JP2013080652A - Secondary battery manufacturing method - Google Patents

Secondary battery manufacturing method Download PDF

Info

Publication number
JP2013080652A
JP2013080652A JP2011220812A JP2011220812A JP2013080652A JP 2013080652 A JP2013080652 A JP 2013080652A JP 2011220812 A JP2011220812 A JP 2011220812A JP 2011220812 A JP2011220812 A JP 2011220812A JP 2013080652 A JP2013080652 A JP 2013080652A
Authority
JP
Japan
Prior art keywords
battery case
battery
secondary battery
electrolyte
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011220812A
Other languages
Japanese (ja)
Other versions
JP5741359B2 (en
Inventor
Toshihiko Mihashi
利彦 三橋
Koji Takahata
浩二 高畑
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011220812A priority Critical patent/JP5741359B2/en
Publication of JP2013080652A publication Critical patent/JP2013080652A/en
Application granted granted Critical
Publication of JP5741359B2 publication Critical patent/JP5741359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery manufacturing method that allows a worker to easily decide whether or not the impregnation state of an electrolyte to the inside of an electrode body has reached a permissible degree, and makes it possible to manufacture a secondary battery with a long lifetime and high performance.SOLUTION: A secondary battery manufacturing method according to the invention uses a conductive substance as a battery case, inserts an electrode body to which positive and negative terminal members are connected into the battery case, makes a state in which part of the positive and negative terminal members is projected out of the battery case and at least one of the positive and negative terminal members is not directly electrically connected to the case, injects an electrolyte into the battery case, obtains a value of resistance between a part projecting out of the terminal member not directly electrically connected to the battery case and the battery case, and moves to a next step if the obtained value of resistance indicates a predefined upward inclination relative to a value right after injection of the electrolyte.

Description

本発明は,電池ケースに電極体と電解液とを封入してなる二次電池の製造方法に関する。さらに詳細には,注液後における,電池ケース内での電解液の電極体への含浸完了を判定して,電池を適切に完成させることのできる電解液二次電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a secondary battery in which an electrode body and an electrolytic solution are enclosed in a battery case. More specifically, the present invention relates to a method of manufacturing an electrolyte secondary battery that can determine the completion of the impregnation of the electrolyte in the battery case in the battery case after the injection and can appropriately complete the battery. .

二次電池を製造する工程には,製造した電極体を電池ケース内に挿入した後,その電池ケース内に電解液を注液する工程が含まれている。このとき,電解液が電極体の間に適切に浸透することが求められる。しかし,電解液や電極体は電池ケースに封入されているため,注液の状態を電池ケースの外から目視で確認することはできない。   The process of manufacturing a secondary battery includes a process of injecting an electrolytic solution into the battery case after the manufactured electrode body is inserted into the battery case. At this time, it is required that the electrolytic solution permeate appropriately between the electrode bodies. However, since the electrolytic solution and the electrode body are sealed in the battery case, the state of the liquid injection cannot be visually confirmed from the outside of the battery case.

それに対し,特許文献1には,電解液の注液の状況を,この電池の正極端子と負極端子との間のインピーダンスを測定することにより見極める技術が開示されている。本文献には,このインピーダンスは注液の進行に従って低下するので,インピーダンスを測定しながら注液および加圧・減圧による脱泡を繰り返すことにより,注液の状況をモニタできると記載されている。そして,得られたインピーダンスが基準値まで低下したときには,良好な電池特性を得られる電池となっているとされている。   On the other hand, Patent Document 1 discloses a technique for determining the state of electrolyte injection by measuring the impedance between the positive terminal and the negative terminal of the battery. In this document, since this impedance decreases as the infusion progresses, it is described that the state of the infusion can be monitored by repeating the infusion and defoaming by pressurization / depressurization while measuring the impedance. And when the obtained impedance falls to a reference value, it is said that the battery has good battery characteristics.

特開2004−311343号公報Japanese Patent Application Laid-Open No. 2004-313143

しかしながら,前記した従来の製造方法において測定しているインピーダンス値は,この文献の図5にも示されているように,注液開始直後に大きく低下し,その後の低下の程度は緩やかなものとなる。そして,注液終了のタイミングとされている基準値は,低下が緩やかとなってからやや時間が経過した位置とされている。つまり,基準値に達したかどうかの判断を変化量の小さい範囲内で行わなければならないので,判定が困難であるという問題点があった。   However, as shown in FIG. 5 of this document, the impedance value measured in the above-described conventional manufacturing method is greatly reduced immediately after the start of liquid injection, and the degree of subsequent reduction is moderate. Become. The reference value, which is the timing of the end of injection, is a position where a little time has passed since the decrease gradually slowed. That is, there is a problem that it is difficult to determine whether or not the reference value has been reached because it must be performed within a small range of change.

さらに,この文献では,注液の終了までの判断のみが行われているが,例えば自動車等に搭載される大型の二次電池では,注液後,電解液が電極体内に適切に含浸されるまで待つ必要がある。電極体の幅が大きく,電極体の中心部まで電解液が含浸するのに時間がかかるからである。電解液の含浸が充分でない状態で初期充電を行うと,電極反応が不均一に進み,電極のSOCムラや被膜ムラ等が発生して,電気の内部抵抗が局所的にばらつくおそれがある。このようになった二次電池は,寿命の短いものとなるという問題点があった。   Furthermore, in this document, only the determination up to the end of the injection is made. For example, in a large secondary battery mounted on an automobile or the like, the electrolyte is appropriately impregnated in the electrode body after the injection. It is necessary to wait until. This is because the width of the electrode body is large, and it takes time for the electrolytic solution to impregnate to the center of the electrode body. If the initial charge is performed in a state where the electrolyte is not sufficiently impregnated, the electrode reaction proceeds non-uniformly, so that the SOC unevenness of the electrode, the coating unevenness, etc. may occur, and the internal resistance of electricity may locally vary. The secondary battery thus configured has a problem that it has a short life.

