JP2013078723A - Coating film manufacturing method - Google Patents

Coating film manufacturing method Download PDF

Info

Publication number
JP2013078723A
JP2013078723A JP2011219811A JP2011219811A JP2013078723A JP 2013078723 A JP2013078723 A JP 2013078723A JP 2011219811 A JP2011219811 A JP 2011219811A JP 2011219811 A JP2011219811 A JP 2011219811A JP 2013078723 A JP2013078723 A JP 2013078723A
Authority
JP
Japan
Prior art keywords
tension
flexible support
coating
control
coating head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011219811A
Other languages
Japanese (ja)
Other versions
JP6267850B2 (en
Inventor
So Michihira
創 道平
Makoto Komatsubara
誠 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2011219811A priority Critical patent/JP6267850B2/en
Publication of JP2013078723A publication Critical patent/JP2013078723A/en
Application granted granted Critical
Publication of JP6267850B2 publication Critical patent/JP6267850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating film manufacturing method quickly stabilizing a film thickness at the start of coating of a flexible support having high bending rigidity.SOLUTION: A control part 8 conveys a flexible support 2 by tension control. The control part 8 is configured to rotate a main speed roll 3 at a predetermined constant circumferential speed and to control the circumferential speed of a driven roll 4 so that tension of the flexible support 2 measured by a tension meter 6 becomes a predetermined constant value. Coating liquid is then discharged from a discharge port 51, a coating head 5 is moved toward the flexible support 2, and the discharge port 51 is brought into contact with the flexible support 2. After the discharge port 51 is in contact with the flexible support 2, the coating head 5 is further pressed into the flexible support 2 by a predetermined distance. After the coating is started and after tension variation of the flexible support 2 is stabilized, switching from the tension control to ratio control is performed.

Description

本発明は、塗工膜製造方法に関する。特に、塗工開始時に塗膜厚さが早く安定する塗工膜製造方法に関する。   The present invention relates to a coating film manufacturing method. In particular, the present invention relates to a coating film manufacturing method in which the coating thickness is stabilized quickly at the start of coating.

従来より、金属薄膜フィルムやプラスチックフィルム等の可撓性支持体に塗工液を塗工する方式として、可撓性支持体を1対の駆動ロールに懸架し、1対の駆動ロール間で可撓性支持体が厚み方向に湾曲自在な位置で、可撓性支持体の一方の面に、塗工液を吐出する塗工ヘッドを押し込んで塗工液を塗工するテンションウェブダイ方式(フリースパン方式とも称される)が知られている。この方式では、可撓性支持体が塗工ヘッドに押し込まれた向きに湾曲するので、塗工ヘッドの押し込み量が変動しても塗工ヘッドと可撓性支持体との間の圧力が安定し、塗膜厚さ(以下、膜厚という)が安定する。
このテンションウェブダイ方式は、磁性塗料等の高速塗工やミクロンオーダの薄層塗工において、膜厚が安定するという効果を有している。しかしながら、本方式は曲げ剛性の低い可撓性支持体に対しては非常に均一な膜を得られるという長所があるが、曲げ剛性の高い可撓性支持体に対しては、塗工開始時に膜厚が変動し、塗工開始から膜厚が安定するまでの時間が掛かるという問題がある。
尚、可撓性支持体を搬送する駆動ロールを制御する方法には、可撓性支持体の張力が予め定められた一定値になるように前記1対の駆動ロールの周速を制御する張力制御と、前記1対の駆動ロールの内の一方の駆動ロールの周速と他方の駆動ロールの周速との比率を予め定められた一定値にする比率制御とが知られているが、張力制御は膜厚の安定性が低いので、このテンションウェブダイ方式では比率制御が一般的に用いられている。
Conventionally, as a method of applying a coating solution to a flexible support such as a metal thin film or plastic film, the flexible support is suspended between a pair of drive rolls and can be applied between a pair of drive rolls. Tension web die system (free) where the flexible support is curved in the thickness direction and the coating liquid is applied by pushing the coating head that discharges the coating liquid onto one surface of the flexible support. Also known as the span method). In this method, the flexible support is curved in the direction in which it is pushed into the coating head, so that the pressure between the coating head and the flexible support is stable even if the pushing amount of the coating head varies. The coating thickness (hereinafter referred to as film thickness) is stable.
This tension web die method has an effect that the film thickness is stabilized in high-speed coating such as magnetic paint or thin layer coating of micron order. However, this method has an advantage that a very uniform film can be obtained for a flexible support having a low bending rigidity. However, for a flexible support having a high bending rigidity, at the start of coating. There is a problem that the film thickness fluctuates and it takes time from the start of coating until the film thickness stabilizes.
In addition, as a method for controlling the drive roll that conveys the flexible support, tension for controlling the peripheral speed of the pair of drive rolls so that the tension of the flexible support becomes a predetermined constant value. Control and ratio control that makes a ratio between the peripheral speed of one of the drive rolls and the peripheral speed of the other drive roll a predetermined constant value are known. Since control has low film thickness stability, ratio control is generally used in this tension web die system.

また、塗工ヘッドが可撓性支持体に接触して可撓性支持体が塗工ヘッドに削られるのを防ぐために、水平方向に懸架された可撓性支持体の下面に下側から塗工ヘッドを押し当て、塗工ヘッドから塗工液を所定量吐出させ、可撓性支持体を浮上させて塗工する方法が知られている(例えば、特許文献1参照)。しかしながら、このような方法においても、可撓性支持体の曲げ剛性が高い場合には、膜厚が安定するまでに時間が掛かる。   Further, in order to prevent the coating head from coming into contact with the flexible support and scraping the flexible support by the coating head, the lower surface of the flexible support suspended in the horizontal direction is coated from below. A method is known in which a coating head is pressed, a predetermined amount of coating liquid is discharged from the coating head, and a flexible support is lifted to perform coating (see, for example, Patent Document 1). However, even in such a method, when the flexural rigidity of the flexible support is high, it takes time to stabilize the film thickness.

