JP2013073782A - Breaker contact piece exhaustion amount management system - Google Patents

Breaker contact piece exhaustion amount management system Download PDF

Info

Publication number
JP2013073782A
JP2013073782A JP2011211972A JP2011211972A JP2013073782A JP 2013073782 A JP2013073782 A JP 2013073782A JP 2011211972 A JP2011211972 A JP 2011211972A JP 2011211972 A JP2011211972 A JP 2011211972A JP 2013073782 A JP2013073782 A JP 2013073782A
Authority
JP
Japan
Prior art keywords
circuit breaker
delay time
oscilloscope
trigger
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011211972A
Other languages
Japanese (ja)
Other versions
JP5312546B2 (en
Inventor
Hirobumi Nakano
博文 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2011211972A priority Critical patent/JP5312546B2/en
Publication of JP2013073782A publication Critical patent/JP2013073782A/en
Application granted granted Critical
Publication of JP5312546B2 publication Critical patent/JP5312546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/18Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a breaker contact piece exhaustion amount management system capable of calculating exhaustion amount of a breaker efficiently at a low cost.SOLUTION: An oscilloscope is setup at a high-order electric power station, and relating to a distance relay for backup protection, trigger is executed by respective operation signals of a multistage relay in addition to a breaker trip signal. The oscilloscope includes a delay time table which stores a delay time that means time duration before recording of electric signal is stopped after detection of trigger, delay time setting means which sets a delay time that corresponds to a time zone in which the operation signal is outputted by referencing to the delay time table after detection of trigger, a stop timer which outputs a recording stop command based on the lapse of delay time, and electric signal recording means which records an electric signal by a memory circulation method until the record stop command is received from the stop timer. By taking the recorded data of the oscilloscope into a computer device, the contact piece exhaustion amount of breakers of the electric power stations at a high order and a low order are calculated.

Description

本発明は、電力系統に設置されている保護リレーの動作信号や電気データを効率よく収集して、遮断器の接触子の消耗量を演算する遮断器の接触子消耗量管理システムに関する。   The present invention relates to a circuit breaker contact consumption management system that efficiently collects operation signals and electrical data of protection relays installed in a power system and calculates the contact consumption of a circuit breaker contact.

遮断器の接触子は、遮断するたびに消耗していくので何回か遮断すると交換が必要になる。一般に遮断電流が大きいと消耗量も大きくなる傾向にある。消耗量は、当年度の最大短絡容量などのデータを用いて推定したり、電力用オシロ装置(以下、単に「オシロ装置」という。)を電気所ごとに設置して、測定した遮断電流をもとに計算したりしている。   The circuit breaker contacts are consumed every time they are shut off, so they need to be replaced if they are shut off several times. Generally, when the cut-off current is large, the consumption amount tends to increase. The amount of wear is estimated using data such as the maximum short-circuit capacity for the current fiscal year, or a power oscilloscope (hereinafter simply referred to as an “oscilloscope”) is installed at each electric station, and the measured breaking current is also measured. Or to calculate.

遮断電流の把握は、特許文献1に記載されているようなオシロ装置によって測定し、この測定データを用いて、特許文献2に記載されているような演算式を用いて消耗量(損耗率)の把握を行っている。   The grasping of the breaking current is measured by an oscilloscope as described in Patent Document 1, and using this measurement data, the consumption amount (wear rate) is calculated using an arithmetic expression as described in Patent Document 2. We are grasping.

特開平9−166651号公報Japanese Patent Laid-Open No. 9-166651 特開2007−149458号公報JP 2007-149458 A

しかしながら、当年度の最大短絡容量から推定するのは誤差が大きく、また、遮断電流の計算には3相を計測する必要があるが、オシロ装置への入力数は限りがあり回線数の多い電気所では、回線の2相しか入力していない場合や零相のみを入力している場合が有り正確な短絡電流の把握ができず、このため正確な接触子の消耗量の把握が出来ない。また正確に把握するためには、各電気所にオシロ装置を設置する必要がありコスト高となる。   However, estimating from the maximum short-circuit capacity of the current year has a large error, and it is necessary to measure three phases for calculating the breaking current. However, the number of inputs to the oscilloscope is limited and there are many lines of electricity. On the other hand, there are cases where only two phases of the line are inputted or only the zero phase is inputted, so that it is impossible to accurately grasp the short-circuit current, and therefore it is impossible to accurately grasp the amount of contact consumption. Moreover, in order to grasp correctly, it is necessary to install an oscilloscope device in each electric station, and it becomes expensive.

本発明は、上述のかかる事情に鑑みてなされたものであり、低コストで効率的に遮断器の消耗量を演算することのできる遮断器の接触子消耗量管理システムを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a contactor consumption amount management system for a circuit breaker that can efficiently calculate the consumption amount of the circuit breaker at low cost. To do.

上記目的を達成するため、本発明に係る遮断器の接触子消耗量管理システムは、送電系統の電圧・電流を含む電気信号を記録し、距離リレーのトリップ信号をトリガとして、あらかじめ設定されたトリガ発生前時間(以下漸進時間という)からトリガ発生後一定時間経過後の間の電気信号を記録し停止するオシロ装置と、該オシロ装置の記録データを送信する伝送装置と、該伝送装置から通信ネットワークを介して送られてきた前記オシロ装置の記録データを受信し、該記録データをもとに遮断器の接触子消耗量を演算するコンピュータ装置と、を有する遮断器の接触子消耗量管理システムであって、前記距離リレーは、電気信号をもとに送電系統における前記距離リレーと前記オシロ装置の設置された電気所、および下位の電気所を含む所定の区間ごとに異常を検出して動作信号を出力すると共に、動作信号出力後に前記区間ごとに予め定められた時間経過後にトリップ信号を出力し、前記オシロ装置は、常時記録計測を行い夫々の区間とトリガ検出後、漸進時間からトリガ検出後一定時間の間の電気信号を記録し停止するまでの時間である遅延時間とを関連付けて保存する遅延時間テーブルと、トリガ検出後、該遅延時間テーブルを参照して動作信号を出力した区間に対応する遅延時間を設定し、該遅延時間の経過により記録停止指令を出力する停止タイマと、該停止タイマから記録停止指令を受信するまで電気信号をメモリ循環式で記録する電気信号記録手段と、を備え、前記停止タイマは、トリガ検出後、遅延時間の経過前に再びトリガを検出することにより、該トリガの要因となった動作信号の区分に対応する時間をタイマに設定してリスタートし、前記コンピュータ装置は、前記伝送装置から送られてくる前記オシロ装置の記録したデータを受信するデータ受信手段と、前記送電系統の各電気所に設置された遮断器であって、動作した遮断器を判定する動作遮断器判定手段と、前記動作遮断器判定手段によって判定された遮断器ごとに、前記記録データを用いて該遮断器の接触子損耗量を演算する接触子消耗量演算手段と、を備えたことを特徴とする。   To achieve the above object, the contact consumption control system for a circuit breaker according to the present invention records an electrical signal including a voltage / current of a power transmission system and uses a trip signal of a distance relay as a trigger to set a preset trigger. An oscilloscope device that records and stops an electrical signal between a pre-occurrence time (hereinafter referred to as a gradual time) and a predetermined time after the occurrence of a trigger, a transmission device that transmits recording data of the oscilloscope device, and a communication network from the transmission device A circuit breaker contact consumption management system comprising: a computer device that receives the recording data of the oscilloscope sent via the computer and calculates the contact consumption of the circuit breaker based on the recorded data The distance relay includes an electric station where the distance relay and the oscilloscope device are installed in a power transmission system based on an electric signal, and a subordinate electric station. Detecting an abnormality for each section and outputting an operation signal and outputting a trip signal after a predetermined time has elapsed for each section after the operation signal is output, and the oscilloscope performs recording measurement at each section. And a delay time table for storing an electrical signal between a gradual time and a predetermined time after the trigger detection and a delay time that is a time until the stop after the trigger detection, and a delay time table after the trigger detection A delay time corresponding to the section in which the operation signal is output is set by reference, a stop timer that outputs a recording stop command when the delay time elapses, and an electric signal is circulated in the memory until a recording stop command is received from the stop timer And an electrical signal recording means for recording in a formula, wherein the stop timer detects the trigger again after the trigger time is detected and before the elapse of the delay time. The computer device restarts by setting a time corresponding to the category of the operation signal that caused the timer, and the computer device receives data recorded by the oscilloscope sent from the transmission device; The circuit breaker installed at each electric station of the power transmission system, the operation circuit breaker determination means for determining the operated circuit breaker, and the record data for each circuit breaker determined by the operation circuit breaker determination means And a contact consumption amount calculating means for calculating the contact wear amount of the circuit breaker.

本発明では、上位電気所にオシロ装置を設置し、遮断器トリップ信号の他、多段リレーの各動作信号(時限要素入力前の信号)でトリガをかける。このオシロ装置の記録データをコンピュータ装置に取り込んで、上位および下位の電気所の遮断器の接触子消耗量を演算する。これにより、上位電気所に設置したオシロ装置の記録データによって、下位電気所の遮断器の接触子消耗量の管理が可能になる。   In the present invention, an oscilloscope device is installed at a higher power station, and a trigger is applied by each operation signal of the multistage relay (a signal before the time element input) in addition to the circuit breaker trip signal. The recorded data of the oscilloscope device is taken into a computer device, and the contact consumption of the circuit breakers at the upper and lower electric stations is calculated. This makes it possible to manage the contact consumption of the circuit breaker at the lower electric station by using the recording data of the oscilloscope installed at the upper electric station.