この含浸の程度についても,上記の特許文献1に記載されている方法と同様の方法で判定することが考えられる。すなわち,電解液を注液した後の電池の内部抵抗を測定して,その変化に基づいて含浸の程度を判断するのである。含浸が進行することによって,電池の内部抵抗は低下していくからである。しかしながら,含浸状態が飽和してくると電池の内部抵抗の変化量がきわめて小さくなり,精密な判定は困難であった。   The degree of impregnation can also be determined by a method similar to the method described in Patent Document 1 above. That is, the internal resistance of the battery after injecting the electrolyte is measured, and the degree of impregnation is judged based on the change. This is because the internal resistance of the battery decreases as the impregnation progresses. However, when the impregnated state is saturated, the amount of change in the internal resistance of the battery becomes extremely small, and precise determination is difficult.

本発明は,前記した従来の二次電池の製造方法が有する問題点を解決するためになされたものである。すなわちその課題とするところは,電極体内への電解液の含浸状態が許容程度に達したか否かの判断を容易に行うことができ,高寿命で高性能な二次電池を製造することのできる二次電池の製造方法を提供することにある。   The present invention has been made to solve the problems of the conventional method for manufacturing a secondary battery. In other words, the problem is that it is easy to determine whether the state of impregnation of the electrolyte in the electrode body has reached an acceptable level, and it is possible to manufacture a long-life, high-performance secondary battery. Another object of the present invention is to provide a method for manufacturing a secondary battery.

この課題の解決を目的としてなされた本発明の二次電池の製造方法は,電極体と電解液とを電池ケースに封入してなる二次電池の製造方法であって,電池ケースとして導電性を有するものを用い,正負の端子部材を接続した電極体を電池ケースに挿入して,正負の端子部材の一部が電池ケースの外部に突出するとともに,正負の端子部材の少なくとも一方が電池ケースと直接には導通していない状態とし,電池ケースに電解液を注入し,電池ケースと直接には導通していない端子部材のうち外部に突出している部分と電池ケースとの間の抵抗値を取得し,取得した抵抗値が電解液の注入直後の値に対して予め決めた上昇傾向を示したら,次工程に進むものである。   A method for manufacturing a secondary battery according to the present invention for the purpose of solving this problem is a method for manufacturing a secondary battery in which an electrode body and an electrolytic solution are enclosed in a battery case. The electrode body to which the positive and negative terminal members are connected is inserted into the battery case, a part of the positive and negative terminal members protrudes outside the battery case, and at least one of the positive and negative terminal members is connected to the battery case. The battery is not directly connected, injecting electrolyte into the battery case, and obtaining the resistance value between the battery case and the part of the terminal member that is not directly connected to the battery case. When the acquired resistance value shows a predetermined upward tendency with respect to the value immediately after the injection of the electrolyte, the process proceeds to the next step.

本発明の二次電池の製造方法によれば,電池ケースに電極体を入れて組み立てると,電極体に接続された正負の端子部材の一部が電池ケースの外部に突出した状態となる。この電池ケースに電解液を注入した直後は,電極体の周りに液状の電解液が溜まった状態となる。電池ケースが導電性を有するものであれば,端子部材は,電極体と電解液とを介して,電池ケースと導通した状態となる。この端子部材と電池ケースとの間に導電体のみを介した導通経路が存在しないものであれば,端子部材と電池ケースとの間の抵抗値は,電極体の周辺に液状で残留する電解液の量に対応するものとなる。従って,端子部材と電池ケースとの間の抵抗値を電池ケースの外から測定することで,電解液の含浸状況を把握できる。特に,電極体に直接接触する電解液の有無によって,この抵抗値が大きく変化するので,判定は容易である。これにより,電極体内への電解液の含浸状態が許容程度に達したか否かの判断を容易に行うことができ,高寿命で高性能な二次電池を製造することのできる二次電池の製造方法となっている。   According to the method for manufacturing a secondary battery of the present invention, when an electrode body is put into a battery case and assembled, a part of positive and negative terminal members connected to the electrode body protrudes to the outside of the battery case. Immediately after injecting the electrolyte into the battery case, a liquid electrolyte is accumulated around the electrode body. If the battery case has conductivity, the terminal member is brought into conduction with the battery case through the electrode body and the electrolytic solution. If there is no conduction path through only the conductor between the terminal member and the battery case, the resistance value between the terminal member and the battery case is the electrolyte solution remaining in the liquid around the electrode body. It will correspond to the amount of. Therefore, by measuring the resistance value between the terminal member and the battery case from the outside of the battery case, the state of impregnation with the electrolytic solution can be grasped. In particular, the resistance value varies greatly depending on the presence or absence of the electrolyte solution that is in direct contact with the electrode body. As a result, it is possible to easily determine whether or not the state of impregnation of the electrolyte in the electrode body has reached an acceptable level, and a secondary battery capable of producing a long-life and high-performance secondary battery. It is a manufacturing method.

さらに本発明では,電池ケースが扁平角形のものであるとともに,正負の端子部材の少なくとも一方が,電池ケースの上面の長手方向の一端から1/3以内の範囲内の位置に突出し,かつ,電池ケースと直接には導通しないように設けられている扁平型二次電池を対象とし,抵抗値の取得を,一方の端子部材が電池ケースの上面の長手方向の他端より上になるように電池ケースを傾斜させた状態で,一方の端子部材と電池ケースとの間で行うことが望ましい。
このようにすれば,電池ケース内で電極体外に液状で残存することが許容される電解液の液面が電極体の底面より上方であるものについても,本発明を適用することができる。傾斜させることによって,上になった端子部材には電解液が直接接触しないようにすることができるからである。傾斜させる角度は,残存が許容される最大量の電解液が,上になった端子部材に直接接触しない角度とすればよい。
Furthermore, in the present invention, the battery case has a flat rectangular shape, and at least one of the positive and negative terminal members protrudes to a position within 1/3 of the longitudinal end of the upper surface of the battery case, and the battery Targeting a flat secondary battery that is not directly connected to the case, the resistance value is obtained so that one terminal member is above the other end in the longitudinal direction of the upper surface of the battery case. It is desirable to carry out between the one terminal member and the battery case with the case tilted.
In this way, the present invention can also be applied to an electrolyte in which the liquid level allowed to remain in liquid form outside the electrode body in the battery case is above the bottom surface of the electrode body. This is because it is possible to prevent the electrolytic solution from coming into direct contact with the terminal member located above by inclining. The angle to be inclined may be an angle at which the maximum amount of electrolyte that is allowed to remain is not in direct contact with the terminal member on top.

本発明の二次電池の製造方法によれば,電極体内への電解液の含浸状態が許容程度に達したか否かの判断を容易に行うことができ,高寿命で高性能な二次電池を製造することができる。   According to the method for manufacturing a secondary battery of the present invention, it is possible to easily determine whether or not the state of impregnation of the electrolyte in the electrode body has reached an acceptable level, and have a long life and high performance. Can be manufactured.

本形態に係る二次電池を示す概略構成図である。It is a schematic block diagram which shows the secondary battery which concerns on this form. 含浸が完了していない二次電池を示す概略構成図である。It is a schematic block diagram which shows the secondary battery in which impregnation is not completed. 含浸時間と端子ケース間抵抗との関係を示すグラフ図である。It is a graph which shows the relationship between impregnation time and resistance between terminal cases. 含浸時間と電池抵抗との関係を示すグラフ図である。It is a graph which shows the relationship between impregnation time and battery resistance. クリアランスを設けた二次電池を示す説明図である。It is explanatory drawing which shows the secondary battery provided with the clearance. 二次電池を傾けて判定を行う様子を示す説明図である。It is explanatory drawing which shows a mode that a secondary battery is inclined and it determines.

以下,本発明を具体化した形態について,添付図面を参照しつつ詳細に説明する。本形態は,リチウムイオン二次電池等の二次電池を製造する製造方法に,本発明を適用したものである。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a manufacturing method for manufacturing a secondary battery such as a lithium ion secondary battery.

本形態に係る二次電池10は,図1に示すように,電池ケース11の内部に,電極体20が電解液13とともに封入されてなるものである。電池ケース11は,一面が開放された箱形部材11aと,その開放された一面を封じる蓋材11bとを有している。本形態では,電池ケース11は,この図の奥行き方向に扁平な扁平角形のものである。電極体20も,同様に扁平に形成されているものである。   As shown in FIG. 1, the secondary battery 10 according to this embodiment is configured such that an electrode body 20 is enclosed with an electrolyte solution 13 in a battery case 11. The battery case 11 has a box-shaped member 11a that is open on one side and a lid member 11b that seals the open side. In this embodiment, the battery case 11 has a flat rectangular shape that is flat in the depth direction of this figure. Similarly, the electrode body 20 is also formed flat.

蓋材11bには,電池ケース11の組立て後,電解液13を注液するための注液口15が設けられている。なお,この注液口15は,電解液13の注液が終了した後,封止されている。本形態の電池ケース11は,例えば金属などの導電性を有する材質で形成されている。また,電解液13は,リチウムイオン二次電池に一般的に用いられるものであり,例えば,リチウム塩を含む非水電解液またはイオン伝導ポリマー等が好適である。   The lid member 11b is provided with a liquid injection port 15 for injecting the electrolytic solution 13 after the battery case 11 is assembled. The injection port 15 is sealed after the injection of the electrolytic solution 13 is completed. The battery case 11 of this embodiment is formed of a conductive material such as metal. Moreover, the electrolyte solution 13 is generally used for a lithium ion secondary battery. For example, a nonaqueous electrolyte solution containing lithium salt or an ion conductive polymer is suitable.

本形態の電極体20は,例えば,特開2007−053055号公報の図2に示されているように,正極板と負極板とが重ねて捲回されてなるものである。また,正極板と負極板との間には,両者の絶縁をとるためのセパレータが配置されている。正極板,負極板,セパレータは,いずれも従来より用いられている一般的なものとすればよい。   The electrode body 20 of this embodiment is formed by winding a positive electrode plate and a negative electrode plate as shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2007-053055, for example. In addition, a separator for insulating the two is disposed between the positive electrode plate and the negative electrode plate. The positive electrode plate, the negative electrode plate, and the separator may be general ones that have been conventionally used.

正極板は,例えば,アルミ箔の両面に正極活物質層を形成したものである。正極活物質層としては,リチウムイオンを吸蔵・放出可能な正極活物質による正極合剤を含むものであり,例えば,リチウム含有金属酸化物に結着剤と分散溶媒等を混練したものが好適である。負極板は,例えば,銅箔の両面に負極活物質層を形成したものである。負極活物質層としては,リチウムイオンを吸蔵・放出可能な負極活物質による負極合剤を含むものであり,例えば,炭素材等を含んでいるものが好適である。   The positive electrode plate is formed, for example, by forming a positive electrode active material layer on both surfaces of an aluminum foil. The positive electrode active material layer includes a positive electrode mixture of a positive electrode active material capable of occluding and releasing lithium ions. For example, a lithium-containing metal oxide kneaded with a binder and a dispersion solvent is preferable. is there. For example, the negative electrode plate is obtained by forming a negative electrode active material layer on both surfaces of a copper foil. The negative electrode active material layer includes a negative electrode mixture of a negative electrode active material capable of occluding and releasing lithium ions. For example, a layer containing a carbon material or the like is preferable.

本形態の電極体20には,図1に示すように,正極端子21と負極端子22とが接続されている。正極端子21は,電池ケース11の内部で正極集電板24(正極板のうちアルミ箔の露出している部分)に接続されるとともに,一部分が電池ケース11の外部に出て配置されている。負極端子22は,電池ケース11の内部で負極集電板25(負極板のうち銅箔の露出している部分)に接続されるとともに,一部分が電池ケース11の外部に出て配置されている。   As shown in FIG. 1, a positive electrode terminal 21 and a negative electrode terminal 22 are connected to the electrode body 20 of this embodiment. The positive electrode terminal 21 is connected to the positive electrode current collector plate 24 (a portion of the positive electrode plate where the aluminum foil is exposed) inside the battery case 11, and a part thereof is disposed outside the battery case 11. . The negative electrode terminal 22 is connected to the negative electrode current collector plate 25 (a portion of the negative electrode plate where the copper foil is exposed) inside the battery case 11, and a part thereof is disposed outside the battery case 11. .

