JP2013079603A - Condensing equipment for axial flow exhaust type steam turbine and geothermal power plant - Google Patents

Condensing equipment for axial flow exhaust type steam turbine and geothermal power plant Download PDF

Info

Publication number
JP2013079603A
JP2013079603A JP2011219956A JP2011219956A JP2013079603A JP 2013079603 A JP2013079603 A JP 2013079603A JP 2011219956 A JP2011219956 A JP 2011219956A JP 2011219956 A JP2011219956 A JP 2011219956A JP 2013079603 A JP2013079603 A JP 2013079603A
Authority
JP
Japan
Prior art keywords
condenser
steam turbine
circulating water
cooling tower
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011219956A
Other languages
Japanese (ja)
Inventor
Yuko Uehashi
橋 祐 子 上
Yoichi Sugimori
森 洋 一 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011219956A priority Critical patent/JP2013079603A/en
Priority to EP12186406.0A priority patent/EP2610444A3/en
Priority to US13/630,410 priority patent/US20130081393A1/en
Priority to NZ602725A priority patent/NZ602725B/en
Publication of JP2013079603A publication Critical patent/JP2013079603A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B3/00Condensers in which the steam or vapour comes into direct contact with the cooling medium
    • F28B3/04Condensers in which the steam or vapour comes into direct contact with the cooling medium by injecting cooling liquid into the steam or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • F28B9/06Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid with provision for re-cooling the cooling water or other cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To provide condensing equipment for an axial exhaust type steam turbine and a geothermal power plant which can secure a nozzle request pressure and reduce a construction cost.SOLUTION: The condensing equipment for the axial flow exhaust type steam turbine includes: a steam turbine 1 to which steam is supplied; a condenser 2 which condenses steam exhausted from the steam turbine as directly contacting cooling water from a spray nozzle 3; a cooling tower 4 which generates cooling water by accumulating condensed water and cooling water; a water circulating pipe which supplies water condensed by the condenser 2 to the cooling tower; and a water return circulating pipe 5 which returns the cooling water generated by the cooling tower 4 to the condenser unit and where a pump 8 is arranged at the water return circulating pipe 5.

Description

本発明は、地熱発電プラント等において用いられる軸流排気型蒸気タービン用復水装置、並びにこのような復水装置を備えた地熱発電プラントに関する。   The present invention relates to a condensing device for an axial exhaust steam turbine used in a geothermal power plant or the like, and a geothermal power plant equipped with such a condensing device.

地熱発電プラントでは、地熱により生成された天然の蒸気を用いて蒸気タービンを回転させた後、排気を冷却凝縮して復水を回収する復水装置が設けられている。復水装置には、蒸気タービンからの排気に対して冷却水を直接接触される直接接触式があり、さらに直接接触式復水器にはトレイを用いた方式と、冷却水をスプレーにより直接噴霧して排気に接触させるスプレーノズルを用いた方式とがある。   A geothermal power plant is provided with a condensing device that rotates a steam turbine using natural steam generated by geothermal heat, and then cools and condenses exhaust to recover condensate. The condensing device has a direct contact type in which the cooling water is directly contacted with the exhaust from the steam turbine, and the direct contact type condenser uses a tray and the cooling water is directly sprayed by spraying. Then, there is a method using a spray nozzle that contacts exhaust.

スプレーノズル方式では、復水器内においてスプレーノズルにより循環水を噴霧をするために、復水器内における適切な位置に複数のノズルが設置されている。   In the spray nozzle system, a plurality of nozzles are installed at appropriate positions in the condenser in order to spray circulating water using the spray nozzles in the condenser.

各ノズルには、噴霧のために必要な圧力が確保されることが必要であり、最上部に設置されたノズルにおいても圧力が確保されていなければならない。   Each nozzle needs to have a pressure required for spraying, and the nozzle installed at the top must also have a pressure.

ここで、ノズルに要求される圧力は、以下の式(1)により表わされる。
ノズル要求圧力=圧力差(冷却塔内面圧(大気圧)−復水器内圧(大気圧より低圧))
−圧力損失(弁、配管)
−静水頭差(復水器のスプレーノズル設置最上高さ−冷却塔の水面レベル) (1)
Here, the pressure required for the nozzle is expressed by the following equation (1).
Nozzle required pressure = pressure difference (cooling tower inner pressure (atmospheric pressure)-condenser internal pressure (lower than atmospheric pressure))
-Pressure loss (valves, piping)
-Hydrostatic head difference (top height of condenser spray nozzle installation-cooling tower water level) (1)

このように、復水器及び冷却塔の設置高さは、冷却塔内面圧と復水器内圧との圧力差、配管及び調節弁の圧力損失、スプレーノズルの高さと冷却塔の水面レベルとの静水頭差を考慮する必要がある。   Thus, the installation height of the condenser and cooling tower is the difference between the pressure difference between the internal pressure of the cooling tower and the internal pressure of the condenser, the pressure loss of the piping and the control valve, the height of the spray nozzle and the water level of the cooling tower. It is necessary to consider the hydrostatic head difference.