なお、遅延時間テーブルに保存される遅延時間は、区間の距離リレー用時限リレーの整定値よりも大きくするのが良い。   The delay time stored in the delay time table is preferably larger than the set value of the distance relay time relay in the section.

また、コンピュータ装置の動作遮断器判定手段は、二以上の区間について距離リレーの動作信号が出力された場合は、当該二以上の区間の夫々について遮断器の接触子消耗量を演算することを特徴とする。これにより、遮断器の保全管理がより確実になる。   The operation circuit breaker determination means of the computer device calculates the contact consumption amount of the circuit breaker for each of the two or more sections when the distance relay operation signal is output for two or more sections. And Thereby, the maintenance management of a circuit breaker becomes more reliable.

さらに、本発明に係る遮断器の接触子消耗量管理システムの動作遮断器判定手段は、距離リレーの動作区間が相手端を含む区間であり、オシロ装置の記録データによって演算した遮断電流の大きさが所定値未満である場合は、相手端の母線事故であると判定することを特徴とする。   Further, the operation breaker determining means of the contactor consumption control system for a circuit breaker according to the present invention is a section in which the operation section of the distance relay includes the other end, and the magnitude of the breaking current calculated from the recorded data of the oscilloscope device Is less than a predetermined value, it is determined that it is a busbar accident at the other end.

また、本発明に係る遮断器の接触子消耗量管理システムの遅延時間設定手段は、デジタル入力手段を介して入力した前記距離リレー用の時限リレーの整定値に一定値を加えた値を前記遅延時間テーブルの該距離リレーの区間に対応する遅延時間として設定することを特徴とする。   Further, the delay time setting means of the contactor consumption amount management system for a circuit breaker according to the present invention includes a value obtained by adding a constant value to a set value of the time relay for the distance relay input via the digital input means. It is set as a delay time corresponding to the section of the distance relay in the time table.

本発明では、前記距離リレー用の時限リレーの整定値の設定と、オシロ装置の遅延時間(トリガ後記録停止までの時間)の設定とを連動させることにより、下位電気所の遮断器動作による場合でもその遮断器の接触子消耗量の計算に必要な電気データの収集を確実に行うことができる。   In the present invention, by setting the setting value of the time relay for the distance relay and the setting of the delay time of the oscilloscope device (time until the recording stop after the trigger), the circuit breaker is operated at the lower electric station. However, it is possible to reliably collect electrical data necessary for calculating the contact consumption of the circuit breaker.

本発明によれば、上位の電気所に設置したオシロ装置によって下位の電気所の遮断器の接触子の消耗量を演算するので、オシロ装置の設置数を低減でき、低コストで接触子の消耗量を管理することができる。また、通信ネットワークを用いて自動的に上位電気所から消耗量の演算に必要な電気データを収集することにより効率的な接触子の消耗量の管理が可能になる。   According to the present invention, since the consumption amount of the contact of the circuit breaker of the lower electric station is calculated by the oscilloscope device installed in the upper electric station, the number of installation of the oscilloscope apparatus can be reduced, and the consumption of the contactor can be reduced at a low cost. The amount can be managed. Further, it is possible to efficiently manage the amount of consumption of the contact by collecting the electrical data necessary for the calculation of the amount of consumption from the upper power station automatically using the communication network.

本発明の実施の形態による遮断器の接触子消耗量管理システムを含む送電系統のシステム構成図である。1 is a system configuration diagram of a power transmission system including a contact consumption control system for a circuit breaker according to an embodiment of the present invention. 図1の保護継電器13とオシロ装置2のブロック図である。It is a block diagram of the protection relay 13 and the oscilloscope device 2 of FIG. 図1の保護継電器13であって、距離リレーの整定状態の説明図である。It is the protective relay 13 of FIG. 1, Comprising: It is explanatory drawing of the setting state of a distance relay. 図1のオシロ装置2の記録停止処理の手順を示すフローチャートである。3 is a flowchart showing a procedure of a recording stop process of the oscilloscope 2 of FIG. 図1のコンピュータ装置4の機能ブロック図である。It is a functional block diagram of the computer apparatus 4 of FIG. 送電端の距離リレーと相手端の過電流リレーの時限協調の説明図である(その1)。It is explanatory drawing of the time cooperation of the distance relay of a power transmission end, and the overcurrent relay of the other party end (the 1). 送電端の距離リレーと相手端の過電流リレーの時限協調の説明図である(その2)。It is explanatory drawing of the time cooperation of the distance relay of a power transmission end, and the overcurrent relay of the other party end (the 2). 図5の接触子データファイル43のデータ構成図である。It is a data block diagram of the contactor data file 43 of FIG. 本発明の他の実施例による遮断電流演算処理を説明するための系統図である(事故例1)。It is a systematic diagram for demonstrating the interruption current calculation process by the other Example of this invention (accident example 1). 本発明の他の実施例による遮断電流演算処理を説明するための系統図である(事故例2)。It is a systematic diagram for demonstrating the interruption current calculation process by the other Example of this invention (accident example 2). 本発明の他の実施例による遮断電流演算処理を説明するための系統図である(事故例3)。It is a systematic diagram for demonstrating the interruption current calculation process by the other Example of this invention (accident example 3). 本発明の他の実施例による遮断電流演算処理を説明するための系統図である(事故例4)。It is a systematic diagram for demonstrating the interruption current calculation process by the other Example of this invention (accident example 4).

以下、本発明の実施の形態による遮断器の接触子消耗量管理システムについて、図面を参照しながら説明する。なお、以下に示す実施形態は本発明の遮断器の接触子消耗量管理システムにおける好適な具体例であり、技術的に好ましい種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。また、以下に示す実施形態における構成要素は適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組合せを含む様々なバリエーションが可能である。したがって、以下に示す実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。   Hereinafter, a contactor consumption management system for a circuit breaker according to an embodiment of the present invention will be described with reference to the drawings. The following embodiment is a preferred specific example of the contactor consumption management system for a circuit breaker according to the present invention, and may have various technically preferred limitations, but the technical scope of the present invention. Unless otherwise specified, the present invention is not limited to these embodiments. In addition, the constituent elements in the embodiments shown below can be appropriately replaced with existing constituent elements and the like, and various variations including combinations with other existing constituent elements are possible. Therefore, the description of the embodiment described below does not limit the contents of the invention described in the claims.

図1は、第1の実施の形態による遮断器の接触子消耗量管理システムの適用される電力系統の説明図である。ここで、遮断器の接触子消耗量管理システム1は、オシロ装置2、オシロ装置2の記憶しているデータを送信する伝送装置3、通信ネットワーク5を介してオシロ装置2から送られてくるデータを受信し、遮断器の接触子消耗量の演算を行うコンピュータ装置4で構成されている。   FIG. 1 is an explanatory diagram of a power system to which the contactor consumption management system for a circuit breaker according to the first embodiment is applied. The circuit breaker contact consumption management system 1 includes an oscilloscope device 2, a transmission device 3 that transmits data stored in the oscilloscope device 2, and data transmitted from the oscilloscope device 2 via the communication network 5. And the computer device 4 that calculates the contact consumption amount of the circuit breaker.

オシロ装置2は、送電線15によって繋がる発・変電所(以下、「電気所」という。)のうち、送電元の上位電気所10に備え付けられている。なお、上位電気所10には、PT,CTの電気データ収集手段12を介して収集した電気データを保護継電器13に入力し、保護継電器13は入力した電気データをもとに系統事故を検出して、遮断器11に対してトリップ信号を出力して遮断器11をトリップさせる。   The oscilloscope device 2 is provided in the upper power station 10 of the power transmission source among power generation / substations (hereinafter referred to as “electric station”) connected by the power transmission line 15. The upper electrical station 10 inputs the electrical data collected through the PT and CT electrical data collecting means 12 to the protective relay 13, and the protective relay 13 detects a system fault based on the inputted electrical data. Then, a trip signal is output to the circuit breaker 11 to trip the circuit breaker 11.

下位電気所20も、図示しないが、同様に電気データ収集手段を介して収集した電気データをもとに動作する保護継電器および遮断器を備えている。なお、各電気所に備えられている保護継電器、遮断器、電気データ収集手段については従来の技術を用いることができる。   Although not shown, the lower electrical station 20 also includes a protective relay and a circuit breaker that operate based on the electrical data collected through the electrical data collection unit. In addition, a conventional technique can be used for the protective relay, the circuit breaker, and the electrical data collection means provided in each electric station.

一般に継電方式は、パイロットリレー方式、回線選択リレー方式、距離リレー方式、地絡方向・地絡過電圧の各方式があるが、本実施の形態によるオシロ装置のデータ記録条件として、次の動作条件を用いる。   In general, the relay system includes a pilot relay system, a line selection relay system, a distance relay system, and a ground fault direction / ground fault overvoltage system. However, as the data recording conditions of the oscilloscope according to the present embodiment, the following operating conditions are used. Is used.

