JP2013076614A - Dry analysis element - Google Patents

Dry analysis element Download PDF

Info

Publication number
JP2013076614A
JP2013076614A JP2011216062A JP2011216062A JP2013076614A JP 2013076614 A JP2013076614 A JP 2013076614A JP 2011216062 A JP2011216062 A JP 2011216062A JP 2011216062 A JP2011216062 A JP 2011216062A JP 2013076614 A JP2013076614 A JP 2013076614A
Authority
JP
Japan
Prior art keywords
layer
dry analytical
analytical element
scattering
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011216062A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Horii
和由 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011216062A priority Critical patent/JP2013076614A/en
Publication of JP2013076614A publication Critical patent/JP2013076614A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make a reflection distribution of diffused reflected light in a dry analysis element more isotropic.SOLUTION: In a dry analysis element 1 where a reaction layer 1b is laminated by application, bonding or the like on an optically transparent support layer 1c consisting of a plastic sheet such as an organic polymer sheet of polyethylene terephthalate (PET), polystyrene or the like, and a development layer 1a is further laminated thereon by a lamination method or the like, a fluorescent material 1d is contained in the reaction layer 1b to make the reaction layer 1b function also as a scattering layer for scattering of measuring light.

Description

本発明は、生化学検査等に用いられる乾式分析素子に関するものである。   The present invention relates to a dry analytical element used for biochemical tests and the like.

近年、測定光を測定対象物に照射し、測定対象物により散乱された拡散反射光を検出することにより、種々の検査が行われており、一例として、検体の小滴を乾式分析素子に点着供給して検体中に含まれている特定の化学成分または有形成分を定量分析する比色測定法が行われている。   In recent years, various inspections have been performed by irradiating measurement objects with measurement light and detecting diffusely reflected light scattered by the measurement objects. For example, a small droplet of a sample is applied to a dry analytical element. A colorimetric measurement method for quantitatively analyzing a specific chemical component or a formed component contained in a specimen after receiving and supplying it is performed.

特許文献1に示すように、この比色測定法は、検体を乾式分析素子に点着した後、これをインキュベータ内で所定時間恒温保持して呈色反応(色素生成反応)させ、次いで検体中の所定の生化学物質と乾式分析素子に含まれる試薬との組み合わせにより予め選定された波長を含む測定光をこの乾式分析素子に照射し、乾式分析素子において散乱・反射した光(以下、単に拡散反射光と記載)の光学濃度を測定し、この光学濃度から、予め求めておいた光学濃度と所定の生化学物質の物質濃度との対応を表す検量線を用いて該生化学物質の濃度を求めるものである。   As shown in Patent Document 1, in this colorimetric measurement method, after a sample is spotted on a dry analytical element, the sample is held at a constant temperature in an incubator for a color reaction (dye generation reaction), and then in the sample. The dry analytical element is irradiated with measurement light having a wavelength selected in advance by a combination of a predetermined biochemical substance and a reagent contained in the dry analytical element, and the light scattered and reflected by the dry analytical element (hereinafter simply diffused). The optical density of the reflected light is measured, and from this optical density, the concentration of the biochemical substance is determined using a calibration curve representing the correspondence between the optical density obtained in advance and the substance concentration of the predetermined biochemical substance. It is what you want.

このような比色測定法を行う装置では、液状の検体は検体容器(採血管等)に収容して装置にセットされるとともに、その測定に必要な乾式分析素子が装置にセットされ、乾式分析素子を搭載位置から点着部およびインキュベータへ搬送する一方、点着機構の点着ノズルによって検体を搭載位置から点着部へ供給して乾式分析素子へ点着する。   In an apparatus for performing such a colorimetric measurement method, a liquid sample is accommodated in a sample container (such as a blood collection tube) and set in the apparatus, and a dry analytical element necessary for the measurement is set in the apparatus, and dry analysis is performed. While the element is transported from the mounting position to the spotting unit and the incubator, the specimen is supplied from the mounting position to the spotting part by the spotting nozzle of the spotting mechanism and spotted on the dry analytical element.

