JP2013078166A - Non-contact power transmission apparatus and non-contact power transmission method - Google Patents

Non-contact power transmission apparatus and non-contact power transmission method Download PDF

Info

Publication number
JP2013078166A
JP2013078166A JP2011215025A JP2011215025A JP2013078166A JP 2013078166 A JP2013078166 A JP 2013078166A JP 2011215025 A JP2011215025 A JP 2011215025A JP 2011215025 A JP2011215025 A JP 2011215025A JP 2013078166 A JP2013078166 A JP 2013078166A
Authority
JP
Japan
Prior art keywords
power transmission
resonance
power
coil
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011215025A
Other languages
Japanese (ja)
Other versions
JP5705079B2 (en
Inventor
Yasushi Miyauchi
靖 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2011215025A priority Critical patent/JP5705079B2/en
Publication of JP2013078166A publication Critical patent/JP2013078166A/en
Application granted granted Critical
Publication of JP5705079B2 publication Critical patent/JP5705079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission apparatus which can transmit power selectively to a specific power reception apparatus by a simple configuration.SOLUTION: The non-contact power transmission apparatus comprises a transmission device 1 having a transmission resonator consisting of a resonance coil 4a for transmission and a resonance capacitor, and a reception device 2 having a reception resonator consisting of a resonance coil 4b for reception and a resonance capacitor. A transmission auxiliary device 9 having an auxiliary resonator of variable resonance frequency f3 consisting of an auxiliary coil 10 and a resonance capacitor 11 is also provided, and disposed to face the transmission device. Between the resonance coil for transmission and the auxiliary coil, a space for disposing the resonance coil for reception can be formed, and the resonance frequency ft of a transmission side resonance system configured of the transmission resonator and the auxiliary resonator can be adjusted by adjusting the resonance frequency f3.

Description

本発明は、送電コイルと受電コイル間の電力の伝送を、磁界共鳴を介して非接触(ワイヤレス)で行う非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission apparatus that performs non-contact (wireless) power transmission between a power transmission coil and a power reception coil via magnetic field resonance.

非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導型、電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   As a method of transmitting power in a non-contact manner, an electromagnetic induction type by electromagnetic induction (several hundreds of kHz), an electric field / magnetic field resonance type by transmission between LC resonances via electric field or magnetic field resonance, a microwave power transmission type by radio waves (several GHz), Alternatively, a laser power transmission type using electromagnetic waves (light) in the visible light region is known. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって近距離伝送(〜2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。   Therefore, recently, electric field / magnetic field resonance type power transmission capable of short-distance transmission (up to 2 m) has attracted attention. Among these, in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs. On the other hand, in the case of the magnetic resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic resonance type has been increasing.

図7は、従来の磁界共鳴を利用した電力伝送装置の構成例の概略を示した正面図である。送電装置1は、ループコイル3aと送電用共鳴コイル4aを組み合わせた送電コイル、受電装置2は、ループコイル3bと受電用共鳴コイル4bを組み合わせた受電コイルを備えている。送電装置1のループコイル3aには高周波電力ドライバー5が接続され、交流電源(AC100V)6の電力を送電可能な高周波電力に変換して供給する。受電装置2のループコイル3bには、整流器7を介して負荷として例えば充電池8が接続されている。   FIG. 7 is a front view showing an outline of a configuration example of a conventional power transmission device using magnetic field resonance. The power transmission device 1 includes a power transmission coil that combines the loop coil 3a and the power transmission resonance coil 4a, and the power reception device 2 includes a power reception coil that combines the loop coil 3b and the power reception resonance coil 4b. A high frequency power driver 5 is connected to the loop coil 3a of the power transmission device 1, and the power of the AC power source (AC 100V) 6 is converted into high frequency power that can be transmitted and supplied. For example, a rechargeable battery 8 is connected to the loop coil 3 b of the power receiving device 2 as a load via a rectifier 7.

ループコイル3aは、高周波電力ドライバー5から供給される電気信号により励起され、電磁誘導により送電用共鳴コイル4aに電気信号を伝送する誘電素子である。送電用共鳴コイル4aはループコイル3aから出力された電気信号に基づいて磁界を発生させる。この送電用共鳴コイル4aは、共振周波数f0=1/{2π(LC)1/2}(Lは送電側の送電用共鳴コイル4aのインダクタンスで、Cは浮遊容量を示す)において磁界強度が最大となる。送電用共鳴コイル4aに供給された電力は、磁界共鳴により受電用共鳴コイル4bに非接触で伝送される。伝送された電力は、受電用共鳴コイル4bから電磁誘導によりループコイル3bへ伝送され、整流器7により整流されて充電池8に供給される。この場合、送電用共鳴コイル4aと受電装置2の共振周波数は同一に設定される。 The loop coil 3a is a dielectric element that is excited by an electric signal supplied from the high-frequency power driver 5 and transmits the electric signal to the power transmission resonance coil 4a by electromagnetic induction. The power transmission resonance coil 4a generates a magnetic field based on the electrical signal output from the loop coil 3a. The power transmission resonance coil 4a has a maximum magnetic field strength at a resonance frequency f0 = 1 / {2π (LC) 1/2 } (L is an inductance of the power transmission resonance coil 4a, and C is a stray capacitance). It becomes. The electric power supplied to the power transmission resonance coil 4a is transmitted in a non-contact manner to the power reception resonance coil 4b by magnetic field resonance. The transmitted power is transmitted from the power receiving resonance coil 4 b to the loop coil 3 b by electromagnetic induction, rectified by the rectifier 7 and supplied to the rechargeable battery 8. In this case, the resonance frequencies of the power transmission resonance coil 4a and the power reception device 2 are set to be the same.

このような磁界共鳴型の非接触電力伝送において、一つの送電装置に対して複数の受電装置を設け、その中から特定の受電装置を選択的に充電する方法が、特許文献1に開示されている。すなわち、送電装置は共振周波数を可変する機構を有し、複数の受電装置はそれぞれ固有の共振周波数を有し、送電装置の共振周波数を変えることにより、それぞれ異なる固有の共振周波数を有する受電装置に対して選択的に送電することができる。   In such a magnetic resonance type non-contact power transmission, Patent Document 1 discloses a method of providing a plurality of power receiving devices for one power transmitting device and selectively charging a specific power receiving device from the plurality of power receiving devices. Yes. That is, the power transmission device has a mechanism that varies the resonance frequency, each of the plurality of power reception devices has a specific resonance frequency, and by changing the resonance frequency of the power transmission device, each power reception device has a different specific resonance frequency. In contrast, power can be selectively transmitted.

特開2010−63245号公報JP 2010-63245 A

特許文献1に開示された技術においては、送電装置の共振周波数を個々の受電装置の固有の共振周波数に合わせるための可変機構として、例えば、コイルの線長をリレー開閉によって切り換えることにより共鳴コイルのインダクタンスを可変とする構造を用いる。あるいは、送電装置の共振周波数の可変機構として、アクチュエータにより物理的に共振コイルの全長を切り換える構造を用いる。   In the technique disclosed in Patent Document 1, as a variable mechanism for adjusting the resonance frequency of the power transmission device to the specific resonance frequency of each power reception device, for example, the wire length of the coil is switched by opening and closing of the relay to switch the resonance coil. A structure with variable inductance is used. Alternatively, as a mechanism for changing the resonance frequency of the power transmission device, a structure in which the entire length of the resonance coil is physically switched by an actuator is used.

更には、他の従来技術として、送電装置の交流電源の発振周波数を受電先の受電装置の共振周波数に切り換えることにより、それぞれ異なる固有の共振周波数を有する受電装置に対して選択的に送電することも検討されている。   Further, as another conventional technique, by selectively switching the oscillation frequency of the AC power source of the power transmission device to the resonance frequency of the power receiving device of the power receiving destination, the power is selectively transmitted to the power receiving devices having different inherent resonance frequencies. Has also been considered.

しかしながら、このような従来技術による送電装置の共振周波数の可変方法では、装置の構造及び制御が複雑化したり、送電装置の小型化が難しい問題があった。   However, in such a conventional method for changing the resonance frequency of the power transmission device, there are problems that the structure and control of the device are complicated and it is difficult to reduce the size of the power transmission device.

本発明は、このような従来技術における問題点を解決するものであり、簡単な構成で特定の受電装置に対して選択的に電力伝送が可能な非接触電力伝送装置及び非接触電力伝送方法を提供することを目的とする。   The present invention solves such problems in the prior art, and provides a non-contact power transmission apparatus and a non-contact power transmission method capable of selectively transmitting power to a specific power receiving apparatus with a simple configuration. The purpose is to provide.

本発明の非接触電力伝送装置は、基本構成として、送電用共鳴コイル及び共振容量により構成された送電共振器を有する送電装置と、受電用共鳴コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、前記送電用共鳴コイルと前記受電用共鳴コイルの間の磁界共鳴を介して前記送電装置から前記受電装置へ電力を伝送する。   The non-contact power transmission device of the present invention has, as a basic configuration, a power transmission device having a power transmission resonator constituted by a power transmission resonance coil and a resonance capacitor, and a power reception resonator constituted by a power reception resonance coil and a resonance capacitance. A power reception device, and transmits power from the power transmission device to the power reception device via magnetic field resonance between the power transmission resonance coil and the power reception resonance coil.

上記課題を解決するために、本発明の非接触電力伝送装置は、補助コイル及び共振容量により構成され、共振周波数f3が可変である補助共振器を有する送電補助装置を更に備え、前記送電補助装置を前記送電装置と対向させて配置して、前記送電用共鳴コイルと前記補助コイルの間に、前記受電用共鳴コイルが配置される受電空間を形成可能であり、前記共振周波数f3を調整することにより、前記送電共振器と前記補助共振器が構成する送電側共振系の共振周波数ftを調整可能であることを特徴とする。   In order to solve the above-described problem, the non-contact power transmission apparatus of the present invention further includes a power transmission auxiliary device that includes an auxiliary coil and a resonance capacitor, and includes an auxiliary resonator whose resonance frequency f3 is variable. Is disposed opposite to the power transmission device, and a power reception space in which the power reception resonance coil is disposed can be formed between the power transmission resonance coil and the auxiliary coil, and the resonance frequency f3 is adjusted. Thus, the resonance frequency ft of the power transmission side resonance system formed by the power transmission resonator and the auxiliary resonator can be adjusted.

本発明の非接触電力伝送方法は、送電用共鳴コイル及び共振容量により構成された送電共振器を有する送電装置と、受電用共鳴コイル及び共振容量により構成された受電共振器を有する受電装置とを用い、前記送電用共鳴コイルと前記受電用共鳴コイルの間の磁界共鳴を介して前記送電装置から前記受電装置へ電力を伝送する方法であって、補助コイル及び共振容量により構成され、共振周波数f3が可変である補助共振器を有する送電補助装置を更に用い、前記送電補助装置を前記送電装置と対向させて配置して、前記送電用共鳴コイルと前記補助コイルの間に形成された受電空間に前記受電用共鳴コイルを配置し、前記共振周波数f3を調整することにより、前記送電共振器と前記補助共振器が構成する送電側共振系の共振周波数ftを調整して電力伝送を行うことを特徴とする。   A non-contact power transmission method of the present invention includes a power transmission device having a power transmission resonator configured by a power transmission resonance coil and a resonance capacitor, and a power reception device having a power reception resonator configured by a power reception resonance coil and a resonance capacitance. A method of transmitting power from the power transmission device to the power reception device via magnetic field resonance between the power transmission resonance coil and the power reception resonance coil, the method including an auxiliary coil and a resonance capacitor, and a resonance frequency f3 And further using a power transmission auxiliary device having an auxiliary resonator, wherein the power transmission auxiliary device is disposed opposite to the power transmission device, and a power receiving space formed between the power transmission resonance coil and the auxiliary coil is provided. By arranging the power receiving resonance coil and adjusting the resonance frequency f3, the resonance frequency ft of the power transmission side resonance system constituted by the power transmission resonator and the auxiliary resonator is set. And integer and performing power transmission.