まず、直接接地系の短絡及び地絡については後備保護の距離リレーの動作条件を用いる。また、抵抗接地系については、短絡は距離リレー、地絡は地絡方向および地絡過電圧(地絡方向がない場合は、地絡過電圧のみとする。)の動作条件を用いる。   First, the operating conditions of a distance relay with back-end protection are used for a short circuit and a ground fault in a direct grounding system. As for the resistance grounding system, a short-circuit is used for the distance relay, and a ground fault is used for the ground fault direction and ground fault overvoltage (if there is no ground fault direction, only the ground fault overvoltage is used).

この理由は、パイロットリレーは、自端と相手端との間で故障情報の通信をしており、通信ができなくなると動作しなくなり、回線選択リレーは2回線並用状態で使用でき隣回線遮断器(CB)切の状態では動作しないからである。また、パイロット方式や、回線選択は主保護として採用され線路により異なるが、距離リレーは後備保護として主保護とセットで採用されるため、汎用性が高く、より多くの線路の事故解析が可能となるからである。   The reason for this is that the pilot relay communicates failure information between its own end and the other end, and when it becomes unable to communicate, it will not operate, and the line selection relay can be used in a state where two lines are used together. This is because it does not operate in the (CB) off state. In addition, pilot system and line selection are adopted as main protection and differ depending on the line, but distance relay is adopted as main protection and set as back-up protection, so it is highly versatile and can analyze accidents on more lines Because it becomes.

上述したように、送電線の後備保護としての距離リレーは、短絡についてはインピーダンス型が使用され、地絡については接地方式により異なるが、いずれの型のリレーを用いても区間を同定することができる。距離リレーは、図3に示すように、一般に事故点検出区間が1・2・3段の3つを有し、通常第1段は保護対象送電線のインピーダンスの80%前後の区間(区間1)を保護し、第2段は120%以上の区間(区間2)を保護し、第3段は250%以上の区間(区間3)を保護するように整定される。つまり第2段,第3段は、対向する電気所間の送電線を超えて相手電気所内およびその先の送電線も保護している。   As described above, the distance relay as a protection for the transmission line is an impedance type for short circuit, and the ground fault differs depending on the grounding method, but the section can be identified by using any type of relay. it can. As shown in FIG. 3, the distance relay generally has three fault point detection sections of 1, 2, and 3 stages, and usually the first stage is a section (section 1) around 80% of the impedance of the transmission line to be protected. ), The second stage is set to protect 120% or more section (section 2), and the third stage is set to protect 250% or more section (section 3). In other words, the second stage and the third stage also protect the transmission line between the opposite electric stations and beyond the transmission line between the opposing electric stations.

通常、相手電気所(下位電気所)内の事故では、相手電気所の構内保護リレーが先行動作し相手電気所側遮断器を遮断し、送電端(上位電気所)の送電線遮断器は動作しない。これは、後備保護リレーのトリップ回路にタイマが設けられており、タイマのタイムアップ後にトリップ信号を出すようになっているからである。   Normally, in an accident at the partner electrical station (lower electrical station), the premises protection relay of the partner electrical station operates in advance to shut off the counterpart circuit breaker, and the transmission line breaker at the power transmission end (upper power station) operates. do not do. This is because a timer is provided in the trip circuit of the backup protection relay, and a trip signal is output after the timer expires.

しかし、保護リレーは、トリップ信号は出力しないものの事故発生時から動作している。本発明は、この保護リレーの動作信号を用いて、オシロ装置によって電圧、電流などの電気データを記憶するようにしたことが特徴である。   However, the protection relay has been operating since the occurrence of an accident, although no trip signal is output. The present invention is characterized in that electrical data such as voltage and current is stored by the oscilloscope device using the operation signal of the protection relay.

たとえば、短絡距離リレーは、図2に示すように、区間ごとに整定された短絡距離リレー(44S)31a〜31cの出力(この出力を「動作信号」という。)が、各短絡距離リレー用の時限リレー(44ST)32a〜32cに入力、これら時限リレー32a〜32cの出力はOR回路33に入力され、各出力のOR条件で遮断器のトリップ信号が出力されている。通常、このトリップ信号をオシロ装置2のトリガとして用いているが、本実施の形態では、下位電気所を含む遠方の区間(区間2,3)の動作信号もオシロ装置2へ渡し、これらの動作信号もオシロ装置2のトリガとして用いる。少なくとも区間2,3の動作信号をトリガとして用いれば足りるが、区間1の動作信号を含めても良い。   For example, in the short-circuit distance relay, as shown in FIG. 2, the outputs of the short-circuit distance relays (44S) 31a to 31c set for each section (this output is referred to as “operation signal”) are used for each short-circuit distance relay. Inputs to the time relays (44ST) 32a to 32c, and outputs of these time relays 32a to 32c are input to the OR circuit 33, and a trip signal for the circuit breaker is output under the OR condition of each output. Normally, this trip signal is used as a trigger for the oscilloscope 2, but in this embodiment, an operation signal for a distant section (sections 2 and 3) including the lower electrical station is also passed to the oscilloscope 2 to perform these operations. The signal is also used as a trigger for the oscilloscope 2. It is sufficient to use at least the operation signals in the sections 2 and 3 as a trigger, but the operation signal in the section 1 may be included.

(オシロ装置の構成)
本実施の形態によるオシロ装置2の構成を図2に示す。
この図において、オシロ装置2は、常時計測を行い、一定時間記憶しておりトリガ発生時設定された漸進時間から記録を開始し設定された遅延時間の経過により記録停止指令を出力する停止タイマ23、夫々の区間と、該区間の異常に起因するトリガ検出後に電気信号の記録を停止するまでの時間である遅延時間とを関連付けて保存する遅延時間テーブル24、トリガ検出後、遅延時間テーブル24を参照して動作信号を出力した区間に対応する遅延時間を停止タイマ23に設定する遅延時間設定手段25、停止タイマ23から記録停止指令を受信するまで電気信号をメモリ循環式で記録する電気信号記録手段22、トリガの要因となった各信号(以下、「トリガ種別」という。)を入力して記録するデジタル入力(DI)手段26、電圧・電流などの電気信号を入力するアナログ入力(AI)手段27、アナログ値をデジタル値に変換するA/D変換手段28を含んでいる。
(Configuration of oscilloscope)
The configuration of the oscilloscope 2 according to the present embodiment is shown in FIG.
In this figure, the oscilloscope 2 always measures, stores for a fixed time, starts recording from the progressive time set when the trigger is generated, and outputs a recording stop command when the set delay time elapses. , A delay time table 24 for storing each interval and a delay time that is a time until recording of an electric signal is stopped after detecting a trigger due to an abnormality in the interval, and a delay time table 24 after detecting the trigger. The delay time setting means 25 for setting the delay time corresponding to the section in which the operation signal is output with reference to the stop timer 23, and the electric signal recording for recording the electric signal in a memory circulation manner until the recording stop command is received from the stop timer 23 Means 22, digital input (DI) means 26 for inputting and recording each signal that causes the trigger (hereinafter referred to as “trigger type”), voltage / voltage Analog input (AI) means 27 for inputting an electrical signal, such as a flow, and includes an A / D converter 28 for converting the analog value into a digital value.

また、保護継電器13の区間は、図3のように整定されており、この場合の遅延時間テーブルに保存されている各区間の遅延時間は、その区間の時限リレーの整定値+cとなっている。また、トリップ信号に対する遅延時間についても遅延時間cとなっている。ここで、cは、予め設定される正の値である。たとえば、第2段距離リレー用の時限リレー32bがB(秒)に整定されている場合、遅延時間テーブル24の区間2の遅延時間は、B+c(秒)になる。なお、cは、トリガ種別によって異なる値としても良い。   Further, the section of the protective relay 13 is set as shown in FIG. 3, and the delay time of each section stored in the delay time table in this case is the set value + c of the time relay of that section. . The delay time for the trip signal is also the delay time c. Here, c is a positive value set in advance. For example, when the time relay 32b for the second stage distance relay is set to B (seconds), the delay time of the section 2 of the delay time table 24 is B + c (seconds). Note that c may be a different value depending on the trigger type.

次に、図4を用いて、オシロ装置2の記録停止処理について説明する。
OR回路29bからトリガ信号が出力されると(S101)、遅延時間設定手段25は、DI手段26からそのトリガ種別(どの区間の動作信号か、あるいはトリップ信号か)を読み出し(S102)、そのトリガ種別に対応する遅延時間を遅延時間テーブル24から読み出して、停止タイマ23にセットし、停止タイマ23を起動する(S103)。これにより停止タイマ23は、初期値として設定された遅延時間の値からデクリメントされ、タイマ値が零、すなわち設定された遅延時間の経過後(S104で「YES」)、電気信号記録手段22に対して記録停止指令を出力する。電気信号記録手段22は、電源投入により、入力した電気信号をAI手段27とA/D変換手段28によってデジタル信号に変換して、メモリ循環形式で常に記録しているが、停止タイマ23から、記録停止指令を受け取ると、記録を停止する(S105)。
Next, the recording stop process of the oscilloscope 2 will be described with reference to FIG.
When a trigger signal is output from the OR circuit 29b (S101), the delay time setting means 25 reads the trigger type (which section is the operation signal or trip signal) from the DI means 26 (S102), and the trigger The delay time corresponding to the type is read from the delay time table 24, set in the stop timer 23, and the stop timer 23 is started (S103). As a result, the stop timer 23 is decremented from the delay time value set as the initial value, and the timer value is zero, that is, after the set delay time has elapsed ("YES" in S104), the electric signal recording means 22 is Output a recording stop command. The electric signal recording means 22 converts the inputted electric signal into a digital signal by the AI means 27 and the A / D conversion means 28 when the power is turned on, and always records it in a memory circulation format. When the recording stop command is received, the recording is stopped (S105).