特開平10−019784号公報Japanese Patent Laid-Open No. 10-019784

上記のような装置では、拡散反射光の光学濃度測定時に、測定光がノイズ成分として混ざることにより、拡散反射光のみを精度よく検出することができないという問題があった。   The apparatus as described above has a problem that, when measuring the optical density of diffuse reflected light, the measurement light is mixed as a noise component, so that only diffuse reflected light cannot be accurately detected.

ここで、このような現象について詳細に説明する。図5は、乾式分析素子(図中の中心位置)に対して図中180°方向から測定光を照射した場合の拡散反射光の検出状態を示す図である。なお、図中の点線は呈色反応前の拡散反射光の検出状態、実線は呈色反応後の拡散反射光の検出状態を示している。図5に示すように、180°方向では拡散反射光の検出強度が高くなっているが、これは拡散反射光に加えて測定光の正反射成分まで一緒に検出されるためである。従って、測定光の影響を受けないように、通常は測定光の照射位置とは異なる位置(例えば135°や225°の位置)に検出器を配置して拡散反射光の検出を行っている。   Here, such a phenomenon will be described in detail. FIG. 5 is a diagram showing a detection state of diffuse reflected light when the measurement light is irradiated from the direction of 180 ° in the drawing to the dry analytical element (center position in the drawing). In addition, the dotted line in a figure has shown the detection state of the diffuse reflection light before a color reaction, and the continuous line has shown the detection state of the diffuse reflection light after a color reaction. As shown in FIG. 5, the detection intensity of the diffuse reflected light is high in the 180 ° direction because the specular reflection component of the measurement light is detected together with the diffuse reflected light. Therefore, in order not to be affected by the measurement light, the diffuse reflection light is usually detected by arranging a detector at a position (for example, a position of 135 ° or 225 °) different from the irradiation position of the measurement light.

この場合、乾式分析素子における拡散反射光の反射分布に歪(例えば図7中の195°、165°方向等)が生じると、検出器への検出光量が減少してS/Nが低下するおそれがあり、また、角度による光量変化が大きくなると、乾式分析素子の設置誤差(乾式分析素子の位置ずれ、角度ずれ)に対して検出光量が大きく変化するので、測定精度が悪化するおそれがある。   In this case, when distortion (for example, directions of 195 °, 165 °, etc. in FIG. 7) occurs in the reflection distribution of the diffuse reflected light in the dry analytical element, the amount of light detected to the detector may decrease and the S / N may decrease. In addition, if the change in the amount of light due to the angle increases, the detected light amount greatly changes with respect to the installation error of the dry analysis element (the position shift or the angle shift of the dry analysis element), so that the measurement accuracy may be deteriorated.

このような反射分布の歪は、乾式分析素子の展開層に使われている織布、多孔質膜の反射分布が等方的でないことによって生じる。具体的には、織布であれば、交互に編んだ構造によって、縦糸、横糸の市松模様のパターンにより散乱・反射強度に角度依存が生じることによる。多孔質膜であれば、多孔質の細孔の大きさ、間隔、細孔の形状(球状、楕円球状)によって、散乱・反射強度に角度依存が生じることによる。これらの反射分布の異方性は、測定光の光源としてコヒーレンシーの高いレーザー等を用いた場合、スペックルノイズや干渉パターンの形成によりさらに強調されてしまう。   Such distortion of the reflection distribution is caused by the non-isotropic reflection distribution of the woven fabric or porous film used for the spreading layer of the dry analytical element. Specifically, in the case of a woven fabric, the scattering and reflection intensity depends on the angle due to the checkered pattern of warp and weft due to the alternately knitted structure. In the case of a porous film, the scattering and reflection intensity depends on the angle depending on the size and interval of the porous pores and the shape of the pores (spherical and elliptical spherical). The anisotropy of these reflection distributions is further enhanced by the formation of speckle noise and interference patterns when a high coherency laser or the like is used as a light source for measurement light.

