted into the furnace, which not only increases work effort and lowers the operating rate of the processing furnace, but also due to the occurrence of damage to parts due to the shortening of the reloading time intended to improve productivity. An increase in the defect rate is inevitable. In addition, the surface layer of metal members such as containers and shellfish becomes excessively hard due to repeated nitridation, and cracks occur and become unusable due to repeated heating and cooling.

これらは全てコストアップの要因となっており、処理時間の短縮、省力、品質向上等を達成することが重要な課題となっていた。   All of these are factors for increasing the cost, and it has been important to achieve reduction in processing time, labor saving, quality improvement, and the like.

本発明は、上記課題を解決する為になされたもので、焼結品に対して水蒸気処理を行い、次いでガス軟窒化処理を施す焼結品の処理方法であって、焼結品を収容する処理容器および/または焼結品を支持する治具として、表面にアルミニウム拡散被覆層が形成された処理容器および/または治具を用いるとともに、前記水蒸気処理の後に、処理容器および/または治具を交換することなく、前記ガス軟窒化処理を行うこと、を特徴とする。   The present invention has been made in order to solve the above problems, and is a processing method of a sintered product in which a sintered product is subjected to steam treatment and then subjected to gas soft nitriding, and the sintered product is accommodated. As a jig for supporting the processing container and / or the sintered product, a processing container and / or jig having an aluminum diffusion coating layer formed on the surface is used, and after the water vapor treatment, the processing container and / or the jig is used. The gas soft nitriding treatment is performed without replacement.

このような本発明による焼結品の処理方法は、好ましい態様として、前記のアルミニウム拡散被覆層が、その最表面のアルミニウム濃度が15〜40重量%であるもの、を包含する。   Such a method for treating a sintered product according to the present invention includes, as a preferred embodiment, one in which the aluminum diffusion coating layer has an aluminum concentration of 15 to 40% by weight on the outermost surface.

このような本発明による焼結品の処理方法は、好ましい態様として、前記の焼結品を収容する処理容器および/または焼結品を支持する治具が、普通鋼、特殊鋼、オーステナイト系ステンレス鋼から選ばれた金属材料からなり、その表面のアルミニウム拡散被覆層がアルミニウム拡散浸透処理によって形成されたものであるもの、を包含する。   In such a method for treating a sintered product according to the present invention, as a preferred embodiment, the processing container for accommodating the sintered product and / or the jig for supporting the sintered product is made of ordinary steel, special steel, or austenitic stainless steel. It is made of a metal material selected from steel, and the aluminum diffusion coating layer on the surface thereof is formed by aluminum diffusion permeation treatment.

本発明による焼結品の処理方法においては、焼結品を収容および/または支持する容器、治具等の金属製部材の表面にアルミニウム拡散被覆層を形成させることによって、容器、治具等の表面に鉄酸化物が生成するのを防止することができる(第1番目の効果)。   In the method for processing a sintered product according to the present invention, an aluminum diffusion coating layer is formed on the surface of a metal member such as a container or a jig that contains and / or supports the sintered product, thereby Generation of iron oxide on the surface can be prevented (first effect).

更に、容器、治具等のアルミニウム拡散被覆層の最表面に、水蒸気処理によって緻密かつ極薄いアルミナ被膜が形成されることで、窒素の侵入が抑制されるので、次工程のガス軟窒化処理でこれらの容器、治具等の金属材料が窒化されることが防止される。これにより、容器、治具等の寿命延長を図ることが出来る(第2番目の効果)。   Furthermore, since a dense and extremely thin alumina coating is formed on the outermost surface of the aluminum diffusion coating layer such as a container or jig by steam treatment, the ingress of nitrogen is suppressed. It is prevented that metal materials such as these containers and jigs are nitrided. Thereby, the lifetime of containers, jigs, etc. can be extended (second effect).

このことから、水蒸気処理後の焼結品を容器、治具類から積み替えることなくそのままの状態でガス軟窒化処理を実施することが可能になる(第3番目の効果)。   From this, it becomes possible to carry out the gas soft nitriding without changing the sintered product after the steam treatment from the containers and jigs (third effect).

そして、ガス軟窒化処理に用いられる窒化ガスは、容器、治具等の窒化に消費されることがないので、焼結品のガス軟窒化に有効に活用される。かつ、焼結品のガス軟窒化処理を安定性を向上させて、窒化層の性状および層厚さの安定化、高品質化が高度に達成される(第4番目の効果)。   Since the nitriding gas used for the gas soft nitriding process is not consumed for nitriding containers and jigs, it is effectively used for gas soft nitriding of sintered products. In addition, the gas soft nitriding treatment of the sintered product is improved in stability, so that the properties of the nitrided layer, the layer thickness are stabilized, and the quality is improved (fourth effect).

その結果、生産性向上、省力化、品質向上、消耗品低減を図ることができる。   As a result, it is possible to improve productivity, save labor, improve quality, and reduce consumables.