特開平8−173877号公報JP-A-8-173877

本発明は、斯かる従来技術の問題を解決するためになされたものであり、曲げ剛性の高い可撓性支持体への塗工開始時に、膜厚が早く安定する塗工膜製造方法を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and provides a coating film manufacturing method in which the film thickness is stabilized quickly at the start of coating on a flexible support having high bending rigidity. The task is to do.

前記課題を解決するために本発明者らが鋭意検討したところ、次のような知見を得た。曲げ剛性が高い可撓性支持体を使用する場合は、可撓性支持体に塗工ヘッドを押し込む際に非常に大きな張力が発生し、この張力のために塗工ヘッドと可撓性支持体との間の圧力が増加し、塗工ヘッドからの塗工液の吐出が抑えられて膜厚が薄くなる。
そして、可撓性支持体に非常に大きな張力が発生しているが、張力の掛かっている部分は、搬送方向上流側の駆動ロールと搬送方向下流側の駆動ロールとの間から搬送方向下流側に徐々に出ていく。また、搬送方向上流側の駆動ロールよりも上流側の設定張力(塗工ヘッドの押し込みによって発生する張力よりも小さい)で張られた可撓性支持体が、搬送方向上流側から搬送方向上流側の駆動ロールと搬送方向下流側の駆動ロールとの間に入ってくる。このようにして、大きな張力の掛かっている部分が駆動ロール間から無くなり、 時間が経つにつれて張力が安定するが、比率制御では駆動ロールの周速が一定なので、張力が安定するまでに時間が掛かる。
When the present inventors diligently studied in order to solve the said subject, the following knowledge was acquired. When a flexible support having a high bending rigidity is used, a very large tension is generated when the coating head is pushed into the flexible support, and the coating head and the flexible support are caused by this tension. Increases the pressure between the two and the discharge of the coating liquid from the coating head is suppressed, resulting in a thin film thickness.
A very large tension is generated in the flexible support, but the portion where the tension is applied is between the drive roll on the upstream side in the transport direction and the drive roll on the downstream side in the transport direction. Gradually go out. In addition, the flexible support stretched with the set tension upstream of the drive roll upstream in the transport direction (smaller than the tension generated by the pressing of the coating head) is connected from the upstream in the transport direction to the upstream in the transport direction. Between the drive roll and the drive roll downstream in the transport direction. In this way, the part where the large tension is applied disappears from between the drive rolls, and the tension stabilizes over time, but in the ratio control, the peripheral speed of the drive roll is constant, so it takes time for the tension to stabilize. .

そこで、上記の知見に基づき膜厚の安定が早くなる制御方法を検討したところ、膜厚の安定性が低いために従来用いられなかった張力制御を、塗工ヘッドを可撓性支持体に押し込むときに行い、塗工ヘッドを可撓性支持体に押し込んだ後で可撓性支持体の張力変動が安定した後に比率制御に切り換えることにより、膜厚が早く安定することを見出した。   Therefore, based on the above knowledge, we investigated a control method that would stabilize the film thickness. As a result, the tension control that was not used in the past due to the low stability of the film thickness was pushed into the flexible support. It was found that the film thickness was stabilized quickly by switching to ratio control after the tension fluctuation of the flexible support was stabilized after the coating head was pushed into the flexible support.

本発明は、上記の本発明者らの検討結果に基づき完成されたものである。すなわち、前記課題を解決するため、本発明は、1対の駆動ロール間に懸架された可撓性支持体の一方の面に、前記1対の駆動ロール間に設けられた塗工ヘッドから吐出される塗工液を塗工する塗工膜製造方法であって、前記1対の駆動ロール間における前記可撓性支持体の張力が予め定められた一定値になるように前記1対の駆動ロールの周速を制御する張力制御ステップと、前記張力制御ステップに続き、前記1対の駆動ロールを構成する一方の駆動ロールの周速と他方の駆動ロールの周速との比率を予め定められた一定値にする比率制御ステップとを含み、前記張力制御ステップにおいて、前記塗工ヘッドからの塗工液の吐出を開始し、該塗工ヘッドを前記可撓性支持体の前記一方の面に押し当て、該塗工ヘッドを該可撓性支持体に予め定められた距離押し込み、該塗工ヘッドの押し込みにより生じる該可撓性支持体の張力変動が安定した後に、該張力制御ステップから前記比率制御ステップに切り換えることを特徴とする塗工膜製造方法を提供する。   The present invention has been completed based on the results of the above-mentioned studies by the present inventors. That is, in order to solve the above-mentioned problem, the present invention discharges from a coating head provided between the pair of drive rolls on one surface of a flexible support suspended between the pair of drive rolls. A coating film manufacturing method for applying a coating liquid to be applied, wherein the pair of driving is performed so that the tension of the flexible support between the pair of driving rolls becomes a predetermined constant value. Following the tension control step for controlling the peripheral speed of the roll and the tension control step, the ratio between the peripheral speed of one drive roll and the peripheral speed of the other drive roll constituting the pair of drive rolls is determined in advance. In the tension control step, the discharge of the coating liquid from the coating head is started, and the coating head is placed on the one surface of the flexible support. Against the flexible support. A coating film manufacturing method characterized by switching from the tension control step to the ratio control step after a change in tension of the flexible support generated by pressing a predetermined distance and pressing the coating head is stabilized. provide.

本発明において、塗工開始ステップにより生じる可撓性支持体の張力変動が安定した後であることは、例えば、次のようにして決める。
張力制御において、可撓性支持体の張力に基づいて駆動ロールの周速を調整することが所定時間無い場合に可撓性支持体の張力変動が安定した後であるとする。
また、塗工ヘッドの可撓性支持体への押し込みが完了してから所定時間経過したときに、可撓性支持体の張力変動が安定した後であるとしてもよい。この所定時間は、事前に、張力制御中に塗工ヘッドを可撓性支持体に押し込んだときの張力の変動を調べて定めればよい。
In the present invention, the fact that the fluctuation in the tension of the flexible support produced by the coating start step is stabilized is determined, for example, as follows.
In the tension control, it is assumed that the fluctuation in the tension of the flexible support is stabilized when the peripheral speed of the driving roll is not adjusted for a predetermined time based on the tension of the flexible support.
Further, it may be after the fluctuation of the tension of the flexible support is stabilized when a predetermined time has elapsed after the pressing of the coating head onto the flexible support is completed. This predetermined time may be determined in advance by examining the variation in tension when the coating head is pushed into the flexible support during tension control.

本発明では、塗工の開始時点を張力制御で行い、張力変動が安定した後に比率制御に切り換えるようにした。従来、張力制御時と比率制御時の膜厚の変動について、次のように考えられていた。張力制御時に張力変動が生じると、張力が予め定められた一定値になるように駆動ロールの周速を変化させるので、可撓性支持体の搬送速度が変化するが、塗工ヘッドからの塗工液の時間当たりの吐出量が一定なので、可撓性支持体の搬送速度が変化すると、膜厚が変動する。
一方、比率制御では、可撓性支持体の搬送速度が一定で、可撓性支持体の張力が一旦安定してからは、小さな張力変動しか生じないので、膜厚が変動しにくいと考えられていた。
しかし、塗工ヘッドを可撓性支持体へ押し込んだ時に発生した張力が安定するまでは、張力変動が大きい為、比率制御でも膜厚は安定しない。張力変動が小さい状態で比率制御とした場合のみ膜厚が安定することが分かった。
上述したように、塗工の開始時点を張力制御で行い、張力変動が安定した後に比率制御に切り換えることにより、膜厚を早く安定させることができる。
In the present invention, the starting point of coating is performed by tension control, and switching to ratio control is performed after the fluctuation in tension is stabilized. Conventionally, variations in film thickness during tension control and ratio control have been considered as follows. If tension fluctuations occur during tension control, the peripheral speed of the drive roll is changed so that the tension becomes a predetermined constant value, so that the conveyance speed of the flexible support changes, but the application from the coating head changes. Since the discharge amount per hour of the working liquid is constant, the film thickness varies when the conveyance speed of the flexible support changes.
On the other hand, in the ratio control, since the conveyance speed of the flexible support is constant and the tension of the flexible support is once stabilized, only a small fluctuation in tension occurs, so it is considered that the film thickness is difficult to change. It was.
However, until the tension generated when the coating head is pushed into the flexible support is stabilized, the variation in tension is large, and the film thickness is not stabilized even with the ratio control. It was found that the film thickness was stabilized only when the ratio control was performed with a small variation in tension.
As described above, the coating start time is performed by tension control, and the film thickness can be stabilized quickly by switching to the ratio control after the tension fluctuation is stabilized.

好ましくは、前記可撓性支持体の曲げ剛性が0.05〜1550N・mmである。 Preferably, the flexural rigidity of the flexible support is 0.05 to 1550 N · mm 2 .

本発明における曲げ剛性(N・mm)は、可撓性支持体のヤング率E(MPa)と断面2次モーメントI(mm)を用いて下記の式によって表される。また、断面2次モーメントI(mm)は、可撓性支持体の幅W(mm)と可撓性支持体の厚さt(mm)を用いて下記の式によって表される。
曲げ剛性=E×I
断面2次モーメント=Wt/12
可撓性支持体の曲げ剛性が0.05〜1550N・mmに限定されるので、膜厚が早く安定する。
The bending rigidity (N · mm 2 ) in the present invention is expressed by the following equation using the Young's modulus E (MPa) and the secondary moment of inertia I (mm 4 ) of the flexible support. The cross-sectional secondary moment I (mm 4 ) is expressed by the following equation using the width W (mm) of the flexible support and the thickness t (mm) of the flexible support.
Flexural rigidity = E x I
Second moment = Wt 3/12
Since the flexural rigidity of the flexible support is limited to 0.05 to 1550 N · mm 2 , the film thickness is stabilized quickly.

本発明によれば、曲げ剛性の高い可撓性支持体の塗工開始時において膜厚が早く安定する。そして、膜厚が早く安定するので、時間当たりの製品の取り数が増え、また、基材や塗工液の無駄が少なくなる。   According to the present invention, the film thickness is stabilized quickly at the start of application of a flexible support having high bending rigidity. And since the film thickness stabilizes quickly, the number of products taken per hour increases, and the waste of the base material and coating liquid is reduced.

図1は、本実施形態の塗工膜製造方法に用いる塗工膜製造装置の構成図である。FIG. 1 is a configuration diagram of a coating film manufacturing apparatus used in the coating film manufacturing method of the present embodiment. 図2は、塗工開始時における同塗工膜製造装置の状態を経時的に示す図であり、図2(a)は、張力制御開始時の状態であり、図2(b)は、吐出口を可撓性支持体に押し当てた状態であり、図2(c)は、塗工ヘッドを可撓性支持体に押し込んだ状態であり、図2(d)は、張力制御から比率制御に切り換える状態である。FIG. 2 is a diagram showing the state of the coating film manufacturing apparatus at the start of coating over time, FIG. 2 (a) is a state at the start of tension control, and FIG. FIG. 2 (c) shows a state where the outlet is pressed against the flexible support, and FIG. 2 (c) shows a state where the coating head is pushed into the flexible support. It is a state to switch to. 図3は、可撓性支持体の曲げ剛性が16.5N・mmの場合の実施例と比較例1の塗工開始時の張力変動を示す図である。FIG. 3 is a diagram showing a variation in tension at the start of coating in Examples and Comparative Example 1 when the flexural rigidity of the flexible support is 16.5 N · mm 2 . 図4は、実施例と比較例1、2の評価結果を示す表である。FIG. 4 is a table showing the evaluation results of Examples and Comparative Examples 1 and 2.

以下、添付図面を適宜参照しつつ、本発明の実施形態に係る塗工膜製造方法について説明する。
図1は、本実施形態の塗工膜製造方法に用いる塗工膜製造装置の構成図である。
まず、塗工膜製造装置について説明する。
塗工膜製造装置1は、可撓性支持体2の搬送方向上流側に設けられた駆動ロールである主速ロール3と、下流側に設けられた駆動ロールである従属ロール4と、主速ロール3と従属ロール4との間に設けられ可撓性支持体2に塗工液を吐出する塗工ヘッド5とを備えている。また、塗工膜製造装置1は、主速ロール3と従属ロール4との間に設けられ可撓性支持体2に掛かる張力を測定する張力計6と、可撓性支持体2を支持するフリーロール7と、塗工膜製造装置1の各部位の動作を制御する制御部8とを備える。
主速ロール3と従属ロール4は、制御部8によって周速を制御され、可撓性支持体2を摩擦力によって矢印A方向に搬送する。
張力計6は、可撓性支持体2に掛かる張力を測定し、制御部8に伝達する。
フリーロール7は、自らは駆動せず、可撓性支持体2の動きに伴って回転する。
制御部8は、次に説明する張力制御と比率制御とによって主速ロール3と従属ロール4の周速を制御する。
制御部8は、張力制御時には、主速ロール3の周速を予め定められた一定値に制御し、可撓性支持体2の張力が予め定められた一定値になるように従属ロール4の周速を制御する。
また、制御部8は、比率制御時には、主速ロール3の周速を予め定められた一定値に制御し、従属ロール4の周速と主速ロール3の周速との比((従属ロール4の周速)/(主速ロール3の周速))が予め定められた一定値になるように従属ロール4の周速を制御する。この周速の比は、0.9995〜1.0005の範囲、好ましくは0.9999〜1.0001の範囲で行う。
塗工ヘッド5は、具備する吐出口51から塗工液を吐出する。塗工ヘッド5は、吐出口51を可撓性支持体2に向けて設置され、可撓性支持体2に向けて移動することができる。
可撓性支持体2は、曲げ剛性が0.05〜1550N・mmであり、好ましくは4〜1550N・mmであり、更に好ましくは4〜400N・mmであり、最も好ましくは4〜40N・mmである。材質は、例えば、プラスチックフィルム、金属薄膜、不織布、紙等である。
尚、上記において制御部8は、張力制御、及び比率制御において、主速ロール3の周速を予め定められた一定値に制御し、従属ロール4の周速を調整して張力制御、及び比率制御を行うが、反対に、従属ロール4の周速を予め定められた一定値に制御し、主速ロール3の周速を調整して張力制御、及び比率制御を行うようにしてもよい。
Hereinafter, a coating film manufacturing method according to an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
FIG. 1 is a configuration diagram of a coating film manufacturing apparatus used in the coating film manufacturing method of the present embodiment.
First, the coating film manufacturing apparatus will be described.
The coating film manufacturing apparatus 1 includes a main speed roll 3 that is a drive roll provided on the upstream side in the conveyance direction of the flexible support 2, a slave roll 4 that is a drive roll provided on the downstream side, and a main speed. A coating head 5 is provided between the roll 3 and the subordinate roll 4 and discharges the coating liquid onto the flexible support 2. The coating film manufacturing apparatus 1 supports the flexible support 2 and a tensiometer 6 that is provided between the main speed roll 3 and the subordinate roll 4 and measures the tension applied to the flexible support 2. The free roll 7 and the control part 8 which controls operation | movement of each site | part of the coating film manufacturing apparatus 1 are provided.
The main speed roll 3 and the subordinate roll 4 are controlled in peripheral speed by the control unit 8 and convey the flexible support 2 in the direction of arrow A by frictional force.
The tensiometer 6 measures the tension applied to the flexible support 2 and transmits it to the control unit 8.
The free roll 7 does not drive itself but rotates as the flexible support 2 moves.
The control unit 8 controls the peripheral speeds of the main speed roll 3 and the subordinate roll 4 by tension control and ratio control described below.
At the time of tension control, the control unit 8 controls the peripheral speed of the main speed roll 3 to a predetermined constant value so that the tension of the flexible support 2 becomes a predetermined constant value. Control the peripheral speed.
Further, during the ratio control, the control unit 8 controls the peripheral speed of the main speed roll 3 to a predetermined constant value, and the ratio between the peripheral speed of the subordinate roll 4 and the peripheral speed of the main speed roll 3 ((subordinate roll 4 (peripheral speed of 4) / (peripheral speed of main speed roll 3)) is controlled to be a predetermined constant value. The ratio of the peripheral speeds is in the range of 0.9995-1.0005, preferably in the range of 0.9999-1.0001.
The coating head 5 discharges the coating liquid from the discharge port 51 provided. The coating head 5 is installed with the discharge port 51 facing the flexible support 2 and can move toward the flexible support 2.
The flexible support 2 has a flexural rigidity of 0.05 to 1550 N · mm 2 , preferably 4 to 1550 N · mm 2 , more preferably 4 to 400 N · mm 2 , and most preferably 4 to 40 N · mm 2 . Examples of the material include a plastic film, a metal thin film, a nonwoven fabric, and paper.
In the above, in the tension control and the ratio control, the control unit 8 controls the peripheral speed of the main speed roll 3 to a predetermined constant value and adjusts the peripheral speed of the subordinate roll 4 to control the tension and ratio. On the contrary, the peripheral speed of the subordinate roll 4 may be controlled to a predetermined constant value, and the peripheral speed of the main speed roll 3 may be adjusted to perform tension control and ratio control.

次に、上記塗工膜製造装置を用いた塗工膜製造方法について説明する。
図2は、塗工開始時における塗工膜製造装置の状態を経時的に示す図であり、図2(a)は、張力制御開始時の状態であり、図2(b)は、吐出口を可撓性支持体に押し当てた状態であり、図2(c)は、塗工ヘッドを可撓性支持体に押し込んだ状態であり、図2(d)は、張力制御から比率制御に切り換える状態である。
塗工膜製造方法は、張力制御ステップと、張力制御ステップに続く比率制御ステップとを含む。
まず、制御部8は、張力制御で可撓性支持体2を搬送する。制御部8は、主速ロール3を予め定められた一定の周速で回転させ、張力計6で測定した可撓性支持体2の張力が予め定められた一定値になるように従属ロール4の周速を制御する(図2(a))。
続いて、制御部8は、吐出口51から塗工液を吐出させ、塗工ヘッド5を可撓性支持体2に向けて移動させ、吐出口51を可撓性支持体2に押し当てる(図2(b))。吐出口51を可撓性支持体2に押し当てた後、制御部8は更に予め定められた距離だけ塗工ヘッド5を可撓性支持体2に押し込む。可撓性支持体2の押し込みによって可撓性支持体2の張力が大きくなると、制御部8は、張力を小さくするために従属ロール4の周速を遅くし、張力を予め定められた一定値にする。こうして塗工が開始される(図2(c))。
塗工が開始された後、可撓性支持体2の張力変動が安定した後に、制御部8は、張力制御から比率制御に切り換える(図2(d))。
上記の動作において、張力制御が開始されてから比率制御に切り替わるまでの期間が張力制御ステップを構成し、比率制御に切り替わってからの期間が比率制御ステップを構成する。
可撓性支持体の張力変動が安定した後であることは、例えば、次のようにして決める。
張力制御において、可撓性支持体2の張力に基づいて従属ロール4の周速を調整することが所定時間無い場合に可撓性支持体2の張力変動が安定した後であると制御部8が判断する。
また、塗工ヘッド5の可撓性支持体2への押し込みが完了してから所定時間経過したときに、可撓性支持体2の張力変動が安定した後であると制御部8が判断するようにしてもよい。この所定時間は、事前に、張力制御中に塗工ヘッド5を可撓性支持体2に押し込んだときの張力の変動を調べて定めればよい。
上記のように、可撓性支持体の張力変動が安定した後であることを制御部8が判断したが、制御部8に代えて人が判断するようにしてもよい。
Next, the coating film manufacturing method using the said coating film manufacturing apparatus is demonstrated.
2 is a diagram showing the state of the coating film manufacturing apparatus at the start of coating over time, FIG. 2 (a) is a state at the start of tension control, and FIG. 2 (b) is a discharge port. 2 (c) shows a state in which the coating head is pushed into the flexible support, and FIG. 2 (d) shows a state from tension control to ratio control. It is a state to switch.
The coating film manufacturing method includes a tension control step and a ratio control step following the tension control step.
First, the control part 8 conveys the flexible support body 2 by tension control. The control unit 8 rotates the main speed roll 3 at a predetermined constant peripheral speed, and the dependent roll 4 so that the tension of the flexible support 2 measured by the tension meter 6 becomes a predetermined constant value. The peripheral speed is controlled (FIG. 2 (a)).
Subsequently, the control unit 8 discharges the coating liquid from the discharge port 51, moves the coating head 5 toward the flexible support 2, and presses the discharge port 51 against the flexible support 2 ( FIG. 2 (b)). After pressing the discharge port 51 against the flexible support 2, the control unit 8 further pushes the coating head 5 into the flexible support 2 by a predetermined distance. When the tension of the flexible support 2 is increased by pushing the flexible support 2, the control unit 8 slows the peripheral speed of the subordinate roll 4 in order to reduce the tension, and the tension is set to a predetermined constant value. To. Thus, coating is started (FIG. 2C).
After the coating is started, the control unit 8 switches from the tension control to the ratio control after the tension fluctuation of the flexible support 2 is stabilized (FIG. 2D).
In the above operation, a period from when the tension control is started until the ratio control is switched constitutes a tension control step, and a period after the switch to the ratio control constitutes a ratio control step.
The fact that the tension fluctuation of the flexible support is stabilized is determined as follows, for example.
In the tension control, when the peripheral speed of the subordinate roll 4 is not adjusted for a predetermined time based on the tension of the flexible support 2, the control unit 8 determines that the fluctuation of the tension of the flexible support 2 is stabilized. Judgment.
In addition, when a predetermined time has elapsed after the pressing of the coating head 5 onto the flexible support 2 is completed, the control unit 8 determines that the change in tension of the flexible support 2 has been stabilized. You may do it. This predetermined time may be determined in advance by examining the variation in tension when the coating head 5 is pushed into the flexible support 2 during tension control.
As described above, the control unit 8 determines that the change in the tension of the flexible support has been stabilized, but it may be determined by a person instead of the control unit 8.

塗工ヘッド5を可撓性支持体2に押し込むときに張力制御を行っているので、塗工ヘッド5を押し込んでも張力制御によって張力が直ぐに安定する。そして、比率制御に切り替えるので膜厚が安定する。   Since the tension control is performed when the coating head 5 is pushed into the flexible support 2, the tension is immediately stabilized by the tension control even if the coating head 5 is pushed. And since it switches to ratio control, a film thickness is stabilized.

以下に、実施例及び比較例を示すことにより、本発明の特徴をより一層明らかにする。   Hereinafter, the features of the present invention will be further clarified by showing examples and comparative examples.

<実施例>
実施例として本実施形態の塗工膜製造方法を下記の条件で行った。
塗布方式はテンションウェブダイ方式とし、可撓性支持体は三菱樹脂(株)製PET樹脂MRF38(幅900mm)とし、塗工液はポリマー溶液とし、塗布幅は800mmとし、膜厚の目標値は135μmWetとした。膜厚は、キーエンス製変位計SI−F80で測定した。
また、設定張力は80Nとし、張力計はNSD製テンションメータTMA−20N661を用いた。可撓性支持体の設定搬送速度は25m/minとし、塗工ヘッドの押し込み量は可撓性支持体に塗工ヘッドが接触する位置から11mmとした。
また、比率制御時の従属ロールの周速と主速ロールとの周速の比((従属ロールの周速)/(主速ロールの周速))は1とし、可撓性支持体の曲げ剛性は、0.06、3.5、4.9、16.5、1512.2N・mmの5条件とした。
主速ロールと従属ロールの制御は、上述したように最初は張力制御を行い、塗工ヘッド5を可撓性支持体2に押し込み、可撓性支持体2の張力変動が安定した後に張力制御から比率制御に切り換えた。このようにして張力制御から比率制御に切り替える制御方法を便宜上、切替制御と呼ぶ。
<Example>
As an example, the coating film manufacturing method of the present embodiment was performed under the following conditions.
The application method is a tension web die method, the flexible support is PET resin MRF38 (width 900 mm) manufactured by Mitsubishi Plastics, the coating solution is a polymer solution, the coating width is 800 mm, and the target value of the film thickness is 135 μm Wet. The film thickness was measured with a Keyence displacement meter SI-F80.
The set tension was 80N, and the tension meter was a tension meter TMA-20N661 made by NSD. The set conveying speed of the flexible support was 25 m / min, and the pushing amount of the coating head was 11 mm from the position where the coating head contacted the flexible support.
Further, the ratio of the peripheral speed of the subordinate roll to the main speed roll ((peripheral speed of the subordinate roll) / (peripheral speed of the main speed roll)) during the ratio control is 1, and the flexible support is bent. The rigidity was set to five conditions of 0.06, 3.5, 4.9, 16.5, and 1512.2 N · mm 2 .
As described above, the main speed roll and the subordinate roll are controlled by first controlling the tension, and the tension is controlled after the coating head 5 is pushed into the flexible support 2 and the tension fluctuation of the flexible support 2 is stabilized. Switched to ratio control. The control method for switching from tension control to ratio control in this way is called switching control for convenience.

<比較例>
比較例1は、駆動ロールの制御を比率制御のみで行い、比率制御中に塗工ヘッド5を可撓性支持体2に押し込んで塗工した。このとき、可撓性支持体の曲げ剛性は、0.06、3.5、4.9、16.5、1512.2、1801.4N・mmの6条件とした。
また、比較例2は、可撓性支持体の曲げ剛性以外は上記実施例と同じ条件として駆動ロールの制御を切替制御とし、可撓性支持体の曲げ剛性を1801.4N・mmの1条件とした。
<Comparative example>
In Comparative Example 1, the drive roll was controlled only by the ratio control, and the coating head 5 was pushed into the flexible support 2 during the ratio control. At this time, the flexural rigidity of the flexible support was set to six conditions of 0.06, 3.5, 4.9, 16.5, 1512.2, and 1801.4 N · mm 2 .
In Comparative Example 2, except for the bending rigidity of the flexible support, the control of the drive roll is switched under the same conditions as in the above example, and the bending rigidity of the flexible support is 1801.4 N · mm 2 . Condition.

<評価方法>
実施例と比較例の結果の評価は、次のように行った。
張力計で測定される測定張力と設定張力とから張力変動率を次式で求めた。
張力変動率(%)=│(測定張力−設定張力)│/設定張力×100
この張力変動率は5%以内が望ましい。
そして、塗工ヘッドが可撓性支持体に押し当てられた時点から張力変動率が5%以内、及び2.5%以内に収まるまでの時間(それぞれの時間を、「5%張力安定時間」、「2.5%張力安定時間」という)を測定した。実施例及び比較例1、2共に、設定張力が80Nなので、張力変動率が5%以内とは、測定張力が76〜84N内に収まることであり、張力変動率が2.5%以内とは、測定張力が78〜82N内に収まることである。
また、塗工中の最大張力を測定した。
また、塗工膜の最大膜厚と最小膜厚とから膜厚変動率を次式で求めた。
膜厚変動率(%)=(最大膜厚−最小膜厚)/最大膜厚×100
この膜厚変動率は1.5%以内が望ましい。そして、吐出口を可撓性支持体に押し当ててから、膜厚変動率が1.5%以内になるまでの時間を測定した(以下、この時間を膜厚安定時間という)。膜厚の目標値は135μmWetであるから、膜厚変動率が1.5%以内とは、膜厚が133.9875〜136.0125μmWet以内に収まることである。
<Evaluation method>
The results of the examples and comparative examples were evaluated as follows.
From the measured tension measured with a tensiometer and the set tension, the tension fluctuation rate was determined by the following equation.
Tension fluctuation rate (%) = | (measurement tension-set tension) | / set tension x 100
The tension fluctuation rate is preferably within 5%.
Then, the time from when the coating head is pressed against the flexible support until the tension fluctuation rate falls within 5% and 2.5% (each time is referred to as “5% tension stabilization time”). , “2.5% tension stabilization time”). In both Examples and Comparative Examples 1 and 2, since the set tension is 80N, the tension fluctuation rate within 5% means that the measured tension falls within 76 to 84N, and the tension fluctuation rate within 2.5%. The measured tension is within 78 to 82N.
Moreover, the maximum tension during coating was measured.
Moreover, the film thickness variation rate was calculated | required by following Formula from the maximum film thickness and minimum film thickness of the coating film.
Film thickness variation rate (%) = (maximum film thickness−minimum film thickness) / maximum film thickness × 100
This film thickness variation rate is preferably within 1.5%. Then, the time from when the discharge port was pressed against the flexible support until the film thickness variation rate became 1.5% or less was measured (hereinafter, this time is referred to as the film thickness stabilization time). Since the target value of the film thickness is 135 μm Wet, the film thickness fluctuation rate within 1.5% means that the film thickness falls within 133.9875 to 136.0125 μm Wet.

<評価結果>
実施例と比較例1,2の評価結果は次のようになった。
図3は、可撓性支持体の曲げ剛性が16.5N・mmの場合の実施例と比較例1との張力変動の推移を示す図である。比較例1は、矢印Bの時点で塗工ヘッドが可撓性支持体に押し当てられており、張力が急激に大きくなっている。そして、張力が最大張力86.3Nに達したあと、徐々に小さくなっているが、「5%張力安定時間」が8.5秒、2.5%張力安定時間が16秒となっており、安定するのに時間が掛かっている。
一方、実施例では、矢印Bの時点で塗工ヘッドが可撓性支持体に押し当てられた後、張力が大きくなっているが、最大張力が81.8Nと小さい。「5%張力安定時間」が0秒、「2.5%張力安定時間」が0秒となっており、安定するのに時間が掛からない。そして、矢印Cの時点で比率制御に切り替わり、その後も張力は安定している。
<Evaluation results>
The evaluation results of Examples and Comparative Examples 1 and 2 were as follows.
FIG. 3 is a diagram showing the transition of the tension fluctuation between the example and the comparative example 1 when the flexural rigidity of the flexible support is 16.5 N · mm 2 . In Comparative Example 1, the coating head is pressed against the flexible support at the point of arrow B, and the tension is rapidly increased. After the tension reaches the maximum tension of 86.3 N, it gradually decreases, but the “5% tension stabilization time” is 8.5 seconds and the 2.5% tension stabilization time is 16 seconds. It takes time to stabilize.
On the other hand, in the example, the tension is increased after the coating head is pressed against the flexible support at the time point of arrow B, but the maximum tension is as small as 81.8 N. “5% tension stabilization time” is 0 seconds and “2.5% tension stabilization time” is 0 seconds, so that it does not take time to stabilize. And it switches to ratio control at the time of the arrow C, and tension | tensile_strength is stable after that.

図4は、上述した実施例と比較例1、2の「5%張力安定時間」、「2.5%張力安定時間」、最大張力及び膜厚安定時間の評価結果を示す表である。
張力安定時間は次のようであった。
実施例では、「5%張力安定時間」が0秒、「2.5%張力安定時間」が4.5秒以下と短く、最大張力も83.9N以下と小さい。
制御方法が比率制御である比較例1では、曲げ剛性が0.06、3.5N・mmと小さいときは、実施例と同様に「5%張力安定時間」が0秒、「2.5%張力安定時間」が0秒と短く、最大張力も81.4N以下と小さいが、曲げ剛性が4.9N・mm以上になると、「5%張力安定時間」、「2.5%張力安定時間」が長くなり、最大張力も大きい。
制御方法が実施例と同じ切替制御であって曲げ剛性が1801.4N・mmと実施例よりも大きい比較例2では、「5%張力安定時間」、「2.5%張力安定時間」が実施例よりも長く、最大張力も大きい。
膜厚安定時間は次のようであった。
実施例では、膜厚安定時間が短く、比率制御に切り換えた時点(図3の矢印Cの時点)では、膜厚変動率が1.5%以内であった。
比較例1では、曲げ剛性が、0.06、3.5N・mmと小さい時は、膜厚安定時間は実施例と殆ど変らない。しかし、曲げ剛性が4.9N・mm以上になると、膜厚安定時間は実施例と比べて長くなる。
曲げ剛性が1801.4mmでは、制御方法が比率制御である比較例1でも制御方法が実施例と同じ切替制御である比較例2でも、塗工ヘッドが可撓性支持体に接触し、液ダレが発生した。一旦、液ダレが発生すると、そこをきっかけとして張力安定後もスジ等の外観不良が発生す可能性がある。
上述した張力安定時間と膜厚安定時間からわかるように、実施例の塗工膜製造方法は、比較例1、2と比べて良好な結果を示す。
FIG. 4 is a table showing evaluation results of “5% tension stabilization time”, “2.5% tension stabilization time”, maximum tension, and film thickness stabilization time of the above-described Examples and Comparative Examples 1 and 2.
The tension stabilization time was as follows.
In the example, the “5% tension stabilization time” is as short as 0 seconds, the “2.5% tension stabilization time” is as short as 4.5 seconds or less, and the maximum tension is as small as 83.9 N or less.
In Comparative Example 1 in which the control method is ratio control, when the bending rigidity is as small as 0.06 and 3.5 N · mm 2 , the “5% tension stabilization time” is 0 second and “2.5” as in the example. % Tension stabilization time "is as short as 0 seconds and maximum tension is as small as 81.4N or less, but when the bending rigidity is 4.9N · mm 2 or more," 5% tension stabilization time "," 2.5% tension stabilization " “Time” is longer and the maximum tension is larger.
In Comparative Example 2 in which the control method is the same switching control as in the example and the bending rigidity is 1801.4 N · mm 2 which is larger than the example, “5% tension stabilization time” and “2.5% tension stabilization time” are It is longer than the embodiment and the maximum tension is also large.
The film thickness stabilization time was as follows.
In the example, the film thickness stabilization time was short, and at the time of switching to the ratio control (at the time indicated by the arrow C in FIG. 3), the film thickness variation rate was within 1.5%.
In Comparative Example 1, when the bending rigidity is as small as 0.06 and 3.5 N · mm 2 , the film thickness stabilization time is almost the same as that of the example. However, when the bending rigidity is 4.9 N · mm 2 or more, the film thickness stabilization time becomes longer than in the example.
When the bending stiffness is 1801.4 mm 2 , the coating head is in contact with the flexible support in both the comparative example 1 in which the control method is ratio control and the comparative example 2 in which the control method is the same switching control as the example. Sagging occurred. Once the liquid sag occurs, there is a possibility that an appearance defect such as a streak may occur even after the tension is stabilized.
As can be seen from the tension stabilization time and the film thickness stabilization time described above, the coating film manufacturing method of the example shows better results than Comparative Examples 1 and 2.

2・・・可撓性支持体
3・・・主速ロール(駆動ロール)
4・・・従属ロール(駆動ロール)
5・・・塗工ヘッド
2 ... Flexible support 3 ... Main speed roll (drive roll)
4 ... Subordinate roll (drive roll)
5 ... Coating head

Claims (2)

1対の駆動ロール間に懸架された可撓性支持体の一方の面に、前記1対の駆動ロール間に設けられた塗工ヘッドから吐出される塗工液を塗工する塗工膜製造方法であって、
前記1対の駆動ロール間における前記可撓性支持体の張力が予め定められた一定値になるように前記1対の駆動ロールの周速を制御する張力制御ステップと、
前記張力制御ステップに続き、前記1対の駆動ロールを構成する一方の駆動ロールの周速と他方の駆動ロールの周速との比率を予め定められた一定値にする比率制御ステップとを含み、
前記張力制御ステップにおいて、前記塗工ヘッドからの塗工液の吐出を開始し、該塗工ヘッドを前記可撓性支持体の前記一方の面に押し当て、該塗工ヘッドを該可撓性支持体に予め定められた距離押し込み、該塗工ヘッドの押し込みにより生じる該可撓性支持体の張力変動が安定した後に、該張力制御ステップから前記比率制御ステップに切り換えることを特徴とする塗工膜製造方法。
Manufacturing a coating film for applying a coating liquid discharged from a coating head provided between a pair of driving rolls to one surface of a flexible support suspended between a pair of driving rolls A method,
A tension control step for controlling the peripheral speed of the pair of drive rolls so that the tension of the flexible support between the pair of drive rolls becomes a predetermined constant value;
Following the tension control step, a ratio control step of setting a ratio between the peripheral speed of one drive roll and the peripheral speed of the other drive roll constituting the pair of drive rolls to a predetermined constant value,
In the tension control step, the discharge of the coating liquid from the coating head is started, the coating head is pressed against the one surface of the flexible support, and the coating head is Coating is characterized in that the tension control step is switched to the ratio control step after the tension fluctuation of the flexible support generated by pushing the support body at a predetermined distance and the coating head is stabilized. Membrane manufacturing method.
前記可撓性支持体の曲げ剛性が0.05〜1550N・mmであることを特徴とする請求項1に記載の塗工膜製造方法。 The method for producing a coated film according to claim 1, wherein the flexural rigidity of the flexible support is 0.05 to 1550 N · mm 2 .
JP2011219811A 2011-10-04 2011-10-04 Coating film manufacturing method Active JP6267850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219811A JP6267850B2 (en) 2011-10-04 2011-10-04 Coating film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219811A JP6267850B2 (en) 2011-10-04 2011-10-04 Coating film manufacturing method

Publications (2)

Publication Number Publication Date
JP2013078723A true JP2013078723A (en) 2013-05-02
JP6267850B2 JP6267850B2 (en) 2018-01-24

Family

ID=48525561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219811A Active JP6267850B2 (en) 2011-10-04 2011-10-04 Coating film manufacturing method

Country Status (1)

Country Link
JP (1) JP6267850B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435766A (en) * 1990-05-29 1992-02-06 Konica Corp Coating method
JPH04260471A (en) * 1991-02-18 1992-09-16 Fuji Photo Film Co Ltd Film thickness controlling method
JPH06178961A (en) * 1992-12-15 1994-06-28 Matsushita Electric Ind Co Ltd Coating applicator for magnetic recording medium
JPH08173877A (en) * 1994-12-26 1996-07-09 Matsushita Electric Ind Co Ltd Coating method and device therefor
JPH10236707A (en) * 1997-02-27 1998-09-08 Dainippon Printing Co Ltd Method and device for controlling motor rotational speed ratio in web conveying system
JP2000051767A (en) * 1998-08-05 2000-02-22 Tdk Corp Coating device and coating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435766A (en) * 1990-05-29 1992-02-06 Konica Corp Coating method
JPH04260471A (en) * 1991-02-18 1992-09-16 Fuji Photo Film Co Ltd Film thickness controlling method
JPH06178961A (en) * 1992-12-15 1994-06-28 Matsushita Electric Ind Co Ltd Coating applicator for magnetic recording medium
JPH08173877A (en) * 1994-12-26 1996-07-09 Matsushita Electric Ind Co Ltd Coating method and device therefor
JPH10236707A (en) * 1997-02-27 1998-09-08 Dainippon Printing Co Ltd Method and device for controlling motor rotational speed ratio in web conveying system
JP2000051767A (en) * 1998-08-05 2000-02-22 Tdk Corp Coating device and coating method

Also Published As

Publication number Publication date
JP6267850B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
KR101685737B1 (en) Elastic yarn supply apparatus
WO2009092761A3 (en) Papermaking coating station with pressure-sensitive film roll
CN204400271U (en) The former film rewinding machine of a kind of ultra-transparent adhesive tape
CN104549911B (en) The hot-fusible pressure-sensitive adhesive coating apparatus that the band back of the body is coated with
JP2018517641A (en) Rewinding machine for paper log production
JP6267850B2 (en) Coating film manufacturing method
JP6253421B2 (en) Method for producing adhesive tape with printed image and apparatus for forming the printed image
JPWO2017149610A1 (en) Material supply apparatus and material supply method for absorbent article
US20180343915A1 (en) Method for unwinding a bobbin of a coiled sheet and unwinding apparatus for unwinding a bobbin
JP2013202455A (en) Coating method
ATE542764T1 (en) METHOD FOR PRODUCING A CENTRAL UNWIND ROLL AND ROLL
TW201350356A (en) Base film for hydraulic transfer
RU2631390C9 (en) Device and method of web uncoiling control
JP6161238B2 (en) Applicable equipment
JP2014156121A (en) Base film for hydraulic transfer printing and production method thereof
JP3960040B2 (en) Sheet forming device
JP6295771B2 (en) Manufacturing method of laminate
CN202219630U (en) Feeding press roll device of hydrogel coating machine
PL2275601T3 (en) Calendar for smoothing sheets of paper or cardboard
JP2013027818A (en) Intermittent coating method and apparatus
JP3161694U (en) Coating equipment
CN111295274A (en) Apparatus and method for producing polymer film
KR101479751B1 (en) Electrospinning devices of manufacture for nano fiber
EP1688250B1 (en) Cutting equipment for plasticized supports
KR102391846B1 (en) Winding device, winding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6267850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250