上記式(1)において、システム設計により、冷却塔内面圧と復水器内圧との圧力差、配管及び調節弁の圧力損失が決定される。ノズル要求圧力を確保するためには、復水器のスプレーノズル設置最上高さと冷却塔の水面レベルとの静水頭差を考慮するために、スプレーノズルの設置位置を下げる必要が生じる。この結果、復水器の掘り込みが深くなり、建設コストが増加するという課題があった。   In the above formula (1), the pressure difference between the cooling tower inner surface pressure and the condenser internal pressure and the pressure loss of the piping and the control valve are determined by the system design. In order to secure the required nozzle pressure, it is necessary to lower the installation position of the spray nozzle in order to consider the hydrostatic head difference between the maximum spray nozzle installation height of the condenser and the water surface level of the cooling tower. As a result, there was a problem that the excavation of the condenser deepened and the construction cost increased.

また、従来の地熱発電プラントでは、蒸気タービンから排気を下方に行う下方排気型を主に採用しており、戻り循環水管からの冷却水が蒸気タービンへ流入する現象、即ちウォータインダクションが起こらないように考慮する必要はなかった。しかし下方排気型では、復水器を蒸気タービンより低い位置まで掘り込む必要があり建設コストの増加を招いていた。   In addition, the conventional geothermal power plant mainly employs a lower exhaust type that exhausts the steam turbine downward, so that the phenomenon that the cooling water from the return circulation water pipe flows into the steam turbine, that is, the wart induction does not occur. There was no need to consider. However, in the lower exhaust type, it is necessary to dig the condenser to a position lower than the steam turbine, which causes an increase in construction cost.

そこで近年では、建設コストを低減するため、さらに蒸気タービンの最終翼出口から復水器までの圧力損失を小さくするために、蒸気タービンに軸流排気型を適用し、蒸気タービンと同レベルに設置した復水器に、蒸気タービンの最終段翼後側から直接排気を導く軸流排気型を採用したものが増加している。   Therefore, in recent years, in order to reduce the construction cost and further reduce the pressure loss from the final blade outlet of the steam turbine to the condenser, an axial exhaust type is applied to the steam turbine and installed at the same level as the steam turbine. An increasing number of such condensers adopting an axial exhaust type that directs exhaust directly from the rear side of the last blade of the steam turbine.

このような軸流排気型を採用した場合、復水器内に蓄積された水のレベル、即ちホットウェルレベルを、循環水ポンプが非常停止した時に、戻り循環水管に設置された調節弁が全閉するまでに復水器に流入する冷却水によるタービンのウォータインダクションが起こらないように考慮する必要がある。   When such an axial exhaust type is adopted, the level of water accumulated in the condenser, that is, the hot well level, is adjusted so that all the control valves installed in the return circulating water pipes when the circulating water pump is emergency stopped. It is necessary to consider that the turbine water-induction caused by the cooling water flowing into the condenser before closing will not occur.

具体的には、復水器のホットウェルレベルは、蒸気タービンの最終段翼の最低羽根レベルから復水器の冷却水流入量により上昇するレベルを考慮して設定しなければならない。   Specifically, the hot well level of the condenser must be set in consideration of the level rising from the lowest blade level of the last stage blade of the steam turbine due to the amount of cooling water flowing into the condenser.

ここで、冷却塔の水位レベルが高い程、復水器のホットウェルレベルとの静水頭差が大きくなり、調節弁が全閉するまでの時間に復水器へ流入する冷却水量が増える。これに伴い、冷却水貯留に必要な高さが増加し、ホットウェルレベルを下げる必要が生じて、復水器の掘り込みが深くなり建設コストが増加するという課題があった。   Here, the higher the water level of the cooling tower, the larger the hydrostatic head difference from the hot well level of the condenser, and the amount of cooling water flowing into the condenser increases until the control valve is fully closed. Along with this, there has been a problem that the height required for cooling water storage increases, the hot well level needs to be lowered, the condenser is deeply dug, and the construction cost increases.

従来の軸流排気型の蒸気タービン用直接接触式復水装置として、以下の特許文献1に記載されたものがある。この装置は、戻り循環水管に立ち上がり部を形成し、この立ち上がり部の頂部近傍に枝管と弁とからなるサイフォンブレーカを接続することにより、循環水ポンプ停止時における冷却塔から復水器への冷却水の流入を防ぎ、ウォータインダクションを防止するというものである。   As a conventional direct contact condensing device for an axial exhaust type steam turbine, there is one described in Patent Document 1 below. This device forms a rising part in the return circulating water pipe, and a siphon breaker consisting of a branch pipe and a valve is connected near the top of the rising part, so that when the circulating water pump is stopped, the cooling tower is connected to the condenser. This is to prevent cooling water from flowing in and prevent warping.

特開2001−193417号公報JP 2001-193417 A

しかし、上記特許文献1に記載されたものは、軸流排気型の蒸気タービン用直接接触式復水装置におけるウォータインダクションを防止するものであって、ノズル要求圧力を確保するために復水器の掘り込みが深くなり建設コストが増加するという課題を解決することはできなかった。   However, what is described in the above-mentioned Patent Document 1 is to prevent the warpage in the direct contact condensing device for an axial exhaust type steam turbine, and in order to ensure the nozzle required pressure, The problem of deeper digging and increased construction costs could not be solved.

本発明は上記事情に鑑み、軸流排気型蒸気タービン用復水装置において、ノズル要求圧力を確保すると共に建設コストを低減し、さらにウォータインダクションを防止することが可能な軸流排気型蒸気タービン用復水装置及び地熱発電プラントを提供することを目的とする。   In view of the above circumstances, in the condensing device for an axial exhaust type steam turbine, the present invention is for an axial exhaust type steam turbine capable of ensuring the nozzle required pressure, reducing the construction cost, and further preventing the wartion. It aims at providing a condensing apparatus and a geothermal power plant.