本発明によれば、送電装置と受電装置の他に送電補助装置を設け、送電装置と送電補助装置の間の受電空間に受電装置を配置することにより、送電側共振系の共振周波数を送電補助装置により調整することが可能であり、複数の受電装置のうちの、固有の共振周波数を持つ特定の受電装置に対して選択的に非接触電力伝送が可能となる。   According to the present invention, a power transmission auxiliary device is provided in addition to the power transmission device and the power reception device, and the power reception device is arranged in the power reception space between the power transmission device and the power transmission auxiliary device, thereby increasing the resonance frequency of the power transmission side resonance system. It can be adjusted by the device, and non-contact power transmission can be selectively performed with respect to a specific power receiving device having a specific resonance frequency among the plurality of power receiving devices.

また、受電装置の受電共鳴コイルの位置によらず、電力伝送効率がほぼ平坦な距離依存性が得られる。更に、送電補助装置が無い場合に比べて大幅に電力伝送可能距離を長くすることができる。   Further, the distance dependency with which the power transmission efficiency is substantially flat can be obtained regardless of the position of the power receiving resonance coil of the power receiving device. Furthermore, the power transmission possible distance can be significantly increased compared to the case where there is no power transmission auxiliary device.

実施の形態1における非接触電力伝送装置の構成を示す模式断面図Schematic cross-sectional view showing the configuration of the non-contact power transmission apparatus in the first embodiment 同非接触電力伝送装置の送電側共振系に対するVNA(ベクトルネットワークアナライザ)による測定時の各要素装置の配置を示す模式断面図Schematic sectional view showing the arrangement of each element device at the time of measurement by a VNA (vector network analyzer) for the power transmission side resonance system of the non-contact power transmission device 同非接触電力伝送装置の送電側共振系について、補助共振器の共振周波数f3に対する共振周波数ftの推移を示すグラフThe graph which shows transition of the resonant frequency ft with respect to the resonant frequency f3 of an auxiliary resonator about the power transmission side resonant system of the non-contact power transmission device 同非接触電力伝送装置の送電側共振系について、補助共振器の共振周波数f3の3つの値の各々におけるVNA測定の出力を示す波形図Waveform diagram showing VNA measurement output at each of the three values of the resonance frequency f3 of the auxiliary resonator for the power transmission side resonance system of the non-contact power transmission apparatus 同非接触電力伝送装置に対するVNA測定時の各要素装置の配置を示す模式断面図Schematic sectional view showing the arrangement of each element device at the time of VNA measurement for the non-contact power transmission device 同非接触電力伝送装置について、補助共振器の共振周波数f3に対する電力伝送効率の依存性を示すグラフGraph showing the dependence of power transmission efficiency on the resonance frequency f3 of the auxiliary resonator for the non-contact power transmission device 同非接触電力伝送装置に対する送電共振器の共振周波数f1を変化させたVNA測定時の各要素装置の配置を示す模式断面図Schematic sectional view showing the arrangement of each element device at the time of VNA measurement in which the resonance frequency f1 of the power transmission resonator is changed with respect to the non-contact power transmission device 同非接触電力伝送装置について、電力伝送効率の送電共振器の共振周波数f1に対する依存性を示すグラフAbout the non-contact power transmission device, a graph showing the dependence of the power transmission efficiency on the resonance frequency f1 of the power transmission resonator 実施の形態2における非接触電力伝送装置の構成を示す模式断面図Schematic cross-sectional view showing the configuration of the non-contact power transmission apparatus in the second embodiment 同非接触電力伝送装置の平面図Plan view of the contactless power transmission device 同非接触電力伝送装置について、図5Aの配置における一方の受電装置への電力伝送効率の送電共振器の共振周波数f1に対する依存性を示すグラフAbout the non-contact power transmission device, a graph showing the dependence of the power transmission efficiency to one power receiving device on the resonance frequency f1 of the power transmission resonator in the arrangement of FIG. 5A 同非接触電力伝送装置について、図5Aの配置における他方の受電装置への電力伝送効率の送電共振器の共振周波数f1に対する依存性を示すグラフAbout the non-contact power transmission device, a graph showing the dependency of the power transmission efficiency to the other power receiving device in the arrangement of FIG. 5A on the resonance frequency f1 of the power transmission resonator 実施の形態3における非接触電力伝送装置の構成を示す模式断面図Schematic cross-sectional view showing the configuration of the non-contact power transmission apparatus in the third embodiment 従来技術における非接触電力伝送装置の構成を示す断面図Sectional drawing which shows the structure of the non-contact electric power transmission apparatus in a prior art

本発明の非接触電力伝送装置は、上記構成を基本として、以下のような態様を採ることができる。   The non-contact power transmission apparatus of the present invention can take the following aspects based on the above configuration.

すなわち、前記送電補助装置の前記共振容量が可変コンデンサにより構成され、前記可変コンデンサを調整することにより前記補助共振器の共振周波数f3を調整可能である構成とすることができる。   That is, the resonance capacitance of the power transmission auxiliary device is configured by a variable capacitor, and the resonance frequency f3 of the auxiliary resonator can be adjusted by adjusting the variable capacitor.

また、前記送電補助装置の前記共振容量がそれぞれ異なる容量値を有する複数の固定コンデンサにより構成され、前記補助コイルに選択的に接続される前記固定コンデンサを切り替えることにより、前記補助共振器の共振周波数f3を調整可能である構成とすることができる。   The resonance capacity of the power transmission auxiliary device is composed of a plurality of fixed capacitors each having a different capacitance value, and the resonance frequency of the auxiliary resonator is switched by switching the fixed capacitor selectively connected to the auxiliary coil. It can be set as the structure which can adjust f3.

また、前記送電用共鳴コイルの直径d1と、受電用共鳴コイルの直径d2と、補助コイルの直径d3が、d1>d2、かつd2<d3の関係を満足することが好ましい。この関係を保っていれば電力伝送可能距離の増大等の効果が得られる。特に、d1=d3、かつd1>d2の関係を満足することが好ましい。それにより、伝送効率特性(受電可能範囲の拡大など)の向上について大きな効果が得られる。もちろん、円形のコイルに限らず、四角形のコイル等をそれぞれ配置した形態でも、同様の効果は得られる。   Moreover, it is preferable that the diameter d1 of the power transmission resonance coil, the diameter d2 of the power reception resonance coil, and the diameter d3 of the auxiliary coil satisfy the relationship of d1> d2 and d2 <d3. If this relationship is maintained, effects such as an increase in the power transferable distance can be obtained. In particular, it is preferable to satisfy the relationship of d1 = d3 and d1> d2. Thereby, a great effect can be obtained in terms of improvement of transmission efficiency characteristics (such as expansion of the power receiving range). Of course, the same effect can be obtained not only in the case of a circular coil but also in a form in which a rectangular coil or the like is arranged.

また、前記送電用共鳴コイルの中心軸と、前記補助コイルの中心軸と、前記受電用共鳴コイルの中心軸が、同一軸上にあることが好ましい。   Moreover, it is preferable that the central axis of the power transmission resonance coil, the central axis of the auxiliary coil, and the central axis of the power reception resonance coil are on the same axis.

また、1台の前記送電装置に対して1台の前記受電装置が配置され、f1≠f3の条件で前記共振周波数f3が設定される構成とすることができる。この場合、f1<f3の条件で前記共振周波数f3が設定されることが好ましい。   Further, one power receiving device is arranged for one power transmitting device, and the resonance frequency f3 can be set under the condition of f1 ≠ f3. In this case, it is preferable that the resonance frequency f3 is set under the condition of f1 <f3.

また、1台の前記送電装置に対して複数台の前記受電装置が配置され、複数台の前記受電装置の受電共振器の共振周波数f2はすべて異なり、かつf2≠f3である構成とすることができる。   Further, a plurality of power receiving devices are arranged for one power transmitting device, and the resonance frequencies f2 of the power receiving resonators of the plurality of power receiving devices are all different and f2 ≠ f3. it can.

また、1台の前記送電装置に対して複数台の前記受電装置が配置され、複数台の前記受電装置の受電共振器の少なくとも一部は前記共振周波数f2が互いに異なり、かつf1≠f2である構成とすることができる。   Further, a plurality of power receiving devices are arranged for one power transmitting device, and at least some of the power receiving resonators of the plurality of power receiving devices have different resonance frequencies f2 and f1 ≠ f2. It can be configured.

また、前記送電装置及び前記送電補助装置を保持し、前記送電装置と前記送電補助装置の相互の位置関係を、前記受電空間が形成されるように設定することが可能な筐体を備え、前記受電装置を前記受電空間に対して着脱可能に装着することが可能であり、少なくとも前記送電用共鳴コイル、前記補助コイル、及び前記受電用共鳴コイルの周囲が前記筐体内で電磁シールドされている状態で電力伝送を行う構成とすることができる。   In addition, the power transmission device and the power transmission auxiliary device are held, a housing capable of setting the mutual positional relationship between the power transmission device and the power transmission auxiliary device so that the power receiving space is formed, The power receiving device can be detachably attached to the power receiving space, and at least the periphery of the power transmission resonance coil, the auxiliary coil, and the power reception resonance coil are electromagnetically shielded in the housing It can be set as the structure which performs electric power transmission.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<実施の形態1>
図1は、実施の形態1における磁界共鳴型の非接触電力伝送装置の構成を示す断面図である。なお、図7に示した従来例の非接触電力伝送装置と同様の要素については、同一の参照番号を付して説明の繰り返しを簡略化する。ここでは、送電装置1と受電装置2がそれぞれ1つずつの場合に関して説明する。
<Embodiment 1>
1 is a cross-sectional view illustrating a configuration of a magnetic field resonance type non-contact power transmission apparatus according to Embodiment 1. FIG. In addition, about the element similar to the non-contact electric power transmission apparatus of the prior art example shown in FIG. 7, the same reference number is attached | subjected and the repetition of description is simplified. Here, a case where there is one power transmission device 1 and one power reception device 2 will be described.

この非接触電力伝送装置は、従来例の送電装置1と受電装置2に送電補助装置9を加えて構成され、送電装置1と送電補助装置9の間の受電空間に受電装置2が配置された状態で非接触電力伝送が行われる。送電装置1は、交流電源(AC100V)の電力を送電可能な高周波電力に変換して電力を伝送し、受電装置2は電力を受け取る。送電補助装置9は、電力伝送時における、送電装置1に関わる共振系の共振周波数を、受電装置2の共振系の共振周波数に対して適切な関係に調整する機能を有する。   This non-contact power transmission device is configured by adding a power transmission auxiliary device 9 to the conventional power transmission device 1 and power reception device 2, and the power reception device 2 is arranged in a power receiving space between the power transmission device 1 and the power transmission auxiliary device 9. Non-contact power transmission is performed in the state. The power transmission device 1 converts the power of the AC power supply (AC 100 V) into high-frequency power that can be transmitted and transmits the power, and the power receiving device 2 receives the power. The power transmission auxiliary device 9 has a function of adjusting the resonance frequency of the resonance system related to the power transmission device 1 during power transmission to an appropriate relationship with the resonance frequency of the resonance system of the power receiving device 2.

送電装置1は、交流電源(AC100V)6の電力を送電可能な高周波電力に変換する高周波電力ドライバー5、送電用のループコイル3a、及び送電用共鳴コイル4aを備えている。場合によっては、送電用のループコイル3aは無くても良い。すなわち、他の周知の構成により給電することも可能である。図示は省略するが、送電用共鳴コイル4aには共振容量が接続されて、送電共振器を構成している。共振容量としては、回路素子として可変コンデンサーあるいは固定コンデンサを接続してもよいし、浮遊容量を利用した構成としてもよい。なお、以下の記載においては、送電共振器の単独での共振周波数f1を、図示との関係が判り易いように「送電装置1の共振周波数f1」と記述する。   The power transmission device 1 includes a high-frequency power driver 5 that converts power from an AC power source (AC 100 V) 6 into high-frequency power that can be transmitted, a loop coil 3a for power transmission, and a resonance coil 4a for power transmission. Depending on the case, the loop coil 3a for power transmission may not be provided. In other words, it is possible to supply power with another known configuration. Although illustration is omitted, a resonance capacitor is connected to the power transmission resonance coil 4a to constitute a power transmission resonator. As the resonant capacitance, a variable capacitor or a fixed capacitor may be connected as a circuit element, or a configuration using a stray capacitance may be used. In the following description, the resonance frequency f1 of the power transmission resonator alone is described as “resonance frequency f1 of the power transmission device 1” so that the relationship with the figure can be easily understood.

送電補助装置9は、補助コイル(空芯コイルなど)10と調整用コンデンサ11を有し、両要素により補助共振器が構成されている。調整用コンデンサ11は、容量値が可変である可変コンデンサにより構成され、以下の記載では、調整用バリコン11と称する。但し、調整用コンデンサ11としては、可変コンデンサに代えてそれぞれ異なる容量値を有する複数の固定コンデンサを用い、補助コイル10に対して選択的にいずれかの固定コンデンサを接続して、容量値を変更する構成とすることもできる。なお、以下の記載においては、補助共振器の単独での共振周波数f3を、図示との関係が判り易いように「送電補助装置9の共振周波数f3」と記述する。   The power transmission auxiliary device 9 includes an auxiliary coil (air core coil or the like) 10 and an adjustment capacitor 11, and an auxiliary resonator is configured by both elements. The adjustment capacitor 11 is composed of a variable capacitor having a variable capacitance value, and is referred to as an adjustment variable capacitor 11 in the following description. However, as the adjustment capacitor 11, a plurality of fixed capacitors having different capacitance values are used in place of the variable capacitors, and one of the fixed capacitors is selectively connected to the auxiliary coil 10 to change the capacitance value. It can also be set as the structure to do. In the following description, the resonance frequency f3 of the auxiliary resonator alone is described as “resonance frequency f3 of the power transmission auxiliary device 9” so that the relationship with the drawing can be easily understood.

また図示は省略されているが、必要に応じて送電用共鳴コイル4aの反射電力、共振周波数、流れる電流、あるいは電圧などをモニターする手段や、送電装置1、受電装置2及び送電補助装置9の相互間で情報のやり取りをするための回路等を含むことができる。そのような構成を採用する場合は、調整用バリコン11の容量値を自動的に制御可能とすることもできる。   Although not shown in the figure, means for monitoring the reflected power, resonance frequency, flowing current, voltage, etc. of the resonance coil for power transmission 4a as necessary, the power transmission device 1, the power reception device 2, and the power transmission auxiliary device 9 A circuit for exchanging information between each other can be included. When such a configuration is adopted, the capacitance value of the variable capacitor 11 for adjustment can be automatically controlled.

受電装置2には、受電コイルとして受電用共鳴コイル4bとループコイル3bが組合わされて配置されている。ループコイル3bで得られた電力は、少なくとも整流回路7を経由して充電池8に蓄えられる。図示は省略するが、受電用共鳴コイル4bには共振容量が接続されて、受電共振器を構成している。共振容量としては、回路素子として可変コンデンサーあるいは固定コンデンサを接続してもよいし、浮遊容量を利用した構成としてもよい。なお、以下の記載においては、受電共振器の単独での共振周波数f2を、図示との関係が判り易いように「受電装置2の共振周波数f2」と記述する。   In the power receiving device 2, a power receiving resonance coil 4 b and a loop coil 3 b are combined as a power receiving coil. The electric power obtained by the loop coil 3 b is stored in the rechargeable battery 8 via at least the rectifier circuit 7. Although illustration is omitted, a resonance capacitor is connected to the power reception resonance coil 4b to constitute a power reception resonator. As the resonant capacitance, a variable capacitor or a fixed capacitor may be connected as a circuit element, or a configuration using a stray capacitance may be used. In the following description, the resonance frequency f2 of the power receiving resonator alone is described as “the resonance frequency f2 of the power receiving device 2” so that the relationship with the drawing can be easily understood.

充電池8として小型電池(コイン電池など)を用いた場合には、ループコイル3bと充電池8を重ね合わせて設置面積を小さくするのが好ましい(例えば、コイルオン電池など)。この場合、ループコイル3bから充電池8に磁束が漏れて渦電流が発生し損失(渦電流損)となるので、このループコイル3bと充電池8の間に、伝送時の共振周波数において高透磁率を有する電波吸収体を配置することが望ましい。また、トータルの厚さを薄くするために、電波吸収体を挟んでループコイル3bと充電池8とを密着させても良い。   When a small battery (such as a coin battery) is used as the rechargeable battery 8, it is preferable to overlap the loop coil 3b and the rechargeable battery 8 to reduce the installation area (for example, a coil-on battery). In this case, magnetic flux leaks from the loop coil 3b to the rechargeable battery 8 to generate an eddy current and a loss (eddy current loss) occurs between the loop coil 3b and the rechargeable battery 8 at a resonance frequency during transmission. It is desirable to arrange a radio wave absorber having magnetic susceptibility. Further, in order to reduce the total thickness, the loop coil 3b and the rechargeable battery 8 may be brought into close contact with each other with a radio wave absorber interposed therebetween.

以上のように、送電補助装置9と送電装置1を対向させて配置することにより、送電用共鳴コイル4aと補助コイル10の間に受電空間が形成され、その受電空間に、受電装置2の受電用共鳴コイル4bが配置される。   As described above, by arranging the power transmission auxiliary device 9 and the power transmission device 1 to face each other, a power reception space is formed between the power transmission resonance coil 4a and the auxiliary coil 10, and the power reception device 2 receives power in the power reception space. The resonance coil 4b for use is arranged.

本実施の形態では、送電装置1におけるループコイル3aと送電用共鳴コイル4aは、図7に示したものと機能は同じであるが、薄型化のために、例えば、直径1mm程度のCuコイル(リッツ線、被覆あり)を同一平面上にスパイラル状に巻いた平面コイルを用いる(直径は70mmΦ)。更に受電装置2におけるループコイル3bと受電用共鳴コイル4bは、図7に示したものと機能は同じであるが、小型化のために、例えば、厚さ0.4mmの薄型プリント基板に、厚さ70μm程度のCu箔を同一平面上にスパイラル状に形成した薄膜コイルにより構成する(直径は20mmΦ)。このように送電側のコイルの直径を大きく、受電側の直径を小さくすることにより、電力伝送可能距離を伸ばすことができる。また、基板の厚さを薄くするために、基板の両面に受電用のループコイル3bと受電用共鳴コイル4bをそれぞれ別に形成しても良い。   In the present embodiment, the loop coil 3a and the power transmission resonance coil 4a in the power transmission device 1 have the same functions as those shown in FIG. 7, but in order to reduce the thickness, for example, a Cu coil having a diameter of about 1 mm ( A planar coil in which a litz wire and a coating are spirally wound on the same plane is used (diameter is 70 mmΦ). Further, the loop coil 3b and the power receiving resonance coil 4b in the power receiving device 2 have the same functions as those shown in FIG. A Cu foil having a thickness of about 70 μm is formed of a thin film coil formed in a spiral shape on the same plane (diameter is 20 mmΦ). Thus, by increasing the diameter of the coil on the power transmission side and decreasing the diameter on the power reception side, it is possible to extend the power transmission possible distance. In order to reduce the thickness of the substrate, the power receiving loop coil 3b and the power receiving resonance coil 4b may be separately formed on both surfaces of the substrate.

本実施の形態の非接触電力伝送装置の特徴である送電補助装置9の機能について、より詳細に説明する。上記構成によれば、送電用共鳴コイル4aと補助コイル10の結合により、送電用共鳴コイル4aを含む送電共振器と補助コイル10を含む補助共振器による共振系が構成され、以下の記載では、これを送電側共振系と称する。また、送電側共振系の共振周波数をftと記述する。   The function of the power transmission auxiliary device 9 that is a feature of the contactless power transmission device of the present embodiment will be described in more detail. According to the above configuration, a resonance system including the power transmission resonator including the power transmission resonance coil 4a and the auxiliary resonator including the auxiliary coil 10 is configured by the coupling of the power transmission resonance coil 4a and the auxiliary coil 10, and in the following description, This is referred to as a power transmission side resonance system. The resonance frequency of the power transmission side resonance system is described as ft.

本実施の形態の構成によれば、送電補助装置9が無い場合に比べて、電力伝送可能な距離が拡大する。これは、送電用共鳴コイル4aに対して補助コイル10を対向配置することにより、送電用共鳴コイル4aからの磁束の到達距離が長くなるためと思われる。これにより、送電装置1に対して受電装置2の受電に適する面が適正に対向していない等、送電用共鳴コイル4aに対して受電用共鳴コイル4bが適切に配置されていない場合であっても、受電装置2内に調整回路を設けることなく効率的な電力伝送が可能となる。   According to the configuration of the present embodiment, the distance over which power can be transmitted is increased compared to the case where there is no power transmission auxiliary device 9. This is presumably because the reach distance of the magnetic flux from the power transmission resonance coil 4a is increased by disposing the auxiliary coil 10 opposite to the power transmission resonance coil 4a. Accordingly, the power receiving resonance coil 4b is not properly disposed with respect to the power transmission resonance coil 4a, for example, the surface suitable for power reception of the power reception device 2 is not properly opposed to the power transmission device 1. However, efficient power transmission is possible without providing an adjustment circuit in the power receiving device 2.