本形態の二次電池10は通常,蓋材11bを上にして配置されるものである。そして,電極体20は,その水平方向の両端側にそれぞれ,正極集電板24と負極集電板25とが露出するように捲回されている。正極端子21と負極端子22とはそれぞれ,その露出した箇所に接続され,蓋材11bから上向きに突出して配置されている。   The secondary battery 10 of this embodiment is usually arranged with the lid 11b facing up. The electrode body 20 is wound so that the positive electrode current collector plate 24 and the negative electrode current collector plate 25 are exposed at both ends in the horizontal direction. Each of the positive electrode terminal 21 and the negative electrode terminal 22 is connected to the exposed portion, and is disposed so as to protrude upward from the lid member 11b.

なお,正極端子21も負極端子22も,それぞれ蓋材11bとの間は絶縁された状態とされており,電池ケース11のいずれの箇所とも接触あるいは導通している箇所はない。また,電極体20自体もその最外周はセパレータで覆われており,電池ケース11と直接には導通していない。ここで,直接には導通していないとは,直接接触したり,導電性の構造物を介して接続されたりはしていないということである。電解液を介しての導通までも除外するものではない。   Note that both the positive terminal 21 and the negative terminal 22 are insulated from the lid member 11 b, and there is no place that is in contact with or conductive with any part of the battery case 11. The electrode body 20 itself is also covered with a separator at its outermost periphery, and is not directly connected to the battery case 11. Here, being not directly conducting means that it is not in direct contact or connected through a conductive structure. Even conduction through the electrolyte is not excluded.

なお,図1に示したのは,電解液13が電極体20に適切に含浸され,完成した状態の二次電池10である。つまり,電解液13は電極体20の極板間に浸入して,さらに,電極活物質などにしみこんでおり,液状で電池ケース11内かつ電極体20外に残存する量はごく僅かである。そして,電解液13の液面L1は,電極体20の最下部とほぼ同等の高さにある。   In addition, what was shown in FIG. 1 is the secondary battery 10 of the state which the electrolyte solution 13 was impregnated suitably in the electrode body 20, and was completed. That is, the electrolytic solution 13 penetrates between the electrode plates of the electrode body 20 and is further soaked in the electrode active material and the like, and the amount of the liquid solution remaining in the battery case 11 and outside the electrode body 20 is very small. The liquid level L1 of the electrolytic solution 13 is substantially equal to the lowermost part of the electrode body 20.

一方,図2に示すのは,電解液13の注液は終了しているが,含浸が終了していない二次電池10であり,電解液13の液面L2は,電極体20の最下部よりかなり高い位置にある。すなわち,図2の二次電池10は,電池ケース11の内部で,正極端子21と負極端子22とが液状の電解液13に漬かった状態となっている。   On the other hand, FIG. 2 shows the secondary battery 10 in which the injection of the electrolytic solution 13 has been completed but not impregnated, and the liquid level L2 of the electrolytic solution 13 is the lowest part of the electrode body 20. It is in a considerably higher position. That is, the secondary battery 10 in FIG. 2 is in a state where the positive electrode terminal 21 and the negative electrode terminal 22 are immersed in the liquid electrolyte solution 13 inside the battery case 11.

本発明者は,この図1と図2との二次電池10の状態の違いを,電極端子(正極端子21または負極端子22)と電池ケース11との間の電解液13を介した抵抗値の違いとして把握できることを見出した。以下では,この電極端子と電池ケース11との間の電解液13を介した抵抗値を,端子ケース間抵抗と呼ぶ。   The inventor found that the difference in the state of the secondary battery 10 between FIG. 1 and FIG. 2 is the resistance value through the electrolytic solution 13 between the electrode terminal (positive electrode terminal 21 or negative electrode terminal 22) and the battery case 11. It was found that it can be grasped as a difference. Hereinafter, the resistance value between the electrode terminal and the battery case 11 through the electrolytic solution 13 is referred to as a resistance between terminal cases.

つまり,電極端子(またはそれに接続されている電極集電板)と電解液13との接触面積,特に,これらが直接接触しているかどうかによって,電極端子と電池ケース11との間の抵抗値が大きく異なっていたのである。例えば,図2に示すように,抵抗測定部30を使用して,電極端子と電池ケース11との間の抵抗値を測定することにより,取得した抵抗値が予め決めた上昇傾向を示したら含浸が完了したと判断することができることが分かった。   That is, the resistance value between the electrode terminal and the battery case 11 depends on the contact area between the electrode terminal (or the electrode current collector connected thereto) and the electrolyte solution 13, particularly whether or not they are in direct contact. It was very different. For example, as shown in FIG. 2, the resistance measurement unit 30 is used to measure the resistance value between the electrode terminal and the battery case 11, so that the impregnation is performed when the acquired resistance value shows a predetermined upward tendency. Was found to be complete.

本形態の抵抗測定部30は,電源と電流計とを含むものであり,両端部に電圧を印加して,流れた電流の電流値と電圧値との関係から抵抗値を得るものである。この抵抗値の推移は,例えば図3に示すようなものである。この例では,注液終了直後から抵抗値が0.1kΩ以下の状態が続き,注液後1000分前後を経過した頃から抵抗値は急速に上昇した。なお,この図の横軸における含浸時間0分は,規定量の電解液13を電池ケース11内に注液し終わった直後の時点を示している。   The resistance measuring unit 30 according to this embodiment includes a power source and an ammeter, and applies a voltage to both ends to obtain a resistance value from the relationship between the current value and the voltage value of the flowing current. The transition of the resistance value is, for example, as shown in FIG. In this example, the resistance value continued to be 0.1 kΩ or less immediately after the end of the injection, and the resistance value increased rapidly from about 1000 minutes after the injection. Note that the impregnation time of 0 minutes on the horizontal axis in this figure indicates the time immediately after the prescribed amount of the electrolyte solution 13 has been poured into the battery case 11.

つまり,図2に示したように電極体20が電解液13に漬かっている状態では,電極端子とそれに接触している電解液13と間で電子のやりとりが行われ,比較的自由に電流を流すことができる。従って,端子ケース間抵抗は小さい。一方,含浸されていない液状の電解液13が減少すると,電極端子に直接接触している電解液13が減少するため,電子のやりとりを行うことが難しくなる。そのため,端子ケース間抵抗は次第に大きくなる。   That is, as shown in FIG. 2, in the state where the electrode body 20 is immersed in the electrolytic solution 13, electrons are exchanged between the electrode terminal and the electrolytic solution 13 in contact with the electrode terminal, so that current can be relatively freely supplied. It can flow. Therefore, the resistance between terminal cases is small. On the other hand, when the liquid electrolyte solution 13 that is not impregnated decreases, the electrolyte solution 13 that is in direct contact with the electrode terminals decreases, making it difficult to exchange electrons. As a result, the resistance between terminal cases gradually increases.

そして,図1のように含浸されていない液状の電解液13がごく少なくなり,特に,電極体20が電解液13に漬かっていない状態となると,電極端子に直接接触している電解液13が無く,電子のやりとりを直接行うことはできなくなる。そのため,端子ケース間抵抗は急激に大きくなる。つまり,この図3の結果で,時刻A〜Cは,まだ含浸が完了していない状態(図2の状態)であり,時刻D,Eは,含浸が完了した状態(図1の状態)に対応している。なお,いずれの状態でも,電解液13と電池ケース11とは底面において広く接触しており,この間の抵抗は小さい。   Then, as shown in FIG. 1, the liquid electrolyte solution 13 that is not impregnated becomes very small. In particular, when the electrode body 20 is not immersed in the electrolyte solution 13, the electrolyte solution 13 that is in direct contact with the electrode terminal is There will be no direct exchange of electrons. Therefore, the resistance between the terminal cases increases rapidly. That is, in the result of FIG. 3, the times A to C are in a state where the impregnation is not yet completed (the state shown in FIG. 2), and the times D and E are the states where the impregnation is completed (the state shown in FIG. 1). It corresponds. In any state, the electrolytic solution 13 and the battery case 11 are in wide contact with each other on the bottom surface, and the resistance therebetween is small.

この図3の結果は,図1と図2とに示すように,二次電池10を蓋材11bを上にして立てた状態で測定したものである。本形態の二次電池10は,この配置では,含浸が完了すると電解液13の液面は,電極体20の最下面と同等程度の高さとなる。この配置で測定した場合には,図2に示したように負極端子22と電池ケース11との間に抵抗測定部30を配置して測定しても,あるいは,正極端子21と電池ケース11との間に抵抗測定部30を配置して測定しても結果はほぼ同じであった。   The results of FIG. 3 were measured with the secondary battery 10 standing up with the lid 11b up as shown in FIG. 1 and FIG. In the secondary battery 10 of this embodiment, when the impregnation is completed in this arrangement, the liquid surface of the electrolytic solution 13 becomes the same height as the lowermost surface of the electrode body 20. When the measurement is performed in this arrangement, the resistance measurement unit 30 is arranged between the negative electrode terminal 22 and the battery case 11 as shown in FIG. Even when the resistance measurement unit 30 was placed between the measurement results, the results were almost the same.

この二次電池10の製造方法は以下の通りである。まず,前述のような電極体20,電解液13,電池ケース11等をそれぞれ用意する。そして,電池ケース11に電極体20を封入して二次電池を組立て,電解液13を注液する。さらに,図2に示した抵抗測定部30を使用して,端子ケース間抵抗を測定する。この測定値が予め決めた上昇傾向を示したか否かに基づいて,含浸が完了したか否かを判定する。例えば,端子ケース間抵抗の値が,予め決めた値を上回ったら,含浸が完了したと判定する。閾値は実験によって取得しておけばよい。   The manufacturing method of the secondary battery 10 is as follows. First, the electrode body 20, the electrolytic solution 13, the battery case 11 and the like as described above are prepared. Then, the electrode body 20 is sealed in the battery case 11 to assemble the secondary battery, and the electrolytic solution 13 is injected. Further, the resistance between the terminal cases is measured using the resistance measuring unit 30 shown in FIG. Whether or not the impregnation is completed is determined based on whether or not the measured value shows a predetermined upward tendency. For example, if the resistance between the terminal cases exceeds a predetermined value, it is determined that the impregnation is completed. The threshold value may be acquired by experiment.

あるいは,端子ケース間抵抗の値はある時点から急激に上昇するものであるので,前回との差または上昇率等に閾値を設けておいて,それを超えたか否かによって判定することもできる。またあるいは,初期抵抗値(例えば,時刻Cくらいまでの平均でもよい)の何倍になったらという判定の仕方でも良い。このような初期抵抗値に依存する判定であっても,「予め決めた」に含まれる。すなわち,判定の基準は,測定開始以前に決定しておくものに限らず,測定開始後であっても判定までに決定されているものであればよい。そして,含浸が完了したと判定されたら,次工程に進む。次工程には,その二次電池の初期充電工程も含まれるが,含浸が完了した後に即,初期充電を行うとは限らない。そして,二次電池10が完成する。   Alternatively, since the value of the resistance between the terminal cases increases rapidly from a certain point in time, a threshold value is set for the difference from the previous time or the rate of increase, and it can be determined by whether or not the threshold value is exceeded. Alternatively, it may be determined how many times the initial resistance value (for example, it may be an average up to about time C). Even such a determination depending on the initial resistance value is included in “predetermined”. That is, the criteria for determination are not limited to those determined before the start of measurement, but may be those determined by the determination even after the start of measurement. If it is determined that the impregnation is completed, the process proceeds to the next step. The next process includes an initial charging process of the secondary battery, but the initial charging is not always performed immediately after the impregnation is completed. Then, the secondary battery 10 is completed.

本発明者は,実験によって本発明の効果を確認した。この実験では,以下の条件で,初期容量が30Ahの電池を製造して行った。正極材料としてはNi/Mn/Coの三元系を使用した。負極材料としては黒鉛を使用した。セパレータとしては,PP/PE/PPの3層セパレータを使用した。これらを捲回して電極体20を形成し,電池ケース11に封入して,電解液13を注液した。   The inventor has confirmed the effect of the present invention through experiments. In this experiment, a battery having an initial capacity of 30 Ah was manufactured under the following conditions. As the positive electrode material, a ternary system of Ni / Mn / Co was used. Graphite was used as the negative electrode material. As the separator, a three-layer separator of PP / PE / PP was used. These were wound to form the electrode body 20, sealed in the battery case 11, and injected with the electrolytic solution 13.

本実験では,同じ構成の二次電池を5個用意し,注液までは同様に製造した。その後,含浸のために放置する時間(含浸時間)をそれぞれ異なるものとし,それぞれの含浸時間の終了後直ちに初期充電を行った。初期充電が終了したら二次電池として完成である。この後,後述するようにサイクル試験を行って,各二次電池の性能を比較した。なお,含浸時間は,図3中にA〜Eで示した5時点とした。以下では,電池A,電池Bのように,初期充電を開始した時刻の符号でその二次電池を表記する。   In this experiment, five secondary batteries having the same configuration were prepared, and the same process was performed up to the injection. Thereafter, the time for leaving for impregnation (impregnation time) was varied, and initial charging was performed immediately after the end of each impregnation time. When the initial charging is completed, the secondary battery is completed. Thereafter, a cycle test was performed as described later, and the performance of each secondary battery was compared. The impregnation time was 5 points indicated by A to E in FIG. In the following description, the secondary battery is represented by the sign of the time at which the initial charging is started, such as battery A and battery B.

なお,この実験では二次電池として,端子ケース間抵抗が1.0kΩを超えたら含浸が完了したと判定できるものを用いた。すなわち,電池Dと電池Eでは,本形態で含浸が完了したと判定された後,初期充電を行ったものである。一方,電池A,電池B,電池Cは含浸が完了したとは判定されていないうちに初期充電を行ったものである。初期充電は,いずれも同様に,4.1Vcccv(定電流定電圧)15A(0.5Cに相当)で電流値が0.1Aになるまでの充電とした。その後,60℃の環境下で24時間放置し,エージングを行った。これで5種類の二次電池が完成した。   In this experiment, a secondary battery that can be determined to be impregnated when the resistance between the terminal cases exceeds 1.0 kΩ is used. That is, in the battery D and the battery E, initial charging was performed after it was determined that the impregnation was completed in this embodiment. On the other hand, the batteries A, B, and C were subjected to initial charging before it was determined that the impregnation was completed. In the same way, the initial charging was performed until the current value reached 0.1 A at 4.1 Vcccc (constant current constant voltage) 15 A (corresponding to 0.5 C). Then, it was left to stand for 24 hours in an environment of 60 ° C., and was aged. Thus, five types of secondary batteries were completed.

なお,同様の条件で製造した二次電池を,従来の判定方法である電池抵抗によって判定すると,図4に示すような結果が得られた。電池抵抗とは,正極端子21と負極端子22との間の電気的抵抗値である。従来の判定方法では,この電池抵抗があらかじめ定めた値を下回ったら含浸が完了したと判定していた。例えば,図4で電池抵抗が0.73mΩを下回ったら含浸が完了したと判定していた。従って,従来の判定方法では,電池Aは含浸が完了したとは判定されていなかったものであるが,電池B〜電池Eは含浸完了と判断されていたものである。なお,図4中のA〜Eは,図3中のA〜Eと同じ含浸時間に対応している。   In addition, when the secondary battery manufactured on the same conditions was determined with the battery resistance which is the conventional determination method, the result as shown in FIG. 4 was obtained. The battery resistance is an electrical resistance value between the positive terminal 21 and the negative terminal 22. In the conventional determination method, when the battery resistance falls below a predetermined value, it is determined that the impregnation is completed. For example, in FIG. 4, it was determined that the impregnation was completed when the battery resistance was less than 0.73 mΩ. Therefore, in the conventional determination method, battery A was not determined to be impregnated, but batteries B to E were determined to be impregnated. Note that A to E in FIG. 4 correspond to the same impregnation time as A to E in FIG.

そして,電池A〜電池Eのサイクル試験を行い,電池特性を容量維持率で評価した。評価の手順は以下の通りである。
まず,4.1Vcccv15Aで0.1Aになるまでの充電と,cc(定電流)15Aで3.0Vとなるまでの放電とを行い,この放電による放電容量をその電池の初期容量とした。
続いて,0℃の環境下で,4.1Vcccv30A(1C)で1.5時間の充電と,cc30Aで2.5Vに下がるまでの放電とを1サイクルとして,1000サイクル繰り返した。
その後,初期容量を求めたときと同条件で容量確認を行った。この結果得られた電池容量の初期容量に対する割合を容量維持率とした。
And the cycle test of the battery A-the battery E was done, and the battery characteristic was evaluated by the capacity maintenance rate. The evaluation procedure is as follows.
First, charging up to 0.1 A at 4.1 Vcccc15A and discharging to 3.0 V at cc (constant current) 15 A were performed, and the discharge capacity by this discharge was taken as the initial capacity of the battery.
Subsequently, in an environment of 0 ° C., charging for 1.5 hours at 4.1 V cccv30A (1C) and discharging until it dropped to 2.5 V at cc30A were taken as one cycle, and 1000 cycles were repeated.
Subsequently, the capacity was checked under the same conditions as when the initial capacity was obtained. The ratio of the battery capacity obtained as a result to the initial capacity was defined as the capacity maintenance ratio.

Figure 2013080652
Figure 2013080652

実験の結果を上の表1に示す。このサイクル試験では,電池A〜電池Cは容量維持率が充分とは言えなかった。電池D,電池Eは適切な容量維持率を有していた。つまり,電池D,電池Eは良好な二次電池であったが,電池A〜電池Cは良好とは言えなかった。   The results of the experiment are shown in Table 1 above. In this cycle test, batteries A to C could not be said to have a sufficient capacity retention rate. Battery D and Battery E had appropriate capacity maintenance rates. That is, the batteries D and E were good secondary batteries, but the batteries A to C were not good.

この結果は,電池A〜電池Cは含浸が未完了であると判定した,本形態の判定と合致していた。これに対して,比較例の判定では,電池A以外は完了と判定されており,容量維持率の結果とは合致しなかった。従って,本形態の判定方法での判定結果が妥当なものであることが確認できた。   This result was consistent with the determination of this embodiment in which it was determined that batteries A to C were not completely impregnated. On the other hand, in the determination of the comparative example, it was determined that the battery other than the battery A was completed, and did not match the result of the capacity maintenance rate. Therefore, it was confirmed that the determination result by the determination method of this embodiment is appropriate.

なお,端子ケース間抵抗の測定方法を図5,図6に示すようにすれば,端子ケース間抵抗の値の変化をより明確に取得できる。図5に示すのは,電極体20と電池ケース11との間にクリアランスhを設けた例である。電解液13の含浸が進めば,電解液13の液面位置が下がって,このクリアランスhの範囲内に入る。つまり,このようになるように電池ケース11と電極体20との大きさの関係,あるいは電解液13の注液量等を設定しておけばよい。このようにすれば,含浸が完了したときにおける,電解液13の液状部分と電極端子(正極端子21または負極端子22)との接触面積は,図1の例よりもさらに小さい。従って,含浸の完了を明確に判定することができる。   If the method for measuring the resistance between the terminal cases is as shown in FIGS. 5 and 6, the change in the value of the resistance between the terminal cases can be obtained more clearly. FIG. 5 shows an example in which a clearance h is provided between the electrode body 20 and the battery case 11. As the impregnation of the electrolytic solution 13 proceeds, the liquid level of the electrolytic solution 13 decreases and enters the range of the clearance h. That is, the size relationship between the battery case 11 and the electrode body 20 or the injection amount of the electrolytic solution 13 may be set so as to be like this. In this way, when the impregnation is completed, the contact area between the liquid portion of the electrolytic solution 13 and the electrode terminal (the positive electrode terminal 21 or the negative electrode terminal 22) is further smaller than the example of FIG. Therefore, completion of impregnation can be clearly determined.

あるいは,図6に示すように,二次電池10を傾けて端子ケース間抵抗の測定を行うこととしても良い。すなわち,蓋材11bの長手方向の一端側を持ち上げ,蓋材11bが水平面に対して傾斜角θをなすように電池ケース11を傾ける。このようにすれば,電池ケース11内かつ電極体20外に液状で残存する電解液13は,図示のように,蓋材11bの長手方向について,他端側の底に集まる。   Alternatively, as shown in FIG. 6, the secondary battery 10 may be tilted to measure the resistance between the terminal cases. That is, one end side in the longitudinal direction of the lid member 11b is lifted, and the battery case 11 is tilted so that the lid member 11b forms an inclination angle θ with respect to the horizontal plane. In this way, the electrolyte 13 remaining in the battery case 11 and outside the electrode body 20 gathers at the bottom on the other end side in the longitudinal direction of the lid 11b as shown in the figure.

本形態の二次電池10は,扁平角形で略長方形の蓋材11bの両端近くにそれぞれ正極端子21と負極端子22とが突出しているものである。そして,図1に示すように端子を上に向けて電池ケース11を立てると,両極の端子とそれに接続される電極集電板とは,電池ケース11内の両脇にそれぞれ配置されている。そのため,前述のように傾けることにより,持ち上げた側の電極端子および電極集電板(図6では正極端子21と正極集電板24)を,電解液13に接触していない状態とすることができる。   In the secondary battery 10 of the present embodiment, a positive electrode terminal 21 and a negative electrode terminal 22 protrude near the ends of a flat rectangular and substantially rectangular lid member 11b. Then, when the battery case 11 is erected with the terminals facing upward as shown in FIG. 1, the terminals of both electrodes and the electrode current collectors connected thereto are arranged on both sides in the battery case 11. Therefore, by tilting as described above, the electrode terminal and the electrode current collector plate (the positive electrode terminal 21 and the positive electrode current collector plate 24 in FIG. 6) on the lifted side are not in contact with the electrolytic solution 13. it can.

そこで,抵抗測定部30によって,持ち上げた側の電極端子と電池ケース11との間の抵抗値を測定すれば,含浸の完了を明確に判定することができる。この方法は,正極端子21と負極端子22との少なくとも一方が,蓋材11bの長手方向の一端から1/3以内の範囲内の位置に突出し,かつ,電池ケース11と直接には導通しないように設けられているものについて特に有効である。   Therefore, if the resistance measurement unit 30 measures the resistance value between the lifted electrode terminal and the battery case 11, the completion of impregnation can be clearly determined. In this method, at least one of the positive electrode terminal 21 and the negative electrode terminal 22 protrudes to a position within 1/3 from one end in the longitudinal direction of the lid member 11b and does not directly conduct to the battery case 11. It is particularly effective for those provided in

なお,図6に示す傾斜角θは,含浸完了後も電池ケース11内かつ電極体20外に液状での残存が許容される電解液13の量に応じて決定される。この方法であれば,電極体20と電池ケース11との間にクリアランスhを設ける必要はない。なお,この方法の場合は,判定のために端子ケース間抵抗を測定する間だけ傾けるようにすることが望ましい。   6 is determined according to the amount of the electrolytic solution 13 that is allowed to remain in the battery case 11 and outside the electrode body 20 even after the impregnation is completed. With this method, there is no need to provide a clearance h between the electrode body 20 and the battery case 11. In this method, it is desirable to incline only during the measurement of the resistance between terminal cases for determination.

以上詳細に説明したように本形態の判定方法によれば,電解液13の電極体20への含浸が完了したか否かを容易にかつ明確に判定することができる。従って,本判定方法で含浸の完了が確認できた後に初期充電を行うようにすることで,その後の性能の良好な二次電池とすることができる。これにより,電極体内への電解液の含浸状態が許容程度に達したか否かの判断を容易に行うことができ,高寿命で高性能な二次電池を製造することができる製造方法となっている。   As described above in detail, according to the determination method of the present embodiment, it can be easily and clearly determined whether or not the impregnation of the electrode body 20 with the electrolytic solution 13 is completed. Therefore, by performing the initial charging after the completion of impregnation can be confirmed by this determination method, a secondary battery having good performance thereafter can be obtained. As a result, it is possible to easily determine whether or not the state of impregnation of the electrolytic solution in the electrode body has reached an acceptable level, and a manufacturing method capable of manufacturing a long-life and high-performance secondary battery. ing.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。   In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.

10 二次電池
11 電池ケース
13 電解液
20 電極体
21 正極端子
22 負極端子
DESCRIPTION OF SYMBOLS 10 Secondary battery 11 Battery case 13 Electrolytic solution 20 Electrode body 21 Positive electrode terminal 22 Negative electrode terminal

Claims (2)

電極体と電解液とを電池ケースに封入してなる二次電池の製造方法において,
前記電池ケースとして導電性を有するものを用い,
正負の端子部材を接続した前記電極体を前記電池ケースに挿入して,前記正負の端子部材の一部が前記電池ケースの外部に突出するとともに,前記正負の端子部材の少なくとも一方が前記電池ケースと直接には導通していない状態とし,
前記電池ケースに電解液を注入し,
前記電池ケースと直接には導通していない前記端子部材のうち外部に突出している部分と前記電池ケースとの間の抵抗値を取得し,
前記取得した抵抗値が電解液の注入直後の値に対して予め決めた上昇傾向を示したら,次工程に進むことを特徴とする二次電池の製造方法。
In a method for manufacturing a secondary battery in which an electrode body and an electrolyte are enclosed in a battery case,
Use the battery case having conductivity,
The electrode body to which positive and negative terminal members are connected is inserted into the battery case, a part of the positive and negative terminal members protrudes outside the battery case, and at least one of the positive and negative terminal members is the battery case. And is not in direct conduction,
Injecting electrolyte into the battery case,
Obtaining a resistance value between the battery case and a portion projecting outside of the terminal member that is not directly connected to the battery case;
When the acquired resistance value shows a predetermined upward tendency with respect to the value immediately after the injection of the electrolyte, the process proceeds to the next step.
請求項1に記載の二次電池の製造方法において,
前記電池ケースが扁平角形のものであるとともに,前記正負の端子部材の少なくとも一方が,前記電池ケースの上面の長手方向の一端から1/3以内の範囲内の位置に突出し,かつ,前記電池ケースと直接には導通しないように設けられている扁平型二次電池を対象とし,
前記抵抗値の取得を,
前記一方の端子部材が前記電池ケースの上面の長手方向の他端より上になるように前記電池ケースを傾斜させた状態で,
前記一方の端子部材と前記電池ケースとの間で行うことを特徴とする二次電池の製造方法。
In the manufacturing method of the secondary battery according to claim 1,
The battery case has a flat rectangular shape, and at least one of the positive and negative terminal members protrudes to a position within 1/3 from one end in the longitudinal direction of the upper surface of the battery case, and the battery case For flat-type secondary batteries that are not directly connected to
Obtaining the resistance value,
In the state where the battery case is inclined so that the one terminal member is above the other end in the longitudinal direction of the upper surface of the battery case,
A method for producing a secondary battery, wherein the method is performed between the one terminal member and the battery case.
JP2011220812A 2011-10-05 2011-10-05 Manufacturing method of secondary battery Active JP5741359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220812A JP5741359B2 (en) 2011-10-05 2011-10-05 Manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220812A JP5741359B2 (en) 2011-10-05 2011-10-05 Manufacturing method of secondary battery

Publications (2)

Publication Number Publication Date
JP2013080652A true JP2013080652A (en) 2013-05-02
JP5741359B2 JP5741359B2 (en) 2015-07-01

Family

ID=48526872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220812A Active JP5741359B2 (en) 2011-10-05 2011-10-05 Manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP5741359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149187A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Method of manufacturing power storage device and inspecting method for power storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231196A (en) * 2001-02-01 2002-08-16 At Battery:Kk Method of manufacturing thin battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231196A (en) * 2001-02-01 2002-08-16 At Battery:Kk Method of manufacturing thin battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149187A (en) * 2014-02-06 2015-08-20 株式会社豊田自動織機 Method of manufacturing power storage device and inspecting method for power storage device

Also Published As

Publication number Publication date
JP5741359B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
KR101873659B1 (en) Method of producing nonaqueous secondary battery
JP7096973B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and manufacturing system
JP5050999B2 (en) Test method for battery and electrode
US20080199737A1 (en) Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device
JP6727965B2 (en) Lead acid battery
KR20180068708A (en) Method and apparatus for assessing lifetime of secondary battery
US20190165376A1 (en) Battery electrode with carbon additives in meta-solid-state battery
CN1332484A (en) Nonaqueous electrolyte secondary battery and its manufacture
EP2544292A1 (en) Lead storage battery
JP4205209B2 (en) Nonaqueous electrolyte secondary battery
CN106133952B (en) Non-aqueous electrolyte secondary battery
CN112557931B (en) Device and method for detecting health degree of metal lithium battery
JP6141528B2 (en) Lithium electrode for lithium ion storage battery and method for producing the same
JP2014032923A (en) Negative electrode of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing them
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
CN114400374A (en) Polymer electrolyte and preparation method and application thereof
TWI472084B (en) Secondary battery of excellent productability and safety
JP2013175417A (en) Lithium ion secondary battery and charge control method therefor
JP2015090806A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2002008730A (en) Lithium secondary battery
JP5741359B2 (en) Manufacturing method of secondary battery
JP6573150B2 (en) Electricity storage element
JP2018174096A (en) Power storage element
JP2000106213A (en) Lithium secondary battery and manufacture of positive electrode plate for use therein
KR20180014763A (en) A method for determining an anode potential and / or a cathode potential in a battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250