実施例1における本発明のSUS304材のテストピースの断面検鏡図。1 is a cross-sectional microscopic view of a test piece of SUS304 material of the present invention in Example 1. FIG. 実施例1における本発明のSCH13材のテストピースの断面検鏡図。1 is a cross-sectional microscopic view of a test piece of SCH 13 material of the present invention in Example 1. FIG. 実施例1における本発明のSUS304材のテストピースの、アルミニウム拡散被覆層のテスト前のアルミニウムのX線マイクロアナライザー(EPMA)の分析値を示すグラフ。The graph which shows the analytical value of the X-ray microanalyzer (EPMA) of the aluminum before the test of the aluminum diffusion coating layer of the test piece of the SUS304 material of this invention in Example 1. FIG. 実施例1における本発明のSCH13材のテストピースの、アルミニウム拡散被覆層のテスト前のアルミニウムのEPMA分析値を示すグラフ。The graph which shows the EPMA analysis value of the aluminum before the test of the aluminum diffusion coating layer of the test piece of SCH13 material of this invention in Example 1. FIG. 実施例1において、水蒸気処理1回処理後のSUS304材の断面検鏡図。In Example 1, the cross-sectional microscopic view of SUS304 material after one time of water vapor | steam processing. 実施1において、水蒸気処理50回処理後のSUS304材の断面検図。In Example 1, the cross-sectional inspection of the SUS304 material after 50 times of water vapor | steam processes. 実施例1において、水蒸気処理1回処理後のSCH13材の断面検鏡図。In Example 1, the cross-sectional microscopic view of SCH13 material after one time of water vapor | steam processing. 実施例1において、水蒸気処理50回処理後のSCH13材の断面検鏡図。In Example 1, the cross-sectional microscopic view of SCH13 material after 50 times of water vapor | steam processes. 実施例1において、水蒸気処理50回処理後のSUS304材の断面EPMA分析値。In Example 1, the cross-sectional EPMA analysis value of the SUS304 material after 50 times of water vapor treatments. 実施例1において、水蒸気処理50回処理後ガス軟窒化処理を50回繰り返した本発明SUS304材のテストピースの、アルミニウム拡散被覆層のアルミニウムと窒素のEPMA分析値を示すグラフ。In Example 1, the graph which shows the EPMA analysis value of aluminum and nitrogen of the aluminum diffusion coating layer of the test piece of SUS304 material of the present invention in which the gas soft nitriding treatment was repeated 50 times after the water vapor treatment 50 times. 実施例1において、水蒸気処理を50回実施後ガス軟窒化を50回繰り返した本発明のSCH13材のテストピースの、アルミニウム拡散被覆層のアルミニウムと窒素のEPMA分析値を示すグラフ。In Example 1, the graph which shows the EPMA analysis value of aluminum and nitrogen of the aluminum diffusion coating layer of the test piece of the SCH13 material of the present invention in which the gas soft nitriding was repeated 50 times after performing the steam treatment 50 times. 実施例2に用いた焼結品充填用バスケット(網かご)および支柱の概念図。FIG. 5 is a conceptual diagram of a sintered product filling basket (mesh basket) and support columns used in Example 2;

<焼結品の処理方法>
本発明者らは、水蒸気処理工程における上記金属製部材表面の鉄酸化物の生成を防止でき、且つ次工程のガス軟窒化処理で窒化されることが無ければ、これら部材がガス軟窒化処理を阻害する要因とならないことに着目して種々検討した結果、これら部材の表面にアルミニウム拡散被覆層を形成させることで水蒸気処理工程における鉄酸化物生成を防止し、次工程での窒化も防止できることを知見を得た。
<Method of processing sintered product>
The present inventors can prevent the formation of iron oxide on the surface of the metal member in the water vapor treatment step, and if the member is not nitrided in the gas soft nitriding treatment in the next step, these members are subjected to gas soft nitriding treatment. As a result of various studies paying attention to the fact that it does not become a hindering factor, it is possible to prevent the formation of iron oxide in the water vapor treatment process by forming an aluminum diffusion coating layer on the surface of these members, and also to prevent nitriding in the next process. Obtained knowledge.

本発明による焼結品の処理方法は、焼結品に対して水蒸気処理を行い、次いでガス軟窒化処理を施す焼結品の処理方法であって、焼結品を収容する処理容器および/または焼結品を支持する治具として、表面にアルミニウム拡散被覆層が形成された処理容器および/または治具を用いるとともに、前記水蒸気処理の後に、前記の処理容器および/または治具を交換することなく、前記ガス軟窒化処理を行うこと、を特徴とする。   The method for treating a sintered product according to the present invention is a method for treating a sintered product by performing steam treatment on the sintered product and then subjecting the sintered product to gas soft nitriding, and a processing container for housing the sintered product and / or As a jig for supporting the sintered product, a processing container and / or jig having an aluminum diffusion coating layer formed on the surface thereof is used, and the processing container and / or jig is replaced after the steam treatment. And performing the gas soft nitriding treatment.

ここで、本発明において、「焼結品を収容する処理容器」とは、水蒸気処理およびガス軟窒化処理の際に、処理すべき焼結品の全部あるいはその一部分を収容する容器であって、その容器の少なくとも一部分が、水蒸気処理あるいはガス軟窒化処理の際に使用されるガスが透過可能に構成されて、処理すべき焼結品の表面の少なくとも一部に、水蒸気あるい前記ガスを接触できるように構成された容器を言う。   Here, in the present invention, the “processing container for storing the sintered product” is a container for storing all or a part of the sintered product to be processed in the steam treatment and gas soft nitriding treatment, At least a part of the container is configured to be permeable to the gas used in the water vapor treatment or gas soft nitriding treatment, and at least a part of the surface of the sintered product to be treated is brought into contact with water vapor or the gas. A container configured to be able to.

そして、本発明において、「焼結品を支持する治具」とは、水蒸気処理およびガス軟窒化処理の際に、処理に付される焼結品を支持して、その位置や姿勢を保持ないし安定化させることができる用具を言う。この治具は、処理に付される焼結品に直接接触するもののみに限定されない。例えば、処理に付される焼結品に直接接触した治具(一次治具)を含め、前記の「焼結品を収容する処理容器」あるいは前記の焼結品に直接接触した治具(一次治具)の位置や姿勢を保持ないし安定化させることによって、結果として、焼結品の位置や姿勢を保持、安定化に寄与する、焼結品に直接接触しない治具(二次治具)等をも含めて言うものである。例えば、前記の「焼結品を収容する処理容器」を1個あるいは複数個を支える支柱等は、この「焼結品を支持する治具」の一具体例である。   In the present invention, the “jig for supporting a sintered product” refers to supporting a sintered product subjected to the treatment during the steam treatment and gas soft nitriding treatment, and maintaining its position and posture. Says a tool that can be stabilized. This jig is not limited to a jig that directly contacts a sintered product to be processed. For example, including the jig (primary jig) that is in direct contact with the sintered product to be processed, the above-mentioned “processing vessel for containing the sintered product” or the jig that is in direct contact with the sintered product (primary By holding or stabilizing the position and orientation of the jig), as a result, the jig that does not directly contact the sintered product that contributes to maintaining and stabilizing the position and orientation of the sintered product (secondary jig) Etc. are also included. For example, a column or the like that supports one or a plurality of the above-mentioned “processing containers containing sintered products” is a specific example of this “jig for supporting sintered products”.