本発明はかかる点に鑑み、拡散反射光の反射分布をより等方的した乾式分析素子を提供することを目的とするものである。   In view of this point, the present invention has an object to provide a dry analytical element in which the reflection distribution of diffusely reflected light is more isotropic.

本発明の乾式分析素子は、生化学検査等に用いられる乾式分析素子であって、供給された試料液を周囲に展開させるための展開層と、展開層の下方に積層され、試料液と反応して色素を生成する試薬を含む反応層と、展開層の下方に積層され、反応層の下面側から照射された測定光を散乱させる散乱物質を含む散乱層とを備えたことを特徴とする。   The dry analytical element of the present invention is a dry analytical element used for biochemical examinations, etc., and a development layer for spreading the supplied sample liquid around, a layer below the development layer, and reaction with the sample liquid. And a reaction layer containing a reagent that generates a dye, and a scattering layer that is laminated below the spreading layer and includes a scattering material that scatters measurement light irradiated from the lower surface side of the reaction layer. .

ここで、「散乱層」は、独立した層であってもよいし、反応層に散乱物質を含有させて反応層と散乱層とを一体的に形成してもよい。   Here, the “scattering layer” may be an independent layer, or the reaction layer and the scattering layer may be integrally formed by containing a scattering material in the reaction layer.

本発明の乾式分析素子において、散乱層は、反応層の上方に積層することが好ましい。   In the dry analytical element of the present invention, the scattering layer is preferably laminated above the reaction layer.

また、散乱物質は、球状微粒子としてもよい。   The scattering material may be spherical fine particles.

また、散乱物質は、金属ナノ粒子としてもよい。   The scattering material may be metal nanoparticles.

本発明による乾式分析素子によれば、生化学検査等に用いられる乾式分析素子において、供給された試料液を周囲に展開させるための展開層と、展開層の下方に積層され、試料液と反応して色素を生成する試薬を含む反応層と、展開層の下方に積層され、反応層の下面側から照射された測定光を散乱させる散乱物質を含む散乱層とを備えたものとすることにより、散乱層を設けない態様と比較して反射分布を等方的にすることができるため、反射分布の歪を低減させることができる。従って、本発明の乾式分析素子を用いて測定を行うことにより、測定精度を向上させることができる。   According to the dry analytical element according to the present invention, in the dry analytical element used for biochemical examinations, etc., a spread layer for spreading the supplied sample liquid around, and a layer below the spread layer are reacted with the sample liquid. And a reaction layer containing a reagent that generates a dye, and a scattering layer that is laminated below the spreading layer and includes a scattering material that scatters measurement light irradiated from the lower surface side of the reaction layer. Since the reflection distribution can be made isotropic as compared with an embodiment in which no scattering layer is provided, the distortion of the reflection distribution can be reduced. Therefore, measurement accuracy can be improved by performing measurement using the dry analytical element of the present invention.

本発明の一実施形態における乾式分析素子を用いた生化学分析装置の概略構成図1 is a schematic configuration diagram of a biochemical analyzer using a dry analytical element according to an embodiment of the present invention. 上記乾式分析素子の概略構成図Schematic configuration diagram of the dry analytical element 上記乾式分析素子に対して測定光を照射した場合の拡散反射光の検出状態を示す図The figure which shows the detection state of a diffuse reflected light at the time of irradiating measurement light with respect to the said dry analytical element その他の態様の乾式分析素子の概略構成図Schematic configuration diagram of dry analysis element of other embodiment 従来の乾式分析素子に対して測定光を照射した場合の拡散反射光の検出状態を示す図The figure which shows the detection state of diffuse reflected light at the time of irradiating measurement light with respect to the conventional dry analytical element