なお、電気信号の波形やDI手段26を介して入力した信号やトリガ信号の発生時刻は、電波時計21によって時刻付けされて、電気信号記録手段22に記録される。   It should be noted that the waveform of the electric signal, the signal input via the DI means 26 and the generation time of the trigger signal are timed by the radio clock 21 and recorded in the electric signal recording means 22.

また、停止タイマ23が遅延時間の経過中にさらにトリガ信号が発生した場合は(S104で「NO」,S106で「YES」)、遅延時間設定手段25は、トリガ種別に対応する遅延時間を遅延時間テーブル24から抽出し(S107)、この抽出した遅延時間と現在の停止タイマの値(即ち停止までの残り時間)を比較して、抽出した遅延時間の方が大きい場合は、抽出した遅延時間を停止タイマ23にセットして、起動をかける(S110)。これにより、複数の要因によってトリガが発生した場合でも、その要因に必要な時間分の電気信号を記録することができる。なお、図4のフローチャートには記載していないが、同時に複数の要因によってトリガが発生した場合は、その要因に対応する遅延時間のうち、大きい方を用いるようにすると良い。   If a further trigger signal is generated while the delay time is elapsed by the stop timer 23 (“NO” in S104, “YES” in S106), the delay time setting means 25 delays the delay time corresponding to the trigger type. The extracted delay time is extracted from the time table 24 (S107), and the extracted delay time is compared with the current stop timer value (that is, the remaining time until the stop). Is set in the stop timer 23 and activated (S110). Thereby, even when a trigger occurs due to a plurality of factors, it is possible to record an electrical signal for a time required for the factors. Although not described in the flowchart of FIG. 4, when a trigger is generated simultaneously due to a plurality of factors, it is preferable to use the larger delay time corresponding to the factors.

以上のごとく、トリガ種別とトリガの時刻も記録し、また、トリガ後の記録時間は、それぞれの動作信号に対応する時限リレー(タイマ)の時定数よりも長く設定されているので、相手電気所内の構内事故でも、送電端保護リレーのオシロ装置の記録データから遮断電流を把握することができる。   As described above, the trigger type and trigger time are recorded, and the recording time after the trigger is set longer than the time constant of the time relay (timer) corresponding to each operation signal. Even in a local accident, the interruption current can be grasped from the recorded data of the oscilloscope device of the power transmission end protection relay.

(コンピュータ装置の構成)
図5は、コンピュータ装置4の機能ブロック図である。
コンピュータ装置4は、通信ネットワークと繋がり、伝送装置3から送られてくるデータを受信する伝送部60と、受信したデータをもとに遮断器の接触子消耗量の演算処理を実行する演算部50と、データを記憶する記憶部40と、を有している。
(Configuration of computer device)
FIG. 5 is a functional block diagram of the computer apparatus 4.
The computer device 4 is connected to a communication network, and receives a data transmission unit 60 that receives data transmitted from the transmission device 3, and a calculation unit 50 that performs processing for calculating the contact consumption of the circuit breaker based on the received data. And a storage unit 40 for storing data.

また、演算部50は、伝送装置3から送られてくるデータを受信するデータ受信手段51と、受信したデータをもとに動作した遮断器を判定する動作遮断器判定手段52と、オシロ装置2で採取した電気データをもとに遮断電流を演算する遮断電流演算手段53と、動作した遮断器ごとにその遮断電流から当該遮断器の接触子の消耗量を演算する接触子消耗量演算手段54と、を備えている。   In addition, the calculation unit 50 includes a data receiving unit 51 that receives data transmitted from the transmission device 3, an operation circuit breaker determining unit 52 that determines an operating circuit breaker based on the received data, and the oscilloscope 2. Breaking current calculating means 53 for calculating the breaking current based on the electrical data collected in step (b), and contact consumption amount calculating means 54 for calculating the amount of contact consumption of the breaker from the breaking current for each activated breaker. And.

次に、コンピュータ装置4の動作を説明する。
データ受信手段51は、伝送部60を介して伝送装置3から送られてきたオシロ装置2の記録データを受信すると、記憶部40のオシロデータファイル41へ保存する。
Next, the operation of the computer device 4 will be described.
When the data receiving unit 51 receives the recording data of the oscilloscope device 2 sent from the transmission device 3 via the transmission unit 60, the data reception unit 51 stores it in the oscilloscope data file 41 of the storage unit 40.

(動作遮断器判定処理)
次に動作遮断器判定手段52は、データ受信手段51の受信完了または入力部61からの起動要求によって起動すると、自回線CBトリップしたか否かを判定し、トリップしていなければ、次に2段、3段の動作信号か3段だけの動作信号が発生したか否かを判定する。まず、トリガ後、2段の動作があり、2段タイマー+機器動作時間内に事故電流が解消しておれば、2段区間内で相手端以降の、遮断器が動作したものと判定する。そして、2段の動作信号が無く、3段の動作信号が発生して3段タイマー+機器動作時間内に事故電流が解消していれば、3段区間内の遮断器が動作したものと判定する。
(Operation breaker judgment processing)
Next, the operation breaker determining means 52 determines whether or not the own line CB has tripped when the reception of the data receiving means 51 is completed or is activated by the activation request from the input unit 61. It is determined whether an operation signal of three stages or only three stages has been generated. First, after the trigger, there is a two-stage operation, and if the accident current has been resolved within the two-stage timer + device operation time, it is determined that the circuit breaker after the counterpart end has operated within the two-stage section. If there is no 2-stage operation signal and a 3-stage operation signal is generated and the accident current has been resolved within the 3-stage timer + device operation time, it is determined that the breaker in the 3-stage section has been activated. To do.

なお、事故後、オシロ設置端以外の遮断器の動作状態は、作業員によって確認されるため、入力部61を介して、動作した遮断器の情報を入力するようにしても良い。   In addition, since the operation state of the circuit breakers other than the oscilloscope installation end is confirmed by the operator after the accident, information on the operated circuit breaker may be input via the input unit 61.

(オシロデータからの動作遮断器判定処理)
特開2000−227453号公報など従来技術の事故点標定技術を用いて、オシロデータから動作遮断器を判定することができる。以下、動作遮断器判定手段52の判定手順について説明する。
(Operation breaker judgment processing from oscilloscope data)
The operation breaker can be determined from the oscilloscope data by using a conventional accident point locating technique such as JP-A-2000-227453. Hereinafter, the determination procedure of the operation breaker determination means 52 will be described.

まず、送電端のオシロデータにより、事故電流、事故点標定(インピーダンス計算)、事故継続時間により事故点を判定する。   First, the fault point is determined by the fault current, fault point location (impedance calculation), and fault duration based on the oscilloscope data at the power transmission end.

図6は、送電端の距離リレーと、相手端受電側の過電流リレー(OC−A)と相手端送電側の過電流リレー(OC−B)の時限協調を表した図である。図6に示すようなリレーの時限協調において、x点で事故が発生した場合、送電端のオシロデータから故障点標定により、a点のインピーダンス(%Z)が演算される。   FIG. 6 is a diagram showing the time cooperation of the distance relay at the power transmission end, the overcurrent relay (OC-A) on the counterpart power receiving side, and the overcurrent relay (OC-B) on the counterpart power transmission side. In the time-dependent coordination of relays as shown in FIG. 6, when an accident occurs at point x, the impedance (% Z) at point a is calculated from the oscilloscope data at the power transmission end by fault location.

また送電端のオシロデータから、たとえば電圧が所定値以下になっている時間によって、故障継続時間がわかる。この故障継続時間からトリップ信号出力後に経由する補助リレー(図示せず)と遮断器の動作時間を減算することによりリレーの動作時間bを算出できる。   Further, from the oscilloscope data at the power transmission end, for example, the failure continuation time can be determined by the time during which the voltage is not more than a predetermined value. The operation time b of the relay can be calculated by subtracting the operation time of the auxiliary relay (not shown) and the circuit breaker that are passed after the trip signal is output from the failure duration time.

送電端のオシロデータの故障電流を用いて構内事故の故障電流を算出し、この故障電流とリレー整定値からリレーの動作時間がわかる。故障電流によるリレーの動作時間と故障継続から求めた動作時間bを比較することで動作したリレーを特定する。これにより、構内事故でもどの遮断器で遮断したかを推定することができる。   The fault current of the premises accident is calculated using the fault current of the oscilloscope data at the transmission end, and the relay operating time can be determined from this fault current and the relay set value. The relay that has been operated is identified by comparing the operation time of the relay due to the failure current with the operation time b obtained from the failure continuation. As a result, it is possible to estimate which circuit breaker has shut off even in a premises accident.

なお、図6の時限協調でOC−Bが動作しトリップしているとすると、故障継続時間はbよりも短くなるはずである。しかし、オシロデータからの故障継続時間がbということになればOC−BではないためOC−Aでの遮断と判断することができる。   Note that if OC-B is operating and tripping with timed coordination in FIG. 6, the failure duration should be shorter than b. However, if the failure continuation time from the oscilloscope data is b, it is not OC-B, and it can be determined that the blockage is at OC-A.