本発明における「焼結品を収容する処理容器」の特に好ましい具体例としては、線径1.0〜4.0mm、好ましくは1.5〜2.5mmの金属線によって形成された、外径300〜900mm、好ましくは500〜700mmの、深さ100〜400mm、好ましくは200〜300mmの網カゴを挙げることができる。   As a particularly preferred specific example of the “processing container for containing a sintered product” in the present invention, an outer diameter formed by a metal wire having a wire diameter of 1.0 to 4.0 mm, preferably 1.5 to 2.5 mm. Mention may be made of a net cage of 300 to 900 mm, preferably 500 to 700 mm, and a depth of 100 to 400 mm, preferably 200 to 300 mm.

また、本発明における「焼結品を支持する治具」の特に好ましい具体例としては、そり防止を目的とした3点保持用の治具等を挙げることができる。   A particularly preferable specific example of the “jig for supporting a sintered product” in the present invention includes a three-point holding jig for the purpose of preventing warpage.

本発明における「焼結品を収容する処理容器」および「焼結品を支持する治具」は、従来から焼結品に対する「水蒸気処理」あるいは「ガス軟窒化処理」の際に採用されてきた「処理容器」あるいは「治具」と同様に、普通鋼、特殊鋼、オーステナイト系ステンレス鋼等の金属材料で構成することができるが、これらの金属材料の表面にアルミニウム拡散被覆層が形成されている点で、従来の一般的な「焼結品を収容する処理容器」あるいは「焼結品を支持する治具」と明確に相違している。   The “processing container for storing a sintered product” and the “jig for supporting a sintered product” in the present invention have been conventionally employed in the case of “steam treatment” or “gas soft nitriding” for a sintered product. Like the “processing vessel” or “jig”, it can be made of metal materials such as ordinary steel, special steel, and austenitic stainless steel, but an aluminum diffusion coating layer is formed on the surface of these metal materials. In this respect, it is clearly different from the conventional general “processing vessel for containing a sintered product” or “jig for supporting a sintered product”.

なお、本発明における「焼結品を収容する処理容器」および「焼結品を支持する治具」では、常に、その「容器」および「治具」の全ての表面にアルミニウム拡散被覆層が形成されている必要はないが、少なくとも窒化性ガスが接触することがある表面には、アルミニウム拡散被覆層が形成されていることが好ましい。   In the “processing container for storing a sintered product” and “jig for supporting a sintered product” in the present invention, an aluminum diffusion coating layer is always formed on all surfaces of the “container” and “jig”. Although not necessarily required, an aluminum diffusion coating layer is preferably formed on at least the surface with which the nitriding gas may come into contact.

本発明における「焼結品を収容する処理容器」および「焼結品を支持する治具」は、水蒸気処理を行った後にガス軟窒化処理を行う一連の焼結品の処理方法において、繰り返し利用することができる。また、水蒸気処理のみを繰り返して行う場合にも、水蒸気処理に少なくとも一回用いられた後はガス軟窒化処理に繰り返し利用することができるものである。   In the present invention, the “processing container for storing a sintered product” and the “jig for supporting a sintered product” are repeatedly used in a series of processing methods for a sintered product in which gas soft nitriding is performed after steam treatment. can do. Further, when only the steam treatment is repeatedly performed, it can be repeatedly used for the gas soft nitriding treatment after being used at least once for the steam treatment.

<アルミニウム拡散被覆層>
金属材料の表面に形成させたアルミニウム拡散被覆層の高温耐酸化性は、800℃を超える高温赤熱領域で特に耐酸化効果は顕著である。アルミニウム拡散被覆層が、高い耐酸化性を発現するメカニズムは、大気中で赤熱領域まで加熱すると、アルミニウム拡散被覆層に含まれるアルミニウムが空気中の酸素と優先的に結合して、融点が2050℃と非常に高く、耐食性に富んだ緻密な酸化アルミニウム(アルミナ=Al)皮膜が生成し、酸素を遮断する為、以後の酸化を抑制するものと現在解析されている。
<Aluminum diffusion coating layer>
The high temperature oxidation resistance of the aluminum diffusion coating layer formed on the surface of the metal material is particularly remarkable in the high temperature red hot region exceeding 800 ° C. The mechanism by which the aluminum diffusion coating layer exhibits high oxidation resistance is that, when heated to the red heat region in the atmosphere, the aluminum contained in the aluminum diffusion coating layer preferentially bonds with oxygen in the air, and the melting point is 2050 ° C. It is now analyzed that it is extremely high and a dense aluminum oxide film (alumina = Al 2 O 3 ) film rich in corrosion resistance is formed to block oxygen and suppress subsequent oxidation.

前記の通りに、本発明における「焼結品を収容する処理容器」および「焼結品を支持する治具」は、従来より焼結品に対する「水蒸気処理」あるいは「ガス軟窒化処理」の際に採用されてきた「処理容器」あるいは「治具」と同様に、普通鋼、特殊鋼、オーステナイト系ステンレス鋼等の金属材料で構成することができる。本発明では、その表面にアルミニウム拡散被覆層が形成可能なものであれば、従来公知の普通鋼、特殊鋼、オーステナイト系ステンレス鋼等の金属材料を用いることができる。特に本発明において好ましい金属材料としては、オーステナイト系ステンレス、例えば、JIS規格に規定された、SUS304材、SCH13材、SUS316(L)材、SUS309材、SUS310S材、SCH21材等を挙げることができる。この中では特に、SUS304材およびSCH13材が好ましい。   As described above, the “processing vessel for storing a sintered product” and the “jig for supporting a sintered product” in the present invention are conventionally used for “steaming” or “gas soft nitriding” for a sintered product. Similarly to the “processing vessel” or “jig” that has been employed in the present invention, it can be made of a metal material such as ordinary steel, special steel, or austenitic stainless steel. In the present invention, metal materials such as conventionally known ordinary steel, special steel, and austenitic stainless steel can be used as long as an aluminum diffusion coating layer can be formed on the surface thereof. Particularly preferable metal materials in the present invention include austenitic stainless steel, for example, SUS304 material, SCH13 material, SUS316 (L) material, SUS309 material, SUS310S material, SCH21 material and the like as defined in JIS standards. Among these, SUS304 material and SCH13 material are particularly preferable.