一方、図1に示したような構成においては、送電用共鳴コイル4aと補助コイル10との距離が短い場合には両者間の結合状態が強くなり(密結合状態)、送電共振器と補助共振器による送電側共振系の共振周波数は二つに分かれる(双峰特性)。即ち、送電補助装置9を対向させることにより、送電用共鳴コイル4aの固有の共振周波数の両側に二つのピークが現れて移動する。これに対して、補助コイル10に接続される調整用バリコン11の容量値Cを調整して送電補助装置9の共振周波数f3を適切に設定することにより、送電側共振系の共振周波数ftを受電装置2の共振周波数f2と一致させることができる。これにより、送電用共鳴コイル4aからの電力伝送効率を実用上十分な程度に維持して、電力伝送可能距離などの特性を向上させることができる。   On the other hand, in the configuration shown in FIG. 1, when the distance between the power transmission resonance coil 4a and the auxiliary coil 10 is short, the coupling state between the two becomes strong (tight coupling state), and the power transmission resonator and the auxiliary resonance The resonant frequency of the power transmission side resonance system by the power supply is divided into two (bimodal characteristics). That is, by making the power transmission auxiliary device 9 face each other, two peaks appear and move on both sides of the inherent resonance frequency of the power transmission resonance coil 4a. On the other hand, the resonance frequency ft of the power transmission side resonance system is received by adjusting the capacitance value C of the adjustment variable capacitor 11 connected to the auxiliary coil 10 and appropriately setting the resonance frequency f3 of the power transmission auxiliary device 9. The resonance frequency f2 of the device 2 can be matched. Thereby, the power transmission efficiency from the power transmission resonance coil 4a can be maintained at a practically sufficient level, and characteristics such as a power transmission distance can be improved.

調整用バリコン11の容量値Cの調整は、共振周波数ftが共振周波数f2と一致するように行うことが望ましいが、完全に一致させなくとも相応の効果が得られる。すなわち、送電側共振系の共振周波数ftのピークが、送電装置1の共振周波数f1と比べて、受電装置2の共振周波数f2に十分に近づくように、送電補助装置9の共振周波数f3を調整すればよい。すなわち、共振周波数ftをf2に一致させるとは、共振周波数ftがf2に一致している場合と実用上同等の電力伝送効率が得られる程度まで、共振周波数ftがf2に近接している場合も含む意味で用いられる。   The adjustment of the capacitance value C of the variable capacitor 11 for adjustment is desirably performed so that the resonance frequency ft coincides with the resonance frequency f2, but a corresponding effect can be obtained even if it does not coincide completely. In other words, the resonance frequency f3 of the power transmission auxiliary device 9 is adjusted so that the peak of the resonance frequency ft of the power transmission side resonance system is sufficiently close to the resonance frequency f2 of the power receiving device 2 as compared with the resonance frequency f1 of the power transmission device 1. That's fine. That is, to make the resonance frequency ft coincide with f2 is that the resonance frequency ft is close to f2 to the extent that power transmission efficiency practically equivalent to that when the resonance frequency ft coincides with f2. Used to mean including.

このような調整による効果を十分に得るためには、送電補助装置9を構成する補助コイル10は、送電用共鳴コイル4aの直径とほぼ同じとし、両者のコイルの中心軸もほぼ同軸に配置することが望ましい。但し、電力伝送可能距離の増大等の効果は、送電用共鳴コイル4aの直径をd1、受電用共鳴コイル4bの直径をd2、補助コイル10の直径をd3としたとき、d1>d2、かつd2<d3の関係を満足すれば、相応に得られる。これは、送電用共鳴コイル4aの直径d1が受電用共鳴コイル4bの直径d2よりも大きければ、補助コイル10との間の磁束を利用することができ、また、補助コイル10の直径d3が受電用共鳴コイル4bの直径d2よりも大きければ、送電用共鳴コイル4aとの間の磁束を利用することができるためである。   In order to sufficiently obtain the effect of such adjustment, the auxiliary coil 10 constituting the power transmission auxiliary device 9 is substantially the same as the diameter of the power transmission resonance coil 4a, and the central axes of both coils are also arranged substantially coaxially. It is desirable. However, the effect of increasing the power transferable distance is such that when the diameter of the power transmission resonance coil 4a is d1, the diameter of the power reception resonance coil 4b is d2, and the diameter of the auxiliary coil 10 is d3, d1> d2 and d2 If the relationship <d3 is satisfied, it can be obtained accordingly. If the diameter d1 of the power transmission resonance coil 4a is larger than the diameter d2 of the power reception resonance coil 4b, the magnetic flux between the auxiliary coil 10 and the auxiliary coil 10 can be used. This is because if the diameter is larger than the diameter d2 of the resonance coil 4b, the magnetic flux between the resonance coil 4a for power transmission can be used.

ここで、補助コイル10の影響を調べるために、微小電力によるVNA(ベクトルネットワークアナライザ)測定を行った結果について説明する。送電装置1の共振周波数f1は、共振容量として設けられた固定コンデンサの容量値により設定した。具体的には、f1=12.1MHzとした。   Here, in order to investigate the influence of the auxiliary coil 10, the result of VNA (vector network analyzer) measurement with a minute electric power will be described. The resonance frequency f1 of the power transmission device 1 was set by the capacitance value of a fixed capacitor provided as a resonance capacitor. Specifically, f1 = 12.1 MHz.

先ず、送電補助装置9の共振周波数f3を変化させたときの、送電側共振系の共振周波数の変化を調べた結果について説明する。図2Aに、各コイルの配置の一例を示す。すなわち、送電用共鳴コイル4aと補助コイル10を対向させて30mm長さの受電空間を形成するように配置し、ループコイル3aにVNAを接続した。共振周波数f3は、調整用バリコン11の調整により可変である。   First, the result of examining the change in the resonance frequency of the power transmission side resonance system when the resonance frequency f3 of the power transmission auxiliary device 9 is changed will be described. FIG. 2A shows an example of the arrangement of each coil. That is, the power transmission resonance coil 4a and the auxiliary coil 10 are arranged to face each other to form a power reception space having a length of 30 mm, and the VNA is connected to the loop coil 3a. The resonance frequency f3 is variable by adjusting the variable variable capacitor 11 for adjustment.

この配置におけるVNA測定結果を図2Bに示す。図2Bは、横軸に送電補助装置9の共振周波数f3をとり、縦軸にVNA測定時における送電側共振系の共振周波数ftの値をプロットしたものである。また、共振周波数f3が、9MHz、12.1MHz及び16MHzの場合におけるVNA測定の出力波形図を図2Cに示す。   FIG. 2B shows the VNA measurement result in this arrangement. In FIG. 2B, the horizontal axis represents the resonance frequency f3 of the power transmission auxiliary device 9, and the vertical axis represents the value of the resonance frequency ft of the power transmission side resonance system at the time of VNA measurement. FIG. 2C shows an output waveform diagram of VNA measurement when the resonance frequency f3 is 9 MHz, 12.1 MHz, and 16 MHz.

例えば、f3をf1と同じ共振周波数(12.1MHz)に調整した場合には、図2C(b)の波形図に示すように、12.1MHzをほぼ中心にして二つの共振周波数が現れる(密結合状態)。低周波側の左の共振周波数をftL、高周波側の右の共振周波数をftHと記述する。図2Bには、低周波側の共振周波数ftLに対応する特性線と、高周波側の共振周波数ftHに対応する特性線が記載されている。   For example, when f3 is adjusted to the same resonance frequency (12.1 MHz) as f1, two resonance frequencies appear centered on 12.1 MHz as shown in the waveform diagram of FIG. Combined state). The left resonance frequency on the low frequency side is described as ftL, and the right resonance frequency on the high frequency side is described as ftH. FIG. 2B shows a characteristic line corresponding to the resonance frequency ftL on the low frequency side and a characteristic line corresponding to the resonance frequency ftH on the high frequency side.

送電補助装置9の共振周波数f3を変化させていくと、低周波側の共振周波数ftLは徐々に高周波側へシフトして、最終的にはf1と同じ12.1MHzに近づいていき、図2C(c)に示すように、信号も大きくなってくる。高周波側の共振周波数ftHも段々と高周波側へシフトしていくものの、低周波側の共振周波数ftLとの差が大きくなっていき、信号レベルも小さくなりゼロに近づいていく。このように、補助共振器の単体での共振周波数f3を種々変化させることにより、送電側共振系の共振周波数ftを変化させることが可能となる。   As the resonance frequency f3 of the power transmission auxiliary device 9 is changed, the resonance frequency ftL on the low frequency side gradually shifts to the high frequency side, and finally approaches 12.1 MHz, which is the same as f1, as shown in FIG. As shown in c), the signal becomes larger. Although the resonance frequency ftH on the high frequency side gradually shifts to the high frequency side, the difference from the resonance frequency ftL on the low frequency side increases, and the signal level also decreases and approaches zero. As described above, by changing the resonance frequency f3 of the auxiliary resonator alone, the resonance frequency ft of the power transmission side resonance system can be changed.

一方、共振周波数f3を低周波側へ変化させていくと、高周波側の共振周波数ftHが徐々に低周波側へシフトして、最終的にはf1と同じ12.1MHzに近づいてゆく。但し、信号は低周波側の共振周波数ftLの場合に比べると、図2C(a)に示すように、あまり大きくはならない。低周波側の共振周波数ftLも段々と低周波側へシフトしてゆき、高周波側の共振周波数ftHとの差が大きくなっていき、信号も小さくなりゼロに近づいていく。   On the other hand, when the resonance frequency f3 is changed to the low frequency side, the resonance frequency ftH on the high frequency side gradually shifts to the low frequency side, and finally approaches the same 12.1 MHz as f1. However, the signal does not become so large as shown in FIG. 2C (a) as compared with the case of the resonance frequency ftL on the low frequency side. The resonance frequency ftL on the low frequency side also gradually shifts to the low frequency side, the difference from the resonance frequency ftH on the high frequency side becomes larger, the signal becomes smaller, and approaches zero.

次に、図3Aに示す各コイルの配置により、送電補助装置9の共振周波数f3を変化させたときの電力伝送効率の変化を調べた結果を示す。図3Aの配置は、図2Aの配置における送電用共鳴コイル4aと補助コイル10の間の受電空間中に、受電用共鳴コイル4bとループコイル3bを配置したものである。ループコイル3a、3bにVNAを接続した。なお、ここで言う電力伝送効率とは、送電用共鳴コイル4aと受電用共鳴コイル4b間での数値であり、回路などの効率は含まない。受電装置2の共振周波数はf2は、共振容量として設けられた固定コンデンサの容量値により設定し、具体的には、f2=f1=12.1MHzとした。   Next, the result of investigating the change of the power transmission efficiency when the resonance frequency f3 of the power transmission auxiliary device 9 is changed by the arrangement of the coils shown in FIG. 3A is shown. In the arrangement of FIG. 3A, the power receiving resonance coil 4b and the loop coil 3b are arranged in the power receiving space between the power transmitting resonance coil 4a and the auxiliary coil 10 in the arrangement of FIG. 2A. A VNA was connected to the loop coils 3a and 3b. The power transmission efficiency mentioned here is a numerical value between the power transmission resonance coil 4a and the power reception resonance coil 4b, and does not include the efficiency of a circuit or the like. The resonance frequency f2 of the power receiving device 2 is set by the capacitance value of a fixed capacitor provided as a resonance capacitor. Specifically, f2 = f1 = 12.1 MHz.

この配置におけるVNA測定結果を図3Bに示す。図3Bには、低周波側の共振周波数ftLに対応する特性線と、高周波側の共振周波数ftHに対応する特性線が記載されている。図3Bから判るように、例えば、f1=f2=f3=12.1MHzの場合(矢印で示す)には、電力伝送効率は約44%と小さい。f3をこれよりも大きくしていくと、低周波側の共振周波数ftLに対応する電力伝送効率も大きくなっていく。f3=16MHzの場合には約64%の電力伝送効率が得られる。   The VNA measurement result in this arrangement is shown in FIG. 3B. FIG. 3B shows a characteristic line corresponding to the resonance frequency ftL on the low frequency side and a characteristic line corresponding to the resonance frequency ftH on the high frequency side. As can be seen from FIG. 3B, for example, in the case of f1 = f2 = f3 = 12.1 MHz (indicated by an arrow), the power transmission efficiency is as small as about 44%. When f3 is made larger than this, the power transmission efficiency corresponding to the resonance frequency ftL on the low frequency side is also increased. In the case of f3 = 16 MHz, a power transmission efficiency of about 64% is obtained.

以上のように、送電補助装置9の共振周波数f3をf1及びf2よりも大きくすることにより、電力伝送時の共振周波数ftを共振周波数f2に近づけることができ、それにより、その時の電力伝送効率も大きくできる。   As described above, by setting the resonance frequency f3 of the power transmission auxiliary device 9 to be larger than f1 and f2, the resonance frequency ft at the time of power transmission can be made closer to the resonance frequency f2, and the power transmission efficiency at that time is also increased. Can be big.

一方、共振周波数f3を低周波側へ変化させていくと、高周波側の共振周波数ftHに対応する電力伝送効率が大きくなっていく。f3=5MHzの場合には約46%の電力伝送効率が得られる。これにより、送電補助装置9の共振周波数f3をf1及びf2よりも小さくすることにより、電力伝送時の共振周波数ftを共振周波数f2に近づけることができ、それにより、その時の電力伝送効率も大きくできる。但し、低周波側の共振周波数ftLに対応する電力伝送効率の最大領域に比べると、高周波側の共振周波数ftHに対応する電力伝送効率の最大領域における値は小さい。   On the other hand, when the resonance frequency f3 is changed to the low frequency side, the power transmission efficiency corresponding to the resonance frequency ftH on the high frequency side increases. In the case of f3 = 5 MHz, a power transmission efficiency of about 46% is obtained. Thereby, by making the resonance frequency f3 of the power transmission auxiliary device 9 smaller than f1 and f2, the resonance frequency ft at the time of power transmission can be made closer to the resonance frequency f2, thereby increasing the power transmission efficiency at that time. . However, the value in the maximum region of the power transmission efficiency corresponding to the resonance frequency ftH on the high frequency side is smaller than the maximum region of the power transmission efficiency corresponding to the resonance frequency ftL on the low frequency side.

以上のことから、送電装置が1台で受電コイルも1台の場合には、電力伝送時における各装置の個々の共振周波数は、f1≠f3の関係となるように設定する。特に、f1<f3となる場合が、電力伝送効率の面から好ましい。受電装置2の共振周波数f2は、送電装置1の共振周波数f1と同じ方が好ましいが、場合によっては異なっていても良い。   From the above, when there is one power transmission device and one power receiving coil, the individual resonance frequencies of each device during power transmission are set so as to have a relationship of f1 ≠ f3. In particular, the case of f1 <f3 is preferable from the viewpoint of power transmission efficiency. The resonance frequency f2 of the power receiving device 2 is preferably the same as the resonance frequency f1 of the power transmission device 1, but may be different depending on circumstances.

図2B及び図3Bのように得られた結果によれば、送電側共振系の共振周波数ftは、送電補助装置9の共振周波数f3の調整により、送電装置1の共振周波数f1の値に関わらず容易に変化させることができる。それにより、送電側共振系の共振周波数ftを、受電装置2の共振周波数f2に合わせることが容易である。   According to the results obtained as shown in FIGS. 2B and 3B, the resonance frequency ft of the power transmission side resonance system is adjusted regardless of the value of the resonance frequency f1 of the power transmission device 1 by adjusting the resonance frequency f3 of the power transmission auxiliary device 9. It can be easily changed. Thereby, it is easy to match the resonance frequency ft of the power transmission side resonance system with the resonance frequency f2 of the power receiving device 2.

そこで、図4Aに示す各コイルの配置により、送電装置1の共振周波数f1と、受電装置2の共振周波数f2とが異なった場合での特性を調べた。図4Aの配置は、図2Aの配置における送電用共鳴コイル4aと補助コイル10の間の受電空間中に、受電用共鳴コイル4bとループコイル3bを配置したものである。ループコイル3a、3bにVNAを接続した。   Therefore, the characteristics when the resonance frequency f1 of the power transmission device 1 and the resonance frequency f2 of the power reception device 2 are different depending on the arrangement of the coils illustrated in FIG. 4A were examined. 4A is an arrangement in which a power receiving resonance coil 4b and a loop coil 3b are arranged in a power receiving space between the power transmitting resonance coil 4a and the auxiliary coil 10 in the arrangement of FIG. 2A. A VNA was connected to the loop coils 3a and 3b.

ここでは、受電装置2の固有の共振周波数f2を11.85MHzで固定とし、送電装置1の共振周波数f1を変化させた。送電装置1の共振周波数f1を変化させるために、送電用共鳴コイル4aの両端に、送電共振器の共振容量である固定コンデンサとは別に可変コンデンサ(以下「バリコン」と記述する)12を接続した。このバリコン12を手動で調整することにより、送電装置1の共振周波数f1を変化させた。   Here, the inherent resonance frequency f2 of the power receiving device 2 is fixed at 11.85 MHz, and the resonance frequency f1 of the power transmission device 1 is changed. In order to change the resonance frequency f1 of the power transmission device 1, a variable capacitor (hereinafter referred to as “variable capacitor”) 12 is connected to both ends of the power transmission resonance coil 4a separately from the fixed capacitor that is the resonance capacity of the power transmission resonator. . By manually adjusting the variable capacitor 12, the resonance frequency f1 of the power transmission device 1 was changed.

送電装置1の共振周波数f1は受電装置2の共振周波数f2である11.85MHzを基準に、±2MHzの範囲内で1MHz間隔で変化させた。そして、送電装置1の共振周波数f1の各々において、受電装置2の共振周波数f2での電力伝送効率が最大(共振周波数は11.85MHz)となるように、送電補助装置9の調整用バリコン11を操作して共振周波数f3を調整した。実験の結果を図4Bに示す。   The resonance frequency f1 of the power transmission device 1 was changed at 1 MHz intervals within a range of ± 2 MHz with reference to 11.85 MHz which is the resonance frequency f2 of the power reception device 2. Then, at each resonance frequency f1 of the power transmission device 1, the adjustment variable capacitor 11 of the power transmission auxiliary device 9 is set so that the power transmission efficiency at the resonance frequency f2 of the power reception device 2 is maximum (resonance frequency is 11.85 MHz). The resonance frequency f3 was adjusted by operating. The result of the experiment is shown in FIG. 4B.

図4Bにおいて、横軸は送電装置1の共振周波数f1の値、縦軸は送電装置1と受電装置2間の電力伝送効率である。この図から、送電装置1の共振周波数f1と受電装置2の共振周波数f2とが同じ場合(f1=f2=11.85MHz)において電力伝送効率が最大となっていることが分かる。しかし、送電装置1の共振周波数f1を12.85MHzと1MHz大きくした場合(丸印)においても(f1≠f2)、電力伝送効率は50%以上と、大きな値が得られている。即ち、固有の共振周波数が異なる送電装置1と受電装置2を用いて電力伝送を行ったとしても、送電補助装置9を用いて送電側共振系の共振周波数ftを調整する(受電装置2の共振周波数f2に近づける)ことにより、高効率の電力伝送が可能なことが判る。   4B, the horizontal axis represents the value of the resonance frequency f1 of the power transmission device 1, and the vertical axis represents the power transmission efficiency between the power transmission device 1 and the power reception device 2. From this figure, it can be seen that the power transmission efficiency is maximized when the resonance frequency f1 of the power transmission device 1 is the same as the resonance frequency f2 of the power reception device 2 (f1 = f2 = 11.85 MHz). However, even when the resonance frequency f1 of the power transmission device 1 is increased to 12.85 MHz and 1 MHz (circles) (f1 ≠ f2), the power transmission efficiency is as large as 50% or more. That is, even if power transmission is performed using the power transmission device 1 and the power reception device 2 having different specific resonance frequencies, the resonance frequency ft of the power transmission side resonance system is adjusted using the power transmission auxiliary device 9 (resonance of the power reception device 2). It can be seen that high-efficiency power transmission is possible by bringing the frequency closer to f2.

なお、非接触電力伝送装置の構成としては、上述の実験とは異なり、送電装置1の共振周波数f1は固定であり、受電装置2の共振周波数f2が変化する。当然ながら、この場合も、送電補助装置9を用いて送電側共振系の共振周波数ftを調整する(受電装置2の共振周波数f2に近づける)ことにより、高効率の電力伝送が可能である。   As for the configuration of the non-contact power transmission device, unlike the above-described experiment, the resonance frequency f1 of the power transmission device 1 is fixed, and the resonance frequency f2 of the power reception device 2 changes. Of course, in this case as well, high-efficiency power transmission is possible by adjusting the resonance frequency ft of the power transmission side resonance system using the power transmission auxiliary device 9 (closer to the resonance frequency f2 of the power receiving device 2).

<実施の形態2>
実施の形態2における磁界共鳴型の非接触電力伝送装置について、図5A〜5Dを参照して説明する。本実施の形態では、実施の形態1の場合と同様の作用に基づく構成を用いる。すなわち、図4Aに示した配置と同様、送電装置1と送電補助装置9の間の受電空間中に、受電装置の受電用共鳴コイル4bとループコイル3bが配置される。従って、図4Aに示した配置の説明で述べた要素と同様の要素については、同一の参照番号を付して、説明の繰り返しを簡略化する。
<Embodiment 2>
A magnetic resonance type non-contact power transmission apparatus according to Embodiment 2 will be described with reference to FIGS. In the present embodiment, a configuration based on the same operation as in the first embodiment is used. That is, similarly to the arrangement shown in FIG. 4A, the power receiving resonance coil 4 b and the loop coil 3 b are arranged in the power receiving space between the power transmitting apparatus 1 and the power transmission auxiliary apparatus 9. Accordingly, elements similar to those described in the description of the arrangement shown in FIG. 4A are denoted by the same reference numerals, and the description is simplified.

図5A、5Bには、各コイルの配置の一例が示される。図5Aは模式断面図である。図5Bは、図5Aにおける受電用共鳴コイル4bの左側から調整コイル10の方向を見た正面図である。この構成では、2つの受電装置A、B(図示せず)における受電用共鳴コイル4bA、4bBが、受電空間内に並列に配置されている。受電用共鳴コイル4bA、4bBは十分に小さいので、送電用共鳴コイル4aや調整コイル10の円環中に、二つの受電用共鳴コイル4bA、4bBが包囲された状態に配置されている。   5A and 5B show an example of the arrangement of each coil. FIG. 5A is a schematic cross-sectional view. FIG. 5B is a front view of the adjustment coil 10 as viewed from the left side of the power receiving resonance coil 4b in FIG. 5A. In this configuration, the power receiving resonance coils 4bA and 4bB in the two power receiving devices A and B (not shown) are arranged in parallel in the power receiving space. Since the power receiving resonance coils 4bA and 4bB are sufficiently small, the two power receiving resonance coils 4bA and 4bB are disposed in an annular shape of the power transmission resonance coil 4a and the adjustment coil 10.

本実施の形態の構成を用いれば、送電装置1を含む送電側共振系の共振周波数ftを、送電補助装置9を用いて受電装置A、Bの共振周波数に合わせることが可能である。受電装置が2台を超える複数台配置される場合も、同様な効果を得ることができる。受電用共鳴コイル4bA、4bBを含む受電共振器は、共振周波数が同一であってもよいし、互いに異なる共振周波数を有するように構成されてもよい。   If the configuration of the present embodiment is used, it is possible to match the resonance frequency ft of the power transmission side resonance system including the power transmission device 1 to the resonance frequency of the power reception devices A and B using the power transmission auxiliary device 9. The same effect can be obtained also when a plurality of power receiving apparatuses are arranged in excess of two. The power receiving resonators including the power receiving resonance coils 4bA and 4bB may have the same resonance frequency or may have different resonance frequencies.

共振周波数が略同一の受電装置A、Bを用いた場合には、同時の電力伝送による充電が可能であり、共振周波数が異なる受電装置A、Bを用いた場合には、選択的な電力伝送による充電が可能となる。以下の説明では、固有の共振周波数が異なる二つの受電装置を用いた場合を例として、一つの送電装置1による選択的な電力伝送の動作について説明する。図5A、5Bに示した構成において、受電用共鳴コイル4bAを含む受電装置Aの固有の共振周波数f2Aを12MHz、受電用共鳴コイル4bBを含む受電装置Bの固有の共振周波数f2Bを13.6MHzに設定する場合を例として説明する。   When power receiving devices A and B having substantially the same resonance frequency are used, charging by simultaneous power transmission is possible. When power receiving devices A and B having different resonance frequencies are used, selective power transmission is possible. Can be charged. In the following description, an operation of selective power transmission by one power transmission device 1 will be described by taking as an example a case where two power reception devices having different inherent resonance frequencies are used. 5A and 5B, the unique resonance frequency f2A of the power receiving apparatus A including the power receiving resonance coil 4bA is set to 12 MHz, and the specific resonance frequency f2B of the power receiving apparatus B including the power receiving resonance coil 4bB is set to 13.6 MHz. A case of setting will be described as an example.

図5A、5Bに示した状態に配置した後、まず受電用共鳴コイル4bBを無負荷の状態として、受電用共鳴コイル4bAにのみVNAを接続した。それにより、送電用共鳴コイル4aと受電用共鳴コイル4bA間で電力伝送特性を調べた。ここでは図4A、4Bを参照して説明した方法と同様の方法で測定を行った。   After the arrangement shown in FIGS. 5A and 5B, first, the power receiving resonance coil 4bB was set to an unloaded state, and the VNA was connected only to the power receiving resonance coil 4bA. Thereby, the power transmission characteristics were examined between the power transmission resonance coil 4a and the power reception resonance coil 4bA. Here, the measurement was performed by the same method as described with reference to FIGS. 4A and 4B.

まず、受電装置Aの固有の共振周波数f2Aを12MHzで固定とし、送電装置1の共振周波数f1を変化させた。送電装置1の共振周波数f1を変化させるために、送電用共鳴コイル4aの両端に、送電共振器の共振容量である固定コンデンサとは別にバリコン12を接続した。このバリコン12を手動で調整することにより、送電装置1の共振周波数f1を変化させた。そして、送電装置1の共振周波数f1の各々において、受電装置Aの共振周波数f2Aでの電力伝送効率が最大(共振周波数は12MHz)となるように、調整用バリコン11を操作して送電補助装置9の共振周波数f3を調整した。実験の結果を図5Cに示す。   First, the resonance frequency f2A unique to the power receiving apparatus A was fixed at 12 MHz, and the resonance frequency f1 of the power transmission apparatus 1 was changed. In order to change the resonance frequency f1 of the power transmission device 1, a variable capacitor 12 was connected to both ends of the power transmission resonance coil 4a separately from the fixed capacitor that is the resonance capacity of the power transmission resonator. By manually adjusting the variable capacitor 12, the resonance frequency f1 of the power transmission device 1 was changed. Then, at each resonance frequency f1 of the power transmission device 1, the power transmission auxiliary device 9 is operated by operating the adjustment variable condenser 11 so that the power transmission efficiency at the resonance frequency f2A of the power reception device A is maximized (resonance frequency is 12 MHz). The resonance frequency f3 was adjusted. The result of the experiment is shown in FIG. 5C.

図5Cにおいて、横軸は送電装置1の共振周波数f1の値、縦軸は送電用共鳴コイル4aと受電用共鳴コイル4b間の電力伝送効率である。この図から、送電装置1の共振周波数f1と受電装置Aの共振周波数f2Aとが同じ場合(f1=f2=12MHz)において電力伝送効率が最大となっていることが分かる。但し、f2≠f3である。   In FIG. 5C, the horizontal axis represents the value of the resonance frequency f1 of the power transmission device 1, and the vertical axis represents the power transmission efficiency between the power transmission resonance coil 4a and the power reception resonance coil 4b. From this figure, it can be seen that the power transmission efficiency is maximum when the resonance frequency f1 of the power transmission device 1 and the resonance frequency f2A of the power reception device A are the same (f1 = f2 = 12 MHz). However, f2 ≠ f3.

一方、送電装置1の共振周波数f1を13MHzと1MHz大きくした場合においても(f1≠f2)、電力伝送効率は60%以上と、大きな値が得られている。即ち、固有の共振周波数が異なる送電装置1と受電装置Aを用いて電力伝送を行った場合に、送電補助装置9を用いて送電側共振系の共振周波数ftを調整する(受電装置Aの共振周波数f2Aに近づける)ことにより、高効率の電力伝送が可能なことが判る。但し、f2≠f3である。   On the other hand, even when the resonance frequency f1 of the power transmission device 1 is increased by 13 MHz and 1 MHz (f1 ≠ f2), the power transmission efficiency is as high as 60% or more. That is, when power transmission is performed using the power transmission device 1 and the power reception device A having different specific resonance frequencies, the resonance frequency ft of the power transmission side resonance system is adjusted using the power transmission auxiliary device 9 (resonance of the power reception device A). It can be seen that high-efficiency power transmission is possible by bringing the frequency close to the frequency f2A. However, f2 ≠ f3.

次に、送電用共鳴コイル4aと受電用共鳴コイル4bB間での電力伝送特性を調べるために、受電用共鳴コイル4bAを無負荷の状態として、受電用共鳴コイル4bBにのみVNAを接続した。即ち、受電用共鳴コイル4bBの固有の共振周波数f2Bを13.6MHzで固定とし、送電装置1の共振周波数f1をバリコン12により変化させた。そして、送電装置1の共振周波数f1の各々において、受電装置Bの共振周波数f2Bでの電力伝送効率が最大(共振周波数は13.6MHz)となるように、送電補助装置9の調整用バリコン11を操作して送電補助装置9の共振周波数f3を調整した。実験の結果を図5Dに示す。   Next, in order to investigate the power transmission characteristics between the power transmission resonance coil 4a and the power reception resonance coil 4bB, the power reception resonance coil 4bA was set to an unloaded state, and the VNA was connected only to the power reception resonance coil 4bB. That is, the inherent resonance frequency f2B of the power receiving resonance coil 4bB was fixed at 13.6 MHz, and the resonance frequency f1 of the power transmission device 1 was changed by the variable condenser 12. Then, in each of the resonance frequencies f1 of the power transmission device 1, the adjustment variable capacitor 11 of the power transmission auxiliary device 9 is set so that the power transmission efficiency at the resonance frequency f2B of the power reception device B is maximized (the resonance frequency is 13.6 MHz). The resonance frequency f3 of the power transmission auxiliary device 9 was adjusted by operating. The result of the experiment is shown in FIG. 5D.

図5Dにおいて、横軸は送電装置1の共振周波数f1の値、縦軸は送電用共鳴コイル4aと受電用共鳴コイル4b間の電力伝送効率である。この図から、送電装置1の共振周波数f1と受電装置Bの共振周波数f2Bとが同じ場合(f1=f2=13.6MHz)において電力伝送効率が最大となっていることが分かる。しかし、送電装置1の共振周波数f1が受電装置Bの共振周波数f2Bと異なっていても、(f1≠f2)、電力伝送効率は60%以上と、大きな値が得られている。即ち、固有の共振周波数が異なる送電装置1と受電装置Bを用いて電力伝送を行った場合に、送電補助装置9を用いて送電側共振系の共振周波数ftを調整する(受電装置Bの共振周波数f2Bに近づける)ことにより、高効率の電力伝送が可能なことが判る。   5D, the horizontal axis represents the value of the resonance frequency f1 of the power transmission device 1, and the vertical axis represents the power transmission efficiency between the power transmission resonance coil 4a and the power reception resonance coil 4b. From this figure, it can be seen that the power transmission efficiency is maximized when the resonance frequency f1 of the power transmission device 1 and the resonance frequency f2B of the power reception device B are the same (f1 = f2 = 13.6 MHz). However, even if the resonance frequency f1 of the power transmission device 1 is different from the resonance frequency f2B of the power reception device B (f1 ≠ f2), the power transmission efficiency is as large as 60% or more. That is, when power transmission is performed using the power transmission device 1 and the power reception device B having different specific resonance frequencies, the resonance frequency ft of the power transmission side resonance system is adjusted using the power transmission auxiliary device 9 (resonance of the power reception device B). It can be seen that high-efficiency power transmission is possible by bringing the frequency close to the frequency f2B.

以上の結果から、送電装置1の共振周波数f1を13.2MHzに固定し(図の丸印)、受電装置Aの共振周波数f2Aまたは受電装置Bの共振周波数f2Bに合わせることにより、どちらの場合でも電力伝送効率60%以上を得ることができることが判る。この場合には、送電装置1の共振周波数f1と、受電装置A、Bの共振周波数f2A、f2Bが異なっても良い(f1≠f2A≠f2B)。   From the above results, the resonance frequency f1 of the power transmission device 1 is fixed at 13.2 MHz (circled in the figure), and in either case, it is matched with the resonance frequency f2A of the power reception device A or the resonance frequency f2B of the power reception device B. It can be seen that a power transmission efficiency of 60% or more can be obtained. In this case, the resonance frequency f1 of the power transmission device 1 and the resonance frequencies f2A and f2B of the power reception devices A and B may be different (f1 ≠ f2A ≠ f2B).

以上のように、本実施の形態の非接触電力伝送装置によれば、例えば、受電装置Aの固有の共振周波数f2A=12MHzと受電装置Bの固有の共振周波数f2B=13.6MHzの間の共振周波数となるように送電装置1の共振周波数f1を設定し、送電補助装置9の調整用バリコン11を受電装置A、Bの一方の共振周波数に合わせることにより、選択的な電力伝送が可能である。   As described above, according to the contactless power transmission device of the present embodiment, for example, the resonance between the unique resonance frequency f2A of the power receiving device A = 12 MHz and the unique resonance frequency f2B of the power receiving device B = 13.6 MHz. By setting the resonance frequency f1 of the power transmission device 1 to be the frequency and adjusting the variable capacitor 11 for adjustment of the power transmission auxiliary device 9 to one of the resonance frequencies of the power receiving devices A and B, selective power transmission is possible. .

本実施の形態により、一つの送電装置に対して複数の受電装置を配置し、その受電装置の中から特定の一つの受電装置のみに電力伝送を行う選択的な電力伝送の場合、例えば受電装置が二つの場合における各装置の個々の共振周波数の値は、例えば次の通りに設定する。すなわち、それぞれの共振周波数はf2A≠f2B≠f3の関係に設定する。送電装置1のの共振周波数f1は、受電装置の共振周波数f2A及びf2Bのどちらかと同じでもかまわないが、異なっている方が送電装置1の共振周波数f1を調整しなくてすむために好ましい。この場合、送電装置1の共振周波数f1は、受電装置A、Bの共振周波数f2Aとf2Bの間の周波数帯域にあることが望ましい。   According to this embodiment, in the case of selective power transmission in which a plurality of power receiving devices are arranged for one power transmitting device and power is transmitted to only one specific power receiving device among the power receiving devices, for example, the power receiving device For example, the value of each resonance frequency of each device in the case of two is set as follows. That is, the respective resonance frequencies are set to have a relationship of f2A ≠ f2B ≠ f3. The resonance frequency f1 of the power transmission device 1 may be the same as one of the resonance frequencies f2A and f2B of the power reception device, but is preferably different because it is not necessary to adjust the resonance frequency f1 of the power transmission device 1. In this case, the resonance frequency f1 of the power transmission device 1 is desirably in a frequency band between the resonance frequencies f2A and f2B of the power reception devices A and B.

なお、実施の形態において、送電装置に対向して複数の受電装置を並列に配置する場合、種々の受電装置の共振コイルが重ならないようにすることが望ましい。   In the embodiment, when a plurality of power receiving devices are arranged in parallel to face the power transmitting device, it is desirable that the resonance coils of various power receiving devices do not overlap.

<実施の形態3>
図6は、実施の形態3における磁界共鳴型の非接触電力伝送装置を示す断面図である。この非接触電力伝送装置は、化粧箱タイプ(あるいはオルゴール型)をした筐体13と、開閉自在の蓋14を備え、筐体13の下側の内部に送電装置1が保持され、蓋14に送電補助装置9が保持されている。送電装置1の上部に受電装置2を置くための台座15が設けられ、その台座15上に受電装置2(例えば、携帯電話や補聴器など)を装着することができる。そして蓋14を閉じることにより、送電装置1と送電補助装置9の間に受電装置2が配置される。この形態で非接触電力伝送が行われる。
<Embodiment 3>
FIG. 6 is a cross-sectional view showing the magnetic resonance type non-contact power transmission apparatus according to the third embodiment. This non-contact power transmission device includes a case 13 of a decorative box type (or a music box type) and an openable / closable lid 14, and the power transmission device 1 is held inside the lower side of the housing 13. A power transmission auxiliary device 9 is held. A pedestal 15 for placing the power receiving device 2 is provided above the power transmitting device 1, and the power receiving device 2 (for example, a mobile phone or a hearing aid) can be mounted on the pedestal 15. And the power receiving apparatus 2 is arrange | positioned between the power transmission apparatus 1 and the power transmission auxiliary apparatus 9 by closing the cover 14. Non-contact power transmission is performed in this form.

筐体13には、交流電源(AC100V)から受けた電力を電力伝送可能な電力に変換する高周波電力ドライバー5、インピーダンス整合を取るための制御回路16等が設けられている。また、送電装置1と送電補助装置9が配置された領域を包囲して、電磁シールド材17が配置されている。蓋14を閉じた状態では、送電装置1と送電補助装置9及び受電装置2の周囲は完全に電磁シールドされることになり、電磁波が人体に影響することが防止され、安全である。   The housing 13 is provided with a high-frequency power driver 5 that converts power received from an AC power supply (AC 100 V) into power that can be transmitted, a control circuit 16 for impedance matching, and the like. Moreover, the electromagnetic shielding material 17 is arrange | positioned surrounding the area | region where the power transmission apparatus 1 and the power transmission auxiliary device 9 are arrange | positioned. In the state where the lid 14 is closed, the surroundings of the power transmission device 1, the power transmission auxiliary device 9, and the power reception device 2 are completely shielded from electromagnetic waves, and the electromagnetic waves are prevented from affecting the human body, which is safe.

磁界共鳴により電力を伝送する場合、実用に際して伝送周波数としては数MHz〜数100MHz帯を活用することが考えられる。電界共鳴型に比べて人体への影響が少ないとはいえ、送電パワーの値によっては人体への影響も考慮しなければならない。そこで本実施の形態のように、非接触電力伝送中に電磁波を外部に漏らさないために、送受電空間を囲むようにコイル全体を電磁シールドすることが望ましい。即ち、化粧箱タイプの筐体においては、電磁気的に閉じられた空間内に、送電装置1及び受電装置2の共鳴コイルや、送電補助装置9の補助コイルを配置し、外部への電磁波の漏洩を防ぐ構成とする。   When power is transmitted by magnetic field resonance, it is conceivable to use a band of several MHz to several hundred MHz as a transmission frequency in practical use. Although the influence on the human body is less than that of the electric field resonance type, the influence on the human body must be taken into account depending on the value of the transmission power. Therefore, as in this embodiment, in order to prevent electromagnetic waves from leaking to the outside during non-contact power transmission, it is desirable to electromagnetically shield the entire coil so as to surround the power transmission / reception space. That is, in the case of a cosmetic box type, the resonance coils of the power transmission device 1 and the power reception device 2 and the auxiliary coil of the power transmission auxiliary device 9 are arranged in an electromagnetically closed space, and electromagnetic leakage to the outside It is set as the structure which prevents.

筐体13の表面にはディスプレイやLEDなどの表示器18が必要に応じて設けられている。主に、携帯電話などの充電状態やメールなどの着信情報を表示するためである。また、インターロック機能用の突起19が設けられ、蓋14を完全に閉めた状態でないと送電が始まらないように構成されている。   A display 18 such as a display or LED is provided on the surface of the housing 13 as necessary. This is mainly for displaying the state of charge of a mobile phone or the like and incoming information such as mail. Further, a projection 19 for an interlock function is provided so that power transmission does not start unless the lid 14 is completely closed.

共鳴型電力伝送においては、共振周波数において磁界強度が最大となる。また制御回路16は、受電装置2や送電補助装置9との情報のやり取りをするための回路、あるいは受電装置2の位置情報を得るための回路等を含んでもよい。   In resonant power transmission, the magnetic field strength is maximized at the resonant frequency. The control circuit 16 may include a circuit for exchanging information with the power receiving device 2 and the power transmission auxiliary device 9, a circuit for obtaining position information of the power receiving device 2, and the like.

本実施の形態の非接触電力伝送装置は、送電補助装置9に設けられている調整用バリコンを調整して、電力伝送時における送電側共振系と受電共振器の共振周波数を整合させることが特徴である。予め蓋14を閉じた状態で、補助コイル10が所定の位置に配置され、その状態で送電側共振系の共振周波数と受電共振器の共振周波数が同じになるように調整用バリコンを調整しておくと、蓋14をした時に直ちに充電を開始することが可能である。あるいは、蓋14を閉じた後に、調整用バリコンが自動、あるいは手動で調整される構成とすることもできる。   The contactless power transmission device of the present embodiment is characterized in that the adjustment variable capacitor provided in the power transmission auxiliary device 9 is adjusted to match the resonance frequencies of the power transmission side resonance system and the power reception resonator during power transmission. It is. The auxiliary coil 10 is placed at a predetermined position with the lid 14 closed in advance, and the adjustment variable capacitor is adjusted so that the resonance frequency of the power transmission side resonance system and the resonance frequency of the power reception resonator are the same in that state. In other words, it is possible to start charging immediately when the lid 14 is put on. Alternatively, the adjustment variable condenser can be automatically or manually adjusted after the lid 14 is closed.

本実施の形態では、化粧箱タイプの筐体13を用いたが、他に、ボックスタイプや机の引き出し型などでも同様な効果が得られる。すなわち、化粧箱タイプの場合、蓋をした状態では外部との電波のやり取りが難しいので、その場合には、受電装置の挿入口が開いたボックスタイプの筐体とし、この挿入口以外はすべて電磁シールドを設けた構成とすればよい。ただし、ボックスタイプでは受電装置の挿入口があるために、外部への電磁波の漏洩が多少あると考えられるが、この挿入口に電波吸収体のシートを取り付けるなどすれば、人体への影響は低減される。   In the present embodiment, the case 13 of the decorative box type is used, but the same effect can be obtained by using a box type or a desk drawer type. In other words, in the case of a cosmetic box type, it is difficult to exchange radio waves with the outside when the lid is closed. In this case, a box-type housing with an insertion port of the power receiving device is opened, and everything except this insertion port is electromagnetic. What is necessary is just to set it as the structure which provided the shield. However, the box type has an insertion port for the power receiving device, so there may be some leakage of electromagnetic waves to the outside. However, if an electromagnetic wave absorber sheet is attached to this insertion port, the impact on the human body will be reduced. Is done.

また、以上の実施の形態では、受電装置2として携帯電話などの小型の装置を例として説明したが、電気自動車などの大型の受電装置にも本発明を適用可能であることは言うまでもない。   In the above embodiment, a small device such as a mobile phone has been described as an example of the power receiving device 2. However, it goes without saying that the present invention can also be applied to a large power receiving device such as an electric vehicle.

本発明の非接触電力伝送装置は、特定の受電装置に対して選択的に非接触電力伝送が可能であり、また、受電器が小さい場合においても良好な電力伝送を長い距離まで安定にできるので、携帯電話や補聴器等の小型機器、TVや電気自動車などへの非接触電力伝送に好適である。   The non-contact power transmission device of the present invention can selectively perform non-contact power transmission with respect to a specific power receiving device, and can stabilize good power transmission over a long distance even when the power receiver is small. It is suitable for non-contact power transmission to small devices such as mobile phones and hearing aids, TVs and electric vehicles.

1 送電装置
2 受電装置
3a、3b ループコイル
4a 送電用共鳴コイル
4b、4bA、4bB 受電用共鳴コイル
5 高周波電力ドライバー
6 交流電源
7 整流回路
8 充電池
9 送電補助装置
10 補助コイル
11 調整用コンデンサ(調整用バリコン)
12 バリコン
13 筐体
14 蓋
15 台座
16 制御回路
17 電磁シールド材
18 表示器
19 インターロック用突起
DESCRIPTION OF SYMBOLS 1 Power transmission device 2 Power reception device 3a, 3b Loop coil 4a Power transmission resonance coil 4b, 4bA, 4bB Power reception resonance coil 5 High frequency power driver 6 AC power source 7 Rectifier circuit 8 Rechargeable battery 9 Power transmission auxiliary device 10 Auxiliary coil 11 Adjustment capacitor ( Variable condenser for adjustment)
12 variable capacitor 13 housing 14 lid 15 pedestal 16 control circuit 17 electromagnetic shielding material 18 display 19 projection for interlocking

Claims (12)

送電用共鳴コイル及び共振容量により構成された送電共振器を有する送電装置と、
受電用共鳴コイル及び共振容量により構成された受電共振器を有する受電装置とを備え、
前記送電用共鳴コイルと前記受電用共鳴コイルの間の磁界共鳴を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
補助コイル及び共振容量により構成され、共振周波数f3が可変である補助共振器を有する送電補助装置を更に備え、
前記送電補助装置を前記送電装置と対向させて配置して、前記送電用共鳴コイルと前記補助コイルの間に、前記受電用共鳴コイルが配置される受電空間を形成可能であり、
前記共振周波数f3を調整することにより、前記送電共振器と前記補助共振器が構成する送電側共振系の共振周波数ftを調整可能であることを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission resonator composed of a resonance coil for power transmission and a resonant capacitor;
A power receiving device having a power receiving resonator constituted by a power receiving resonance coil and a resonant capacitor;
In the non-contact power transmission device that transmits power from the power transmission device to the power reception device via magnetic field resonance between the power transmission resonance coil and the power reception resonance coil,
A power transmission auxiliary device including an auxiliary resonator that includes an auxiliary coil and a resonance capacitor and has a variable resonance frequency f3;
The power transmission auxiliary device is arranged to face the power transmission device, and a power reception space in which the power reception resonance coil is arranged can be formed between the power transmission resonance coil and the auxiliary coil.
By adjusting the resonance frequency f3, the resonance frequency ft of the power transmission side resonance system formed by the power transmission resonator and the auxiliary resonator can be adjusted.
前記送電補助装置の前記共振容量が可変コンデンサにより構成され、前記可変コンデンサを調整することにより前記補助共振器の共振周波数f3を調整可能である請求項1記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein the resonance capacitance of the power transmission auxiliary device is configured by a variable capacitor, and the resonance frequency f <b> 3 of the auxiliary resonator can be adjusted by adjusting the variable capacitor. 前記送電補助装置の前記共振容量がそれぞれ異なる容量値を有する複数の固定コンデンサにより構成され、前記補助コイルに選択的に接続される前記固定コンデンサを切り替えることにより、前記補助共振器の共振周波数f3を調整可能である請求項1記載の非接触電力伝送装置。   The resonance capacitance of the auxiliary resonator is configured by a plurality of fixed capacitors each having a different capacitance value, and the fixed capacitor selectively connected to the auxiliary coil is switched to change the resonance frequency f3 of the auxiliary resonator. The contactless power transmission device according to claim 1, which is adjustable. 前記送電用共鳴コイルの直径d1、受電用共鳴コイルの直径d2、及び補助コイルの直径d3が、d1>d2、かつd2<d3の関係を満足する請求項1記載の非接触電力伝送装置。   The non-contact power transmission device according to claim 1, wherein a diameter d1 of the power transmission resonance coil, a diameter d2 of the power reception resonance coil, and a diameter d3 of the auxiliary coil satisfy a relationship of d1> d2 and d2 <d3. d1=d3、かつd1>d2の関係を満足する請求項4記載の非接触電力伝送装置。   The non-contact power transmission apparatus according to claim 4, wherein d1 = d3 and d1> d2 are satisfied. 前記送電用共鳴コイルの中心軸と、前記補助コイルの中心軸と、前記受電用共鳴コイルの中心軸が、同一軸上にある請求項4記載の非接触電力伝送装置。   The non-contact power transmission apparatus according to claim 4, wherein a central axis of the power transmission resonance coil, a central axis of the auxiliary coil, and a central axis of the power reception resonance coil are on the same axis. 1台の前記送電装置に対して1台の前記受電装置が配置され、f1≠f3の条件で前記共振周波数f3が設定される請求項1記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein one power receiving device is arranged for one power transmission device, and the resonance frequency f3 is set under a condition of f1 ≠ f3. f1<f3の条件で前記共振周波数f3が設定される請求項7記載の非接触電力伝送装置。   The contactless power transmission device according to claim 7, wherein the resonance frequency f3 is set under a condition of f1 <f3. 1台の前記送電装置に対して複数台の前記受電装置が配置され、複数台の前記受電装置の受電共振器の共振周波数f2はすべて異なり、かつf2≠f3である請求項1記載の非接触電力伝送装置。   The non-contact according to claim 1, wherein a plurality of power receiving devices are arranged for one power transmitting device, and the resonance frequencies f2 of the power receiving resonators of the plurality of power receiving devices are all different and f2 ≠ f3. Power transmission device. 1台の前記送電装置に対して複数台の前記受電装置が配置され、複数台の前記受電装置の受電共振器の少なくとも一部は前記共振周波数f2が互いに異なり、かつf1≠f2である請求項1記載の非接触電力伝送装置。   A plurality of power receiving devices are arranged for one power transmitting device, and at least some of the power receiving resonators of the plurality of power receiving devices have different resonance frequencies f2 and f1 ≠ f2. The contactless power transmission device according to 1. 前記送電装置及び前記送電補助装置を保持し、前記送電装置と前記送電補助装置の相互の位置関係を、前記受電空間が形成されるように設定することが可能な筐体を備え、
前記受電装置を前記受電空間に対して着脱可能に装着することが可能であり、
少なくとも前記送電用共鳴コイル、前記補助コイル、及び前記受電用共鳴コイルの周囲が前記筐体内で電磁シールドされている状態で電力伝送を行う請求項1記載の非接触電力伝送装置。
Holding the power transmission device and the power transmission auxiliary device, comprising a housing capable of setting the mutual positional relationship between the power transmission device and the power transmission auxiliary device so that the power receiving space is formed,
The power receiving device can be detachably attached to the power receiving space,
The non-contact power transmission apparatus according to claim 1, wherein power transmission is performed in a state where at least surroundings of the power transmission resonance coil, the auxiliary coil, and the power reception resonance coil are electromagnetically shielded in the housing.
送電用共鳴コイル及び共振容量により構成された送電共振器を有する送電装置と、受電用共鳴コイル及び共振容量により構成された受電共振器を有する受電装置とを用い、前記送電用共鳴コイルと前記受電用共鳴コイルの間の磁界共鳴を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送方法において、
補助コイル及び共振容量により構成され、共振周波数f3が可変である補助共振器を有する送電補助装置を更に用い、
前記送電補助装置を前記送電装置と対向させて配置して、前記送電用共鳴コイルと前記補助コイルの間に形成された受電空間に前記受電用共鳴コイルを配置し、
前記共振周波数f3を調整することにより、前記送電共振器と前記補助共振器が構成する送電側共振系の共振周波数ftを調整して電力伝送を行うことを特徴とする非接触電力伝送方法。
A power transmission device having a power transmission resonator constituted by a power transmission resonance coil and a resonance capacitor, and a power reception device having a power reception resonator constituted by a power reception resonance coil and a resonance capacitance, the power transmission resonance coil and the power reception In a non-contact power transmission method for transmitting power from the power transmission device to the power reception device via magnetic field resonance between resonance coils for use,
Further using a power transmission auxiliary device having an auxiliary resonator that is constituted by an auxiliary coil and a resonance capacitor and whose resonance frequency f3 is variable,
The power transmission auxiliary device is arranged to face the power transmission device, and the power reception resonance coil is arranged in a power reception space formed between the power transmission resonance coil and the auxiliary coil,
A non-contact power transmission method characterized by adjusting the resonance frequency f3 to adjust the resonance frequency ft of the power transmission side resonance system formed by the power transmission resonator and the auxiliary resonator to perform power transmission.
JP2011215025A 2011-09-29 2011-09-29 Non-contact power transmission apparatus and non-contact power transmission method Active JP5705079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011215025A JP5705079B2 (en) 2011-09-29 2011-09-29 Non-contact power transmission apparatus and non-contact power transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215025A JP5705079B2 (en) 2011-09-29 2011-09-29 Non-contact power transmission apparatus and non-contact power transmission method

Publications (2)

Publication Number Publication Date
JP2013078166A true JP2013078166A (en) 2013-04-25
JP5705079B2 JP5705079B2 (en) 2015-04-22

Family

ID=48481260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215025A Active JP5705079B2 (en) 2011-09-29 2011-09-29 Non-contact power transmission apparatus and non-contact power transmission method

Country Status (1)

Country Link
JP (1) JP5705079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039665A (en) * 2012-08-22 2014-03-06 Ikuo Awai Power feeding device for apparatus, method for feeding power to apparatus, and power feeding device for internal apparatus
JP2015008578A (en) * 2013-06-25 2015-01-15 ルネサスエレクトロニクス株式会社 Transmission apparatus, non-contact power supply system, and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270501A (en) * 1999-03-19 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> Base station communication device and method of power supplying to portable radio communication device
JP2010154700A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Noncontacting power transmission system and load device thereof
JP2010263690A (en) * 2009-05-01 2010-11-18 Panasonic Electric Works Co Ltd Transmission system
JP2011518653A (en) * 2008-03-26 2011-06-30 ミリポア・コーポレイション Contactless power supply solution for low power sensors in bioprocess environment
WO2011099071A1 (en) * 2010-02-10 2011-08-18 富士通株式会社 Resonance frequency control method, power transmission device, and power reception device for magnetic-resonant-coupling type power transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270501A (en) * 1999-03-19 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> Base station communication device and method of power supplying to portable radio communication device
JP2011518653A (en) * 2008-03-26 2011-06-30 ミリポア・コーポレイション Contactless power supply solution for low power sensors in bioprocess environment
JP2010154700A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Noncontacting power transmission system and load device thereof
JP2010263690A (en) * 2009-05-01 2010-11-18 Panasonic Electric Works Co Ltd Transmission system
WO2011099071A1 (en) * 2010-02-10 2011-08-18 富士通株式会社 Resonance frequency control method, power transmission device, and power reception device for magnetic-resonant-coupling type power transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039665A (en) * 2012-08-22 2014-03-06 Ikuo Awai Power feeding device for apparatus, method for feeding power to apparatus, and power feeding device for internal apparatus
JP2015008578A (en) * 2013-06-25 2015-01-15 ルネサスエレクトロニクス株式会社 Transmission apparatus, non-contact power supply system, and control method
US10177817B2 (en) 2013-06-25 2019-01-08 Renesas Electronics Corporation Electric power transmitting device, non-contact power supply system, and control method
US11303325B2 (en) 2013-06-25 2022-04-12 Renesas Electronics Corporation Electric power transmitting device, non-contact power supply system, and control method

Also Published As

Publication number Publication date
JP5705079B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5890170B2 (en) Non-contact power transmission apparatus and non-contact power transmission method
Hui Magnetic resonance for wireless power transfer
JP5077340B2 (en) Non-contact power receiving apparatus and manufacturing method thereof
USRE49564E1 (en) Method and apparatus for wireless power transmission with harmonic noise cancellation
WO2012147339A1 (en) Wireless power transmission device
US20130234529A1 (en) Wireless power transfer apparatus and wireless power transfer method
KR20100055069A (en) Apparatus of wireless power transmission using high q near magnetic field resonator
KR20140147650A (en) Wireless charging system for electronic device
EP3113325B1 (en) Method of forming electromagnetic space
CN104993614A (en) Asymmetric wireless power transmission system with relay coil inserted therein, and method
US10608478B2 (en) Power transmission system
JP2014233111A (en) Non-contact power transmission device, non-contact power transmission system, and non-contact power transmission method
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
WO2014199830A1 (en) Wireless power transmission device and power supply method of wireless power transmission device
JP5705079B2 (en) Non-contact power transmission apparatus and non-contact power transmission method
Kuka Wireless power transfer
JP6204767B2 (en) Non-contact power transmission device
JP2015109762A (en) Device and method for non-contact power transmission
KR20140105333A (en) Wireless power transfer device
JP2012023929A (en) Resonance coil
Sahany et al. Receiver coil position selection through magnetic field coupling of a WPT system used for powering multiple electronic devices
JP2012039674A (en) Resonance coil
JP2013070491A (en) Wireless-space power-feeding system
Zhang Design of High Efficiency Wireless Power Transfer System with Nonlinear Resonator
Keskin RF Front End Tuning Methods for Wireless Power Transfer Systems

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5705079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250