また、図7のようなy点で事故が発生した場合、OC−A,OC−Bとも動作しトリップすることになるが、事故点はより下位部分の遮断器となるが遮断電流を遮断したのは、どちらと特定できないため、どちらも同じ電流を切ったこととする。   In addition, when an accident occurs at point y as shown in FIG. 7, both OC-A and OC-B will trip and trip, but the fault point will be a breaker at the lower part but cut off the breaking current. Since it is not possible to specify either, it is assumed that both cut off the same current.

(接触子消耗量演算処理)
接触子の消耗量の把握は遮断電流の大きさで決まるため遮断時の電流がわかればよい。
送電線保護リレーなので自回線送電線事故の遮断電流は、自回線リレー動作+自回線CB動作の条件で把握できる。
(Contact consumption calculation processing)
Since the amount of contact consumption is determined by the magnitude of the breaking current, it is only necessary to know the current when breaking.
Since it is a transmission line protection relay, the cutoff current of the own line transmission line accident can be grasped by the condition of own line relay operation + own line CB operation.

相手端(受電側電気所)の構内事故では、相手端の送電線リレーは動作しないため、母線やTr1次側事故時にCBが動作してもリレー動作がないため相手端送電線リレーでは、事故電流が記憶されない。   In a premises accident at the other end (power receiving side power station), the transmission line relay at the other end does not operate, so there is no relay operation even if the CB operates at the time of the bus or Tr primary side accident. Current is not memorized.

しかし送電端(電源側)では、送電線リレーが動作して、オシロ装置2は、事故時のデータを記憶しており、このオシロデータで構内事故の遮断電流を把握することができる。
なお、接触子消耗量の電流データは、遮断器の遮断電流、すなわち遮断直前の電流とする。
However, at the power transmission end (power supply side), the power transmission line relay operates and the oscilloscope device 2 stores data at the time of the accident, and the oscilloscope data can be used to grasp the interruption current of the premises accident.
Note that the current data of the contact consumption is the breaking current of the circuit breaker, that is, the current immediately before breaking.

動作遮断器判定手段52は、動作した遮断器を判定すると、図8に示す接触子データファイル中の遮断器の動作回数をインクリメントする。次に、接触子消耗量演算手段54は、オシロデータから遮断電流を演算し、接触子データファイル43に保存する。
そして、この最大電流を遮断電流として、次の式で消耗量を計算する。消耗量の計算は、従来の技術による。(たとえば、特開2007−149458号公報参照)
なお、次のように、消耗量を表す相対量として管理するようにしても良い。
When the operation circuit breaker determination means 52 determines the operated circuit breaker, the operation circuit breaker determination means 52 increments the number of operation of the circuit breaker in the contact data file shown in FIG. Next, the contact consumption amount calculating means 54 calculates a cutoff current from the oscilloscope data and stores it in the contact data file 43.
Then, the consumption amount is calculated by the following equation using the maximum current as the cutoff current. The amount of consumption is calculated according to conventional techniques. (For example, refer to JP 2007-149458 A)
In addition, you may make it manage as a relative amount showing consumption amount as follows.

Vを消耗量、Iを遮断電流、tをアーク時間、α,βを接触子の材料で決まる係数としたとき、消耗量Vを次の式で表す。
V=α・Iβ・t
When V is a consumption amount, I is a cut-off current, t is an arc time, and α and β are coefficients determined by the contact material, the consumption amount V is expressed by the following equation.
V = α · I β · t

なお、α,tを定数とし、n回遮断した場合の消耗量Vと遮断電流の関係式から、消耗量を表す相対量Aを次の式で求めることができる。
A=V/(α・t)=Iβ・n
It should be noted that α and t are constants, and a relative amount A representing the amount of consumption can be obtained from the following equation from the relational expression between the amount of consumption V and the interruption current when the circuit is interrupted n times.
A = V / (α · t) = I β · n

この消耗量を表す相対量Aで遮断器接触子の消耗量を管理するようにしても良い。
図8に接触子データファイルの例を示す。定格遮断電流を31.5kA、定格遮断電流規定回数を10回、メーカ設定値である定数βを1.2としたときの表である。この表において、遮断電流は、オシロ装置2の記録データから求めるが、記録データが無い場合は、該当年度計算の最大値を用いるようにしても良い。
The consumption amount of the circuit breaker contact may be managed by the relative amount A representing the consumption amount.
FIG. 8 shows an example of a contactor data file. It is a table when the rated breaking current is 31.5 kA, the rated breaking current is defined as 10 times, and the constant β that is a manufacturer setting value is 1.2. In this table, the cut-off current is obtained from the record data of the oscilloscope 2, but when there is no record data, the maximum value calculated in the corresponding year may be used.

(他の実施例による遮断電流演算処理)
次に、他の実施例として、下記の例による平行2回線の場合の判定処理について説明する。この中で説明する故障点標定はすべてオシロデータより演算するものとする。これらの判定ルールは系統構成ごとに、判定ルールを定義して判定ルールファイル42に保存しておくようにしても良い。
(Cutting current calculation processing according to another embodiment)
Next, as another embodiment, a determination process in the case of two parallel lines according to the following example will be described. It is assumed that the fault location described in this section is all calculated from oscilloscope data. These determination rules may be defined and stored in the determination rule file 42 for each system configuration.

(事故例1)
図9に示す系統において、AB線1Lで事故が起こった場合は、事故点がどこでも、A変、B変、C変の線路リレーが動作し遮断器A−1,B−1,C−1が動作し遮断するので各遮断器の遮断電流はオシロデータよりC変迂回電流I3を次式で算出する。
I3={I2・(Z2+Z5+Z4)−I1・Z1}/(Z3+Z4+Z5)
(Accident example 1)
In the system shown in FIG. 9, when an accident occurs on the AB line 1L, the line relays A, B, and C change and the circuit breakers A-1, B-1, and C-1 occur at any point of the accident. Is operated and shuts off, the breaking current of each breaker is calculated from the oscilloscope data by calculating the C variable bypass current I3 by the following equation.
I3 = {I2 · (Z2 + Z5 + Z4) −I1 · Z1} / (Z3 + Z4 + Z5)

ここで、Z1はAB線1LのA変からC変分岐点までのインピーダンス、Z2はAB線2LのA変からC変分岐点までのインピーダンス、Z3はAB線1LのC変分岐点から事故点までのインピーダンス、Z4はAB線1Lの事故点からB変までのインピーダンス、Z5はAB線2Lの事故点からB変までのインピーダンス、Z6はAB線1LのC変分岐点からC変までのインピーダンス、Z7はAB線2LのC変分岐点からC変までのインピーダンスである。   Here, Z1 is the impedance from the A change of the AB line 1L to the C change point, Z2 is the impedance from the A change of the AB line 2L to the C change point, and Z3 is the accident point from the C change point of the AB line 1L. , Z4 is the impedance from the accident point of AB line 1L to B change, Z5 is the impedance from the accident point of AB line 2L to B change, Z6 is the impedance from C change branch point to C change of AB line 1L , Z7 is the impedance from the C turning point of the AB line 2L to the C turning point.

A変A−1の遮断電流I1は1Lオシロデータの電流、B変B−1の遮断電流はA変2Lオシロデータの電流I2からI3を引いた値で(I2−I3)、C変C−1の遮断電流はI3となる。   The cut-off current I1 of the A change A-1 is the current of 1L oscillodata, the cut-off current of the B change B-1 is the value obtained by subtracting I3 from the current I2 of the A change 2L oscillodata (I2-I3), and the C change C- The cut-off current of 1 is I3.

(事故例2)
図10に示す系統でB変母線事故が発生した場合、A変が電源端となりA変AB線1L,2L両方のリレーが動作するが、通常B変構内保護OCリレーにより遮断器B−1、B−2が先行遮断し、A変、C変の遮断器は動作しない。
(Accident example 2)
When a B-bus fault occurs in the system shown in FIG. 10, the A-change becomes the power supply terminal and both A-change AB lines 1L and 2L operate, but normally the breaker B-1, B-2 is shut off in advance, and the A and C breakers do not operate.

通常AB線1L,2Lとも線路インピーダンスに差がほとんどなくC変分岐線もインピーダンスの差がほとんど無いため、C変には迂回する電流がほとんど流れずC変線路リレーは動作しない。   Normally, there is almost no difference in line impedance between the AB lines 1L and 2L, and there is almost no difference in impedance between the C variable branch lines, so that almost no detour current flows through the C change and the C variable line relay does not operate.

C変線路リレー動作なしでは、A変AB線1Lオシロデータの電流がB−1遮断器の遮断電流となり、A変AB線2Lオシロデータの電流がB−2遮断器の遮断電流となる。   Without the C variable line relay operation, the current of the A-modified AB line 1L oscilloscope data becomes the breaking current of the B-1 circuit breaker, and the current of the A-modified AB line 2L oscilloscope data becomes the breaking current of the B-2 circuit breaker.