本発明の一態様による軸流排気型蒸気タービン用復水装置は、
蒸気タービンから排気された蒸気に、スプレーノズルから冷却水を直接接触して復水する復水器と、
前記復水器により復水された水を与えられて蓄積し、前記冷却水を生成する冷却塔と、
前記復水器により復水された水を前記冷却塔に与える循環水管と、
前記冷却塔が生成した前記冷却水を前記復水器に与える戻り循環水管と、
を備え、
前記戻り循環水管にポンプが配置され、前記ポンプは、
前記冷却塔の内面圧から前記復水器の内圧を差し引いた圧力差から、前記復水器のスプレーノズルの設置最上高さから前記冷却塔の水面レベルを差し引いた静水頭差を差し引いた値が、スプレーノズルの要求圧力を満たすように動作することを特徴とする。
A condensing device for an axial exhaust steam turbine according to an aspect of the present invention includes:
A condenser that condenses the steam exhausted from the steam turbine by directly contacting cooling water from the spray nozzle;
A cooling tower that receives and accumulates water condensed by the condenser and generates the cooling water;
A circulating water pipe for supplying the water condensed by the condenser to the cooling tower;
A return circulation water pipe for supplying the cooling water generated by the cooling tower to the condenser;
With
A pump is arranged in the return circulation water pipe,
From the pressure difference obtained by subtracting the internal pressure of the condenser from the internal pressure of the cooling tower, a value obtained by subtracting the hydrostatic head difference obtained by subtracting the water surface level of the cooling tower from the maximum installation height of the spray nozzle of the condenser is It is characterized by operating to satisfy the required pressure of the spray nozzle.

本発明の軸流排気型蒸気タービン用復水装置及び地熱発電プラントによれば、ノズル要求圧力を確保すると共に建設コストを低減し、かつウォータインダクションを防止することが可能である。   According to the condensing device for an axial exhaust type steam turbine and the geothermal power plant of the present invention, it is possible to secure the required nozzle pressure, reduce the construction cost, and prevent the war- taction.

本発明の実施の形態1による軸流排気型蒸気タービン用復水装置及び地熱発電プラントの構成を示した配置図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the arrangement | positioning figure which showed the structure of the condensing apparatus for axial flow exhaust type steam turbines and geothermal power plant by Embodiment 1 of this invention. 同実施の形態1による軸流排気型蒸気タービン用復水装置及び地熱発電プラントにおいて、循環水ポンプの吊り上げ高さとタービン建屋の高さとの関係を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship between a lifting height of a circulating water pump and a height of a turbine building in the condensing device for an axial exhaust type steam turbine and the geothermal power plant according to the first embodiment. 本発明の実施の形態2による軸流排気型蒸気タービン用復水装置及び地熱発電プラントの構成を示した配置図である。It is the arrangement | positioning figure which showed the structure of the condensing apparatus for axial flow exhaust type steam turbines and geothermal power plant by Embodiment 2 of this invention. 本発明の実施の形態3による軸流排気型蒸気タービン用復水装置及び地熱発電プラントの構成を示した配置図である。It is the arrangement | positioning figure which showed the structure of the condensing apparatus for axial flow exhaust type steam turbines and geothermal power plant by Embodiment 3 of this invention.

以下、本発明の実施の形態による軸流排気型蒸気タービン用復水装置及び地熱発電プラントについて、図面を参照して説明する。   Hereinafter, an axial exhaust type steam turbine condensing device and a geothermal power plant according to embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
本発明の実施の形態1による軸流排気型蒸気タービン用復水装置、及びこれを含む地熱発電プラントについて、その構成を示した図1を用いて説明する。
(Embodiment 1)
A condensing device for an axial exhaust steam turbine according to Embodiment 1 of the present invention and a geothermal power plant including the same will be described with reference to FIG.

図示されていない蒸気配管から蒸気が蒸気タービン1に流入し、蒸気タービン1で仕事をした後排気されて、スプレー式直接接触式の復水器2へ流入する。   Steam flows from a steam pipe (not shown) into the steam turbine 1, works in the steam turbine 1, is exhausted, and flows into the spray-type direct contact condenser 2.

復水器2の内部にはスプレーノズル3が配置されており、冷却塔4から戻り循環水管5を介して供給された冷却水が噴霧され、蒸気と直接接触する。これにより、蒸気タービン1から排気された蒸気が凝縮され、復水となり冷却水と共に復水器2の下部に蓄積する。   A spray nozzle 3 is arranged inside the condenser 2, and the cooling water supplied from the cooling tower 4 through the circulating water pipe 5 is sprayed and directly contacts the steam. Thereby, the steam exhausted from the steam turbine 1 is condensed and becomes condensate and accumulates in the lower part of the condenser 2 together with the cooling water.

蓄積した水は、循環水ポンプ6により昇圧され、調節弁9により流量が調節されつつ、冷却塔4の上部に設置された冷却塔散水管7へ送られ散水されて空冷により冷却され、冷却塔4の下部に蓄積する。   The accumulated water is boosted by the circulating water pump 6, and the flow rate is adjusted by the control valve 9. The accumulated water is sent to the cooling tower sprinkling pipe 7 installed at the upper part of the cooling tower 4, sprinkled and cooled by air cooling. Accumulate at the bottom of 4.