金属材料の表面にアルミニウム拡散被覆層を形成させる方法としては、鉄−アルミニウム合金粉、アルミナ粉および塩化アンモニウム粉を含む混合粉を用いるアルミニウム拡散浸透処理を挙げることができる。   Examples of the method for forming the aluminum diffusion coating layer on the surface of the metal material include an aluminum diffusion permeation treatment using a mixed powder containing iron-aluminum alloy powder, alumina powder and ammonium chloride powder.

本発明において特に好ましいアルミニウム拡散浸透処理としては、例えばアルミニウム濃度20〜60重量%(好ましくは、30〜55重量%)の鉄−アルミニウム合金粉10〜90重量%(好ましくは、30〜80重量%)と、アルミナ粉10〜90重量%(好ましくは、30〜60重量%)と塩化アンモニウム粉0.1〜3.0重量%(好ましくは、0.2〜1.5重量%)を含む混合粉末を滲透剤とし、この滲透剤の中に金属材料を埋め込み、不活性ガス(好ましくは、Ar)あるいは水素などの還元性雰囲気中で800〜1100℃(好ましくは、850〜1050℃)に昇温し、5〜20時間(好ましくは、10〜20時間)加熱する方法を挙げることができる。   In the present invention, particularly preferable aluminum diffusion and penetration treatment is, for example, 10 to 90 wt% (preferably 30 to 80 wt%) of iron-aluminum alloy powder having an aluminum concentration of 20 to 60 wt% (preferably 30 to 55 wt%). ), Alumina powder 10 to 90% by weight (preferably 30 to 60% by weight) and ammonium chloride powder 0.1 to 3.0% by weight (preferably 0.2 to 1.5% by weight) A powder is used as a penetrant, a metal material is embedded in the penetrant, and the temperature is raised to 800 to 1100 ° C. (preferably 850 to 1050 ° C.) in a reducing atmosphere such as an inert gas (preferably Ar) or hydrogen. A method of heating and heating for 5 to 20 hours (preferably, 10 to 20 hours) can be given.

このアルミニウム拡散浸透処理によれば、金属材料の表面にアルミニウム濃度15〜40%、厚さ20〜800μmのアルミニウム拡散被覆層を容易に形成させることが出来る。金属材料の表面のアルミニウム濃度は、好ましくは20〜40%、特に好ましくは25〜40%、である。アルミニウム濃度が15%未満の場合は、耐久性に問題があり、一方、40%超過の場合は、硬くなり過ぎて脆くなり、割れや剥離が起き易く実用に耐えないことから好ましくない。また、アルミニウム拡散被覆層の厚さが20μm未満の場合は、薄すぎて耐久性に問題があり、一方、800μm超過の場合は、被覆層が厚すぎ、脆くなる事から熱衝撃で割れや剥離が起き易く実用に耐えないことから好ましくない。ここで、アルミニウム拡散被覆層の「アルミニウム濃度」は、EPMA装置の定量分析によって求められたものであり、アルミニウム拡散被覆層の厚さは、光学顕微鏡によって求められたものである。   According to this aluminum diffusion penetration treatment, an aluminum diffusion coating layer having an aluminum concentration of 15 to 40% and a thickness of 20 to 800 μm can be easily formed on the surface of the metal material. The aluminum concentration on the surface of the metal material is preferably 20 to 40%, particularly preferably 25 to 40%. If the aluminum concentration is less than 15%, there is a problem in durability. On the other hand, if it exceeds 40%, it becomes too hard and brittle, and cracking and peeling are liable to occur, and this is not preferable. In addition, when the thickness of the aluminum diffusion coating layer is less than 20 μm, it is too thin and there is a problem in durability. On the other hand, when it exceeds 800 μm, the coating layer is too thick and becomes brittle, so cracking or peeling due to thermal shock This is not preferable because it easily occurs and cannot be practically used. Here, the “aluminum concentration” of the aluminum diffusion coating layer is obtained by quantitative analysis of an EPMA apparatus, and the thickness of the aluminum diffusion coating layer is obtained by an optical microscope.

尚、アルミニウム拡散浸透処理における具体的条件は、金属材料の成分組成や、被覆層の厚さ、アルミニウム濃度等を考慮して、適宜定めることができる。   The specific conditions in the aluminum diffusion permeation treatment can be appropriately determined in consideration of the component composition of the metal material, the thickness of the coating layer, the aluminum concentration, and the like.

その他の処理方法として、アルミニウム拡散浸透処理で使用する鉄−アルミニウム合金粉の代わりにアルミニウム粉を使用し、これにアルミナ粉と塩化アンモニウム粉を混合して滲透剤とし、比較的低温の600〜900℃(好ましくは、700〜850℃)で加熱する方法、金属材料を670〜720℃(好ましくは、680〜710℃)の溶融アルミニウムに浸漬して表面に純アルミニウム皮膜を形成させた後、別途加熱炉で900〜1000℃(好ましくは、920〜980℃)に加熱して表面のアルミニウムを材料内部に拡散させ、アルミニウム拡散被覆層を形成させる方法等がある。なお、そのいずれにおいても表面にアルミニウム拡散被覆層、即ちアルミニウム合金層を形成させることができる。   As another treatment method, aluminum powder is used in place of the iron-aluminum alloy powder used in the aluminum diffusion permeation treatment, and alumina powder and ammonium chloride powder are mixed into this to form a permeation agent. A method of heating at ℃ (preferably 700 to 850 ° C.), a metal material is immersed in molten aluminum at 670 to 720 ° C. (preferably 680 to 710 ° C.) to form a pure aluminum film on the surface, and separately There is a method of heating to 900 to 1000 ° C. (preferably, 920 to 980 ° C.) in a heating furnace to diffuse aluminum on the surface inside the material to form an aluminum diffusion coating layer. In either case, an aluminum diffusion coating layer, that is, an aluminum alloy layer can be formed on the surface.