仮にAB線1L,2Lのインピーダンスに差がありC変を迂回した電流があれば事故時の線路インピーダンスと、A変オシロデータよりC変迂回電流I3を求めB変B−1、B−2の遮断電流を求める。   If there is a difference in the impedance of the AB lines 1L and 2L and there is a current that bypasses the C change, the C change bypass current I3 is obtained from the line impedance at the time of the accident and the A change oscilloscope data, and B changes B-1 and B-2. Find the breaking current.

・I3がAB線1LからAB線2L方向の場合は、次の式によってI3を算出する。
I3=(I2・Z2−I1・Z1)/(Z5+Z6)
このとき、遮断器B−1の遮断電流はI1−I3となり、遮断器B−2の遮断電流はI2+I3となる。
When I3 is in the direction from AB line 1L to AB line 2L, I3 is calculated by the following equation.
I3 = (I2 · Z2−I1 · Z1) / (Z5 + Z6)
At this time, the breaking current of the breaker B-1 is I1-I3, and the breaking current of the breaker B-2 is I2 + I3.

・I3がAB線2LからAB線1L方向の場合は、次の式によってI3を算出する。
I3=(I1・Z1−I2・Z2)/(Z5+Z6)
このとき、遮断器B−1の遮断電流はI1+I3となり、遮断器B−2の遮断電流は(I2−I3)となる。
When I3 is in the direction from AB line 2L to AB line 1L, I3 is calculated by the following equation.
I3 = (I1 · Z1−I2 · Z2) / (Z5 + Z6)
At this time, the breaking current of the breaker B-1 is I1 + I3, and the breaking current of the breaker B-2 is (I2-I3).

(事故例3)
図11(a)の系統において、B変母線事故が発生した場合、A変,C発が電源端となりA変AB線1L,2Lはオシロが設置されデータはあるがC発はオシロが設置されていない。この場合は、以下のように遮断器B−2の遮断電流を推定することができる。
(Accident example 3)
In the system shown in FIG. 11 (a), when a B change bus accident occurs, the A change and the C departure are the power supply terminals, and the A change AB lines 1L and 2L are equipped with the oscilloscope and there is data, but the C departure is the oscilloscope. Not. In this case, the breaking current of the circuit breaker B-2 can be estimated as follows.

図11(b)において、AB線1LのインピーダンスをZ1、AB線2LのA変からC発分岐までのインピーダンスをZ2、AB線2LのC発分岐からB変までインピーダンスをZ3、AB線1Lの電流をI1、AB線2Lの電流をI2、C発からの電流をI3としたとき、インピーダンスZ1,Z2,Z3は線路インピーダンスで既知、電流I1と電流I2は線路リレー動作で電流がわかるため、電流I3が解れば遮断器B−2の遮断電流が求まることになる。電流I3は次の式で算出することができる。
I3={I1・Z1−I2・(Z2+Z3)}/Z3
そして、電流I1は遮断器B−1の遮断電流であり、電流I2+I3は遮断器B−2の遮断電流になる。
In FIG. 11 (b), the impedance of the AB line 1L is Z1, the impedance from the A change of the AB line 2L to the C branch is Z2, the impedance from the C branch of the AB line 2L to the B change is Z3, and the AB line 1L When the current is I1, the current of the AB line 2L is I2, and the current from the C source is I3, the impedances Z1, Z2, and Z3 are known by the line impedance, and the currents I1 and I2 are known by the line relay operation. If the current I3 is understood, the breaking current of the breaker B-2 is obtained. The current I3 can be calculated by the following formula.
I3 = {I1 · Z1−I2 · (Z2 + Z3)} / Z3
The current I1 is the breaking current of the breaker B-1, and the current I2 + I3 is the breaking current of the breaker B-2.

B変構内事故の場合で変圧器内部事故以外は、A変からのインピーダンスは線路インピーダンスと等しい。しかしながら、図11(c)に示すようにC発から故障電流I2が流れるとA変のリレーは分流効果によりさらに見かけ上インピーダンスが大きくなり遠方の事故と判定する。この分流効果により見かけ上大きくなったインピーダンスから電流I2を求めれば、電流I1と電流I2の和が遮断器B−2の遮断電流になる。   In the case of an accident in the B-transformation, the impedance from the A-transformation is equal to the line impedance except for an accident in the transformer. However, as shown in FIG. 11 (c), when a fault current I2 flows from the C source, the A-variable relay has a further apparent increase in impedance due to the shunt effect, and is determined to be a distant accident. If the current I2 is obtained from the impedance that is apparently increased by the shunt effect, the sum of the current I1 and the current I2 becomes the breaking current of the breaker B-2.

すなわち、ZAをA変リレーが見るインピーダンスとすると、分流効果の式は次のようになる。
ZA=Z2+Z3・{(I1+I2)/I1}
∴I2={ZA―(Z2+Z3)}・I1/Z3
That is, assuming that ZA is the impedance that the A-variable relay sees, the equation for the shunt effect is as follows.
ZA = Z2 + Z3 · {(I1 + I2) / I1}
∴I2 = {ZA- (Z2 + Z3)} · I1 / Z3

なお、電流I1は、A変の送電線オシロデータよりわかるため計算不要であり、電流I1+I2が遮断器B−2の遮断電流となる。   The current I1 is not required to be calculated because it is known from the A-transform transmission line oscilloscope data, and the current I1 + I2 is the breaking current of the circuit breaker B-2.

また、C発分岐〜B変間の事故では、C発が発電中では事故点までのインピーダンスが分流効果により不明となる。C発が自社施設なら発電機のリアクタンスも把握できておりC発〜分岐までのインピーダンスも把握できる。A変の背後電源のインピーダンスがわかれば、A変から流れる故障電流と同じとなるインピーダンスを求められ事故点とC発からの故障電流を求めることができる。   Further, in the accident between the C branch and the B change, the impedance up to the accident point becomes unknown due to the shunt effect while the C generator is generating power. If the C generator is in-house, the reactance of the generator can be grasped, and the impedance from the C departure to the branch can also be grasped. If the impedance of the power source behind the A change is known, the impedance that is the same as the fault current flowing from the A change can be obtained, and the fault current from the fault point and the C source can be obtained.

事故時のA変の電圧は事故点のインピーダンスと事故点からA変までの線路インピーダンスできまる。A変の後ろに大きな発電機があるとしこの発電機と発電機からA変までにもインピーダンスがありこれらを背後電源とよぶが背後電源は事故発生前の健全電圧で故障電流がA変まで流れる間の電圧降下でA変電圧が低くなる。   The A-change voltage at the time of the accident is determined by the impedance at the accident point and the line impedance from the accident point to the A-change. If there is a large generator behind the A change, there is also an impedance from this generator and the generator to the A change, and these are called back power supplies, but the back power supply is a healthy voltage before the accident occurs and the fault current flows to the A change. The A variable voltage becomes lower due to the voltage drop.

いま、事故発生直前の電圧をVB、事故時の電圧をVΦS、A変リレーが見るインピーダンスをZA、A変背後電源インピーダンスをZGAとしたとき、次の式でA変背後電源インピーダンスZGAを算出することができる。
ZGA=(VB/VΦS)・ZA−ZA
Now, assuming that the voltage immediately before the accident is VB, the voltage at the time of accident is VΦS, the impedance viewed by the A-variable relay is ZA, and the A-variable power supply impedance is ZGA, the A-variable power supply impedance ZGA is calculated by the following equation. be able to.
ZGA = (VB / VΦS) · ZA-ZA

このA変背後電源インピーダンスが解れば、分岐までの全てのインピーダンスがわかっており、後は分岐より先で事故時にA変に流れた故障電流と同じになるインピーダンスを求めればよい。   Once this A-variable power supply impedance is known, all the impedances up to the branch are known, and after that, an impedance that is the same as the fault current that has flowed into the A-change at the time of the accident after the branch may be obtained.

ただし事故点のインピーダンスが大きいと線路上の正確な位置が不明となるため、計算で求められたC発からの故障電流で、インピーダンスZAの分流効果分を補正して事故点の位置を補正する。   However, if the impedance at the fault point is large, the exact position on the track becomes unclear, so the fault current from the C source obtained by calculation is used to correct the shunt effect of the impedance ZA and correct the position of the fault point. .

・C発の送電線遮断器の遮断電流の把握
C発分岐からB変側の事故は上記の方法で故障電流を求める。C発分岐からA変側では、分流効果はないため、A変からの標定距離からC発から事故点までのインピーダンスが求まりC発からの故障電流が求まる。
・ Understanding the breaking current of the C circuit breaker: For the accident on the B change side from the C branch, calculate the fault current using the above method. Since there is no shunting effect on the A change side from the C departure branch, the impedance from the C departure to the fault point is obtained from the orientation distance from the A change, and the fault current from the C departure is obtained.

C発分岐線の事故では、A変からでは、B変側かC分岐線かの判定はできない。このような時は、発雷中なら雷監視装置を活用し、事故点がどちらか特定する等、多角的解析によりどちらの線路かを判定する。   In the case of the C departure branch line, it cannot be determined from the A change whether the B change side or the C branch line. In such a case, if a lightning is occurring, a lightning monitoring device is used to determine which point is the accident point.

中小水力発電所では、故障電流が小さく短絡リレーの動作よりも、A変送電線リレー遮断後に単独運転防止により発電機並列遮断器が先行遮断した後に、全停遮断により送電線遮断器が遮断することがあり、このとき送電線遮断器は無負荷で遮断しているので状変記録等をよく確認すると良い。   In small and medium-sized hydropower plants, the fault current is small and the power line breaker is cut off by shutting down all after the generator parallel breaker is cut off first by preventing single operation after turning off the A-transformed transmission line relay rather than the operation of the short circuit relay. At this time, the power line breaker is shut off with no load, so it is better to check the state change record.