以下、本発明の一実施形態における乾式分析素子を用いた生化学分析装置について図面を用いて説明する。図1は本発明の一実施形態における乾式分析素子を用いた生化学分析装置の概略構成図、図2は上記乾式分析素子の概略構成図、図3は上記乾式分析素子に対して測定光を照射した場合の拡散反射光の検出状態を示す図である。   Hereinafter, a biochemical analyzer using a dry analytical element according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a biochemical analyzer using a dry analytical element according to an embodiment of the present invention, FIG. 2 is a schematic structural diagram of the dry analytical element, and FIG. 3 is a measuring beam for the dry analytical element. It is a figure which shows the detection state of the diffuse reflected light at the time of irradiation.

生化学分析装置10は、未使用の略正方形状または矩形状の乾式分析素子1を積層収容したカートリッジ20を複数個貯蔵している乾式分析素子供給装置11(サプライヤ)と、上記乾式分析素子供給装置11の側方に配設され試料液が点着された乾式分析素子1を所定時間恒温保持するインキュベータ12と、乾式分析素子供給装置11からインキュベータ12に乾式分析素子1を吸盤70により吸着しつつ搬送するフイルム搬送手段13と、例えば血清,尿等の複数の試料液を収容する試料液収容手段14(サンプラ)と、フイルム搬送手段13によってインキュベータ12に搬送するまでの間に試料液収容手段14の試料液を取り出し、ついで試料液を乾式分析素子1に点着する点着手段15と、インキュベータ12の下方に配設された測定手段16(光学的測定手段)とを備えている。   The biochemical analyzer 10 includes a dry analytical element supply device 11 (supplier) that stores a plurality of cartridges 20 in which unused dry analytical elements 1 having a substantially square shape or rectangular shape are stacked, and the dry analytical element supply described above. An incubator 12 that is disposed on the side of the apparatus 11 and that is held at a constant temperature for a predetermined time and the dry analytical element 1 on which a sample solution is spotted is adsorbed by the suction cup 70 from the dry analytical element supply apparatus 11 to the incubator 12. Film transporting means 13 for transporting while transporting, sample liquid storage means 14 (sampler) for storing a plurality of sample liquids such as serum and urine, and sample liquid storage means until the film transporting means 13 transports them to the incubator 12. The sample solution 14 is taken out, and then spotting means 15 for spotting the sample solution on the dry analytical element 1 is disposed below the incubator 12. Measuring means 16 and an (optical measurement means).

なお、この生化学分析装置10の詳細は、本願出願人が既に開示している特開平7−35746号(EP 0 634 657A)公報等に記載されている。   Details of the biochemical analyzer 10 are described in Japanese Patent Application Laid-Open No. 7-35746 (EP 0 634 657A) already disclosed by the applicant of the present application.

上記乾式分析素子1は、ポリエチレンテレフタレート(PET)やポリスチレン等の有機ポリマーシート等のプラスチックシートからなる光透過性の支持層1c上に、反応層1bを塗布または接着等により積層し、さらにこの上に展開層1aをラミネート法等により積層した乾式分析素子(チップ)である。   The dry analytical element 1 is formed by laminating a reaction layer 1b on a light-transmitting support layer 1c made of a plastic sheet such as an organic polymer sheet such as polyethylene terephthalate (PET) or polystyrene by coating or bonding, and further. Further, a dry analytical element (chip) in which the development layer 1a is laminated by a laminating method or the like.

反応層1bは、ゼラチン等の親水性ポリマバインダまたは濾紙、布、微多孔性ポリマーシートなどの多孔性層の中にアナライトに選択的に反応する検出試薬および発色反応に必要な試薬(化学分析試薬または免疫分析試薬)成分が含まれる少なくとも1つの層で構成されている。   The reaction layer 1b is composed of a hydrophilic polymer binder such as gelatin or a porous layer such as filter paper, cloth, and a microporous polymer sheet, a detection reagent that selectively reacts with an analyte, and a reagent that is necessary for a color reaction (chemical analysis). (Reagent or immunoassay reagent) component is comprised of at least one layer.

また、この反応層1b中には、測定光を散乱させるための散乱物質1dが含まれる。この散乱物質1dについては、等方的散乱を起こす物であれば特に制限はなく、例えば、SiOや樹脂(ポリスチレン)製の球状粒子を用いることができる。粒径についても特に制限はないが、反応層1bが数〜数十μmの厚さなので、粒径10nm〜1000nmの粒子が特に好ましい。 In addition, the reaction layer 1b includes a scattering material 1d for scattering measurement light. The scattering material 1d is not particularly limited as long as it is isotropically scattered, and for example, spherical particles made of SiO 2 or resin (polystyrene) can be used. The particle size is not particularly limited, but since the reaction layer 1b has a thickness of several to several tens of micrometers, particles having a particle size of 10 nm to 1000 nm are particularly preferable.

また、金属ナノ粒子を用いた場合には、プラズモン共鳴による電場増強の効果を利用して測定光の散乱強度を増強させることができるため、生化学分析装置10におけるS/Nを向上させることができる。   Further, when metal nanoparticles are used, the scattering intensity of the measurement light can be enhanced by utilizing the effect of electric field enhancement by plasmon resonance, so that the S / N in the biochemical analyzer 10 can be improved. it can.

上述の通り、反応層1bには散乱物質1dが含まれるため、反応層1bは測定光を散乱させるための散乱層としても機能する。   As described above, since the reaction layer 1b contains the scattering material 1d, the reaction layer 1b also functions as a scattering layer for scattering the measurement light.

展開層1aは、外部との間でコスレに強い材料例えばポリエステル等の合成繊維からなる織物布地や編み物布地、天然繊維と合成繊維との混紡による織物布地、編み物布地、不織布等もしくは紙から構成されて保護層として機能するとともに、この展開層1a上に点着された試料液を反応層1b上に一様に供給し得るように展延する。   The spreading layer 1a is made of a material that is strong against the outside, such as a woven fabric or a knitted fabric made of synthetic fibers such as polyester, a woven fabric made by blending natural fibers and synthetic fibers, a knitted fabric, a non-woven fabric, or paper. In addition to functioning as a protective layer, the sample liquid spotted on the spreading layer 1a is spread so that it can be uniformly supplied onto the reaction layer 1b.

上述の通り、点着された乾式分析素子1は、インキュベータ12によりインキュベーションが行なわれ、このインキュベータ12の下方に配設された測定手段16により測定される。この測定手段16は、乾式分析素子1と試料液との呈色反応による光学濃度を測定するための測光ヘッドを有する。この測光ヘッドは所定波長の光を含む測定光Lを光透過性の支持層を透過し反応層1bに照射して、乾式分析素子1において散乱・反射した光(以下、単に拡散反射光と記載)L´を光検出素子で検出するものであり、測光ヘッドには光源からの光が入射され、測光ヘッド内で該光が反応層1bに照射される。   As described above, the spotted dry analytical element 1 is incubated by the incubator 12 and measured by the measuring means 16 disposed below the incubator 12. This measuring means 16 has a photometric head for measuring the optical density due to the color reaction between the dry analytical element 1 and the sample liquid. This photometric head irradiates the reaction layer 1b with measurement light L containing light of a predetermined wavelength and irradiates the reaction layer 1b, and is scattered and reflected by the dry analytical element 1 (hereinafter simply referred to as diffuse reflection light). ) L ′ is detected by a photodetecting element. Light from the light source is incident on the photometric head, and the reaction layer 1b is irradiated with the light in the photometric head.

上記の拡散反射光は、反応層1b中で生成された色素量に応じた光情報(具体的には光量)を担持しており、この光情報を担持した拡散反射光L´が測光ヘッドの光検出素子に入射して光電変換され、アンプを介して不図示の物質濃度決定部に送出される。なお、光検出素子は、測定光Lの影響を受けないように、測定光Lの照射位置(図3中の180°の位置)とは異なる位置(例えば135°や225°の位置)に配置されている。   The diffuse reflected light carries optical information (specifically, light quantity) corresponding to the amount of dye generated in the reaction layer 1b, and the diffuse reflected light L ′ carrying this optical information is transmitted from the photometric head. The light is incident on the photodetection element, photoelectrically converted, and sent to a substance concentration determination unit (not shown) via an amplifier. The light detection element is disposed at a position (for example, a position of 135 ° or 225 °) different from the irradiation position of the measurement light L (position of 180 ° in FIG. 3) so as not to be affected by the measurement light L. Has been.

物質濃度決定部では、入力された電気信号のレベルに基づき反応層1b中で生成された色素の光学濃度を判定し、次に、光学濃度−物質濃度(または活性)の変換関数である検量線を用い、試料液中の所定の生化学物質の物質濃度を特定するための演算処理を実施する。   In the substance concentration determination unit, the optical density of the dye generated in the reaction layer 1b is determined based on the level of the input electric signal, and then a calibration curve which is a conversion function of optical density-substance density (or activity). Is used to perform a calculation process for specifying the concentration of a predetermined biochemical substance in the sample solution.

図3に示す通り、本実施の形態の乾式分析素子1は、測定光を散乱させるための散乱層として機能する層を備えているため、図5に示す従来の乾式分析素子を用いた測定と比較して、乾式分析素子における拡散反射光L´の反射分布がより等方的に改善されていることが分かる。   As shown in FIG. 3, the dry analytical element 1 of the present embodiment includes a layer that functions as a scattering layer for scattering measurement light. Therefore, measurement using the conventional dry analytical element shown in FIG. In comparison, it can be seen that the reflection distribution of the diffuse reflected light L ′ in the dry analytical element is improved more isotropically.

従って、上記乾式分析素子1を用いて測定を行うことにより、測定精度を向上させることができる。   Therefore, measurement accuracy can be improved by performing measurement using the dry analytical element 1.

以上、本発明の好ましい実施の形態について説明したが、本発明は上記実施の形態に限定されるものではない。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the said embodiment.

例えば、乾式分析素子1の散乱層は、上記のように反応層1bと一体的に形成されているものに限らず、図4に示すように、反応層1bとは独立した層(散乱層1e)として形成してもよい。なお、散乱層1eは、反応層1bの上方または下方のいずれ側に配置してもよいが、図4に示すように、反応層1bの上方に配置することにより、下方から入射した測定光がまず反応層1bで生成された色素によって吸収されるため、呈色反応による光学濃度の変化を強くすることができ、これにより検出感度を向上させることができる。   For example, the scattering layer of the dry analytical element 1 is not limited to being integrally formed with the reaction layer 1b as described above, and as shown in FIG. 4, a layer independent of the reaction layer 1b (scattering layer 1e). ). The scattering layer 1e may be arranged on either the upper side or the lower side of the reaction layer 1b. However, by arranging the scattering layer 1e on the upper side of the reaction layer 1b as shown in FIG. First, since it is absorbed by the dye generated in the reaction layer 1b, the change in optical density due to the color reaction can be strengthened, and thereby the detection sensitivity can be improved.

また、上記以外にも、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行なってもよいのは勿論である。   In addition to the above, it goes without saying that various improvements and modifications may be made without departing from the scope of the present invention.

1,1´ 乾式分析素子
1a 展開層
1b 反応層
1c 支持層
1d 散乱物質
1e 散乱層
10 生化学分析装置
11 乾式分析素子供給装置
12 インキュベータ
13 乾式分析素子搬送手段
14 試料液収容手段
15 点着手段
16 測定手段
20 乾式分析素子を積層収容したカートリッジ
1,1 'dry analytical element 1a spreading layer 1b reaction layer 1c support layer 1d scattering material 1e scattering layer 10 biochemical analyzer 11 dry analytical element supply device 12 incubator 13 dry analytical element transport means 14 sample liquid storage means 15 spotting means 16 Measuring means 20 Cartridge containing stacked dry analytical elements

Claims (4)

生化学検査等に用いられる乾式分析素子であって、
供給された試料液を周囲に展開させるための展開層と、
該展開層の下方に積層され、前記試料液と反応して色素を生成する試薬を含む反応層と、
前記展開層の下方に積層され、前記反応層の下面側から照射された測定光を散乱させる散乱物質を含む散乱層とを備えたことを特徴とする乾式分析素子。
A dry analytical element used for biochemical testing,
A spreading layer for spreading the supplied sample liquid around,
A reaction layer that is laminated below the spreading layer and contains a reagent that reacts with the sample solution to produce a dye;
A dry analysis element comprising: a scattering layer that is laminated below the spreading layer and includes a scattering material that scatters measurement light irradiated from the lower surface side of the reaction layer.
前記散乱層が、前記反応層の上方に積層されていることを特徴とする請求項1記載の乾式分析素子。   The dry analytical element according to claim 1, wherein the scattering layer is laminated above the reaction layer. 前記散乱物質が、球状微粒子であることを特徴とする請求項1または2記載の乾式分析素子。   The dry analytical element according to claim 1, wherein the scattering material is a spherical fine particle. 前記散乱物質が、金属ナノ粒子であることを特徴とする請求項1から3のいずれか1項記載の乾式分析素子。   The dry analytical element according to claim 1, wherein the scattering material is metal nanoparticles.
JP2011216062A 2011-09-30 2011-09-30 Dry analysis element Withdrawn JP2013076614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216062A JP2013076614A (en) 2011-09-30 2011-09-30 Dry analysis element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216062A JP2013076614A (en) 2011-09-30 2011-09-30 Dry analysis element

Publications (1)

Publication Number Publication Date
JP2013076614A true JP2013076614A (en) 2013-04-25

Family

ID=48480193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216062A Withdrawn JP2013076614A (en) 2011-09-30 2011-09-30 Dry analysis element

Country Status (1)

Country Link
JP (1) JP2013076614A (en)

Similar Documents

Publication Publication Date Title
US7652768B2 (en) Chemical sensing apparatus and chemical sensing method
US8835185B2 (en) Target substance-detecting element
CN109891214A (en) Analysis and test device
JP2011518324A (en) Method for detecting very low levels of analyte in a thin body fluid sample contained in a thin chamber
JP2015121552A (en) Microelectronic sensor device for detecting label particles
US8927294B2 (en) Bead reader
KR20050084016A (en) Method for generating electromagnetic field distributions
JP2008520205A (en) Method and system for positioning a microsphere for imaging
JP2010540924A (en) Sensor device for detection of target components
US20210208075A1 (en) Autofluorescence quenching assay and device
US20130242308A1 (en) Device for Reading Assay Results on Test Carrier
JP2019012041A (en) Concentration measurement method, concentration measurement device, and inspection method
JP2008157923A (en) Chemically sensing device and method
JP2012202742A (en) Detection method and detection device
JP2013076614A (en) Dry analysis element
JP2001324503A (en) Measuring method of dry analysis element
JP2011089917A (en) Testpiece housing and immunochromatographic device for concentration measurement
JPS61502418A (en) Optical analysis method and device
JP2015111063A (en) Surface plasmon-field enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
JP2012211782A (en) Biological material analyzer and method for analyzing biological material
KR101036619B1 (en) Bio-chip measuring system and method within evanescent wave of prism with specific transmittances
JP2013076612A (en) Dry analysis element
US20220155226A1 (en) Optical analysis chip
JPWO2009037785A1 (en) Body fluid component analysis device inspection method and body fluid component analysis device
JP4283512B2 (en) Test tool and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202