<水蒸気処理(ホモ処理)>
本発明において「水蒸気処理」とは、水蒸気を用いた表面酸化処理のことをいう。例えば、水蒸気処理に付す焼結品を、前記のアルミニウム拡散被覆層が形成された処理容器に収容した状態で、あるいは前記のアルミニウム拡散被覆層が形成された治具に支持された状態で、温度400〜600℃(特に好ましくは450〜550℃)の水蒸気によって、圧力0〜1kg/cm(特に好ましくは0.4〜0.7kg/cm)の条件下に、30〜300分間(特に好ましくは60〜240分間)保持する処理は、本発明の「水蒸気処理」に該当する。
<Steam treatment (homo treatment)>
In the present invention, “steam treatment” refers to surface oxidation treatment using steam. For example, in a state where the sintered product subjected to the steam treatment is accommodated in the processing container in which the aluminum diffusion coating layer is formed, or is supported by a jig in which the aluminum diffusion coating layer is formed, Water vapor at 400 to 600 ° C. (particularly preferably 450 to 550 ° C.) under a pressure of 0 to 1 kg / cm 2 (particularly preferably 0.4 to 0.7 kg / cm 2 ) for 30 to 300 minutes (particularly The treatment for holding (preferably 60 to 240 minutes) corresponds to the “water vapor treatment” of the present invention.

水蒸気処理(ホモ処理)の場合、大気中における800℃を超える高温酸化に比べると温度が約500℃と云う比較的低温のしかも水蒸気雰囲気であるが、各種実験の結果、容器、治具類、ガス整流部材等金属製部材について、普通鋼、特殊鋼、ステンレス鋼の何れの材質においても表面にアルミニウム拡散被覆層を形成させると、酸化鉄の生成を防止できるという知見を得た。即ち、アルミニウム拡散被覆層中のアルミニウムが高温水蒸気により優先的に酸化してアルミナ被膜が形成されることによって、高温水蒸気と被覆層中の鉄分との反応を抑制することが出来、酸化鉄の生成を防止出来ることが確認できた。ここで、普通鋼とは、一般構造圧延鋼材(SS)をはじめとする炭素鋼を、特殊鋼とは、Ni、Cr等の合金元素を含む鋼材のことをいう。   In the case of steam treatment (homo treatment), the temperature is about 500 ° C. and a relatively low temperature steam atmosphere compared to high-temperature oxidation exceeding 800 ° C. in the atmosphere, but as a result of various experiments, containers, jigs, Regarding metal members such as gas rectifying members, it has been found that the formation of iron oxide can be prevented by forming an aluminum diffusion coating layer on the surface of any material of ordinary steel, special steel, and stainless steel. That is, the aluminum in the aluminum diffusion coating layer is preferentially oxidized by high-temperature water vapor to form an alumina film, whereby the reaction between high-temperature water vapor and iron in the coating layer can be suppressed, and iron oxide is generated. It was confirmed that it can be prevented. Here, ordinary steel refers to carbon steel including general structural rolled steel (SS), and special steel refers to steel including alloy elements such as Ni and Cr.

水蒸気処理(ホモ処理)で生成した表面のアルミナは、焼結品表面に付着、焼き付くことは無く、焼結品の表面性状に悪影響を与えることが無い。   Alumina on the surface produced by the steam treatment (homo treatment) does not adhere to or be baked on the surface of the sintered product, and does not adversely affect the surface properties of the sintered product.

<ガス軟窒化処理>
本発明において「ガス軟窒化処理」とは、疲労強度の向上や耐摩耗性の向上を目的として、主として浸炭性ガスと窒化性ガスの混合雰囲気中で処理することにより窒素と炭素を供給し、混合ガスと接触する部品表面に窒素と炭素を同時に侵入拡散させて炭窒化物を形成させる処理をいう。ガス軟窒化処理に用いられる浸炭性ガスとしては、例えば、急熱型変性ガス(Endo gas)あるいは有機溶剤の熱分解ガスなどの浸炭性ガス(COガス)等が用いられる。また、窒化性ガスとしては、例えばNHガス等が用いられる。例えば、水蒸気処理に付された焼結品を、水蒸気処理に用いられた処理容器に収容した状態で、あるいは水蒸気処理に用いられた治具に支持された状態で、上記混合ガス雰囲気中で、温度500〜650℃(特に好ましくは550〜580℃)、大気圧の条件下に、30〜240分間(特に好ましくは60〜180分間)保持する処理は、本発明における「ガス軟窒化処理」に該当する。
<Gas soft nitriding>
In the present invention, "gas soft nitriding" refers to supplying nitrogen and carbon by treating mainly in a mixed atmosphere of carburizing gas and nitriding gas for the purpose of improving fatigue strength and improving wear resistance. It refers to a process of forming carbonitride by simultaneously invading and diffusing nitrogen and carbon on the surface of a component in contact with the mixed gas. As the carburizing gas used in the gas soft nitriding, for example, a carburizing gas (CO gas) such as a rapid thermal modified gas (Endo gas) or a pyrolysis gas of an organic solvent is used. Further, as the nitriding gas, for example, NH 3 gas or the like is used. For example, in a state where the sintered product subjected to the steam treatment is accommodated in the processing container used for the steam treatment or supported by a jig used for the steam treatment, in the mixed gas atmosphere, The treatment for holding at a temperature of 500 to 650 ° C. (particularly preferably 550 to 580 ° C.) and atmospheric pressure for 30 to 240 minutes (particularly preferably 60 to 180 minutes) is referred to as “gas soft nitriding treatment” in the present invention. Applicable.

本発明においては、容器や治具の表面に生成したアルミナ皮膜が窒素の侵入を抑制するので、容器や治具が窒化されることが無い。このことから、容器や治具から焼結品を載せ換えることなくそのままの状態でガス軟窒化を実施することができる。   In the present invention, since the alumina coating formed on the surface of the container or jig suppresses the ingress of nitrogen, the container or jig is not nitrided. For this reason, gas soft nitriding can be performed as it is without replacing the sintered product from the container or jig.

従って、窒化ガスは全て焼結品のガス軟窒化に有効に活用されるだけでなく、窒化されない容器、治具類の表面性状は未使用状態とほとんど変わらず、従来の様に窒化を繰り返すことによる表面硬化、表面ひび割れ、はく離が発生することが無く、その結果、容器、治具類の寿命が飛躍的に伸び消耗品のコスト低減にも極めて有効である。   Therefore, all the nitriding gas is not only effectively used for gas soft nitriding of sintered products, but also the surface properties of containers and jigs that are not nitrided are almost the same as in the unused state, and nitriding is repeated as before. As a result, the life of the container and jigs can be dramatically increased and the cost of consumables can be reduced significantly.