また、送電線事故時の遮断電流は、定格に比べかなり小さいことが多く、この場合外部事故の遮断については考慮しなくても接触子の消耗量把握には影響しないことがい多いので、C発の送電線遮断器は構内事故の電流だけを管理するのも簡素化できて良い。   In addition, the interruption current at the time of a power line accident is often much smaller than the rating, and in this case, there is often no influence on grasping the amount of contact consumption even if the interruption of an external accident is not considered. The power line breaker of can be simplified to manage only the current of the premises accident.

(事故例4)
図12に示す系統において、B変の変圧器1次事故が発生した場合、A変が電源端となりA変AB線1、2L両方のリレーが動作するが、通常B変の変圧器保護OCリレーにより遮断器B−3が先行遮断しA変、C変の遮断器は動作しない。
(Accident example 4)
In the system shown in FIG. 12, when a B-transformer primary accident occurs, the A-transformation becomes the power supply terminal and both A-transform AB lines 1 and 2L operate, but the normal B-transformer protection OC relay As a result, the breaker B-3 is cut off in advance, and the breakers A and C do not operate.

このとき、A変AB線1Lリレーの電流とA変AB線2Lリレー電流の和が遮断器B−3の遮断電流となる。   At this time, the sum of the current of the A-modified AB line 1L relay and the current of the A-modified AB line 2L relay becomes the breaking current of the circuit breaker B-3.

(構内事故判定)
電気所構内向けリレーは、反限時が多く短絡地絡事故時、故障点抵抗が大きいと事故電流が充分に流れないため動作が遅くなり送電端がトリップすることがある。
(Internal accident judgment)
In relays for electric premises, there are many infinite periods of time, and in the event of a short-circuit ground fault, if the fault point resistance is large, the fault current does not flow sufficiently, so the operation may slow down and the power transmission end may trip.

図11のような2回線平行の送電線の1回線分岐では、電気所構内事故でも事故点を分岐付近と標定するため構内か分岐線の事故かを区別するのが困難である。このため、送電端の事故データより、構内事故時に充分動作する電流が流れたか判定し構内事故か判定する。   In the case of one-line branching of two parallel transmission lines as shown in FIG. 11, it is difficult to distinguish between an accident on a premises or a branch line because the accident point is located near the branch even in an electric premises accident. For this reason, it is determined from the accident data at the power transmission end whether or not a sufficient operating current has flowed at the time of the campus accident.

すなわち、遮断電流が予め定めた一定値以上で、かつ送電端がトリップした場合は、構内事故ではないと判定する。遮断電流が一定値未満で、かつ送電端トリップなしの場合は、構内事故と判定する。また、遮断電流が一定値未満で、かつ送電端トリップの場合は、構内事故の可能性ありと判定する。   That is, when the breaking current is equal to or greater than a predetermined value and the power transmission end is tripped, it is determined that there is no on-site accident. If the cut-off current is less than a certain value and there is no transmission end trip, it is determined that there is a local accident. Also, if the breaking current is less than a certain value and the power transmission end trip occurs, it is determined that there is a possibility of a local accident.

以上、本実施の形態によれば、上位の電気所に設置したオシロ装置のデータによって下位の電気所の遮断器の接触子の消耗量を演算するので、オシロ装置の設置数を低減でき、低コストで接触子の消耗量を管理することができる。また、通信ネットワークを用いて自動的に上位電気所から消耗量の演算に必要な電気データを収集することにより効率的な接触子の消耗量の管理が可能になる。
またオシロ装置のかわりに、送電線リレーをオシロ装置の代わりとして、データを収集して活用することも可能である。そうすれば、オシロ装置が無くても同じレベルでの接触子の消耗量を管理することができる。
As described above, according to the present embodiment, the consumption amount of the contact of the circuit breaker of the lower electric station is calculated based on the data of the oscilloscope apparatus installed in the upper electric station. The consumption of the contact can be managed at a cost. Further, it is possible to efficiently manage the amount of consumption of the contact by collecting the electrical data necessary for the calculation of the amount of consumption from the upper power station automatically using the communication network.
Further, instead of the oscilloscope, it is also possible to collect and utilize data by using a transmission line relay instead of the oscilloscope. If it does so, even if there is no oscilloscope device, the consumption of the contactor in the same level can be managed.

1 遮断器の接触子消耗量管理システム
2 オシロ装置
3 伝送装置
4 コンピュータ装置
5 通信ネットワーク
10 上位電気所
11 遮断器
12 電気データ収集手段
13 保護継電器
14 過電流リレー(OCリレー)
15 送電線
20 下位電気所
21 電波時計
22 電気信号記録手段
23 停止タイマ
24 遅延時間テーブル
25 遅延時間設定手段
26 DI手段
27 AI手段
28 A/D変換手段
29a,29b OR回路
31a,31b,31c 距離リレー
32a,32b,32c 時限リレー(タイマ)
33 OR回路
40 記憶部
41 オシロデータファイル
42 判定ルールファイル
43 接触子データファイル
50 演算部
51 データ受信手段
52 動作遮断器判定手段
53 遮断電流演算手段
54 接触子消耗量演算手段
60 伝送部
61 入力部
DESCRIPTION OF SYMBOLS 1 Contactor consumption management system of circuit breaker 2 Oscilloscope 3 Transmission apparatus 4 Computer apparatus 5 Communication network 10 Higher electric station 11 Circuit breaker 12 Electric data collection means 13 Protection relay 14 Overcurrent relay (OC relay)
15 Transmission line 20 Lower electrical station 21 Radio clock 22 Electrical signal recording means 23 Stop timer 24 Delay time table 25 Delay time setting means 26 DI means 27 AI means 28 A / D conversion means 29a, 29b OR circuits 31a, 31b, 31c Distance Relay 32a, 32b, 32c Timed relay (timer)
33 OR circuit 40 Storage unit 41 Oscillo data file 42 Judgment rule file 43 Contact data file 50 Calculation unit 51 Data reception unit 52 Operation breaker determination unit 53 Breaking current calculation unit 54 Contact consumption amount calculation unit 60 Transmission unit 61 Input unit

Claims (5)