冷却塔4に蓄積した水は、戻り循環水管5における、後述するようにポンプ8を介してスプレー式直接接触式復水器2へ冷却水として戻る。   The water accumulated in the cooling tower 4 returns as cooling water to the spray direct contact condenser 2 through the pump 8 in the return circulation water pipe 5 as will be described later.

ここで、図1に示されたように、それぞれの要素のレベルを以下のように表すものとする。
L1:冷却塔4の水面レベル
L2:復水器2内部におけるスプレーノズル3の設置最上高さ
L3:復水器2の設置レベル(掘込レベル)
L4:冷却塔4の設置レベル
L5:冷却塔4の最高高さ
L6:復水器2のホットウェルレベル
L7:蒸気タービン1の最終段翼羽根レベル
L8:蒸気タービン1の設置レベル(回転軸の高さ)
L9:冷却塔4の散水管設置レベル
Here, as shown in FIG. 1, the level of each element is expressed as follows.
L1: Water surface level of cooling tower 4 L2: Maximum height of installation of spray nozzle 3 inside condenser 2 L3: Installation level of condenser 2 (digging level)
L4: Installation level of cooling tower 4 L5: Maximum height of cooling tower 4 L6: Hot well level of condenser 2 L7: Final blade blade level of steam turbine 1 L8: Installation level of steam turbine 1 (of rotating shaft height)
L9: Sprinkling pipe installation level of cooling tower 4

スプレーノズル3の要求圧力ΔP1は、上記式(1)に基づき以下の式(2)のように表される。
ΔP1=圧力差(冷却塔内面圧(大気圧)−復水器内圧(大気圧より低圧)
−圧力損失(弁、配管)
−静水頭差△P2(復水器のスプレーノズル設置最上高さL2−冷 却塔の水面レベルL1) (2)
The required pressure ΔP1 of the spray nozzle 3 is expressed by the following equation (2) based on the above equation (1).
ΔP1 = Pressure difference (cooling tower inner pressure (atmospheric pressure)-condenser internal pressure (lower than atmospheric pressure)
-Pressure loss (valves, piping)
-Hydrostatic head difference ΔP2 (Condenser spray nozzle installation top height L2-Cooling tower water level L1) (2)

この式(2)において、スプレーノズル3の要求圧力ΔP1の確保を補助するために、本実施の形態1では戻り循環水管5にポンプ8を設置している点に特徴がある。これにより、静水頭差△P2により要求圧力△P1を満たす必要が無くなり、以下のような効果が得られる。   In this formula (2), in order to assist in securing the required pressure ΔP1 of the spray nozzle 3, the present embodiment 1 is characterized in that a pump 8 is installed in the return circulation water pipe 5. Thereby, it is not necessary to satisfy the required pressure ΔP1 by the hydrostatic head difference ΔP2, and the following effects can be obtained.

i)静水頭差ΔP2を考慮するために、復水器2のスプレーノズル設置高さL2を低くし、それに伴い復水器2の設置レベル(掘り込みレベル)L3を深くする必要性が排除され、建設コストを低減することができる。   i) In order to consider the hydrostatic head difference ΔP2, the necessity to lower the spray nozzle installation height L2 of the condenser 2 and to deepen the installation level (digging level) L3 of the condenser 2 is eliminated. Construction cost can be reduced.

あるいは、静水頭差ΔP2を考慮するために、冷却塔4の水面レベルL1を高くするために、冷却塔4の設置レベルL4もしくは冷却塔4の高さL5を高くする必要性が排除され、静水頭差△P2による制約がなくなり建設コストが低減される。   Alternatively, in order to consider the hydrostatic head difference ΔP2, the necessity of increasing the installation level L4 of the cooling tower 4 or the height L5 of the cooling tower 4 in order to increase the water surface level L1 of the cooling tower 4 is eliminated. The restriction due to the head difference ΔP2 is eliminated, and the construction cost is reduced.

ii)静水頭差ΔP2を下げることが可能となる。このため、調節弁9が全閉するまでに冷却塔4から復水器2に流入する冷却水流量が減少する。この結果、復水器2のホットウェルレベルL6と蒸気タービン1の最終段翼羽根レベルL7とのレベル差(L7−L6)を小さく設定してもウォータインダクションを防止することが可能である。   ii) The hydrostatic head difference ΔP2 can be lowered. For this reason, the flow rate of the cooling water flowing into the condenser 2 from the cooling tower 4 is reduced before the control valve 9 is fully closed. As a result, even if the level difference (L7−L6) between the hot well level L6 of the condenser 2 and the last stage blade level L7 of the steam turbine 1 is set to be small, it is possible to prevent the warming.

これにより、復水器2の設置レベル(掘り込みレベル)L3を高くする、即ち掘り込み量を小さくするか、あるいは蒸気タービン1の設置レベルL8を下げることが可能となり、以下のような効果が得られる。   As a result, the installation level (digging level) L3 of the condenser 2 can be increased, that is, the digging amount can be reduced, or the installation level L8 of the steam turbine 1 can be lowered, and the following effects can be obtained. can get.

a) 復水器2のホットウェルレベルL6を上げて、復水器2の掘り込みレベルL3を小さくすることができるので、建設コストを低減する効果が得られる。   a) Since the hot well level L6 of the condenser 2 can be increased and the digging level L3 of the condenser 2 can be reduced, an effect of reducing the construction cost can be obtained.

b) 図2に、タービン建屋20内に蒸気タービン1、復水器2、循環水ポンプ6が設置された状態を示す。循環水ポンプ6が故障した場合には、クレーン等によりタービン建屋20内を吊り上げて搬送する必要がある。このように、循環水ポンプ6が蒸気タービン1と共に屋内に設置されている場合には、タービン建屋20の高さを、循環水ポンプ6が故障した時に吊り上げる高さと、タービン建屋20内に最高の高さとして存在する機器の上方を通過する搬出ルートの許容高さHを考慮して決定する必要がある。   b) FIG. 2 shows a state where the steam turbine 1, the condenser 2, and the circulating water pump 6 are installed in the turbine building 20. When the circulating water pump 6 breaks down, it is necessary to lift and transport the inside of the turbine building 20 with a crane or the like. As described above, when the circulating water pump 6 is installed indoors together with the steam turbine 1, the height of the turbine building 20 is set to the height at which the circulating water pump 6 is lifted when the circulating water pump 6 breaks down, and the highest in the turbine building 20. It is necessary to determine the height considering the allowable height H of the carry-out route passing above the existing equipment.

図2のように、タービン建屋20内における最高高さとなる機器が、例えば蒸気タービン1と復水器2とを一体化して覆うタービンケーシングや、図示されていない発電機と蒸気タービン1との間の相分離母線等、蒸気タービン1に付属するものである場合、蒸気タービン1の設置レベルL8を下げることにより、建屋全体の高さを低くし、建設コストを低減する効果が得られる。   As shown in FIG. 2, the equipment having the highest height in the turbine building 20 is, for example, a turbine casing that integrally covers the steam turbine 1 and the condenser 2, or a generator (not shown) and the steam turbine 1. In the case where it is attached to the steam turbine 1 such as a phase separation bus, the installation level L8 of the steam turbine 1 is lowered, so that the effect of reducing the height of the entire building and reducing the construction cost can be obtained.

戻り循環水管5にポンプ8を設置したことにより、上記a)において述べたように、復水器2のホットウェルレベルL6を上げることができる。   By installing the pump 8 in the return circulation water pipe 5, the hot well level L6 of the condenser 2 can be raised as described in the above a).

このため、冷却塔4の上部に設置された冷却塔散水管7との静水頭差が小さくなり、循環水ポンプ6の揚程を小さくすることが可能である。また上記i)において述べたように、冷却塔4の高さL5を高くする必要がないため、これに伴い冷却塔散水管7の設置レベルL9が高くならず、循環水ポンプ6の揚程を小さくすることができるため、建設コストの低減が可能である。   For this reason, the hydrostatic head difference with the cooling tower water spray pipe 7 installed in the upper part of the cooling tower 4 becomes small, and it is possible to make the head of the circulating water pump 6 small. Further, as described in i) above, since it is not necessary to increase the height L5 of the cooling tower 4, the installation level L9 of the cooling tower sprinkling pipe 7 does not increase accordingly, and the head of the circulating water pump 6 is reduced. Therefore, the construction cost can be reduced.

(実施の形態2)
本発明の実施の形態2による軸流排気型蒸気タービン用復水装置、及びこれを含む地熱発電プラントについて、その構成を示した図3を用いて説明する。尚、図1に示された上記実施の形態1における構成要素と同一のものには同一符号で付して重複する説明は省略する。
(Embodiment 2)
A condensing device for an axial exhaust steam turbine according to Embodiment 2 of the present invention and a geothermal power plant including the same will be described with reference to FIG. The same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

本実施の形態2は上記実施の形態1の構成に加えて、戻り循環水管5においてポンプ8のみならず油圧式あるいは空気式の遮断弁10をさらに備えている点が相違する。この遮断弁10と関連し、故障検知装置31、制御装置32が設けられている。   The second embodiment is different from the first embodiment in that the return circulation water pipe 5 further includes a hydraulic or pneumatic shutoff valve 10 as well as the pump 8. In relation to the shutoff valve 10, a failure detection device 31 and a control device 32 are provided.

故障検知装置31は、循環水ポンプ6又は調節弁9、あるいは循環水ポンプ6及び調節弁9が故障した場合に、この故障を検知する。故障検知装置31が故障を検知すると、制御装置32が遮断弁10を遮断するように制御する。   The failure detection device 31 detects this failure when the circulating water pump 6 or the regulating valve 9 or the circulating water pump 6 and the regulating valve 9 fails. When the failure detection device 31 detects a failure, the control device 32 controls the shutoff valve 10 to be shut off.

これにより、循環水ポンプ6が故障した場合又は調節弁9による流量の調節が不能となった場合、あるいは循環水ポンプ6及び調節弁9が故障してホットウェルレベルL6が上昇した場合に、戻り循環水管5に設置した遮断弁10を閉めることで、冷却塔4から復水器2への循環水の流入を即座に遮断することができる。これにより、復水器2への循環水の流入量により制約されるホットウェルレベルL6と蒸気タービン1の設置レベルL8との差を小さく設定してもウォータインダクションを防止することが可能である。これにより、上記実施の形態1において述べたように、ホットウェルレベルL6を上げて復水器2の掘込レベルL3を小さくし、建設コストを低減することができる。   As a result, when the circulating water pump 6 fails or when the flow rate cannot be adjusted by the control valve 9, or when the circulating water pump 6 and the control valve 9 fail and the hot well level L6 rises, the return is returned. By closing the shutoff valve 10 installed in the circulating water pipe 5, the inflow of circulating water from the cooling tower 4 to the condenser 2 can be shut off immediately. Thereby, even if the difference between the hot well level L6 restricted by the amount of circulating water flowing into the condenser 2 and the installation level L8 of the steam turbine 1 is set to be small, it is possible to prevent the wake-up action. Thereby, as described in the first embodiment, the hot well level L6 can be raised to reduce the digging level L3 of the condenser 2, and the construction cost can be reduced.

(実施の形態3)
本発明の実施の形態3による軸流排気型蒸気タービン用復水装置、及びこれを含む地熱発電プラントについて、その構成を示した図4を用いて説明する。尚、図1に示された上記実施の形態1における構成要素と同一のものには同一符号で付して重複する説明は省略する。
(Embodiment 3)
A condensing device for an axial exhaust steam turbine according to Embodiment 3 of the present invention and a geothermal power plant including the same will be described with reference to FIG. The same components as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

本実施の形態3が上記実施の形態2と異なる点は、戻り循環水管5において遮断弁10の替わりに調節弁11を有していることである。この調節弁11と関連し、故障検知装置31、制御装置32が設けられている。   The third embodiment is different from the second embodiment in that the return circulating water pipe 5 has a regulating valve 11 instead of the shutoff valve 10. In association with the control valve 11, a failure detection device 31 and a control device 32 are provided.

故障検知装置31は、循環水ポンプ6又は調節弁9、あるいは循環水ポンプ6及び調節弁9が故障した場合に、この故障を検知する。故障検知装置31が故障を検知すると、制御装置32が調節弁11における流量の調節を制御する。   The failure detection device 31 detects this failure when the circulating water pump 6 or the regulating valve 9 or the circulating water pump 6 and the regulating valve 9 fails. When the failure detection device 31 detects a failure, the control device 32 controls the adjustment of the flow rate in the control valve 11.

循環水ポンプ6が故障した場合、あるいは調節弁9による流量の調節が不能となりホットウェルレベルL6が高くなった場合に、戻り循環水管5に遮断弁10の替わりに設置した調節弁11における流量の調節を制御することで、復水器2への循環水の流入量を制限することができる。これにより、復水器2への循環水流入量により制約されるホットウェルレベルL6と蒸気タービン1の設置レベルL8との差、即ち、冷却水の貯蔵に必要な高さが減少し、レベルL6とL8との差を小さく設定してもウォータインダクションを防止することが可能となる。   When the circulating water pump 6 fails or when the flow rate cannot be adjusted by the control valve 9 and the hot well level L6 becomes high, the flow rate of the control valve 11 installed in the return circulating water pipe 5 instead of the shut-off valve 10 is reduced. By controlling the adjustment, the amount of circulating water flowing into the condenser 2 can be limited. As a result, the difference between the hot well level L6 restricted by the amount of circulating water flowing into the condenser 2 and the installation level L8 of the steam turbine 1, that is, the height required for storing the cooling water is reduced, and the level L6 Even when the difference between L8 and L8 is set small, it is possible to prevent the warning action.

これにより、ホットウェルレベルL6を下げる必要がなくなり、復水器2の掘込レベルL3を下げなくともよいため建設コストが低減される。   Thereby, it is not necessary to lower the hot well level L6, and it is not necessary to lower the digging level L3 of the condenser 2, so that the construction cost is reduced.

本発明のいくつかの実施の形態について説明したが、これらの実施の形態は、例として提示したものであり、発明の技術的範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の技術的範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the technical scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the technical scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1 蒸気タービン
2 スプレー式直接接触式復水器
3 スプレーノズル
4 冷却塔
5 戻り循環水管
6 循環水ポンプ
7 冷却塔散水管
8 ポンプ
9、11 調節弁
10 遮断弁
20 タービン建屋
31 故障検知装置
32 制御装置
DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Spray type direct contact type condenser 3 Spray nozzle 4 Cooling tower 5 Return circulating water pipe 6 Circulating water pump 7 Cooling tower water spray pipe 8 Pumps 9 and 11 Control valve 10 Shut-off valve 20 Turbine building 31 Fault detection device 32 Control apparatus

Claims (7)

蒸気タービンから排気された蒸気に、スプレーノズルから冷却水を直接接触して復水する復水器と、
前記復水器により復水された水を与えられて蓄積し、前記冷却水を生成する冷却塔と、
前記復水器により復水された水を前記冷却塔に与える循環水管と、
前記冷却塔が生成した前記冷却水を前記復水器に与える戻り循環水管と、
を備え、
前記戻り循環水管にポンプが配置されたことを特徴とする軸流排気型蒸気タービン用復水装置。
A condenser that condenses the steam exhausted from the steam turbine by directly contacting cooling water from the spray nozzle;
A cooling tower that receives and accumulates water condensed by the condenser and generates the cooling water;
A circulating water pipe for supplying the water condensed by the condenser to the cooling tower;
A return circulation water pipe for supplying the cooling water generated by the cooling tower to the condenser;
With
A condensing device for an axial exhaust type steam turbine, wherein a pump is disposed in the return circulation water pipe.
前記ポンプは、前記冷却塔の内面圧から前記復水器の内圧を差し引いた圧力差から、前記復水器のスプレーノズルの設置最上高さから前記冷却塔の水面レベルを差し引いた静水頭差を差し引いた値が、前記スプレーノズルの要求圧力を満たすことを特徴とする請求項1記載の軸流排気型蒸気タービン用復水装置。   The pump has a hydrostatic head difference obtained by subtracting the water surface level of the cooling tower from the maximum installation height of the spray nozzle of the condenser from the pressure difference obtained by subtracting the internal pressure of the condenser from the internal pressure of the cooling tower. The condensing device for an axial exhaust steam turbine according to claim 1, wherein the subtracted value satisfies a required pressure of the spray nozzle. 前記戻り循環水管に、遮断可能な弁がさらに配置されたことを特徴とする請求項1又は2記載の軸流排気型蒸気タービン用復水装置。   The condensing device for an axial exhaust steam turbine according to claim 1 or 2, further comprising a shut-off valve disposed in the return circulation water pipe. 前記戻り循環水管に、流量を調節するための第1の調節弁がさらに配置されたことを特徴とする請求項1又は2記載の軸流排気型蒸気タービン用復水装置。   3. The condensing device for an axial exhaust steam turbine according to claim 1, wherein a first control valve for adjusting a flow rate is further arranged in the return circulation water pipe. 前記循環水管に設けられ、前記復水器により復水された水を前記冷却塔に与えるための循環水ポンプと、前記復水器により復水された水の流量を調節する第2の調節弁と、
前記循環水ポンプ及び前記第2の調節弁のそれぞれの故障を検知する故障検知装置と、
前記故障検知装置により、前記循環水ポンプ又は前記第2の調節弁、あるいは前記循環水ポンプ及び前記第2の調節弁の故障が検知された場合、前記遮断可能な弁を遮断する制御装置と、
をさらに備えたことを特徴とする請求項3記載の軸流排気型蒸気タービン用復水装置。
A circulating water pump provided in the circulating water pipe for supplying the water condensed by the condenser to the cooling tower, and a second regulating valve for adjusting a flow rate of the water condensed by the condenser; When,
A failure detection device for detecting a failure of each of the circulating water pump and the second control valve;
A control device that shuts off the shuttable valve when a failure of the circulating water pump or the second regulating valve, or the circulating water pump and the second regulating valve is detected by the failure detection device;
The condensing device for an axial exhaust steam turbine according to claim 3, further comprising:
前記循環水管に設けられ、前記復水器により復水された水を前記冷却塔に与えるための循環水ポンプと、前記復水器により復水された水の流量を調節する第2の調節弁と、
前記循環水ポンプ及び前記第2の調節弁のそれぞれの故障を検知する故障検知装置と、
前記故障検知装置により、前記循環水ポンプ又は前記第2の調節弁、あるいは前記循環水ポンプ及び前記第2の調節弁の故障が検知された場合、前記戻り循環水管の流量を前記第1の調節弁により調節する制御装置と、
をさらに備えたことを特徴とする請求項4記載の軸流排気型蒸気タービン用復水装置。
A circulating water pump provided in the circulating water pipe for supplying the water condensed by the condenser to the cooling tower, and a second regulating valve for adjusting a flow rate of the water condensed by the condenser; When,
A failure detection device for detecting a failure of each of the circulating water pump and the second control valve;
When the failure detector detects a failure of the circulating water pump or the second regulating valve, or the circulating water pump and the second regulating valve, the flow rate of the return circulating water pipe is adjusted to the first regulation A control device that regulates by a valve;
The condensing device for an axial exhaust steam turbine according to claim 4, further comprising:
請求項1乃至6のいずれか一項に記載の軸流排気型蒸気タービン用復水装置と、
蒸気を与えられ、仕事をした蒸気を前記復水器に排気する前記蒸気タービンと、
前記蒸気タービンにより回転エネルギを与えられて電力を発生する発電機と、
を備えたことを特徴とする地熱発電プラント。
A condensing device for an axial exhaust steam turbine according to any one of claims 1 to 6,
The steam turbine that is provided with steam and exhausts the worked steam to the condenser;
A generator for generating electric power by being supplied with rotational energy by the steam turbine;
A geothermal power plant characterized by comprising:
JP2011219956A 2011-10-04 2011-10-04 Condensing equipment for axial flow exhaust type steam turbine and geothermal power plant Pending JP2013079603A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011219956A JP2013079603A (en) 2011-10-04 2011-10-04 Condensing equipment for axial flow exhaust type steam turbine and geothermal power plant
EP12186406.0A EP2610444A3 (en) 2011-10-04 2012-09-27 Condenser for axial flow exhaust type steam turbine and geothermal power plant having the same
US13/630,410 US20130081393A1 (en) 2011-10-04 2012-09-28 Condenser for axial flow exhaust type steam turbine and geothermal power plant having the same
NZ602725A NZ602725B (en) 2011-10-04 2012-09-28 Condenser for axial flow exhaust type steam turbine and geothermal power plant having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219956A JP2013079603A (en) 2011-10-04 2011-10-04 Condensing equipment for axial flow exhaust type steam turbine and geothermal power plant

Publications (1)

Publication Number Publication Date
JP2013079603A true JP2013079603A (en) 2013-05-02

Family

ID=46940401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219956A Pending JP2013079603A (en) 2011-10-04 2011-10-04 Condensing equipment for axial flow exhaust type steam turbine and geothermal power plant

Country Status (3)

Country Link
US (1) US20130081393A1 (en)
EP (1) EP2610444A3 (en)
JP (1) JP2013079603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223316A (en) * 2015-05-28 2016-12-28 株式会社東芝 Cooling device for steam turbine and method of controlling the same
JP2019533128A (en) * 2016-11-03 2019-11-14 セコ・エッセ・ピ・アSeko S.P.A. Cooling tower adjustment method and system
JP2021134779A (en) * 2020-02-28 2021-09-13 株式会社東芝 Steam cooling control system of power generation plant and steam cooling facility of power generation plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109306878B (en) * 2018-10-21 2021-03-23 河南理工大学 Power plant system with waste water backheating and backwater functions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358748A (en) * 1964-09-04 1967-12-19 English Electric Co Ltd Steam turbine cooling system
US3423078A (en) * 1966-03-17 1969-01-21 Gen Electric Combined jet and direct air condenser
JPS61222922A (en) * 1985-03-27 1986-10-03 Shimizu Constr Co Ltd Extraction of hydrogen sulfide from geothermal steam, and utilization of extracted material
JP2001193417A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Directly contacting type condenser for axial-flow exhaust turbine
JP2007023962A (en) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd Axial exhaust type steam turbine device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1751724C3 (en) * 1967-10-24 1973-02-08 Transelektro Magyar Villamossa Mixing condenser system for steam turbine power plants
US3666246A (en) * 1970-04-07 1972-05-30 Westinghouse Electric Corp Cooling system
BE790513A (en) * 1971-10-25 1973-02-15 Tyeploelektroprojekt CONDENSING DEVICE FOR STEAM TURBINE THERMAL PLANTS
US4506508A (en) * 1983-03-25 1985-03-26 Chicago Bridge & Iron Company Apparatus and method for condensing steam
US4938868A (en) * 1988-05-02 1990-07-03 Nelson Thomas R Method of distilling under partial vacuum
JPH1130488A (en) * 1997-07-08 1999-02-02 Toshiba Eng Co Ltd Hot well water level controller for condenser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358748A (en) * 1964-09-04 1967-12-19 English Electric Co Ltd Steam turbine cooling system
US3423078A (en) * 1966-03-17 1969-01-21 Gen Electric Combined jet and direct air condenser
JPS61222922A (en) * 1985-03-27 1986-10-03 Shimizu Constr Co Ltd Extraction of hydrogen sulfide from geothermal steam, and utilization of extracted material
JP2001193417A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Directly contacting type condenser for axial-flow exhaust turbine
JP2007023962A (en) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd Axial exhaust type steam turbine device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223316A (en) * 2015-05-28 2016-12-28 株式会社東芝 Cooling device for steam turbine and method of controlling the same
JP2019533128A (en) * 2016-11-03 2019-11-14 セコ・エッセ・ピ・アSeko S.P.A. Cooling tower adjustment method and system
JP7118057B2 (en) 2016-11-03 2022-08-15 セコ・エッセ・ピ・ア Cooling tower regulation method and system
JP2021134779A (en) * 2020-02-28 2021-09-13 株式会社東芝 Steam cooling control system of power generation plant and steam cooling facility of power generation plant
JP7288413B2 (en) 2020-02-28 2023-06-07 株式会社東芝 Power plant steam cooling control system and power plant steam cooling equipment

Also Published As

Publication number Publication date
EP2610444A3 (en) 2014-07-16
EP2610444A2 (en) 2013-07-03
US20130081393A1 (en) 2013-04-04
NZ602725A (en) 2013-08-30

Similar Documents

Publication Publication Date Title
CN103382860B (en) Steam turbine power generation heating system controlling method
JP2013079603A (en) Condensing equipment for axial flow exhaust type steam turbine and geothermal power plant
CN1847626A (en) Variable pressure-controlled cooling scheme and thrust control arrangements for a steam turbine
JP5010754B2 (en) High temperature rock power generation system
CN108087048B (en) Operation mode of cogeneration steam turbine generator unit
JP2009281681A (en) Steam condenser and power generation facility
JP2010121890A (en) Tank water level control system
US9297279B2 (en) Pumping device using vapor pressure for supplying water for power plant
JP2015094248A (en) High-humidity utilization gas turbine system
JP2015068170A (en) Regenerative energy type power generation device
CN107419789A (en) The drainage system and water discharge method of the turbine-generator units in the higher river of tailwater level
CN106640555A (en) Wind generating set, heat dissipation system thereof and heat dissipation control method
CN108167144B (en) Cooling system, wind generating set with cooling system and cooling method of wind generating set
JP4937822B2 (en) Condenser vacuum degree control system and power plant including the system
JP2014206110A (en) Wind power generation equipment
KR101473378B1 (en) Passive safety system and nuclear reactor having the same
KR101142098B1 (en) Pressurizing device of partial area in mass energy system
JP2008312330A (en) Waste heat power generating apparatus and operation method for the waste heat power generating apparatus
KR101613227B1 (en) Apparatus and method for power production using waste heat in a ship
NZ602725B (en) Condenser for axial flow exhaust type steam turbine and geothermal power plant having the same
CN204609957U (en) A kind of Air-cooler Unit Feed Pump drive unit
KR100758412B1 (en) Cooling water supplying apparatus for use in power plant
JP2021134779A (en) Steam cooling control system of power generation plant and steam cooling facility of power generation plant
CN205603539U (en) A gasifier water -cooling wall circulating water system for coal gasifier
JP2020041785A (en) Direct contact type condensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150410