そして、ガス軟窒化終了後、焼結品を容器、治具類から取り外す際にも、焼きつくこともなく焼結品の表面は正常な状態を維持している。また、使用中にアルミナ皮膜が部分的にこすれて剥離することが生じたとしても、当該部分には次回の水蒸気処理(ホモ処理)で再度アルミナ皮膜が形成されるので、繰り返し使用しても窒化防止効果は持続する。   When the sintered product is removed from the container and jig after the gas soft nitriding is completed, the surface of the sintered product is maintained in a normal state without being seized. Even if the alumina film is partially rubbed and peeled off during use, the alumina film is formed again in the next water vapor treatment (homo treatment). The prevention effect lasts.

<実施例1>
本発明品が水蒸気処理で酸化鉄を生成しないこと、およびその後のガス軟窒化処理で窒化されないことを確認する為に、治具、容器に使用する代表的な金属材料であるJIS規格のSUS304材、SCH13材にアルミニウム拡散浸透処理を施した本発明のテストピースと、同寸の未処理材(生材)とを、焼結品と一緒に、水蒸気処理およびガス軟窒化処理に繰り返し付して、表面状態の変化を調査した。
<Example 1>
In order to confirm that the product of the present invention does not produce iron oxide by steam treatment and is not nitrided by subsequent gas soft nitriding treatment, JIS standard SUS304 material, which is a representative metal material used for jigs and containers The test piece of the present invention obtained by subjecting the SCH 13 material to aluminum diffusion permeation treatment and the untreated material (raw material) of the same size are repeatedly subjected to steam treatment and gas soft nitriding treatment together with the sintered product. The change of surface condition was investigated.

1)テストピース
材質:SUS304材、SCH13材
寸法形状:50mm×50mm×肉厚5mm
枚数;各4個
1) Test piece Material: SUS304, SCH13 Dimension: 50mm x 50mm x thickness 5mm
Number of sheets: 4 each

2)アルミニウム拡散浸透処理
a.滲透剤の組成
鉄−アルミニウム(50重量%)合金粉末:65重量%
アルミナ粉末:34重量%
塩化アンモニウム粉末:1.0重量%
b.処理温度:1000℃
c.処理時間:15時間
2) Aluminum diffusion treatment a. Composition of penetrant Iron-aluminum (50% by weight) alloy powder: 65% by weight
Alumina powder: 34% by weight
Ammonium chloride powder: 1.0% by weight
b. Processing temperature: 1000 ° C
c. Processing time: 15 hours

3)本発明のテストピースの表面特性
アルミニウム拡散浸透処理を施したテストピース各1個を切断してアルミニウム拡散被覆層を調査した結果を表1に示す。断面検鏡して拡散被覆層の厚さを計測し、断面検鏡図を図1、2に示した。EPMA(X線マイクロアナライザー)による断面のアルミニウム濃度の分析値を図3、4に示す。

Figure 2013082955
3) Surface characteristics of the test piece of the present invention Table 1 shows the results of investigating the aluminum diffusion coating layer by cutting each one of the test pieces subjected to the aluminum diffusion treatment. The thickness of the diffusion coating layer was measured by cross-sectional microscopy, and cross-sectional micrographs are shown in FIGS. Analytical values of the aluminum concentration in the cross section by EPMA (X-ray microanalyzer) are shown in FIGS.
Figure 2013082955

4)水蒸気処理
アルミニウム拡散浸透処理を施した本発明のテストピースのうち、SUS304材を3個とSCH13材を3個、未処理材各2個を、焼結品を水蒸気処理する際に充填容器に一緒に入れ、表2に示す様に1回処理と50回繰り返し処理を実施した。1回の水蒸気処理は、500℃の水蒸気中で2時間加熱して行った。
その後、各テストピースを切断して表面の断面状態を検鏡し酸化鉄生成層の厚さを測定した結果を、表2に示す。
4) Steam treatment Among the test pieces of the present invention that have been subjected to aluminum diffusion permeation treatment, 3 SUS304 materials, 3 SCH13 materials, 2 untreated materials each, and a filled container when steaming a sintered product And the treatment was repeated once and repeated 50 times as shown in Table 2. One steam treatment was performed by heating in steam at 500 ° C. for 2 hours.
Then, each test piece was cut | disconnected, the cross-sectional state of the surface was examined, and the result of having measured the thickness of the iron oxide production | generation layer is shown in Table 2.

次に、未処理品の断面検鏡図を図5、6、7、8に示す。図中斜線で示した部分が酸化鉄生成層で、この内代表例として図6の断面検鏡部をEPMA分析した結果を、図9に示す。図9から明らかなように、当該表層部には鉄分と酸素が多く含まれており、酸化鉄が生成していることが確認できた。   Next, cross-sectional micrographs of untreated products are shown in FIGS. The hatched portion in the figure is an iron oxide generation layer. As a typical example, the result of EPMA analysis of the cross-sectional microscopic portion of FIG. 6 is shown in FIG. As is apparent from FIG. 9, the surface layer portion contains a large amount of iron and oxygen, and it was confirmed that iron oxide was generated.

次に、本発明品のテストピースを断面検鏡した結果、水蒸気処理前の図1、2と有意差は無く、未処理品に発生している酸化鉄含有層は確認できなかった。

Figure 2013082955
Next, as a result of cross-sectional inspection of the test piece of the present invention product, there was no significant difference from FIGS. 1 and 2 before the steam treatment, and the iron oxide-containing layer generated in the untreated product could not be confirmed.
Figure 2013082955

以上の通り、本発明のテストピース表面にはSUS304材、SCH13材のいずれの場合も酸化鉄の生成は認められず、本発明の第1番目の効果が確認できた。   As described above, generation of iron oxide was not observed on the surface of the test piece of the present invention in either case of SUS304 material or SCH13 material, and the first effect of the present invention could be confirmed.

5)ガス軟窒化処理
水蒸気処理実験を50回行った本発明のテストピースの残り各1個を、焼結品をガス軟窒化する際に充填容器に一緒に入れ、ガス軟窒化を50回繰り返した。1回のガス軟窒化は、尿素を熱分解した雰囲気中で570℃に90分間加熱して行った。
その後、各テストピースを切断してアルミニウム拡散被覆層の断面を検鏡した結果、被覆層の厚さは、図1、2と有意差は無かった。
5) Gas soft nitriding treatment Each remaining one of the test pieces of the present invention which was subjected to the steam treatment experiment 50 times was put together in a filling container when the sintered product was subjected to gas soft nitriding, and gas soft nitriding was repeated 50 times. It was. One gas soft nitriding was performed by heating to 570 ° C. for 90 minutes in an atmosphere in which urea was thermally decomposed.
Thereafter, each test piece was cut and the cross section of the aluminum diffusion coating layer was examined. As a result, the thickness of the coating layer was not significantly different from that in FIGS.

次いで、被覆層中のアルミニウムと窒素のEPMA分析を行った結果を図10、11に示す。図から明らかなように、SUS304材、SCH13材のいずれにおいてもアルミニウム拡散被覆層中および近傍の母材中(素材中)に窒素はほとんど検出されず、表面のアルミニウム濃度とアルミニウムの濃度勾配は、水蒸気処理、ガス軟化処理前の図3、4と有意差は無かった。かくして本発明の第2番目の効果を確認することができた。   Next, the results of EPMA analysis of aluminum and nitrogen in the coating layer are shown in FIGS. As is clear from the figure, almost no nitrogen was detected in the aluminum diffusion coating layer and in the nearby base material (in the material) in either the SUS304 material or the SCH13 material, and the aluminum concentration on the surface and the concentration gradient of aluminum were as follows: There was no significant difference from FIGS. 3 and 4 before the steam treatment and the gas softening treatment. Thus, the second effect of the present invention could be confirmed.

<実施例2>
本発明の効果を実機で確認する為に、図12に示すバスケット(網かご)、支柱で構成される焼結品充填部材にアルミニウム拡散浸透処理を施しテストを行った。
<Example 2>
In order to confirm the effect of the present invention with an actual machine, an aluminum diffusion penetration treatment was applied to a sintered product filling member composed of a basket (mesh cage) and a support shown in FIG.

材料はいずれもSUS304材である。網かごの外径は600mm、深さ約200mm、線径は1.6mmで、支柱にそれぞれ間隔を取って三段に取り付けられる。細かごの中には約15〜30kgの焼結品が充填され、水蒸気、軟窒化ガスが十分いきわたるように間隔を取って配置せられる。   All the materials are SUS304 materials. The outer diameter of the net cage is 600 mm, the depth is about 200 mm, and the wire diameter is 1.6 mm. The fine basket is filled with about 15 to 30 kg of a sintered product, and is arranged at intervals so that water vapor and soft nitriding gas are sufficiently dispersed.

アルミニウム拡散浸透処理を、実施例1と同条件で行って、表面にアルミニウム濃度31%、厚さ220μmのアルミニウム拡散被覆層を得た。   Aluminum diffusion penetration treatment was performed under the same conditions as in Example 1 to obtain an aluminum diffusion coating layer having an aluminum concentration of 31% and a thickness of 220 μm on the surface.

焼結体を500℃の水蒸気中で2時間加熱することからなる1回の水蒸気処理の後、尿素を熱分解した雰囲気中で570℃に90分間加熱することからなる1回のガス軟窒化処理する工程を、1サイクルとし、これを50サイクル実施した。   One gas soft nitriding treatment consisting of heating the sintered body to 570 ° C. for 90 minutes in an atmosphere in which urea is thermally decomposed after one steam treatment comprising heating the sintered body in water vapor at 500 ° C. for 2 hours. The process to perform was made into 1 cycle, and this was implemented 50 cycles.

50サイクル終了後、網かごを切断して線の断面を検鏡しEPMA分析を行った。その結果、表面に鉄酸化物は認められず、アルミニウム拡散被覆層の表面のアルミニウム濃度は30.5%、被覆層の厚さは222μmでテスト前とほとんど変化が無く、窒素を検出することは出来なかった。また、バスケット表面には割れ、傷等材料の劣化を想到させる変化は無かった。   After 50 cycles, the mesh cage was cut and the cross section of the line was examined to perform EPMA analysis. As a result, no iron oxide was observed on the surface, the aluminum concentration on the surface of the aluminum diffusion coating layer was 30.5%, the thickness of the coating layer was 222 μm, and there was almost no change from before the test, and nitrogen was detected. I could not do it. Also, there was no change on the basket surface that would lead to material deterioration such as cracks and scratches.

未処理材料(生材)を使用した従来バスケットは、窒化処理を約200回繰り返した頃に割れ、変形で使用できなくなっているのに対し、実施例2で得られた本発明品の場合200回使用後いくらか熱変形は有るものの、明確な割れは全く観察されない。その後、1000回継続使用しても、実用上全く問題なかった。   The conventional basket using the untreated material (raw material) is cracked when the nitriding treatment is repeated about 200 times and cannot be used due to deformation, whereas in the case of the product of the present invention obtained in Example 2, it is 200. Although there is some thermal deformation after repeated use, no clear cracks are observed. Thereafter, there was no problem in practical use even after continuous use 1000 times.

このように、本発明によれば、焼結品をバスケットから取り出して新たなバスケットに載せ替える必要が無く、水蒸気処理とガス軟窒化処理を連続して実施できるので、処理炉の稼働率が高まり、生産性が向上し、焼結品取扱い時に生じる品の打ち傷、欠け等が減少し、コストダウンだけでなく品質向上にも有効である。   Thus, according to the present invention, there is no need to take out the sintered product from the basket and replace it with a new basket, and the steam treatment and gas soft nitriding treatment can be carried out continuously, so that the operating rate of the processing furnace is increased. Productivity is improved, and scratches and chipping of products that occur when handling sintered products are reduced, which is effective not only for cost reduction but also for quality improvement.

<発明の効果>
以上の様に本発明の焼結品充填容器、治具等金属製部材は、水蒸気処理、およびガス軟窒化処理に用いると鉄酸化物の生成を防止するだけでなく窒化も防止し、焼結品のガス軟窒化作業の改善、生産性向上、品質改善、容器、治具類の寿命延長をはかることが出来るので経済的効果は甚だ顕著である。
<Effect of the invention>
As described above, the metal member such as a sintered product filled container and jig of the present invention not only prevents the formation of iron oxide but also prevents nitridation and sintering when used for steam treatment and gas soft nitriding treatment. The economic effect is very remarkable because it can improve the gas soft nitriding work of the product, improve the productivity, improve the quality, and extend the life of the container and jigs.

1、2 アルミニウム拡散被覆層
3、9、10 母材(SUS304材)
4、11、12 母材(SCH13材)
5、6、7、8 酸化鉄生成層
13 支柱
14、15、16 網かご
1, 2, Aluminum diffusion coating layer 3, 9, 10 Base material (SUS304 material)
4, 11, 12 Base material (SCH13 material)
5, 6, 7, 8 Iron oxide generation layer 13 Prop 14, 15, 16 Mesh basket

Claims (3)

焼結品に対して水蒸気処理を行い、次いでガス軟窒化処理を施す焼結品の処理方法であって、
焼結品を収容する処理容器および/または焼結品を支持する治具として、表面にアルミニウム拡散被覆層が形成された処理容器および/または治具を用いるとともに、前記水蒸気処理の後に、処理容器および/または治具を交換することなく、前記ガス軟窒化処理を行うことを特徴とする、焼結品の処理方法。
A method for treating a sintered product that performs steam treatment on a sintered product and then gas nitrocarburizing,
A processing container and / or jig having an aluminum diffusion coating layer formed on the surface is used as a processing container for storing the sintered product and / or a jig for supporting the sintered product, and after the steam treatment, the processing container is used. And / or performing the gas soft nitriding treatment without replacing the jig.
前記のアルミニウム拡散被覆層は、その最表面のアルミニウム濃度が15〜40重量%である、請求項1に記載の焼結品の処理方法。   The said aluminum diffusion coating layer is a processing method of the sintered article of Claim 1 whose aluminum concentration of the outermost surface is 15 to 40 weight%. 前記の焼結品を収容する処理容器および/または焼結品を支持する治具が、普通鋼、特殊鋼、オーステナイト系ステンレス鋼から選ばれた金属材料からなり、その表面のアルミニウム拡散被覆層がアルミニウム拡散浸透処理によって形成されたものである、請求項1または2に記載の焼結品の処理方法。   The processing container for storing the sintered product and / or the jig for supporting the sintered product is made of a metal material selected from ordinary steel, special steel, and austenitic stainless steel, and an aluminum diffusion coating layer on the surface thereof. The processing method of the sintered article according to claim 1 or 2 formed by aluminum diffusion penetration treatment.
JP2011221886A 2011-10-06 2011-10-06 Processing method of sintered products Active JP5653879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221886A JP5653879B2 (en) 2011-10-06 2011-10-06 Processing method of sintered products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221886A JP5653879B2 (en) 2011-10-06 2011-10-06 Processing method of sintered products

Publications (2)

Publication Number Publication Date
JP2013082955A true JP2013082955A (en) 2013-05-09
JP5653879B2 JP5653879B2 (en) 2015-01-14

Family

ID=48528425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221886A Active JP5653879B2 (en) 2011-10-06 2011-10-06 Processing method of sintered products

Country Status (1)

Country Link
JP (1) JP5653879B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188750A (en) * 2020-05-25 2021-12-13 日本特殊陶業株式会社 Superheated steam device
JP7344914B2 (en) 2021-03-10 2023-09-14 株式会社ダイヤメット Method of manufacturing sintered mechanical parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654754B1 (en) * 2018-12-10 2024-04-04 현대자동차주식회사 Method for Manufacturing Oil Content Piston Pin and Light Weight Piston Thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669369A (en) * 1979-11-08 1981-06-10 Toshiba Corp Plasma treating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669369A (en) * 1979-11-08 1981-06-10 Toshiba Corp Plasma treating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188750A (en) * 2020-05-25 2021-12-13 日本特殊陶業株式会社 Superheated steam device
JP7369092B2 (en) 2020-05-25 2023-10-25 日本特殊陶業株式会社 Superheated steam equipment
JP7344914B2 (en) 2021-03-10 2023-09-14 株式会社ダイヤメット Method of manufacturing sintered mechanical parts

Also Published As

Publication number Publication date
JP5653879B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
Makuch et al. Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy
Kulka et al. Two-stage gas boriding of Nisil in N2–H2–BCl3 atmosphere
CN113005395A (en) Chromizing and nitriding surface treatment process for austenitic stainless steel
KR100503838B1 (en) Gas Carburizing Furnace Parts and Jigs
JP5653879B2 (en) Processing method of sintered products
CN113862610B (en) Pretreatment method for improving corrosion resistance of carburized layer
JP4947932B2 (en) Metal gas nitriding method
US9453277B2 (en) Method of heat treatment and the directions for use of furnace of heat treatment
JP5457000B2 (en) Surface treatment method of steel material, steel material and mold obtained thereby
JP6321982B2 (en) Method for surface treatment of metal material
JPH0790541A (en) Mixed gas penetration modifying method and device therefor
US20150159260A1 (en) Method For The Carburization Of A Deep-Drawn Part Or A Stamped-Bent Part Made Of Austenitic Rustproof Stainless Steel
King et al. Fluidized bed CrN coating formation on prenitrocarburized plain carbon steel
US20100139812A1 (en) Case hardening titanium and its alloys
JP6374178B2 (en) Manufacturing method of machine parts
RU2291227C1 (en) Construction-steel parts surface hardening method
JP2005068491A (en) Surface hardening treatment method for titanium material
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
KR102337818B1 (en) Methods and apparatus for processing articles
JPS63255355A (en) Modifying method by mixed gas penetration
US9738964B2 (en) Method for the nitro carburization of a deep-drawn part or a stamped-bent part made of austenitic stainless steel
JP2015010252A (en) Surface modification treatment method and surface modification treatment device
JPH0424423B2 (en)
JP2010070844A (en) Method for using heat treatment furnace, method of heat treatment, and heat treatment furnace
JPH11350108A (en) Parts and jig for gas carburizing furnace excellent in carburizing resistance and high-temperature oxidizing resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

R150 Certificate of patent or registration of utility model

Ref document number: 5653879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350