送電系統の電圧・電流を含む電気信号を記録し、距離リレーのトリップ信号をトリガとして、あらかじめ設定されたトリガ発生前時間(以下漸進時間という)からトリガ発生後一定時間経過後の間の電気信号を記録し停止するオシロ装置と、該オシロ装置の記録データを送信する伝送装置と、該伝送装置から通信ネットワークを介して送られてきた前記オシロ装置の記録データを受信し、該記録データをもとに遮断器の接触子消耗量を演算するコンピュータ装置と、を有する遮断器の接触子消耗量管理システムであって、
前記距離リレーは、電気信号をもとに送電系統における前記距離リレーと前記オシロ装置の設置された電気所、および下位の電気所を含む所定の区間ごとに異常を検出して動作信号を出力すると共に、動作信号出力後に前記区間ごとに予め定められた時間経過後にトリップ信号を出力し、
前記オシロ装置は、常時記録計測を行い夫々の区間とトリガ検出後、漸進時間からトリガ検出後一定時間の間の電気信号を記録し停止するまでの時間である遅延時間とを関連付けて保存する遅延時間テーブルと、トリガ検出後、該遅延時間テーブルを参照して動作信号を出力した区間に対応する遅延時間を設定し、該遅延時間の経過により記録停止指令を出力する停止タイマと、該停止タイマから記録停止指令を受信するまで電気信号をメモリ循環式で記録する電気信号記録手段と、を備え、前記停止タイマは、トリガ検出後、遅延時間の経過前に再びトリガを検出することにより、該トリガの要因となった動作信号の区分に対応する時間をタイマに設定してリスタートし、
前記コンピュータ装置は、前記伝送装置から送られてくる前記オシロ装置の記録したデータを受信するデータ受信手段と、前記送電系統の各電気所に設置された遮断器であって、動作した遮断器を判定する動作遮断器判定手段と、前記動作遮断器判定手段によって判定された遮断器ごとに、前記記録データを用いて該遮断器の接触子損耗量を演算する接触子消耗量演算手段と、を備えたことを特徴とする遮断器の接触子消耗量管理システム。
Record electrical signals including the voltage and current of the power transmission system, and use the trip signal of the distance relay as a trigger, and the electrical signal between the preset trigger occurrence time (hereinafter referred to as progressive time) and after a certain time has elapsed since the trigger occurrence An oscilloscope device that records and stops recording, a transmission device that transmits recording data of the oscilloscope device, receives the recording data of the oscilloscope device sent from the transmission device via a communication network, and also stores the recorded data A circuit breaker contact consumption management system comprising: a computer device for calculating a contact consumption of the circuit breaker;
The distance relay detects an abnormality and outputs an operation signal for each predetermined section including the distance relay in the power transmission system, the electric station where the oscilloscope is installed, and the lower electric station based on the electric signal. A trip signal is output after a predetermined time has elapsed for each section after the operation signal is output,
The oscilloscope performs recording measurement at all times, and delays each of the intervals and a delay time, which is a time from when the trigger signal is detected to when the electrical signal is recorded from the progressive time to a certain time after the trigger is detected and stopped. A stop timer that sets a delay time corresponding to a section in which an operation signal is output with reference to the delay time table after detecting the trigger, and outputs a recording stop command when the delay time elapses, and the stop timer An electrical signal recording means for recording an electrical signal in a memory circulation manner until a recording stop command is received from the memory, and the stop timer detects the trigger again after the trigger time has elapsed, before the delay time elapses. Set the timer to the time corresponding to the category of the operation signal that caused the trigger, and restart.
The computer device includes a data receiving means for receiving data recorded by the oscilloscope sent from the transmission device, and a circuit breaker installed at each electric station of the power transmission system, An operation circuit breaker determining means for determining, and a contact consumption amount calculating means for calculating a contact wear amount of the circuit breaker using the recording data for each circuit breaker determined by the operation circuit breaker determining means. A circuit breaker contact consumption control system comprising a circuit breaker.
前記遅延時間テーブルに保存される遅延時間は、区間の距離リレー用時限リレーの整定値よりも大きいことを特徴とする請求項1に記載の遮断器の接触子消耗量管理システム。   2. The contactor consumption management system for a circuit breaker according to claim 1, wherein a delay time stored in the delay time table is larger than a set value of a distance relay time relay in a section. 前記コンピュータ装置の前記動作遮断器判定手段は、二以上の区間について距離リレーの動作信号が出力された場合は、当該二以上の区間の夫々について遮断器の接触子消耗量を演算することを特徴とする請求項1または2に記載の遮断器の接触子消耗量管理システム。   When the operation signal of the distance relay is output for two or more sections, the operation breaker determination means of the computer device calculates the contact consumption of the circuit breaker for each of the two or more sections. The contactor consumption management system for a circuit breaker according to claim 1 or 2. 前記コンピュータ装置の前記動作遮断器判定手段は、距離リレーの動作区間が相手端を含む区間であり、前記オシロ装置の記録データによって演算した遮断電流の大きさが所定値未満である場合は、相手端の母線事故であると判定することを特徴とする請求項1乃至3のいずれか一項に記載の遮断器の接触子消耗量管理システム。     The operation breaker determining means of the computer device is a section in which the distance relay operation section includes the counterpart end, and the magnitude of the cutoff current calculated from the recorded data of the oscilloscope is less than a predetermined value, The contact consumption control system for a circuit breaker according to any one of claims 1 to 3, wherein it is determined that an end bus fault has occurred. 前記コンピュータ装置の前記遅延時間設定手段は、デジタル入力手段を介して入力した前記距離リレー用の時限リレーの整定値に一定値を加えた値を前記遅延時間テーブルの該距離リレーの区間に対応する遅延時間として設定することを特徴とする請求項1乃至4のいずれか一項に記載の遮断器の接触子消耗量管理システム。     The delay time setting means of the computer device corresponds to the distance relay section of the delay time table obtained by adding a fixed value to the set value of the time relay for the distance relay input via the digital input means. The contactor consumption management system for a circuit breaker according to any one of claims 1 to 4, wherein the system is set as a delay time.
JP2011211972A 2011-09-28 2011-09-28 Circuit breaker contact consumption control system Expired - Fee Related JP5312546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211972A JP5312546B2 (en) 2011-09-28 2011-09-28 Circuit breaker contact consumption control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211972A JP5312546B2 (en) 2011-09-28 2011-09-28 Circuit breaker contact consumption control system

Publications (2)

Publication Number Publication Date
JP2013073782A true JP2013073782A (en) 2013-04-22
JP5312546B2 JP5312546B2 (en) 2013-10-09

Family

ID=48478128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211972A Expired - Fee Related JP5312546B2 (en) 2011-09-28 2011-09-28 Circuit breaker contact consumption control system

Country Status (1)

Country Link
JP (1) JP5312546B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645436A (en) * 2013-11-30 2014-03-19 德力西电气有限公司 Calibration structure and calibration method of thermal overload relay tripping distance
CN104316868A (en) * 2014-09-12 2015-01-28 温州大学 Testing device for dynamic characteristic of contactor
CN107271851A (en) * 2017-07-03 2017-10-20 西南交通大学 A kind of wide area backup protection method based on differential active power
CN110426646A (en) * 2019-08-12 2019-11-08 国网江苏省电力有限公司镇江供电分公司 SOC balances endpoint algorithm electrochemical energy storage power station energy efficiency indexes calculation method
WO2023035577A1 (en) * 2021-09-07 2023-03-16 浙江正泰电器股份有限公司 Delay characteristic check method for bimetallic switch, delay characteristic check method for relay, and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539148A (en) * 1978-09-14 1980-03-18 Tokyo Shibaura Electric Co Switching device contact wear detector
JPS5541640A (en) * 1978-09-16 1980-03-24 Tokyo Shibaura Electric Co Device for measuring consumed electrode for switching unit
JPH05120945A (en) * 1991-10-30 1993-05-18 Toshiba Corp Contact wear monitoring device
JPH09166651A (en) * 1995-12-13 1997-06-24 Nissin Electric Co Ltd Oscilloscope apparatus for electric power
JP2002251936A (en) * 2001-02-26 2002-09-06 Toshiba Corp Power system protection control system
JP2007149458A (en) * 2005-11-25 2007-06-14 Chugoku Electric Power Co Inc:The Contact wear monitoring system for circuit breaker, circuit breaker maintenance assisting method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539148A (en) * 1978-09-14 1980-03-18 Tokyo Shibaura Electric Co Switching device contact wear detector
JPS5541640A (en) * 1978-09-16 1980-03-24 Tokyo Shibaura Electric Co Device for measuring consumed electrode for switching unit
JPH05120945A (en) * 1991-10-30 1993-05-18 Toshiba Corp Contact wear monitoring device
JPH09166651A (en) * 1995-12-13 1997-06-24 Nissin Electric Co Ltd Oscilloscope apparatus for electric power
JP2002251936A (en) * 2001-02-26 2002-09-06 Toshiba Corp Power system protection control system
JP2007149458A (en) * 2005-11-25 2007-06-14 Chugoku Electric Power Co Inc:The Contact wear monitoring system for circuit breaker, circuit breaker maintenance assisting method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645436A (en) * 2013-11-30 2014-03-19 德力西电气有限公司 Calibration structure and calibration method of thermal overload relay tripping distance
CN104316868A (en) * 2014-09-12 2015-01-28 温州大学 Testing device for dynamic characteristic of contactor
CN104316868B (en) * 2014-09-12 2017-12-19 温州大学 Contactor dynamic characteristic test equipment
CN107271851A (en) * 2017-07-03 2017-10-20 西南交通大学 A kind of wide area backup protection method based on differential active power
CN110426646A (en) * 2019-08-12 2019-11-08 国网江苏省电力有限公司镇江供电分公司 SOC balances endpoint algorithm electrochemical energy storage power station energy efficiency indexes calculation method
CN110426646B (en) * 2019-08-12 2021-03-23 国网江苏省电力有限公司镇江供电分公司 Energy efficiency index calculation method for electrochemical energy storage power station based on SOC balance endpoint algorithm
WO2023035577A1 (en) * 2021-09-07 2023-03-16 浙江正泰电器股份有限公司 Delay characteristic check method for bimetallic switch, delay characteristic check method for relay, and system

Also Published As

Publication number Publication date
JP5312546B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
RU2562243C1 (en) Detection and localisation of faults in power supply line powered from one side
Thompson et al. A tutorial on calculating source impedance ratios for determining line length
Choudhary et al. A review on microgrid protection
JP5312546B2 (en) Circuit breaker contact consumption control system
CA2787580A1 (en) Systems, methods, and apparatus for locating faults on an electrical distribution network
CN103606909A (en) Protecting system and method for power distribution network circuit
WO2009052862A1 (en) Differential protection method, system and device
KR100918697B1 (en) Low voltage distribution panel with power quality meter and operating method therefor
US11482855B2 (en) Electrical protection system for detection and isolation of faults in power distribution using synchronized voltage measurements and a method of its application
KR100868892B1 (en) Remote monitoring control and data acquisition system of electric supply channel
CN108710040A (en) Shunt capacitor is protected and monitoring integration method
JP2016220265A (en) Power distribution board
JP7122678B2 (en) Switches and test methods for switches
CN111555279A (en) Method for maintaining power utilization continuity based on intelligent unloading of three-level load
CN109301799B (en) Method and system for preventing multiple-circuit longitudinal zero-sequence direction protection maloperation in same tower
US11114892B2 (en) Electric power system transducer failure monitor and measurement recovery
Chang et al. An Adaptive Coordinated Wide-Area Backup Protection Algorithm for Network Topology Variability
Koner et al. SRAT-Distribution voltage sags and reliability assessment tool
Apostolov et al. Maintenance testing of multifunctional distance protection ieds
JP2011244593A (en) Accident aspect decision device
Menezes et al. Dual-Layer Based Microgrid Protection Using Voltage Synchrophasors
JP4667002B2 (en) Accident point location system and accident location method
KR102633927B1 (en) Relay for protecting electric system
Byerly et al. Substation Instrument Transformer Early Failure Detection Using Time-Synchronized Measurement
CN217882826U (en) Relay protection device and wind turbine generator system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees